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Abstract. Recent studies have highlighted the link between upper-level jet dynamics, especially the persistence of certain jet

configurations, and extreme summer weather in Europe. The weaker and more variable nature of the jets in summer makes it

difficult to apply the tools developed to study them in winter, at least not without modifications. Here, to further investigate the

link between jets and persistent summer weather, we present two complementary approaches to characterize the jet dynamics

in the North Atlantic sector and use them primarily on the summer circulation.5

First, we apply the self-organizing map (SOM) clustering algorithm to create a 2D distance-preserving discrete feature space

to the tropopause-level wind field over the North Atlantic. The dynamics of the tropopause-level wind can then be described by

the time series of visited SOM clusters, in which a long stay in a given cluster relates to a persistent state and a rapid transition

between clusters that are far apart relates to a sudden considerable shift in the configuration of upper-level flow.

Second, we adapt and apply a jet axis detection and tracking algorithm to extract individual jets and classify them in the10

canonical categories of eddy-driven and subtropical jets (EDJ and STJ, respectively). Then, we compute a wide range of jet

indices on each jet to provide easily interpretable scalar time series representing upper-tropospheric dynamics.

This work will exclusively focus on the characterization of historical trends, seasonal cycles, and other statistical properties

of the jet stream dynamics, while ongoing and future work will use the tools presented here and apply them to the study

of connections between jet dynamics and extreme weather. The SOM allows the identification of specific jet configurations,15

each one representative of a large number of days in historical time series, whose frequency or persistence had increased or

decreased in the last decades. Detecting and categorizing jets adds a layer of interpretability and precision to previously and

newly defined jet properties, allowing for a finer characterization of their trends and seasonal signals.

Detecting jets on flattened pressure levels instead the 2PVU surface is more robust in summer, and finding wind-direction-

aligned subsets of 0-contours in a wind shear field is a fast and robust way to extract jet features. Using the SOM, we highlight20

a trend towards more negative NAO, and isolate predictable and/or persistent circulation patterns. Using properties of the jet

features, we confirm that jets get faster and narrower in winter, but not so clearly in summer, and find no significant trend in jet

latitude. Finally, both methods agree on a sudden flow transition in June.
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1 Introduction

Extratropical tropopause-level jet streams are narrow bands of westerly winds and are one of the most prominent features of25

the upper-tropospheric circulation. Their large variability at daily timescales (Woollings et al., 2014) along with their link to

extreme weather (e.g., Martius et al., 2006; Mahlstein et al., 2012; Harnik et al., 2014) makes them a prime object of research

in meteorology and atmospheric dynamics.

From a climatological perspective, jet streams are often separated into two categories based on their location and momentum

source (Kållberg et al., 2005; Koch et al., 2006; Harnik et al., 2014; Winters et al., 2020; Spensberger et al., 2023). The30

subtropical jet (STJ) is located at the poleward edge of the Hadley cell. It draws its momentum from the thermally-driven

Hadley cell circulation and is mostly confined to high levels, typically between 400 and 150hPa (Krishnamurti, 1961; Held

and Hou, 1980). The eddy-driven jet (EDJ) can be found further poleward, inside the Ferrell cell. It is also referred to as the

subpolar or extratropical jet. It is driven by momentum flux convergence associated with midlatitude synoptic eddies (Palmen

and Newton, 1948; Held, 1975; Schneider, 1977; Woollings et al., 2010). It has a much deeper vertical extent, typically35

extending below 700hPa. The separation into STJ and EDJ is not always clear, both sources of momentum are often present

to varying degrees to drive either jets and depend on each other (Lee and Kim, 2003; Martius, 2014).

Certain features and configurations of the jet have received particular attention over the last years due to their links to other

aspects of the circulation, surface weather, or both. The latitude of the low-level EDJ has been identified as a major mode of

variability of the wintertime Atlantic circulation (Athanasiadis et al., 2010; Woollings et al., 2010; Hannachi et al., 2012). A40

very zonal (low tilt) EDJ paired with a north-shifted STJ can create a rare but very persistent circulation pattern with a merged

jet (Harnik et al., 2014). An instantaneously meandering jet is the marker of Rossby waves (e.g. Vallis, 2017), but strong

narrow jets can act as waveguides for them too (Hoskins and Ambrizzi, 1993; Martius et al., 2010; Wirth, 2020; White, 2024).

A locally sinuous jet may also mark the presence of a block (e.g. Nakamura and Huang, 2018; Woollings et al., 2018b). Jet

properties also interact with each other. For instance, in winter, the EDJ’s latitude influences its persistence and predictability45

(Franzke and Woollings, 2011; Barnes and Hartmann, 2011), and a jet with low speed has a higher daily variability in its

waviness and latitude (Woollings et al., 2018a), which is hypothesized to favorise blocks. Jet features have also been linked

to extreme events. The position of the EDJ modulates the odds of extreme events in the midlatitudes (Mahlstein et al., 2012),

and so does its waviness (Röthlisberger et al., 2016b; Jain and Flannigan, 2021). Over Eurasia, a persistent double jet state is

associated with increased odds of extreme heat in summer in certain regions of western Europe (Rousi et al., 2022). Recently,50

statistical models trained on timeseries of a few (5-10) wintertime EDJ properties (introduced by Barriopedro et al., 2022) were

used to skillfully predict air stagnation (Maddison et al., 2023) and temperature extremes (García-Burgos et al., 2023).

Climate change is expected to affect the jet streams in several ways. Through connections highlighted in the previous

paragraph, themselves potentially affected by climate change, trends in jet stream properties may translate into trends in various

aspects of atmospheric circulation and surface weather (e.g. Held, 1993; Stendel et al., 2021). The poleward shift of the jet55

streams under climate change was hypothesised very early on (e.g. Held, 1993). It is now observed in historical data in the

global mean, albeit more clearly in winter than in summer, and mostly for the EDJ. The signal is however weak in the North
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Atlantic sector (Woollings et al., 2023). This poleward shift is projected to continue in future simulations (Barnes and Polvani,

2013; Lachmy, 2022; Woollings et al., 2023). For the STJ, the historical trend is season- and region-dependent. For the North

Atlantic sector, Totz et al. (2018) report a poleward trend in the transition seasons and an equatorward trend in summer. The60

North Atlantic STJ is also weakening with time, especially in summer (Woollings et al., 2023; D’Andrea et al., 2024), and so

is the North Atlantic EDJ in the last two decades (Francis and Vavrus, 2012; Woollings et al., 2018a), although an opposite

trend has been observed for longer time periods (Blackport and Fyfe, 2022). In future simulations, a positive trend is projected

for the maximum speed of the EDJ core, although this signal is not yet apparent in historical data (Shaw and Miyawaki, 2024).

In past data and using three different metrics, Francis and Vavrus (2015), Di Capua and Coumou (2016), and Martin (2021) all65

find slight increases in EDJ waviness, but a stable STJ waviness in the last cited paper. Further downstream however, Lin et al.

(2024) find an increase in waviness for the Asian Jet that has an Atlantic origin. By contrast to past trends, for future winters,

Peings et al. (2018) find a decrease in waviness accompanied by a strengthening and squeezing of the EDJ. This opposite trend

in EDJ waviness for past and future data is consistent with the findings of Cattiaux et al. (2016), who find a slight increase in

waviness in the past only for certain basins (including the North Atlantic) and seasons, but an overall decrease in waviness in70

future simulations. The conflicting results in jet meandering depending on the period and metric chosen were highlighted by

Blackport and Screen (2020b) and overall remain a subject of discussion in the community (Geen et al., 2023).

Most of the current research in atmospheric science requires reducing the complexity of the circulation from time-varying

2D or 3D fields to a smaller feature space. These simplified feature spaces are either continuous, like jet indices (Woollings

et al., 2010; Di Capua and Coumou, 2016; Barriopedro et al., 2022) or the projection of instantaneous fields on principal75

components, or discrete, like weather regimes (e.g., Michelangeli et al., 1995) or other types of clustering methods (Weiland

et al., 2021; Rousi et al., 2022). These methods can also be categorised based on the number of choices the user needs to

make, from data-driven, e.g. principal components, k-means, self-organizing maps, to expert-defined, e.g. jet indices, blocking

indices, wave breaking indices. Data-driven approaches are typically less fallible since they require fewer choices, but tend

to be harder to interpret than expert-defined features. Data-driven methods are also known to produce physically unrealistic80

patterns that can lead to wrong interpretations (Monahan and Fyfe, 2006).

In this work and to lay the groundwork for further research on all the interactions previously cited, we develop two comple-

mentary diagnostic tools for the jet streams. Using two methods allows us to view the circulation from different angles, and

to combine the strengths of data-driven and expert-defined approaches. Recently, Madonna et al. (2017) recommended the use

of different, complementary, and problem-dependent approaches to describe the jet streams. Both of the diagnostic tools pre-85

sented in this work are adaptations of existing techniques widely used in the field of atmospheric sciences, with implementation

details changed and tailored for the specific needs of summertime, upper-level circulation.

The first one is a clustering technique known as the self-organizing map (SOM). This data-driven clustering technique

creates a distance-preserving discrete feature space that makes it a valuable tool to study stationary and recurrence (Tuel and

Martius, 2023), a major factor in extreme events. The second one is a set of jet characteristics computed on individual jet90

features extracted, tracked, and categorized from wind fields. This provides a collection of continuous interpretable time series

representing the jets over time.
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After presenting both techniques in detail, we demonstrate their capabilities on reanalysis data. The high-level objectives

of the results presented in this work are to assess the seasonal cycle of the upper-level circulation through this new lens, find

the trends, or lack thereof, in various metrics, and study to the circulation persistence under different aspects. This works95

focuses on summer, a season that receives less attention when designing methods to characterize the circulation, and is yet very

important for extreme events and which presents interesting, different trends compared to the rest of the year (Harvey et al.,

2023).

2 Data and Methods

2.1 Data100

The European Centre for Medium-Range Weather Forecasts reanalysis version 5 (hereafter, ERA5 reanalysis; Hersbach et al.,

2020) provides 6-hourly gridded fields for the 1959-2022 period, over the 80°W− 40°E, 15°N− 80°N domain. The main

variables we use are the horizontal wind components u and v, and the wind speed U =
√

u2 + v2, on pressure levels ranging

from 175 to 350hPa.

Both algorithms take as input, at each timestep, a single 2D (longitude-latitude) field of upper-tropospheric wind. We flatten105

the three wind fields (u, v and U ) in the vertical by retaining, at every grid point, their value at the pressure level where U is

maximal since the jets are the features that interest us, and they are defined as local wind speed maxima. We keep track, in a

separate 2D array, of that pressure level. Both methods then add different preprocessing steps to this flattened data, which will

be discussed in the relevant sections.

In addition to wind speed fields, we use 500hPa geopoential height anomalies from ERA5, and the daily North Atlantic110

Oscillation (NAO) index from the United States National Oceanic and Atmospheric Administration, computed following the

method developed by Barnston and Livezey (1987) that provides a meaningful definition of NAO in all seasons.

2.2 SOM clustering

2.2.1 Definition

The self-organizing map (SOM) is a clustering method first introduced by Kohonen (1982) (see also Kohonen, 2013, for an in-115

depth review), whose main appeal over simpler predecessors like k-means is the creation of a 2D distance-preserving discrete

feature space. The SOM may be presented as a modification of k-means. In k-means data points are split in k groups called

clusters, such that the variance within the clusters is minimal and the variance between clusters is maximal. Each cluster is

then represented by the mean of all its members, called the cluster center or sometimes weights matrix. The SOM adds another

layer to this algorithm, by arraying the clusters on the nodes of a regular 2D grid of size k = n×m, typically rectangular120

or hexagonal, based on a distance metric and a neighborhood function. There, a cluster i is defined by its weights matrix wi

which is not equal in general to its center, but rather the result of a training process during which clusters on neighboring nodes

have an influence modulated by the distance between nodes. Hereafter, we conflate the clusters and the nodes they sit on, and
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the phrases "distance between clusters" and "neighboring clusters" are to be understood as, respectively, "distance between the

nodes on which the clusters sit" and "clusters on neighboring nodes".125

The training then has a similar objective as k-means, with the additional constraint that a pair of neighboring clusters

should be more similar to each other than a pair of distant clusters. This constraint ensures the distance-preserving property

of the created phase space. The desired similarity of neighboring clusters may be enforced by the choice of an appropriate

neighborhood function, typically a Gaussian function of the distance between clusters. The convergence is helped by a scale

parameter σ that slowly decreases during training, but the decay function and the initial σ value are additional choices that need130

to be made. In general, a larger σ allows for more similar neighbors, and the limiting case σ→ 0 is equivalent to k-means.

Both the SOM and k-means share the same challenge, that is the choice of the number of clusters k. The SOM further adds

the choice of the shape of the grid, k = n×m. Allowing neighboring clusters to be similar inevitably leads the SOM to be a

strictly worse clustering algorithm, in the usual sense of cluster separation, than k-means. It should only be used if one needs a

distance-preserving feature space. One of the reasons we use SOM is the interpretability of the projected trajectory. Once the135

SOM is trained, each timestep belongs to a cluster, its "best matching unit" or BMU, defined as BMU(t) = argmini∥xt−wi∥.

Thus, the input time series is represented as a succession of stays in clusters and jumps between clusters, where long stays or

short jumps point to persistence, and long jumps indicate abrupt changes in the configuration of the upper-level flow.

2.2.2 Specific implementation

For the SOM algorithm, the flattened JJA wind speed field (see Data) is coarsened to a 1.5° resolution grid to reduce the140

computational complexity and to focus on the larger scale features. However, the final results are shown at the initial 0.5°

resolution. This is done by representing clusters with their centers, computed with the original higher resolution data, rather

than their weights.

Figure 1. Hexagonal topology SOM with ideal grid size. The SOM clusters are in black and the grayed clusters illustrate the periodic

boundaries.

The grid (of size n×m) is hexagonal with periodic boundary conditions, and is associated with a discrete distance metric.

All clusters are at a unit distance away from their nearest neighbors, and the bottom row and left column also are at a unit145

distance away from the top row and right column (see figure 1). In order to inform our decision on the SOM grid size, we use
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two performance metrics of the SOM. The first one is the energy function E of the SOM based on Heskes (1999) (see eq. 1),

and the second one is the 5th percentile of the projection of data points on their BMUs, defined as P in eq. 2. These metrics

are a function of the ensemble of SOM weights W = {wi,1≤ i≤ n×m}, the ensemble of input data vectors x ∈X , of size

N , as well as the topological properties of the SOM. The grid distance between two SOM clusters i and j is precomputed and150

stored in a matric of elements dij . These distances are then transformed by the neighborhood function to obtain the pairwise

neighborhood parameters hij = f(dij ;σ) based on the SOM’s scale parameter σ. In this work, f is a zero-mean Gaussian.

E(W ) =
1
N

∑

x∈X

min
1≤i≤n×m

n×m∑

j=1

hij∥x−wj∥2 (1)

P (W ) = Q5
x∈X

(
max

1≤i≤n×m

x ·wi

∥x∥∥wi∥

)
(2)

The goal is to minimize E and maximize P while maintaining a reasonably low number of clusters. The E and P objectives155

are similar, but the latter allows one to explicitly limit how poor the poorest projections on the SOM clusters are, making sure

that most days are well-described in the 2D feature space described by the SOM since current and future work includes working

on extreme configurations of the upper-level circulation. Testing for many sizes ranging from 4× 4 to 9× 9 was performed,

and the chosen size is 6× 4.

2.2.3 SOM metrics160

We compute statistical properties from the trained SOM, including the populations of each cluster and their annual trends, the

average and maximum residence time in a given cluster, and the transition probability matrices at various time lags. Formally,

from an integer time series of BMUs BMU(t), the transition matrix at lag ν (integer number of timesteps forward) Mν has

elements Mν
ij = P(BMU(t + ν) = j|BMU(t) = i).

The transition matrices allow, among other things, to compute a SOM metric that a SOM metric that characterizes immedi-165

ates predictability in the spririt of the local dimension in dynamical systems theory. Local dimension is a metric that measures,

for every point along a high-dimensional trajectory, the amount of active degrees of freedom (see e.g. Faranda et al., 2017).

Our predictability metric is named dilution and is defined for each cluster j and lag ν as
∑

i M
ν
ijdij . This corresponds to

the expected value of dij , given the discrete probability distribution (for a given cluster j) Mν
ij . It informs on how long the

SOM-space trajectories leading to cluster i typically are.170

The second SOM metric of note is an equivalent to the persistence index in dynamical systems theory. The average (resp.

maximum) residence time at a given cluster i is simply given by the average (resp. maximum) length of time during which

BMU(t) = i, starting at the transition from another cluster to i. The definition can be loosened to the length of time during

which BMU(t) stays within a given distance of i. With a large SOM with sometimes minute differences between neighboring

clusters, this second definition with a small distance of 1 or 2 can be a more realistic measure of persistence. Here, we use a175

value of 1, meaning a residence on cluster i continues while the trajectory stays on cluster i or any of its six direct neighbors.
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Figure 2. Results of our jet detection algorithm for 0000 UTC 9 Oct 1959. a) The smoothed, flattened wind speed [m/s] field given as input

to the algorithm. b) The smoothed horizontal normal wind shear on the same flattened surface. c) The τ = 0 contours where the size of the

points corresponds to the wind speed field, and the color corresponds to the alignment with the horizontal wind vector field from blue (close

to −1) to red (close to +1). d) The jets extracted from contours, as solid purple lines. The output of the S17 algorithm is represented as

dashed cyan lines for comparison.

2.3 Feature detection and tracking

The SOM is a powerful data-driven tool to characterize the circulation as a whole in a given region. However, one might want

to know more specific information about some of the components of the circulation, expressed as numbers rather than features

on a composite map. We now turn to the methods we use to detect jets in flattened 2D wind fields, to separate them into broad180

categories, to track them over time to assess their lifetime and evolution, and finally to extract a wide range of properties out

of them. Thanks to seasonally-varying thresholds (see , our method works equally well across the year. This is why we apply

it to the full dataset rather than only to summer, which will allow us to broaden the discussion of inter-annual trends to other

seasons and paint a full picture of the summer jets’ annual cycles.

2.3.1 Jet detection185

Our jet detection algorithm is an updated version of the method by Spensberger et al. (2017, hereafter S17). It can be applied

to each timestep independently, allowing for parallelization.

As for the SOM, the flattened wind fields (u, v and U ; see Data) are coarsened to a grid of 1.5°. As a first difference to S17,

we use vertical maxima over several high-altitude pressure levels instead of the 2PVU surface. Internal testing has shown
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that the STJ is often undetectable on the 2PVU surface in summer, while it clearly appears on our flattened fields. The main190

criterion used to find jets is the horizontal normal wind shear τ := ∂U
∂n = v

U
∂U
∂x − u

U
∂U
∂y . Following Berry et al. (2007), τ = 0 is a

necessary condition for a jet. The first step of this algorithm is thus to find smooth contours of τ = 0. First, a Fourier transform

is applied to the τ field in the longitude (λ) and latitude (ϕ) directions, yielding τ̃ defined on a 2D space of Fourier coefficients

(kλ, kϕ). This function is truncated following |kλ + kϕ|> K =⇒ τ̃(kλ,kϕ) = 0 with K = 0.3×nλ×nϕ before applying an

inverse Fourier transform on the truncated Fourier field. Then, a contour library is applied to extract contours of τ = 0 as lists195

of (λ,ϕ) coordinate pairs.

Jets are then extracted as subsets of these contours, using wind speed and alignment criteria for each point of the contour.

First, the wind speed must be high enough for a grid-point to be considered a part of a potential jet. We use as threshold the day-

of-year climatological 75th percentile of 6-hourly wind speed, so that the algorithm works equally well in all seasons. Second,

the contour must be aligned with the wind speed. This is done by computing the local tangent vector t = dx
ds , with s the linear200

path coordinate, and computing the alignment dot product a = t
∥t∥ · u

U , as done in Molnos et al. (2017). We require a > 0.3 for

a jet. With very few values of a different from either −1 or +1, the performance of the algorithm is largely insensitive to the

exact value of this threshold.

Finally, jets are defined as the longest series of consecutive points that follow these two criteria, allowing for small stretches

of 1 to 3 points that do not respect them in between. The jets themselves need to verify two criteria to be considered as such.205

First, the path integral of the wind speed along their cores needs to be above a day-of-year varying threshold, and the average

of all their local alignment dot products needs to be above 0.6.

Each jet Ja of length La is represented as a sequence of La points k = 1 . . .La, themselves a collection of coordinates

with longitude λk
a, latitude ϕk

a, pressure pk
a level, along with additional point-wise properties that can be of use to derive jet

properties, e.g. the uk
a or vk

a components of wind or the wind speed Uk
a .210

Figure 2 demonstrates the jet detection algorithm in four steps and compares its results against the original S17 algorithm.

Our algorithm has very comparable results to S17. The two difference, finding 0-contours of τ rather than low values of
dτU
dn , and extracting jets as subsets of contours using an alignment criteria instead of connecting points using a shortest-path

algorithm, seem to help find jet cores closer to the local wind maxima, a problem that was highlighted in the original work.

Furthermore, by allowing jets to not respect the two local criteria (speed and alignment) for up to three points, our algorithm is215

more likely to find one long jet rather than several shorter pieces. This latter point is sometimes a problem when an EDJ and a

STJ are detected as one long single jet. However, this does not happen often in 6-hourly data, and it is typically accompanied

by a sudden change in pressure level, wind speed, or alignment along the jet core, which helps to highlight and resolve these

cases. This issue is not solved systematically in the current version of the algorithm, but might come in a later version.

2.3.2 Jet properties220

Introduced by Woollings et al. (2010), the Jet Latitude Index (JLI) measures the latitude of maximum wind speed in the profile

obtained by averaging the wind speed field at low altitudes in a longitudinal band, originally 60°W− 0°E, the North Atlantic

basin. It is often used in combination with the Jet Speed Index (JSI), the maximum wind speed used to find the JLI. These
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simple and highly interpretable metrics have been used to describe jet stream variability at timescales ranging from daily to

multi-decadal (Woollings et al., 2014, 2018a).225

Over time, several other similarly simple yet powerful jet indices have been developed to describe the jet stream in a sim-

plified way, or to link it to other phenomena. Such indices include the zonal jet index (Harnik et al., 2014), several sinuosi-

ty/waviness metrics (Francis and Vavrus, 2015; Di Capua and Coumou, 2016; Cattiaux et al., 2016; Röthlisberger et al., 2016a)

linked to extreme events and persistence (Röthlisberger et al., 2016b; Martin and Norton, 2023), up to a ten-index toolbox

(Barriopedro et al., 2022) that has been used for skillful predictions of cold and hot spells in Europe (Maddison et al., 2023).230

In the presence of several jets, many of these indices give an incomplete or improper picture. Using our feature detection

algorithm (section 2.3.1), all the jet indices can be computed for each jet object individually. The details of computations and

potential differences with the original metrics are explained in the following paragraphs.

In the previous section 2.3.1 we mentioned point-wise jet properties storing each point’s position and wind speed. The mean

of these point-wise jet properties constitute the first jet properties we compute. The ones of interest correspond to the mean235

position of the jet. The properties mean_lon, mean_lat and mean_lev are all computed as weighted averages of the

longitude λ, the latitude ϕ and the pressure level p respectively, using the point-wise wind speed values Uk
a as weights. In

the spirit of the JLI, the maximum wind speed is found and stored as spe_star. The position on the (lon-lat) plane of this

maximum is stored as lon_star and lat_star.

A path integral of the wind speed along the jet core and using the haversine distance is performed and stored as jet_int.

Explicitly, the integral
∫

Uds is discretized using central finite differences and computed with a discretized approximation of

ds = 2Rarcsin

√
sin2

(
dϕ

2

)
· cos2

(
dλ

2

)
+ cos2(ϕ) · sin2

(
dλ

2

)

with R = 6.378×106 m the radius of the Earth. This integral is performed once more over a smaller domain (λ > 10 ◦W) and240

stored as int_over_europe.

To obtain the local width of the jet a at a point k along its core, normal segments are drawn in continuous space on either side

of the jet core, of length 10◦ each. Along each segment, the wind speed is interpolated from the gridded wind speed field. For

each segment, the haversine distance between the core and the first point to have a wind speed below 0.5×Uk
a represents the

local width of the jet on this side, and the full local width is the sum of the local widths computed on either side. In some cases,245

only one segment can be drawn if the jet core is too close to a boundary. In this case, the local width is simply twice the width

computed on the only valid side. The local widths wk
a are computed only every 5 jet core points to make the computations

faster, and then averaged, with Uk
a as weights, to finally obtain the jet’s mean width.

The tilt of the jet is computed as the slope of a Uk
a -weighted linear fit of the ϕk

a against the λk
a. The linear coefficient is stored

as tilt, while the intercept is discarded. The quality of this linear fit, the R2 value, is used to compute a natural measure of jet250

waviness: waviness1= 1−R2. Another natural way of characterizing waviness from jet objects is the Uk
a -weighted average

distance between ϕk
a and mean_lat, stored as waviness2. For short jets, the difference between the tilt and the waviness

is hard to assess, and in this case waviness1 will not capture waviness well. However, if a jet is both tilted and wavy,

only waviness1 will be able to separate these properties. These two waviness metrics are compared against adaptations
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Figure 3. Schematic representing the local width computation, along a jet core a drawn in purple, for a single point k. In the schematic, the

wind speed interpolated onto the half-segments is represented using a color gradient from black (core wind speed at the point of interest, Uk
a )

to yellow (half of local core wind speed, 0.5×Uk
a ) with a tick every 0.1×Uk

a . The schematic, especially the grid spacing, is not to scale.

of waviness metrics found in the recent literature. wavinessFV15, adapted from Francis and Vavrus (2015), is computed255

as the Uk
a -weighted average of the local meridional circulation index: MCIka = (vk

a−va)|vk
a |

(Uk
a )2

. wavinessDC16, adapted from

Di Capua and Coumou (2016), is computed as the ratio between the haversine-integrated length of the jet (
∫

1ds) to the length

of the circle arc ϕ ·R ·∆λa, where ϕ is mean_lat and ∆λa is the extent of the jet in longitude expressed in radians. Finally,

wavinessR16, adapted from Röthlisberger et al. (2016a), is computed as the sum of absolute differences in latitudes between

neighbors |ϕk+1
a −ϕk

a|, divided by the sum of differences in longitudes.260

An index that can be computed that will not be categorized per jet is the double jet index. From the found jets, a 2D (time-lon)

binary array is built, where an element is set to True if at least 2 jets can be found at this timestep and longitudinal band over

all latitudes and one hemisphere. The index is the zonal average of this array for longitudes over Europe, 10 ◦W < λ < 40 ◦E.

In section 2.3.4, tracking the jets allows one to add to this list the lifetime of the jet, as well as the instantaneous speed of the

jet’s center of mass.265
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Figure 4. Demonstration of the jet categorization. a, b) For each season, here JJA, the jets are arrayed on the 3D phase space (Mean latitude

— Mean longitude — Pressure level) and binned hexagonally. The lightness represents the density of jets in each bin, in arbitrary units. A

two-component Gaussian Mixture model is fitted to the projected data, and the labels of each bin are averaged and represented as a color

ranging from pink for the STJ to purple for EDJ. c-f) Spatial density of detected jets in arbitrary units, colored by categories: pink for STJ

and purple for EDJ for all four seasons. The latter four panels have the same arbitrary scale.

2.3.3 Jet categorization

While some literature sees the types of jets highlighted in the introduction as regimes of a singular jet stream (Harnik et al.,

2014, 2016), this framework benefits from seeing them as categories one may assign to the previously detected jets. In instanta-

neous data, one cannot distinguish the jet from the eddies potentially driving it, since the quantification of the eddy momentum

flux requires temporal filtering and averaging (e.g. Lachmy, 2022). One instead has to rely on depth, which is sometimes mis-270

leading due to the many factors influencing low-level winds, latitude, which is not sufficient on its own for global data (Winters

and Martin, 2017), or potentially other metrics like shear (Martius et al., 2010). A recent, promising approach to establish this

categorization bins and counts the jets on the 2D feature space (Wind speed — Potential Temperature). The algorithm then

extracts regions of high occurrences for oceanic basins across the world and for both winter and summer. The approach always

finds two distinct regions that may be labeled STJ and EDJ, except for the North Atlantic basin in summer (Spensberger et al.,275

2023, see supplementary material for summer). A very similar approach is used here. It uses the (Mean latitude — Mean lon-

gitude — Pressure level) 3D phase space and fits a two-component Gaussian Mixture model to facilitate the discovery of the

two regions. The model is fitted independently for each season to accommodate the large seasonal variation in the STJ’s mean

latitude. Each binned point in the histogram corresponds to a whole jet instead of the jet points used in the original paper.
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The demonstration of the jet categorization can be seen on figure 4. Aside from expected results, it shows that the spatial280

density overlap of the two jets, a potential sign of misdetected jets, is seen mostly over North Africa in winter and is quite

low. When studied in more details, most of this spatial overlap is physically sound, as it corresponds to jets of different mean

pressure levels, the third dimension of the criterion used, and depths, characterzied using wind speed at low altitude pressure

levels (not shown).

2.3.4 Jet tracking285

A straightforward feature tracking is presented in this section. The program will assign a flag n to each jet at each timesteps,

where the flag is carried over from a jet in a timestep to a jet in the next one according to a distance threshold.

The algorithm starts by assigning each jet in the first timestep a unique flag 1,2,3 . . . . It then iterates over all timesteps t.

For all flags that have appeared at least once in the previous four timesteps (t− 1, t− 2, t− 3, t− 4, i.e. a day with a time

resolution of 6 hours), the algorithm extracts the most recent jet with this flag into a list of potential parents. This allows for290

jets to disappear for a few timesteps and mitigates the issue of short jets blinking in and out of the jet integral threshold from

section 2.3.1. The potential children are all the jets present in the current timestep. For all pair of a potential parent jet a and a

child jet b, an overlap measure oa,b as well as a vertical distance δa,b are computed as described in equations 3 and 4.

oa,b =
|Λa ∩Λb|

2

(
1
La

+
1
Lb

)
(3)

δa,b =
1

|Λa ∩Λb|

La,Lb∑

k,l:λk=λl

|ϕl−ϕl| (4)295

Where Λa is the ensemble of longitudes in jet a.

Both overlap and vertical distance metrics need to satisfy a certain threshold, respectively 0.5 and 10°. If both are met, the

jets match and the child jet is assigned the parent’s flag. If a child matches no potential parent, it is assigned a new flag, the

latest assigned flag plus one. If a child has two potential parents fulfilling both criteria, or if a parent has two children fulfilling

them, the winner is the most recent one, and if both are as recent then it is the longest. If the algorithm works on only a portion300

of the year, the flags are reset at the beginning of each year.

Using this, it is possible to infer the lifetime of a jet from its genesis to its decay, as well as to track the speed of its center

of mass (COM), in m/s using the haversine distance between two 6H-timesteps. The first use of these new jet properties is to

filter out jets with 1- or 2-timestep lifetimes to filter out residual noise. The lifetime and COM speed can be seen as additional

measures of persistence of the circulation and can be compared against those developed within the framework of the SOM.305
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Figure 5. SOM training results on summer wind speed fields. Composites of horizontal wind speed for all days corresponding to a cluster,

and result of the jet core detection algorithm overlayed as colored lines; pink for STJ and purple for EDJ. The SOM cluster number is

indicated by a number in the bottom left corner.

3 Results

3.1 JJA Atlantic Jet SOM space

The result of the SOM training are summarized in figure 5 on the discrete phase space created by the SOM in a grid that

represents its topology. Each panel is a composite of the wind fields of all timesteps belonging to the corresponding cluster. The

population of each cluster is shown in Figure 6a). The jet finding and categorization algorithm is applied to these composites,310

and the results are overlaid with purple and pink lines for the extratropical and STJs, respectively.

The SOM is used with a high number of clusters (24). This is much more than, for example, the canonical four summer

weather regimes (Michelangeli et al., 1995; Grams et al., 2017). It allows for a finer separation of timesteps but leads to cluster

pairs that look similar at first glance. The interpretation of the SOM can however be simplified, if necessary, by looking at

groups of a few clusters at a time, or regions of the phase that exhibit a feature of particular interest. Some of these regions315

are highlighted here for future reference. It is worth reminding that the boundaries of the SOM space are periodic, meaning

that opposite edges form a contiguous region. The high-zonal-overlap double jet states occur on the center-left side, as will be

later confirmed when looking at the aggregated jet properties. This region consists of long, south-shifted STJs and large zonal

overlaps of the STJ and the EDJ, while the centre right region has shorter or even absent and north-shifted STJs, leading to

smaller overlaps. Two clusters (7 and 19) on the left edge have very short STJs, as on the right edge. The jets at the lower left320

and right edges are at lower latitudes. The EDJ is wavier in the center rows and straighter in the extremal rows. There are a

lot of finer scale features in the individual clusters, including some known weather regimes: Scandinavian blocking (clusters

2 and 22), Atlantic ridge (clusters 16 and 17), and Greenland blocking (clusters 6 and 7). This can be supported by looking

at geopotential height anomaly composites in Fig. A1 in the Appendix. Some neighboring clusters whose centers look similar
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Figure 6. Climatological SOM cluster-wise properties. a) Population, in number of 6-hourly timesteps in JJA 1959 to 2022. b) Daily NAO

anomalies averaged over timesteps corresponding to a SOM cluster. No significance testing is done here. c) Trends (1959 - 2022) in population

in days per JJA. Significant trends at the 95th percentile are marked with a black cross.

might have differences in intensity or other properties of the jet that are hard to perceive on composite maps, but that will be325

highlighted when projecting the jet properties onto them in section 3.4.

3.2 SOM statistical properties

Figure 6 shows three SOM cluster-wise properties using a honeycomb grid representing the SOM clusters. The first property

is the cluster population. There is up to a factor > 3 between the least and the most visited cluster. The least populated clusters,

1 and 7, both feature shorter southward shifted jets, while the most populated cluster number 8, features both a short EDJ and330

a long STJ with little overlap over Europe.

The daily NAO index, shown on the second panel b, projects well on the x-axis of the SOM. This shows that the SOM

organizes variance in a sensible way, picking up the signal of the main principal component of the circulation variability in the

study region. It is, however, not a perfect alignment with the SOM axes, showing that the SOM does more than just discretize

the feature space of the first two PCs.335

In the third panel c, JJA population trends are shown for all clusters. The most negative trends in population (clusters 2,

10, 17) correspond to, respectively, a Scandinavian blocking, a deep Atlantic ridge with weak jets, and a strong wavy EDJ

accompanied by a short and weak STJ with little overlap over eastern Europe. The strongest positive trend, on cluster 24,

represents a very similar situation to cluster 17, which showed a negative trend. However, upon closer inspection, it can be

observed that the STJ is even weaker and shorter, going below the detection threshold of the jet detection algorithm, and the340

EDJ is wavier on a shorter wavelength, accompanying geopotential height anomalies in different places over Europe, ultimately

resulting vastly different weather situations on the surface. Comparing the trends with the projected NAO indicates an overall

weak trend towards more negative NAO and less positive NAO, in accordance to, e.g., Harvey et al. (2023).

The appeal of the SOM in the context of characterizing a complex dynamical system like upper-level Euro-Atlantic circu-

lation is the ability to study high-dimensional time series in a much simpler form; as a series of transitions between clusters345

separated by long or short stays. The distance-preserving property of the SOM makes the magnitude of the jumps also mean-
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Figure 7. Weekly summer pathway, the weekly-binned cluster population for all weeks of summer and averaged over all summers. Week 1

corresponds to the first week of June and week 12 to the last week of August

ingful, as opposed to other clustering methods. The link back to upper-level flow is easily made by studying the composites in

figure 5.

Next we add a temporal dimension by looking at the typical summer pathway through the SOM in figure 7. This figure

shows weekly-binned cluster populations for all weeks of JJA and averaged over all summers 1959 to 2022. It shows that the350

small isolated subset of clusters 2,8,13 corresponds to patterns that represent most of early June’s circulation, while the rest of

the clusters are visited in July and August, indicating a marked transition of the flow during June. The shift from left to right

at the end of June corresponds to a reduction in double jet occurence in JA that will be highlighted in later sections. Cluster 13

corresponds to a negative NAO in early June and cluster 2 to a positive NAO in early June, cluster 8 to an almost neutral NAO

state.355
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Figure 8. Persistence properties of the SOM clusters. a) Mean residence time. b) 95th percentile of residence times. c) Yearly trend in 95th

percentile of residence times in days per decade. Significant trends at the 95th percentile are marked with a black cross. The definition of

residence time here is loosened to allow a for a stay to be unbroken as long as the trajectory doesn’t leave the radius 1 circle around the

starting cluster.

The circulation during these first weeks of June is therefore represented by a few clusters highlighted earlier. The mean error

on these clusters is higher than for the rest of the SOM (not shown) so it is safe to assume that they are the default choice for

the early June days but not necessarily good representatives.

The nature of the SOM time series makes it a convenient and powerful platform to study crucial features of dynamical

systems such as the persistence. In figure 8, the persistence is characterized using the residence time at a cluster, allowing for360

departures one cluster away from the origin cluster (see methods). The residence times are aggregated as climatological JJA

averages (panel a) and the 95th percentile (panel b). The JJA averages give an approximation of the state persistence (Tuel and

Martius, 2023), i.e., an estimate of how much time to flow typically needs to move from one state into an next state and the

95th percentiles capture more episodic persistence, i.e., the most persistent events of each flow configuration. Decadal trends in

the 95th percentile of residence times are shown in panel c.365

Both aggregations (mean and 95th percentile) highlight similar hotspots of high persistence on the top-left and bottom-right

corners of the SOM with the exception of cluster 20. However, the high residence times for the clusters in the upper left corner

(2,8,13) cannot be interpreted under the same light as the high residence times in clusters 17 and 18. The high residence times

in clusters 2,8 and 13 arises from the seasonal pattern, i.e., the circulation resembles theses clusters in early June. The high

residence times in clusters 17 and 18 is true state persistence. The most persistent cluster is also the most frequently visited370

cluster. The least persistent clusters are clusters with a wavy single EDJ, or a short STJ. The clusters with the highest episodic

persistence outside the first weeks of June (clusters 17,18, 20 and 23) are quite diverse and fall into neutral (clusters 20, 17,

23) and negative (cluster 18) phases of the NAO, they feature double jets (cluster 20), a straight jet (cluster 18) and wavy jets

(clusters 17 and 20).

The trends in residence time follow the trends in population from figure 6. The low number of significant trends and their375

overall low values suggest that they are probably random.

As residence time can be seen as a discrete-space equivalent to the dynamical system’s persistence factor θ−1, a loose

equivalent to the local dimension d and a proxy for predictability is found with the backwards dilution. Note that it is not a
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Figure 9. SOM dilution at different backward lags, as defined in methods. A lighter shading on a cluster means that a shorter pathways lead

to it.

perfect proxy, as it does not account for the likelihood of transitions. Long jumps, say from cluster 1 to 15, might be very

likely in the transition probability matrix, and therefore more predictable, but they would still weigh towards a high backwards380

dilution of cluster 15. Figure 9 shows that, at a timescale of seven days, shorter pathways lead to the high-overlap double jet

states on the top-left than to the lower-overlap or even single jet states. Clusters with the highest dilutions (6 and 10) resemble

Greenland blocking, which coincides with the low forecast predictability of this regime (Osman et al., 2023). On the other

hand, JA clusters with the lowest backwards dilution resemble the Scandinavian Block and Atlantic Ridge weather regimes.

Those results are at odds with the findings of Hochman et al. (2021), who identify a low local dimension anomaly d for385

Greenland Blocking and a higher d for Scandinavian Block and Atlantic Ridge. This discrepancy either comes from a bad

correspondence between backwards dilution and instantaneous local dimension, or the fact we only use JJA data. Some JA

clusters with lower dilution also have high persistence (e.g., cluster 20), but not always, for example, clusters 17 and 18 being

persistent but unpredictable. This means that while the number of SOM space trajectories leading to these clusters that have

length 0 is higher than for other clusters, the rest of them have, on average, high lengths.390

3.3 Jet feature properties

From the detected and categorized jets, it is now possible to study the jet feature properties. They are numerous and many of

them are correlated with one another, so only a selection of six are shown in the main text, while results for a larger selection of

variables are presented Appendix B. The six properties chosen have all seen keen interest in past literature under various forms.

The average latitude can be compared to the Jet Latitude Index (Woollings et al., 2010) while the max. speed can be compared395

to the Jet Speed Index or the 99th percentile of wind speed (Shaw and Miyawaki, 2024). The speed of the jet’s COM can be

viewed as a proxy for persistence, the R16 waviness (Röthlisberger et al., 2016b) is one of the most natural way to characterize

this property of the detected jet objects, the width of the jet is emerging as another feature of interest in recent literature (Peings

et al., 2018) and is here computed using natural coordinates. Finally, we determine, at each longitude, if both jets are present

and average this overlap boolean quantity over the European sector (λ > 10 ◦W). The mean latitude, max. speed and width’s400
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Figure 10. Euro-Atlantic jet properties annual signal, split by jet category. A 15-day-window averaging is applied to the day-of-year mean

(thick line) as well as the day-of-year median (thin dotted line) but not to the inter-quartile range (shading). The marker label for each month

corresponds to the first day of this month. The grey rectangle in the middle of each panel represents JJA.

distributions have low skew, while the COM speed, waviness and double jet index’s distributions are very skewed with tall

peaks at low values and long tails.

The yearly cycle of this selection of jet properties is presented in figure 10. All the results are split by jet category and always

colored in the same way: pink for the STJ and purple for the EDJ. The double jet index is colored in black. Several interesting

features can be observed in this figure. First, the month of June is once more highlighted as a transition month that is different405

from the rest of summer. More precisely, the speed and width of both jets reduce in the months leading up to June, with a

stronger signal for the STJ. Then, during June, both jets move poleward, with again a more pronounced shift for the STJ.

The yearly cycle in latitude and speed of the EDJ are very comparable to the Jet Latitude Index and Jet Speed Index

yearly cycles (Woollings et al., 2014) and the storm track yearly cycles (Hoskins and Hodges, 2019) for the equivalent EDJ

properties (respectively average latitude and max. speed). The amplitude and width of the summer peak in STJ latitude can be410

compared with Maher et al. (2020). Seasonally, the STJ follows the expansion and weakening of the Hadley cell in the northern

hemisphere summer (Dima and Wallace, 2003; Davis and Rosenlof, 2012), although the relationship between STJ latitude and

Hadley cell edge is weakening with global warming (Maher et al., 2020).

The speed of the COM and the R16 waviness do not show strong seasonal cycles in contrast, with signals staying well below

the interannual variability, although a dip in STJ COM speed and in EDJ waviness are still noticeable in late summer . Both415

jets show a clear summer decrease in their widths. The EDJ width is smooth and quasi sinusoidal, while the STJ width jumps

from a constant regime to the other in June and October. The jets are much closer together in summer than the rest of the year,
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Figure 11. Euro-Atlantic jet properties summer trends, split by jet category. Linear trends represented by dashed lines are significant at the

95th percentile, while the dotted lines are not.

but overlap less often, mainly due to the subtropical jet occuring less often in summer. This is likely to affect Rossby wave

breaking frequency and intensity.

An important questions is how these properties have evolved under the past climate change. Figure 11 shows the JJA trends420

for the selected six properties, while figure 12 shows the all year trends for the same six properties.

Trends in summer are yet to emerge out of the inter-summer variability, as only two of the eleven trends shown in figure 11

are significant, negative trends in the width and max. speed of the STJ. This STJ speed trend is consistent with the findings

of D’Andrea et al. (2024), who report a significant decrease in zonal wind between −0.1 and −0.5 m/s per decade in the area

highlighted as the preferred positions of the STJ in summer in figure 4. The trend in STJ width has, to our knowledge, not425

been explored in the literature. The poleward shift of the EDJ projected in, e.g., Held (1993), is not present in these results

in summer, nor is the equatorward trend of the STJ reported by Totz et al. (2018). The absence of a trend in STJ latitude,

seemingly at odds with the measured tropical expansion (e.g. Davis and Rosenlof, 2012), is consistent with findings in the

recent literature (Davis and Birner, 2017; Maher et al., 2020). The absence of a trend in the persistence proxy for jet objects,

the speed in their COM, is in agreement with the small trends in SOM cluster residence times presented earlier. This agreement430

is to be contrasted with the poor correspondence between state persistence (SOM cluster residence times) and flow persistence

(low COM speed) highlighted in section 3.4.

Trends in the annual mean are clearer in contrast, thanks to strong signals in the cold season in particular. Some trends.

like for the double jet index, even change signs between summer and all-year. The poleward shift of the EDJ is slow and
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Figure 12. Euro-Atlantic jet properties all-year trends, split by jet category. Linear trends represented by dashed lines are significant at the

95th percentile, while the dotted lines are not.

not significant. Its sign is in accord with Held (1993) and more recent work also studying future simulations (Barnes and435

Polvani, 2013; Lachmy, 2022). The increase in jet maximum speed is reminiscent of the "fast-get-faster" observation in future

simulations by Shaw and Miyawaki (2024) and can also be related to longer-term trends in mean jet speed (Woollings et al.,

2018a; Harvey et al., 2023). The slow but significant increase in EDJ waviness over time is not robust to a change of period

(see table 1), in accord to findings by Blackport and Screen (2020a). The squeezing of the jet, along with the increase in speed,

coincides well with the findings in Peings et al. (2018). The increase in waviness is consistent with Francis and Vavrus (2015),440

Di Capua and Coumou (2016) and Cattiaux et al. (2016).

More trends of these six jet properties can be viewed in table 1, for the full ERA5 period as well as for a restricted period

corresponding to available satellite imaging, 1979-2022, where the reanalysis data is more robust but even more limited in

time and in this sense statistically weaker. An extended version of this table with more variables, table B1, can be found in

the Appendix. Expectedly, most trends are similar in the two periods, with typically small changes in the value or significance445

of the trend. It is worth mentioning a few trends that change signs between the two periods, for example the MAM STJ max.

speed. Most trends discussed in the previous paragraphs are however valid in both periods, conserving signs and intensities

but sometimes losing or gaining significance when computed on the shorter period. Finally, a finer evolution of yearly trends

accross seasons can be seen on Appendix figure B1 and shows interesting seasonal shifts in yearly trends, typically around the

month of june again. This suggests that the usual seasonal separation that we used on figure 11 and table 1 might not show the450

full complexity of the seasonally varying trends.
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DJF MAM JJA SON Year

1959- 1979- 1959- 1979- 1959- 1979- 1959- 1979- 1959- 1979-

Avg. latitude STJ −1.5 1.5 −7.8 −12 −14 −8.2 7.1 25 −6.7 0.32

[10−3 ◦N/year] EDJ 8.8 5.9 11 11 −2.6 6.5 0.8 6.4 4.6 7.4

Max. speed STJ 3.5 2.4 1.9 −2.9 −3.3 −3.2 3.4 5.6 2.4 0.98

[10−2m · s−1/year] EDJ 2.9 3.8 2.3 6.6 1.2 −0.12 2.8 1.4 2.3 2.9

R16 waviness STJ 2.5 1.5 −3.4 −14 9.8 −0.42 12 15 4.2 −0.33

[10−4 ◦N/ ◦E/year] EDJ 59 85 23 −95 7.3 −79 78 36 42 −14

Width STJ −1.8 −1.6 −0.46 −2.1 −1.1 −1 −0.9 −0.33 −0.84 −1.2

[103m/year] EDJ −0.62 −1.5 −0.26 −0.43 −0.25 −0.11 −0.36 −0.52 −0.37 −0.63

Speed of COM STJ −14 7.8 20 −4.9 −24 −17 −14 32 −4.3 6.9

[10−3m · s−1/year] EDJ −3.5 7.1 5.9 23 −11 2.1 −14 −18 −5.7 4

Double jet index [10−4 /year] 5.4 8.2 13 21 −3.1 −1.2 −0.74 3.6 3.6 7.9

Table 1. Summary of jet property feature trends for all seasons and the periods 1959-2022 and 1979-2022. Trends are expressed per year and

significant trends at the 95th percentile are written in bold.

3.4 Jet properties on the SOM

As a way to compare and validate the results of both methods, a selection of jet properties are projected onto the SOM clusters,

shown in figure 13. The observations made on the latitudinal positions of the jets, as well as the jet overlaps, can all be matched

with the jets’ mean average latitudes and the mean double jet index. This result is not entirely trivial. It means that, for most455

clusters, the jets found in the cluster mean wind speed composites have properties corresponding to the mean of the properties

of the jets found in each individual timestep belonging to that cluster. In other words, the wind composites and the jets found

therein are representative of the wind speed snapshots, as well as their jets, belonging to each cluster and not merely artifacts

of averaging noisy fields.

Results from the projection of COM speed seem to indicate that persistence characterized as a slower movement of the jets’460

COM can hardly be reconciled with the persistence characterized as longer stays on a given SOM cluster, as slow COM speed

of either jet are as likely to be associated with long residence times (see again figure 8) as with short ones. This discrepancy is

a great motivator for future work on the different facets of this important feature of circulation.

4 Discussion and summary

We use two complementary methods (SOM and jet features) to characterize the upper-level tropospheric jets, and apply them to465

the Euro-Atlantic sector in the less studied summer season, along with some year-round results. The SOM method specializes
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Figure 13. Jet properties, separated by jet category when applicable, projected on the SOM clusters. Shades of purple corresponds to EDJ

properties and shades of pink to STJ.

in finding dynamical properties of the overall flow, including persistence and predictability, while the jet features method finds

properties of individual jet feature at every timesteps, of which we present trends and seasonal signals. These methods have

overlaps, for example the SOM shows a clear seasonal signal in cluster population, and some of the jet feature properties are

proxies for persistence. These overlaps allow us to verify the results between methods, increasing our confidence in our results.470

The self-organizing map (SOM), a data-driven clustering method with distance-preserving properties, allows us to study the

circulation time series as a sequence of stays on a cluster and jumps between clusters, where the magnitude of the jumps is

meaningful. This can be directly applied to the evaluation of persistence and predictability. The SOM was able to highlight

circulation patterns exhibiting high persistence times, a natural characterization of persistence. The most persistent patterns

both correspond to a strong zonal EDJ extending far inland over central Europe and a short STJ over southern Europe. A proxy475

for predictability on the SOM grid, the backwards dilution, found patterns that are typically reached from neighboring clusters

on the SOM rather than far ones. Clusters with low backwards dilution resemble the Scandinavian Block and Atlantic Ridge

weather regimes. The SOM was also able to identify the seasonal shift from early to late June, that is confirmed using the jet

feature method. Trends in clusters exhibiting certain properties (high overlap of the jets over Europe, blocking) and weekly

means of cluster population were also extracted to be compared against the results of the jet feature method showing high480

consistency. The SOM highlighted known the large scale trend towards more negative NAO in summer, as well as trends in

many smaller scale features.
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A variation of the jet detection algorithm presented by Spensberger et al. (2017) is used to identify instantaneous jet features

and extract per-feature jet properties. The jet features are tracked to obtain metrics offering another view of persistence, and

classified into the two canonical jet categories (subtropical and eddy-driven, resp. STJ and EDJ). Once more, past trends and485

seasonal signals are extracted. In summer, the only significant trends are a decrease of the width and a slowdown of the STJ.

This latter trend is consistent with the literature, while the former is, to our knowledge, novel. Over the whole year, we find a

significant poleward shift and an increase in waviness of the EDJ, a decrease in width and increase of the maximum speed of

both jets, and a decrease of the average latitude of the STJ. The persistence metrics developed around the jet feature method

seem to show another facet of persistence to the one expressed by the SOM cluster residence time, and the results of both490

methods often disagree. However, both methods agree that no aspect of persistence is either increasing or decreasing in time.

Comparing results from the two methods helps to validate them. The subjective jet properties do succeed in characterising

features which dominate the leading patterns in the more objective SOM approach. Computing the properties the jet features of

every timestep before averaging them based on cluster membership gives very close results to computing jet properties on the

jet features extracted from each cluster wind speed composite. This indicates that both methods are coherent with one another.495

Furthermore, the strong seasonal shift happening in June, characterized most clearly by a weakening and poleward shift of the

STJ, is distinctly picked up by both methods.

The jet detection algorithm is directly applicable to global data, as are the jet properties computation and the jet tracking. A

global jet categorization would, however, have to use an adapted set of jet properties to distinguish the EDJ from the STJ, as

longitude and latitude are only good discriminants in the Atlantic basin. A different set of jet properties might have to be used500

for each season or even each month, as the seasonal signals suggest. The SOM, like all clustering metrics, is not well suited

for a global application and works best when restricted to a single basin. The steep increase in dimensionality and variability

that accompanies an expansion to a larger region, combined with the same proportionally small number of timesteps, creates

a much more ill-defined clustering problem. Since both methods are relatively cheap computationally, they can be applied to

large ensembles and higher-resolution model data to evaluate future trends and shifts in seasonal signal or persistence and505

predictability properties.

In future work, we will use these diagnostic tools to study the circulation before and during extreme weather events in

Europe. Potential applications currently explored include assessing atmospheric persistence and predictability properties in the

days leading up heatwaves, finding SOM clusters most likely to see the onset of a damaging hail storm, and discovering which

jet properties can be used as good statistical predictors for extreme surface winds.510

The previous paragraph pertains to the jet stream as a potential driver of weather predictability, even if the causality can

go in both directions. Another use for the methods is the investigation of the drivers of jet stream variability, for example,

large-scale teleconnections like ENSO or local mechanisms like diabatic warming, as has been studied recently by Auestad

et al. (2024). Another avenue is the exploration of the jets’ tight relationship to Rossby waves, for example by assessing the

waveguidability of the detected jets (Martius et al., 2010; Wirth, 2020; Bukenberger et al., 2023; White, 2024). Similarly, it515

is now easier to examine their relationship to Rossby wave breaking, for instance as triggers of large jumps in SOM clusters

(Michel and Rivière, 2011), or as drivers for abrupt changes in jet strength, latitude, or center of mass speed (Martius and
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Rivière, 2016). Adapting the jet width method to instead find wave breaking events around the jet core is showing promising

early results.

Code and data availability. The ERA5 reanalysis data are publicly available at https://cds.climate.copernicus.eu, and the NAO index was520

downloaded from https://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/nao.shtml. The package used to obtain the wavebreaking

events can be found at https://github.com/skaderli/WaveBreaking, the SOM training and visualization code (honeycomb plots) was adapted

from https://github.com/fcomitani/simpsom, and the rest of the code can be found at https://github.com/hbanderier/jetstream_hugo.
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Figure A1. Composites of 500 hPa geopotential height anomaly for all days corresponding to a cluster, and result of the jet core detection

algorithm overlayed as colored lines; pink for STJ and purple for EDJ. The SOM cluster number is indicated by a number in the bottom left

corner.

Appendix A: More SOM composites

Once the SOM is trained, composites of any other field can be computed by averaging this field over timesteps belonging to525

each cluster. On Figure A1, we perform this on geopoential height anomalies at 500 hPa to provide more familiar patterns

to read and, for example. compare to the usual weather regimes. To remind the reader of the underlying wind fields used to

train the SOM, the jet features found in each cluster are overlaid on the composites using the same color code as in the main

text. The position of the jets around positive and negative geopotential height anomalies are an indication that the SOM cluster

composites seem physically sound and coherent with one another.530

Appendix B: Extended jet properties

In the main text, we have highlighted how many jet properties undergo a transition around the month of June, setting this month

apart from the rest of summer in terms of absolute values of these jet properties. To explore whether this is also true for the

trends explored on, e.g., table 1, we compute, for each calendar day, the yearly trend of each jet property. A 91-day-of-year

smoothing is applied to this noisy seasonally-varying trend signal, before it is plotted on Figure B1.535

In order to give a more complete overview of the jet properties, we show the seasonal cycle of the complete set on Figure

B2, as well as the complete set of yearly trends on table B1.

Comparing the jet core’s mean and max speeds shows little difference between the two in their seasonal cycles. The max

speed trends are epectedly stronger but they also seem statistically more robust than mean core speed trends. The waviness

metrics all show a different seasonal cycle, and even disagree even on which jet category is wavier than the other. Apart from540

the differences in the original metrics, this discrepancy can also come from how they were adapted to function on jet features,
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Figure B1. 1959-2022 Day of year yearly trends, smoothed using 91-dayofyear rolling window averaging. Colored crosses indicate a signif-

icant trend at the 95th percentile.

and more specifically the normalization factor used in several waviness metrics (1/∆λ) that favorises high values for the STJ

which is typically much shorter in this domain. Another issue is that several of these metrics, from their definition, treat tilt

(1st derivative) the same way they treat curvature (2nd derivative). FV15 waviness is very close to our definition of tilt, and the

seasonal signals of these two metrics are very similar. Naturally, all of the waviness metrics show vastly different trends.545

Appendix C: Overview of previously tried methods for feature extraction.

During the development of the jet feature extraction algorithm, several different avenues were explored to improve its robust-

ness or the execution speed and later abandoned in favor of the final version of the algorithm presented in the main text. We

believe it is valuable to present negative results, both because these methods could be improved and used again in other relate

applications, and simply for future researchers in this field not to try again methods that were explored but ultimately failed at550

improving the algorithm.

The first version algorithm was an adaptation of the Koch et al. (2006) algorithm, also used in Pena-Ortiz et al. (2013). This

algorithm uses a peak finding algorithm on each latitude band, before connecting the points longitudinally based on a distance

criterion. The peak finding algorithm requires several thresholds, and their tuning is challenging without an objective quality

metric to grade the performance of the algorithm. More fundamentals problem appear with forked jets, like in SOM cluster 2555

for instance.
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Figure B2. Reproduction of main text’s figure 10 with a larger selection of jet properties.

The second version divides the task in two. First, potential jets are found using a fairly low wind speed threshold, that can

be made seasonally varying or even a quantile threshold to work well in all seasons. The regions are separated from each other

using spatial agglomerative clustering. The second step of the algorithm is heavily inspired by Molnos et al. (2017). From

potential jets, the jet cores are found using a weighted shortest path algorithm. Each potential jet region is turned into a graph,560

with each gridpoint a node and edges connecting all of the nodes. The edges are assigned a weight based on the wind speed of

the nodes/grid points it connects, and on its alignment with the directional wind field (similar to the current algorithm).

The difficulty of this second method comes from jet regions connecting to each other if they are too close, and the problem

of determining start and end points of jet cores within the jet, with potentially several starts and ends within each potential

jet region because of the first problem. Several avenues were explored to mitigate the first problem, which in turn made the565

second problem easier to solve. Most notably, the use of computed vision techniques like thinning, skeletonization and Sato

filtering (Sato et al., 1998). This latter technique is used in medical imaging to highlight vessel like structures in black-and-
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white images like blood vessels in biological tissue, and seems very promising to help in jet detection. However, it also requires

careful setting of its parameters, most crucially its filtering scales which loosely correspond to the expected width of the jet in

pixels. Solving these problems made the algorithm grow in complexity and computing requirements for little added benefits.570

This approach as well as other related ones were finally abandoned in favor of the simpler, more robust one presented in the

main text.
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DJF MAM JJA SON Year

1959- 1979- 1959- 1979- 1959- 1979- 1959- 1979- 1959- 1979-

Avg. longitude STJ −24 −50 −44 −25 14 −20 −6.9 −8.9 −22 −28

[10−3 ◦E/year] EDJ 16 20 28 39 0.22 −12 −8.2 −23 8.9 6.1

Avg. latitude STJ −1.5 1.5 −7.8 −12 −14 −8.2 7.1 25 −6.7 0.32

[10−3 ◦N/year] EDJ 8.8 5.9 11 11 −2.6 6.5 0.8 6.4 4.6 7.4

Avg. p. level STJ −1.8 −3 −6.8 2.4 −7.5 −8.5 −5.9 −3.2 −5.3 −2.5

[10−2hPa/year] EDJ −7.7 −9.4 −9.6 −8.3 −16 −20 −12 −16 −11 −13

Max. speed STJ 3.5 2.4 1.9 −2.9 −3.3 −3.2 3.4 5.6 2.4 0.98

[10−2m · s−1/year] EDJ 2.9 3.8 2.3 6.6 1.2 −0.12 2.8 1.4 2.3 2.9

Avg. speed STJ 1.4 0.75 1.2 −2.4 −2.2 −2 2.4 4.1 1.4 0.46

[10−2m · s−1/year] EDJ 1.3 1.2 0.7 3 0.63 0.34 0.97 0.12 0.9 1.2

Tilt STJ −1.8 −2.4 −5.2 −0.19 1.8 −1.2 1.6 −4.6 −1.6 −2.3

[10−4 ◦N/ ◦E/year] EDJ 1.3 −5.2 1.8 −1.9 −2.6 −0.32 −3.3 −5.8 −0.71 −3.3

Linear waviness STJ 5.3 7.1 10 3.3 3.9 6.9 −0.82 6.9 5.3 5.8

[10−4 ◦N/ ◦E/year] EDJ −0.85 1.9 0.26 1.4 1.1 −3.4 1.9 3.4 0.59 0.84

R16 waviness STJ 2.5 1.5 −3.4 −14 9.8 −0.42 12 15 4.2 −0.33

[10−4 ◦N/ ◦E/year] EDJ 59 85 23 −95 7.3 −79 78 36 42 −14

DC16 waviness STJ 6.5 12 8 14 2.9 14 −3.4 4.6 4.8 11

[10−4 /year] EDJ −1.7 2.5 −1.4 3.7 1.6 −3.2 0.18 −2.8 −0.33 0.071

FV15 waviness STJ 4.6 0.02 −0.1 2.2 6.9 7.5 2.5 3 2.8 2.7

[10−5 /year] EDJ −2.4 −7.4 1.3 −1.4 0.29 2.8 −7.2 −14 −2 −5

Width STJ −1.8 −1.6 −0.46 −2.1 −1.1 −1 −0.9 −0.33 −0.84 −1.2

[103m/year] EDJ −0.62 −1.5 −0.26 −0.43 −0.25 −0.11 −0.36 −0.52 −0.37 −0.63

Integrated speed STJ 3.3 5.4 3.7 2.8 −0.63 2.5 0.95 5 2.7 4.3

[105m2 · s−1/year] EDJ 1 2.5 0.83 3.6 0.89 −0.87 0.77 −0.88 0.87 1.1

Intd. speed over Eur. STJ 1.1 0.62 −0.01 0.44 0.33 1.1 0.53 3.1 0.76 1.4

[105m2 · s−1/year] EDJ 1.1 1.5 1.2 2 0.055 −1 −0.019 −1.1 0.57 0.34

Jet lifetime STJ 2.3 −8.9 −5.5 12 −23 15 −7 −4.5 −7.9 2

[10−3day/year] EDJ −0.23 −5.8 1 11 11 13 −1.6 −1.2 2.5 4.3

Speed of COM STJ −14 7.8 20 −4.9 −24 −17 −14 32 −4.3 6.9

[10−3m · s−1/year] EDJ −3.5 7.1 5.9 23 −11 2.1 −14 −18 −5.7 4

Double jet index [10−4 /year] 5.4 8.2 13 21 −3.1 −1.2 −0.74 3.6 3.6 7.9

Table B1. Extended version of table 1. 34
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