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Abstract. The Methane Index (MI) is an organic geochemical index that uses isoprenoid glycerol dialkyl
glycerol tetraecthers (GDGTSs) as a proxy for methane cycling. Here, we report results from sediments in
core MAG14-2A that span almost 500 ka in Lake Magadi, Kenya. The deposits show abrupt shifts
between high and low MI values through calcareous, tuffaceous and zeolitic silts. The MI “switches off”
(MI < 0.2); and on (MI > 0.5) through the core with bulk organic matter enriched in '*C during “MI-off”
periods (~ -18%o) in the upper part of the core, whereas '*C is lower (-22 to -25%o) in lower parts of the
sedimentary sequence. Sediments deposited when the MI switches “on” showed 8'*Cowm values as low as
-89.4 %o, but most were within the range of -28 to -30%o, which is consistent with contributions from
methanogens rather than methanotrophs. Thus, the likely source of these high MI values in Lake Magadi
is methanogenic archaea. Our results show that hydrothermal inputs of bicarbonate-rich waters into Lake
Magadi combined with further evaporative concentration cause a shift in the dominant archaeal

communities, alternating between two stable states.

1 Introduction

Life thrives in East African soda lakes and has been the subject of modern studies of both prokaryotic and

eukaryotic organisms, but few have studied their sediments over geologic timescales (Schagerl, 2016 and
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chapters therein). Soda lakes represent ~ 18,500 km? in East Africa (calculated from values in Melack
and Maclntyre, 2016). When compared to the three largest African freshwater lakes (lakes Victoria,
Tanganyika, and Malawi), these soda lakes account for ~ 13% of the total lake-surface area in East Africa.
A survey of microbial isolate diversity in East African lakes found evidence for cyanobacterial and
archaeal primary producers with both oxygenic and anoxygenic phototrophs among the microbial
population (Grant and Jones, 2016). Unique aerobic and anaerobic heterotrophs that use a variety of
electron donors, including sulfur, sulfate, nitrite, carbon dioxide, and methane, were also identified (Grant
and Jones, 2016, and sources therein). Many thermophilic archaea and bacteria isolates were also

observed near hot-spring outflows (Grant and Jones, 2016).

Saline alkaline (soda) lakes in the East African Rift often become stratified meromictic water bodies with
a dense monimolimnion below a chemocline (Melack and Maclntyre, 2016). Oxygen rarely penetrates
the monimolimnion waters, and as a result, anaerobic bacteria and archaea dominate the bottom waters
and sediments. Remineralizing organic matter from the upper water column (mixolimnion) supports the
microbes and generation of anaerobic oxidation of methane (AOM). Methane-oxidizing microbes,
specifically archaeal anaerobic methane-oxidizers (ANME), are coupled to sulfate-reducing bacteria in a
microbial consortium (Boetius et al., 2000; Hinrichs and Boetius, 2002; Werne et al., 2004). ANME
mediate methane levels in freshwater and soda lakes and in modern oceanic systems, and account for
approximately 90% of methane consumed through AOM (Egger et al., 2018). Rates of methane
consumption differ by environment and type of ANME, with global freshwater systems ranging from 1
to 1 x 10° nmol methane L' day™' consumed (Martinez-Cruz et al., 2018). Although soda lakes have been
less studied, consumption rates as high as 1.6 x 10* nmol methane L day! have been observed in
freshwater Lake Kivu (Roland et al., 2018). Tracking AOM over geologic time periods is important
because methane release from tropical wetlands was concomitant with the end of glacial conditions in
Europe and is poorly constrained (DeMenocal et al., 2000; Riddell-Young et al., 2023). Additionally,
large methane releases might have been partly responsible for the Permo-Triassic mass-extinction event

(Berner, 2002).
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Over geologic time, it is possible to gauge periods of increased methane oxidation, as shown by Zhang et
al. (2011) in oceanic systems by using a ratio of archaeal GDGT lipids (de Rosa et al., 1977; Langworthy,
1977). The ratio, as described by Zhang et al. (2011), is known as the methane index (MI), which uses
GDGTs produced predominantly by Euryarchaeal ANME. The MI has been used to discern
methanotrophy using the assumption that benthic methanotrophic Euryarchaeota preferentially produce
GDGT-1, -2, and -3, and that GDGTs crenarchaeol (cren) and crenarchaeol’ (cren’) are thought to come
from Thaumarchaeota and Crenarchaeota, which are part of the TACK superphylum, typically found in
the upper water column (Sinninghe Damsté et al., 2002; Pitcher et al., 2009; Zhang et al., 2011). Currently,
the newly suggested names in the Genome Taxonomy Database for Thaumarchaeota and Crenarchaeota
are Nitrososphaerota and Thermoproteota, respectively (Oren and Garrity, 2021; Rinke et al., 2021),

which are used in this paper.

Moreover, Kim and Zhang (2023) have shown a qualitative and quantitative relationship between the MI
and methanotrophy in deep time, namely from the late Oligocene to the early Miocene. Kim and Zhang
(2023) showed that the M1 is applicable to AOM, with other biomarkers co-occurring in high-MI intervals
representative of not only the Group I consortium of anaerobic methanotrophs (ANME) that produce
GDGTs, but also of Group 2 and Group 3 consortia (ANME-2 and ANME-3 respectively). Until now, no
studies have directly applied the MI to sediments in African soda lakes despite evidence for AOM in
modern soda lakes. Combined with MI values, other methane-related indices are used here to interpret
methanogenesis and methanotrophy related to AOM. Previous studies have used GDGT-0 and GDGT-2
ratioed to the GDGT crenarchaeol value, which was originally thought to only be produced by mesophilic
Thermoproteota (Blaga et al., 2009; Weijers et al., 2012). Blaga et al. (2009) found that methanogens
predominantly produced GDGT-0, whereas Weijers et al. (2011) showed that methanotrophic archaea
predominantly produce GDGT-2. However, the optimum temperature is closer to 40-45 °C (Zhang et al.,
2006).

Lake Magadi (Kenya) is a sulfate-limited lake, and therefore, methanogenesis and methanotrophy may

co-occur without suppression of the higher energy yield of sulfate reduction (Nijaguna, 2006; Sorokin et



85

90

95

100

105

110

al., 2007; Deocampo and Renaut, 2016; Lameck et al., 2023). Here, we document evidence of methane
cycling in Lake Magadi using archaeal isoprenoid GDGT lipid biomarkers. Environmental influences on
archaecal community composition included precipitation/evaporation fluctuations and variations in
hydrothermal activity, the latter often related to contemporary tectonics. This study leverages four
methane-related indices: (1) the MI; (2) the %GDGT-0/crenarchaeol; (3) %GDGT-2/crenarchaeol; and
(4) the ratio of isoprenoid GDGTs [2]/[3] (hereafter, [2]/[3]) to understand methane cycling in recent and
ancient lacustrine sediments. Two distinct communities were found using a combination of the MI and
ratios of GDGT-0 and GDGT-2, normalized to crenarchaeol. Intervals of high methanotrophy, as
evidenced by MI and %GDGT-2/crenarchaeol, were related to an equally high proportion of

methanogens, while in periods when crenarchaeol was dominant, the methane indices were low.

2 Materials and methods
2.1 Study locations and sampling

Modern Lake Magadi is a seasonally flooded, saline alkaline pan composed of bedded trona
([Na3(COs3)(HCOs3)-2H20]) located in the southern Kenya Rift near the border with Tanzania (Baker,
1958; Eugster, 1980). Its elevation is approximately 600—605 m above sea level (asl), and it has a

maximum depth during the rainy season of a few decimeters to ~ 1 m (Fig. 1; Renaut and Owen, 2023).

The modern lake is fed by ephemeral streams and alkaline hot springs (up to 86°C at adjacent Nasikie
Engida), distributed along faults around the shoreline (Baker, 1958; Crane, 1981; Allen et al., 1989;
Renaut and Owen, 2023). Former high-level shorelines are preserved as coarse clastic sediments and
locally as stromatolites around the lake. These vary in age and record lakes of different depths during the
Quaternary. Outcrops of sediments relevant to this study and situated near Lake Magadi are the Oloronga
Beds and the Green Beds. The chert-bearing Oloronga Beds in outcrop have been dated between ~ 800
and 300 ka, with cores extending this back to 1 Ma (Owen et al., 2019). Green Beds outcrops include
abundant chert and have been variably dated between 191 and 40 ka (Behr and Réhricht, 2000; Owen et
al., 2019) with cores suggesting a range from 380 to 105 ka (Owen et al., 2019). More recently, the High
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Magadi Beds were deposited between ~25 and 9 ka (Fairhead et al., 1972; Goetz and Hillaire-Marcel,
1992; Williamson et al., 1993; Behr and Rohricht, 2000; Owen et al., 2019; Reinhardt et al., 2019).
Calcrete commonly caps the Oloronga Beds (Eugster, 1980), but fluvial erosion locally scoured those

sediments before the Green Beds were laid down (Renaut and Owen, 2023).

More recently, the stratigraphic terminology has been revised by Owen et al. (2025). They continued to
recognise the Oloronga Beds below Lake Magadi under the same name but raised it to formation status
with dates of 1000380 ka. In contrast, they renamed the Green Beds to the Oloika Formation (380—105
ka) and reassigned the Evaporite Series to the Magadi Formation (105-0 ka) and the High Magadi Beds
to the High Magadi Formation. Various higher lake levels have been suggested based on stromatolites
(Casanova and Hillaire-Marcel, 1987) but some details are uncertain. Although Lake Magadi is situated
near the equator, it lies in a rain shadow. Consequently, today it has a large moisture deficit (2400 mm

evaporation versus 500 mm precipitation annually: Damnati and Taieb, 1995).

Lake Magadi was cored as part of the Hominin Sites and Paleolakes Drilling Project (HSPDP) in June
2014 to further our understanding of the paleoenvironments in the East African Rift Valley and to better
contextualize hominin remains and artifacts, and to understand possible environmental influences on
hominin evolution and migration (Cohen et al., 2016). A 197.4-meter core (MAG-14-2A) was drilled in
the northern end of Lake Magadi (1°51'5.76" S 36°16'45.84" E; Owen et al., 2019). In total, 107.7 m of
sediments were recovered, with an overall core recovery of 55.4% (Cohen et al., 2016). Here, we use the
age model from Owen et al. (2019). The core ranges from the modern trona surface (0 ka) to the Magadi
Trachyte basement, dated to ~ 1 Ma at the core site (Owen et al., 2019). Cores were sampled in 2016
during the initial core description at the Continental Scientific Drilling Facility (CSD, formerly LacCore)
at the University of Minnesota, Minneapolis. Altogether, 61 samples, covering the period from 456 ka to
14.9 ka (Table S1), were collected and freeze-dried from dark brown to black silty clay intervals. Based
on their color, these samples were expected to have a high total organic carbon that would yield the

highest quantity of biomarkers for our study.
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Over the past million years, Lake Magadi has varied from swampy fresh water bodies to a large fresh to
mildly saline lake that was continuously fed by rivers and groundwater, to smaller hypersaline lakes
bounded by the Magadi grabens that dried to trona pans partly fed by hot springs (Owen et al., 2019;
Renaut and Owen, 2023). From 545 to 380 ka the Magadi catchment progressively changed to a more
arid condition with the palacolake marked by abundant calcareous, organic-rich sediments (Owen et al.,
2019). Periodic freshwater inundation occurred from 380 to 105 ka into a highly saline, alkaline lake that
accumulated minor calcite and magnesium-rich calcite at lake margins. Ash that fell into this waterbody
reacted to form a variety of zeolites with anoxic, sulfate-rich bottom-water brines subjected to microbial
sulfate reduction (Owen et al., 2019; Deocampo et al., 2022). The most recent phases of the lake (105 to
0 ka) were more evaporatively enriched, with abundant trona and minor nahcolite. Well-preserved
diatoms in sediments deposited after ~500 ka suggest very high aqueous silica in the paleolake in order
to explain the preservation of their frustules under highly alkaline conditions, which may reflect strong

evaporative concentration of silica-rich hydrothermal inflows (Owen et al., 2019).

2.2 Leaf wax and bulk organic preparation and analysis
2.2.1 Lipid extraction

To obtain a total lipid extract (TLE), 61 samples from Lake Magadi were freeze dried and homogenized
and ca. 5-10 g of sediment were ultrasonically extracted with 2:1 DCM:MeOH. The TLE for each sample
was treated with activated copper shot to remove elemental sulfur. The TLEs were then separated into
three fractions (apolar (AP), polar one (P1), and polar two (P2)) using activated alumina via short column
chromatography. The AP fraction was eluted with 4 mL of 9:1 Hexane (Hex):DCM (v/v), the P1 fraction
with 4 ml 1:1 DCM:MeOH, and the P2 fraction with 4 ml MeOH. The P1 fractions were dried down and
re-dissolved in 99:1 Hex:Isopropanol (IPA) (v/v) and filtered through a 0.45 um 4 mm diameter PTFE
filter prior to GDGT analysis.
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2.2.2 Bulk organic $*Com analysis

Samples were subsampled from the same intervals as organic biomarkers for bulk organic carbon isotope
analysis. Powdered sediment samples were weighed in silver capsules and carbonates were removed by
adding 5% HCI in four-hour increments. Samples were analyzed on a Costech Elemental Analyzer
coupled to a ThermoFinnigan Delta V Plus isotope ratio monitoring mass spectrometer (IRMS). Samples
are reported as per mil (%o) deviations from the Vienna Pee Dee Belemnite (VPDB) standard in

conventional delta notation.

2.3 GDGT preparation and analysis
2.3.1 GDGT analysis

Polar samples from Lake Magadi were analyzed for core lipid isoprenoid glycerol dialkyl glycerol
tetraethers (iso-GDGTs) at the University of Massachusetts Amherst on an Agilent 1260 series high
performance liquid chromatograph (HPLC; Fig. S1) in tandem with an Agilent 6120 series single
quadrupole mass selective detector (MSD). Compounds were ionized using atmospheric pressure
chemical ionization (APCI). The columns used for GDGT separation were a pre-column guard followed
by two ultra-high performance liquid chromatography (UHPLC) silica columns (BEH HILIC, 2.1x150
mm, 1.7 um, Waters) connected in series and kept at 30 °C. Elution solvents followed Hopmans et al.
(2016) using a flow rate of 0.2 mL min'. Two solvent mixtures, hexane (A) and 9:1 Hex:IPA (B), were
eluted isocratically for 25 minutes with 18% B, a linear gradient to 35% B in 25 minutes, a second linear

gradient to 100% B in 30 minutes.

2.3.2 GDGT indices

Several different ratios based on the relative abundance of different isoprenoid GDGTs have been
developed to determine their source(s). The methane index (MI) is defined by Zhang et al. (2011) and is
calculated as in Eq. (1):

M] = GDGT—-1+GDGT—2+GDGT -3 (1)
"~ GDGT-1+GDGT—2+GDGT-3+Cren+Cren’
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MI values range between 0 and 1 with values > 0.5 considered to be derived from methanotrophic
communities and values < 0.3 considered normal sedimentary conditions (Zhang et al., 2011). These
proposed ranges from Zhang et al. (2011) were derived from GDGTs found in marine sediments, so the
cutoff values for methanotrophy may differ in lacustrine sediments, particularly those in saline, alkaline

environments.

The ratio of GDGT-2 / crenarchaeol (% GDGT-2/cren) also indicates methanotrophy (values > 0.2),
specifically methanotrophy associated with sulfate-methane transition zones (Weijers et al., 2011). These
values were normalized and converted to percentages so that the numbers produced could be
contextualized with the other indices used (Eq. 2). As a result, %GDGT-2/cren contributions greater than

33% will be considered methanotrophic signals.

[GDGT-2]

. 3 _ _ leper-2]
%GDGT — 2/cren = [GDGT—-2]+[Cren]

x 100 2)

Methanogenic inputs are calculated similarly to Eq. 2 above using GDGT-0 in place of GDGT-2. Blaga
et al. (2009) found that values of GDGT-0 / (GDGT-0 + cren) > 2 are associated with methanogenic
archaeal communities in a study of freshwater lakes. Similarly, in a study of Eocene marine sediments,
Inglis et al. (2015) normalized the equation and converted it to a percentage, a convention we follow (Eq.

3). They found that contributions from methanogens were indicated by values greater than 67%.

[GDGT-0]
[GDGT—-0]+[Cren]

%GDGT — 0/cren = 100 3)

The GDGT-2 / GDGT-3 ([2]/[3]) index was used here to describe both mesophilic environments as well
as environments with high MI values. Rattanasriampaipong et al. (2022) found that differences in [2]/[3]

are linked to distinct archaeal communities whereby low values of [2]/[3] (ca. 0.55) are observed in

thermophilic cultures while elevated values are indicative of hot spring mats (ca. 1.00), shallow aerobic
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ammonia-oxidizing archaea (AOA; ca. 1.16), or archaea in suspended particulate matter (ca. 2.52). This

is the same version described in Rattanasriampaipong et al. (2022) (Eq. 4).

[2]/[3] = [6DGT — 2]/[GDGT — 3] )

2.4 Bulk geochemistry

Bulk geochemical data and core descriptions from Owen et al. (2019, 2024) were used to interpret hot
spring influences in the intervals of focus (i.e., Intervals 1, 3, and 5). They attributed REE anomalies to
increased lake alkalinity, which reflected increased evaporation and the development of highly saline,
alkaline lakes and possibly increased hydrothermal/fluvial inflow ratios. All statistical analyses were

performed using the GraphPad Prism 10° software (https://www.graphpad.com/). Only the necessary data

to determine relationships between the bulk geochemistry of rare earth elements (REEs; La, Ce, Nd, Sm,
Eu, Yb, Lu) and methane indices (M1, %GDGT-0/cren, %GDGT-2/cren, and [2]/[3]) were imported. Prior
to performing a principal component analysis (PCA) or correlation matrix, the data needed to be tested
for normality. To determine whether the data were normally distributed, the built-in “Normality and
Lognormality Tests” function in GraphPad® yielded lognormal distributions of each dataset. The data

were found to be non-normally distributed.

2.4.1 Principal component analysis (PCA)

For the PCA, the imported data were analyzed using the built-in PCA function in GraphPad®. The data
were standardized, which scaled the data to a mean of 0 and a standard deviation of 1. The principal
components were selected based on their eigenvalues using the Kaiser Rule, which selects eigenvalues

greater than 1.0. Principal components 1 and 2 explained 58.0% of the variance in the data.

2.4.2 Correlation matrix

The correlation matrix was performed using the built-in function in GraphPad®. Because the data were

non-normally distributed, the nonparametric Spearman correlation was chosen over the Pearson
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correlation. An r value was computed for every pair of Y datasets using the default two-tailed option at a

95% confidence interval.

3 Results
3.1 GDGT lipid variability

Samples are split into six intervals (1-6) based partly on their fractional abundances of GDGT-0 and cren
as well as their MI values: (1) 35.67 to 32.61 m; ca. 17.7 to 14.9 ka, (2) 67.81 to 43.51 m; ca. 129 to 38.9
ka (3) 86.06 to 70.78 m; 197 to 149 ka, (4) 96.38 to 94.91 m; ca. 318 to 315 ka, (5) 104.10 to 103.16 m;
ca. 324 to 323 ka, and (6) 130.21 to 119.64 m; ca. 456 to 391 ka (Table S1).

In each of the intervals of the core, Table S1Table SIMI, %GDGT-0/cren, and %GDGT-2/cren values
oscillate between high and low values, changing abruptly from one interval to the next. The
methanotrophic (%GDGT-2/cren) and the methanogenic (% GDGT-0/cren) indices track similarly to MI
values; that is, when values of MI are high, so are the other two indices. It should be noted that there are
some large gaps in sampling between intervals in the core due to our sampling regime (i.e. targeting
intervals with high apparent organic matter based on darker silty matrix). Interval 1 is characterized by a
higher proportion of cren and lower overall index values. The %GDGT-0/cren index averages 36.3 %
(£0.09 %) in this interval while the %GDGT-2/cren index averages 10.6 % (£0.05 %; Fig. 2). The MI in
this interval is correspondingly low with an average of 0.25 (+0.07), well below the MI = 0.5 cutoff range
for methanotroph-impacted communities. As such, this interval could be used for the [2]/[3] index; values
averaged 2.1 (x1.02). Interval 2 has much higher values for each of these indices, where the average
%GDGT-0/cren = 99.3 % (£0 %) and the average %GDGT-2/cren = 93.6 % (+0.04 %). MI values in
Interval 2 are also high with an average of 0.96 (+£0.02). Of note, there is a large gap where no
measurements were taken from 43.55 to 46.6815 m (~9.7 kyr) as well as from 50.36 to 58.74 m (~32.5
kyr). Interval 3 averages for %GDGT-0 / cren and %GDGT-2/cren are 54.3 (£0.27 %) and 20.4 % (+0.26
%), respectively. However, there is one anomalously high value at 77.32 m with %GDGT-0/cren and

%GDGT-2/cren values at 99.6 and 93.8 % and an MI = 0.96. Excluding the high index value, the averages

10
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were lowered to 48.6 (£0.22%) and 11.2 % (£0.05%) for the %GDGT-0/cren and %GDGT-2/cren values
and the MI average was lowered from 0.33 (+0.23) to 0.26 (£0.06). With the exclusion of 77.32 m, the
[2]/[3] index averaged 1.5 (£0.80) in this interval, lower than Interval 1. Interval 4 is characterized by
high index values, with a similarly abrupt shift from low values. Averages of the %GDGT-0/cren and
%GDGT-2/cren are 98.1 (+£0.04 %) and 88.2 % (+£7.41 %) and an average MI of 0.92 (+0.04); these
average index values are similarly high as compared to Interval 2. Interval 5 is a shift to lower overall
index values with averages of %GDGT-0/cren and %GDGT-2/cren at 40.1 (£0.17 %) and 9.2 % (£0.03
%) and an average MI of 0.22 (+0.05). Finally, Interval 6 shows a period in the core with high index
values throughout. Averages of %GDGT-0/cren, %GDGT-2/cren, and MI are 97.6 % (+0.03 %), 89.4 %
(£0.08 %), and 0.95 (£0.05), respectively.

3.2 Bulk 63Cowm values

Table S1Bulk 8"*Com values follow a similar pattern to the indices described in section 3.1, that is the
values oscillate between high and low values between intervals. Samples in Interval 1 ranged from -21.9
to -16.8 %o and had an average §'*Com value of -18.4 %o with respect to VPDB. Interval 2 samples had
the most '*C-depleted values in all sampled intervals, ranging from -89.4 to -24.7 %o with an average of
-35.1 %o and excluding the three outlier values (-48.1, -64.2, and -89.4 %), the Interval 2 average was -
28.2 %o. In Interval 3, the §'*Cowm had a narrower range from -24.4 to -21.4 %o and an average of -22.5 %o.
A lighter signal from Interval 4 yielded a narrow range of values from -27.0 to -25.4 %o averaging -26.0
%o. Interval 5 had slightly heavier values ranging from -25.0 to -18.1 %o with an average of -22.1 %eo.
Lastly, Interval 6 had depleted §'*Com values similar to intervals 2 and 4, with a range of -28.2 to -22.1
%0 and an average of -25.2 %o. Analytical reproducibility of duplicate runs was better than + 0.15 %o
VPDB.

3.3 Bulk geochemistry

Both a PCA and correlation matrix were performed using the MI, Ca/Na, %GDGT-0/cren, %GDGT-
2/cren, and [2]/[3] to compare to the REEs La, Ce, Nd, Sm, Eu, Tb, Yb, and Lu (Fig. 3). Increased values

11
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of REEs are characteristic of sodic systems influenced by hydrothermal springs, namely Mono Lake in

California and this system (Johannesson and Lyons, 1994; Owen et al., 2019).

A PCA (Fig. 4a) and non-parametric Spearman correlation matrix (Fig. 4b) were performed to quantify
the relationship between REEs, M1, Ca/Na and [2]/[3]. The PCA showed that Ca/Na loaded positively on
PC1 and PC2 and each of the methane indices loaded positively on PC1 and negatively on PC2. The REE
La loaded positively on PC2 and negatively on PC1 while the REEs Ce, Nd, Sm, Eu, Yb, and Lu loaded
negatively on PCs 1 and 2. This indicates a negative relationship between the negatively loaded REEs
and a high Ca/Na. Similarly, the correlation matrix of REEs and methane indices showed a negative
relationship between each index and REE, except for the relationship of [2]/[3] and Nd (r=0.02) and
%GDGT-2/crem (r=-0.04), which showed no observable linear trend. The REEs and methane indices did
not load on the same PC axis showing that there was also not a nonlinear trend associated with the REEs

and methane indices.

4 Discussion
4.1 Lake Magadi archaeal community shifts

The abrupt changes in isoprenoid GDGT-based indices in the sediment record of Lake Magadi indicate
shifts in the archaeal communities present (Fig. 2). Shifts between two distinct communities were inferred
using a combination of the Methane Index (MI) and ratios of GDGT-0 and GDGT-2 normalized to
crenarchaeol (Egs. 2 and 3). We denote these shifts as either “MI-on periods”, characterized by MI > 0.5
during intervals 2, 4, and 6, and “MI-off periods”, characterized by MI < 0.5 during intervals 1, 3, and 5.

Oscillations between these two states are discussed in detail in the following sections.

4.1.1 MiI-on periods

In Lake Magadi, during the MI-on periods (Fig. 2; Intervals 2, 4, and 6), the MI is persistently greater
than 0.83 and displays more '*C-depleted §'*Com values compared to MI-off periods, indicating periods
of enhanced methane cycling. AOM is a likely mode of methane cycling in Interval 6 as well as parts of
Interval 2 because SRB and AOM archaea live in a consortium together at the sulfate methane transition

12
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zone, or SMTZ (Boetius et al., 2000; Hinrichs and Boetius, 2002; Werne et al., 2004). Thus, in intervals
of the Magadi core where a SMTZ is suspected, such as in parts of Interval 2 and most of Intervals 4 and
6, there should be an increase in indices related to methanotrophy such as high MI and %GDGT-2/cren
(Weijers et al., 2011). Additionally, whereas methanogens and methanotrophs appear to be present in a
consortium based on both the methane indices as well as bulk §'3Cowm, the majority of the contributions
are coming from methanogens, as seen in the ternary plot in Fig. 5. This may seem counter-intuitive as
the MI has been typically used to describe samples exhibiting a high predilection towards methanotrophy,
but a high MI value does not necessarily exclude methanogenesis and conversely neither does a low MI,
rather the low MI value suggests a predominance of Thermoproteota over Euryarchaeota (Zhang et al.,
2011). High %GDGT-0/cren and %GDGT-2/cren index values in Intervals 2, 4, and 6 (Fig. 2) show that
methanogenesis is co-occurring with AOM. The [2]/[3] index is also useful in understanding the
proportion of methanotrophs in sediments, even in intervals with high MI values like those discussed
herein (Table S1; Fig. 2). Values of the GDGT [2]/[3] ratio track nearly identically to the MI values (Fig.
2), indicating that the MI is influenced by GDGT-2, which is characteristic of methanotrophs (Pancost et
al., 2001; Schouten et al., 2003; Zhang et al., 2011).

Typically, methanogenesis in sulfate-rich systems is suppressed in favor of sulfate reduction caused by
competition for both Hz and organic substrates (Fazi et al., 2021; Sorokin et al., 2015). However, reports
of methanogenesis co-occurring with SRB have been noted when methanogens are using non-competitive
substrates such as methanol, or when sulfate levels are low (Oremland et al., 1982; Giani et al., 1984
Hoehler et al., 2001; Bebout et al., 2004; Arp et al., 2008, 2012; Jahnke et al., 2008; Smith et al., 2008;
Robertson et al., 2009). Furthermore, pyrite cubes are common and scattered through the intervals where
high index values are observed, indicating that there was a substrate for SRB, though it may have been in
low concentration (Table S1). Thus, the combined evidence of pyrite in intervals with high GDGT-based
indices (e.g. MI, %GDGT-0/cren, and %GDGT-2/cren [2]/[3]) indicates the presence of a SMTZ that

supports AOM with the co-occurrence of methanogenesis.
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Looking at Figure 4, it appears that GDGT-0 is the dominant GDGT compared to GDGT-2 and cren,
indicating that this interval is likely methanogen-dominant rather than ANME dominant. Interval 2 (Figs.
3 and 5) of the Magadi core appears to be more influenced by methanogenesis than AOM, resulting from
a more prevalent %GDGT-0/cren signal accompanied by a high %GDGT-2/cren signal, high [2]/[3]
ratios, and a more *C-depleted bulk §'*Cowm signal (average = -35.1 %o; median = -28.6 %o). Values of
bulk §'*Com are similarly *C-depleted in AOM-dominant Euryarchaeotal systems ranging from active
mud volcanoes (~-27 %o0; ANME-1), a Danish freshwater lake (average ~-29.7%o; ANME-2), and the Sea
of Galilee (~-30 %o0; ANME-2) in Israel (Lee et al., 2018; Nordi et al., 2013; Sivan et al., 2011). At points
where the bulk §'*Cowm values are at their lowest (e.g., -89 %o), they are accompanied by a lower %GDGT-
2/cren at ca. 95 % and an elevated %GDGT-0/cren at > 99.5 %. This aligns with the literature as Summons
et al. (1998) reported values between -53.4 and -48.7 %o in the total lipid extract of methylotrophic
methanogens using non-competitive substrates in anoxic hypersaline environments. Furthermore, as these
waters are typically sulfate-limited, acetoclastic and/or hydrogenotrophic methanogenesis is likely
dominant when evidence for SRB is lacking (i.e., pyrite). Zhuang et al. (2016) performed compound-
specific isotope analysis on several archaeol compounds from the Orca Basin and found archaeol and
hydroxyarchaeol using H2 or CO:2 (diagnostic of methanogens and methanotrophs) were relatively
depleted (ca. -80 to -60 %o) compared to the bulk *Com (ca. -22 %o). Zhuang et al. (2016) concluded that
acetoclastic and/or hydrogenotrophic methanogenesis was unlikely due to high SO4*" concentrations in
the Orca Basin, which may be the case in Lake Magadi. In Interval 2, there is no evidence of visible pyrite
cubes and we did not have a priority at the time of sampling to check a thin section of each sample for
smaller pyrite aggregates. This indicates that other Euryarchaeotal communities may have different forms
of AOM occurring in the sediments. These other forms of AOM include nitrate/nitrite reduction and iron
coupled to AOM (‘t Zandt et al., 2018). This is further bolstered by the evidence outlined by Kim and
Zhang (2023) that not only quantitatively linked AOM to high MI values, but also to non-Group I ANME
Euryarchaea because other non-GDGT producing ANME (e.g. ANME-2 and ANME-3) were shown to
co-exist with Group I ANME. In the intervals that are missing pyrite (i.e., most of Interval 2; see Table
S1; Ferland, 2017), the pyrite may have either been too small to see with the naked eye or the excess H2S

could have been incorporated into the kerogen by reacting with labile organic matter. From 59.40 to 58.80
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m, values of the bulk §"*Com dip as low as -89.4 %o (Table S1; Fig. 2), which aligns well with
methanogenic archaeal biomass (Nordi et al., 2013). However, as discussed above there is likely
acetoclastic and/or hydrogenotrophic methanogenesis co-occurring in these high index intervals and is
likely the dominant process where sulfate-dependent AOM is absent, and the sulfate-dependent AOM 1is

likely replaced by coupling to either nitrate/nitrite or iron reduction.

Samples in Interval 4 (Table S1) of the Magadi core have high index values but no evidence for sulfate-
dependent methanotrophy except for high MI values. This interval is thus interpreted as being
methanogenic rather than methanotrophic. The abundance of pyrite in the four samples with low MI
values (Table S1; 104.10 to 103.16 m), indicates sulfate reduction not linked to AOM. This is not observed
in any other level of the core and a hypothesized series of reactions is described below, which may be
linked to an abundance of SRB, anaerobic ammonium oxidizing (anammox) bacteria, and
Thermoproteota (AOA) in the overlying water column. Due to periodic influxes of freshwater in Magadi,
in addition to a permanent meromixis present in almost all samples post 380 ka, the water column would
have been oxic in the upper portion and anoxic below the chemocline. Freshwater pulses would have also
brought nutrients to the lake such as ammonia (NH4") and sulfate (SO4%). The oxic portion of the water
column would have supported microaerophilic AOA that oxidize NH4" to nitrite (NO2"), which is then
transported to the anoxic part of the water column (Straka et al., 2019). Here, anammox bacteria use
excess NHs™ and NO»™ from the AOA and convert these to N2. Excess SO4% is simultaneously being used
by SRB, creating HS" that is reacting with iron species in the sediments and being buried as pyrite.
Ladderane lipids characteristic of marine annamox bacteria (Jetten et al., 2009) were not studied in
Magadi sediments. However, there is both 16S rRNA and lipid evidence for the production of ladderanes
in hot springs in the western United States suggesting that annamox bacteria can persist in hot spring
environments (Jaeschke et al., 2009). Additionally, Kambura et al. (2016) found evidence for
Planctomycetes in both microbial mat and water samples surrounding the hot springs of Lake Magadi,
lending credence to the hypothesis of AOA persisting in Lake Magadi. Without other lines of evidence,

however, these are hypothetical reactions for explaining excess pyrite in the sediments without
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accompanying MI values. Nonetheless, this explanation has merit because of the high relative abundance

of both crenarchaeol and cren’.

In nearly all of Interval 6Table S1, there is evidence for a higher proportion of methanotrophic archaea
from 128.74 to 119.64 m (increased %GDGT-2/cren and [2]/[3]) and methanogenesis in the intervals
from 130.21 to 129.77 m (Table S1; higher %GDGT-0/cren compared to %GDGT-2/cren). Samples from
123.43 to 119.64 (Table S1) are of note because the [2]/[3] values are lower than the MI values whereas
every other MI and [2]/[3] values align nearly 1:1. This is likely due to GDGT-2 not being the dominant
control of the MI and while both %GDGT-0/cren and %GDGT-2/cren are equally high, there may be
other factors in the water column exporting GDGT-2 to the sediments, possibly from deep-dwelling
Group I.1b Thermoproteota, although this is unlikely due to limitations of depth (Taylor et al., 2013). The
656 m paleoshoreline reported by Casanova (1986, 1987) and Casanova and Hillaire-Marcel (1987)
would imply a maximum water depth of ~ 50 m during the Late Pleistocene (African Humid Period:
AHP) based on present topography. However, sedimentary evidence for such a high paleoshoreline is not
seen throughout the Magadi Basin. Earlier water depths are also unclear because accommodation space
was changing as the axial rift developed with faulting and subsidence (Owen et al., 2024). This is not
deep enough (> 1 km) to support Group I.1b Thermoproteota per the constraints outlined in Taylor et al.

(2013).

4.1.2 MIl-off periods

In intervals characterized by low MI, %GDGT-0/cren and %GDGT-2/cren values (Fig. 2; MI-off intervals
are odd numbers highlighted in blue), the §'*Com values are '*C-enriched relative to those intervals
characterized by higher index values (MI-on; Fig. 2). Since the methane cycling indices (%GDGT-0/cren
and %GDGT-2/cren) are both predominantly influenced by the availability of crenarchaeol, MI-off
periods are marked by increased production in crenarchaeol. Typically, crenarchaeol is produced in open
ocean systems, freshwater lakes, and soils by the mesotrophic aerobic ammonium oxidizing phylum
Nitrososphaerota. However, they can also be found in other environments, such as hot spring mats in

Thermoproteota (Pearson et al., 2004, 2008; Schouten et al., 2013). As Thermoproteota require oxygen
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to oxidize ammonium to nitrate, the increased presence of crenarchaeol in the MI-off intervals, therefore,
suggests periods when conditions were more oxic, at least in the upper water column. The increase in
crenarchaeol, as well as the low [2]/[3] index values, suggest that more Thermoproteota were present in
Lake Magadi in those periods. As mentioned in Section 4.1.1, three groups of AOA are of interest for
interpreting which archaeal groups are found in low index intervals of Lake Magadi. Averages of [2]/[3]
from the global dataset in Rattanasriampaipong et al. (2022) are as follows: hot spring mats (avg. = 1.00),
shallow AOA cultures (avg. = 1.16), and shallow core tops (avg. = 2.64). Placing these on a continuum,
we can approximate the environment from [2]/[3] averages in Magadi, though it should be noted that the
shallow AOA and shallow core-top values in Rattanasriampaipong et al. (2022) are based on marine core-
tops, while the hot spring mats are based on terrestrial hot springs like those observed around Lake Magadi

(i.e. pH>6.5).

Interval 1 captures a transition from a more arid East Africa to a wetter period at the onset of the African
Humid Period (AHP). During wetter periods, more allochthonous material is transported to the lake,
which includes vegetal remains that impact the overall bulk §'3*Com values. This allochthonous vegetation
enriches the overall bulk §'°Com values more significantly than other intervals in the Magadi core.
Average values of bulk §'*Com are -17.7 %o in Interval 1, which correspond to the §'3Com values of
aquatic sedges mixed with a terrestrial signal of grassy woodland (Sikes, 1994; Reiffarth et al., 2016).
Pollen records in Lake Magadi indicate that a mixture of C4 grassy woodlands and C4 aquatic sedges
were predominant in the landscape that surrounded Lake Magadi at this time (Muiruri et al., 2021).
Supporting the pollen record, the '*Com values are likely reflecting §'°C values similar to those observed
by Garcin et al. (2014) in equatorial regions of Cameroon. The bulk §'*Cow is likely recording a mixture
of C4 grasses and C4 sedges similar to 8'°C values of C27 to C33 n-alkanes obtained from C4 grasses and
sedges in Cameroon which ranged from -18.2 to -17.6 %o (Garcin et al., 2014). This all suggests that the
bulk 8"*Cowm signal is dominated by terrestrial biomass, unlike other sections of the core, and there does
not appear to be a significant influence from the benthic microbial community (i.e., methane cyclers or

SRB).
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Values of the [2]/[3] index average 2.1 in Interval 1 with some values as high as 3.74 and 4.63 at 33.28
and 33.03 m, respectively (Table S1). The higher values are closer to what is captured from deep oceanic
suspended particulate matter (SPM) and deep ocean core-tops below the pycnocline, though caution
should be used when comparing lacustrine and oceanic sediments (Rattanasriampaipong et al., 2022). The
increase in %GDGT-0/cren (50.6 and 54.3 %; Table S1) and the slightly increased MI values (0.37 and
0.41; Table S1) imply that these samples were deposited in a deeper lacustrine environment. Evidence for
a deeper paleolake at ~40 feet (~17—-18 m) above the modern lakeshore (Baker, 1958) is also observed in
the High Magadi Formation (ca. 17.7 to 10.8 ka) indicating that there was fresh water flowing into the
lake during the period of deposition in Interval 1, likely creating a fresher water cap on the meromictic
Lake Magadi (Barker et al., 1991; Behr, 2002; Owen et al., 2019). However, excluding the high [2]/[3]
index values in Interval 1, the average is 1.6, which is closer to the hot spring mats and shallow AOA
cultures (Rattanasriampaipong et al., 2022). Likely, the higher [2]/[3] index values represent periods of
increased methanogenesis occurring in the sediments, with AOA input from the upper water column likely
induced by proportional increases in the amount of hydrothermal inflow to the lake (Section 4.2.1). Fig.
4 shows that the Ca/Na is anti-correlated with REEs in both the PCA and correlation matrix. Since the
proportion of Ca/Na decreases when REEs increase, we can say that statistically, when it is drier (and
thus proportionately more hydrothermally influenced) the Ca/Na decreases, REE values increase, and the
methane indices are suppressed. In the periods of lower [2]/[3] values, the community is interpreted as
being dominated by AOA and thermophilic AOA cultures (i.e., Thermoproteota; Rattanasriampaipong et
al., 2022) and is further supported by high % cren and % cren’. Kumar et al. (2019) described similarly
low [2]/[3] values in the water column of Lake Malawi that are akin to values observed in Lake Magadi
in both Intervals 1 and 3. They found that values of a lower normalized [2] / [2+3], ranging from 0.55 to
0.59, in Lake Malawi were associated with the shallower Thermoproteota (Thaumarchaeota) Group I.1b.
This is compared to higher values of [2] / [2+3] in the deeper dwelling Thermoproteota Group I.1a, which
means that most samples in Interval 1 are likely sourced from Group I.1b (Kumar et al., 2019). Kumar et
al. (2019) concluded that Group I.1b Thermoproteota were contributing to the lower [2] / [2+3] values,
while the more deeply dwelling Group I.1a Thermoproteota were more prevalent in aphotic portions of

the water column (Kumar et al., 2019). The normalized [2] / [2+3] used by Kumar et al. (2019), with
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values ranging from 0.55 to 0.65, approximates values of [2]/[3] in the 1.30 to 1.65 range as described in
this paper. More recently, Baxter et al. (2021) found that Thermoproteota I.1b are more prevalent in the
upper oxygenated portion of the water column within the photic zone as evidenced by a higher relative
abundance of crenarchaeol and lower relative abundance of GDGT-2. Thus, our interpretations of
thaumarcheotal AOA in Lake Magadi sediments are consistent with data from Baxter et al. (2021) and
Kumar et al. (2019). This interpretation is consistent with Interval 1 being a period of proportionately
more freshwater and HCOj3™-rich hydrothermal input and a deeper lake overall, which would explain the

accompanying increase in crenarchaeol.

Interval 3 [2]/[3] averages are lower overall (Table S1; avg. = 5.4), with only one outlying high value (ca.
77.32 m at a value of 36.7). Excluding this high index value, the [2]/[3] average drops to 1.5, which is
closer to what is observed in shallow AOA cultures and hot spring mats. With most samples being closer
to unity (i.e., [2]/[3] = 1.0), it is likely that hot springs had a greater influence on the community
composition in these intervals. Samples that are closer to unity (70.78, 70.86, and 71.08 to 75.93 m) also
have a relatively '*C-enriched §'3*Com values (avg. = -21.8%o0) compared to samples with a higher [2]/[3]
(averaging 1.5 excluding the outlying value of 36.7). This average is closer to shallow Group I.1a
Thermoproteota as described previously. Average isotope values in Interval 3 are between oceanic
hydrothermal vents (avg. = -19.0 %o) and terrestrial alkaline hot spring systems such as the Bison Pool
hot spring in Yellowstone National Park (avg. =-24.9 %o) (Shah et al., 2008; Schubotz et al., 2013). Since
elevated amounts of GDGT-2 (i.e., relative abundance > 45%) are associated with Euryarchaeota, and
values in Intervals 1, 3, and 5 are much lower than 45% (Table S1), these intervals are likely dominated
by Thermoproteotal AOA (Pancost et al., 2001; Turich et al., 2007; Taylor et al., 2013). Archaeal
community composition in Intervals 1, 3, and 5 is independent of these external factors and is related to
hydrothermal flows. This further supports the hot springs driving the lake archaeal community
composition as there was less overall precipitation and the Thermoproteotal communities were more

abundant during Intervals 1, 3, and 5.
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Lastly, Interval 5, which only has 4 samples, has similarly low values of [2]/[3] (average = 1.4) like
Intervals 1 and 3, which is likely indicative of Thermoproteotal AOA cultures. The CPlak and CPlIra
averages were 4.6 and 5.0, indicating more terrestrial input. So, while these values are lower than Interval

3, and closer to the values in Interval 1, these still indicate a higher terrestrial input during this timeframe.

4.2 The influence of hot spring/runoff ratios on the archaeal methane cycles

Hydrothermal fluids in the basin are rich in carbonate and bicarbonate as well as Na" ions, inferred to be
a result of the weathering and alteration of trachytic (silica-rich) basement rock (Jones et al., 1977; Allen
et al., 1989), and mantle-derived CO: discharged mainly along faults (Lee et al., 2017; Muirhead et al.).
Ca?" and Mg?" are also very low (Deocampo and Renaut, 2016). Renaut and Owen (2023) note that
hydrothermal waters become important contributors to lake recharge during arid phases when fluvial
inflow declines. For example, Nasikie Engida, a small hypersaline lake northwest of Lake Magadi, is
partly maintained today by hydrothermal inputs, with trona, nahcolite and zeolites accumulating during
dry periods when there is little or no fluvial inflow (DeCort et al., 2019; Renaut et al., 2020; Renaut and
Owen, 2023). Magadi Core MAG14-2A lacks evidence for complete desiccation (e.g., mudcracks, soils,
calcrete) and the lake appears to have retained surface waters through multiple drought episodes during
the last million years (Owen et al., 2019). In contrast, separate lakes in the neighbouring Koora Basin

(~10 km to the east), dried out many times, leading to soil formation in that basin (Owen et al., 2024).

Owen et al. (2019) also noted that during periods when highly saline, alkaline water dominated at Magadi
ash was zeolitized, REE patterns developed significant anomalies, and pyrite developed in anoxic/euxinic
bottom waters of a meromictic lake. They also noted the excellent preservation of diatom opaline silica
in highly alkaline lakes after about 540 ka, which suggests that very high levels of silica in lake water
preserved their frustules from dissolution. Hydrothermal springs at Magadi today contain high silica, but
their waters require further evaporation to achieve concentrations that would preserve diatom silica under
very high pH conditions. High silica concentrations brought about by strong evaporation in a lake
maintained by spring inflows (meteoric or hydrothermal) may partly explain the abundant chert through

the Magadi sedimentary sequence.
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Proportional increases in hot-spring water during periods of increased aridity would have favoured the
development of highly saline, alkaline waters with significant impacts on archaeal communities. Samples
in Interval 6 represent a drier period when the lake area and volume had shrunk, partly due to tectonic
influences (Owen et al., 2024), and lake floor anoxia was prevalent (Owen et al., 2019). Between ~380
and 105 ka (Fig. 2; Interval 5 through mid-Interval 2), the paleolake was frequently meromictic with a
freshwater mixolimnion that supported freshwater planktonic diatoms while the saline monimolimnion
and lake floor waters favoured alteration of ash to a variety of zeolites (e.g., erionite, phillipsite,
clinoptilolite, analcime) (Owen et al., 2019). Similarly, from ~105 to 0 ka (Fig. 2; mid-Interval 2 through
Interval 1) low Ca / Na, increased Br, and the abundant zeolite formation, indicates saline conditions.
After about 80 ka, tectonic adjustments and increasing aridity led to desiccation in the Koora Basin
suggesting that spring inflows were important in maintaining a hypersaline lake in the Magadi Basin, as
they do today during dry seasons (Owen et al., 2019). Ca/Na ratios have steadily decreased over time,
though not at a 1:1 rate, which aligns with methane index values and sudden increases of these indices.
Fig. 4 shows that the Ca/Na and methane indices are statistically different from one another in both the
correlation matrix and PCA plot. In Fig. 5b, Ca/Na is loaded positively on PC1 and PC2, while the
methane indices ([2]/[3], M1, %0/Cren, and %?2/Cren) are loaded positively on PC1 and negatively on
PC2. Furthermore, REE data also appear to reflect our MI-off and MI-on periods as the REEs are
anticorrelated in the correlation matrix (Fig. 5a) and loaded on different PC axes (Fig. 5b). Consequently,
we interpret the changes in salinity and alkalinity in the Magadi paleolakes as reflecting the impact of
climate on spring/runoff ratios into the Magadi Basin, which in turn have exerted significant impact on
the archaeal communities through the last million years. Samples in the low-MI intervals (ca. 32.61—
35.67, 70.78-75.93, and 103.2-104.1 m) likely reflect proportionally increased spring-runoff ratios at

Magadi caused by increased evaporation and decreased precipitation in the surrounding landscape.

5. Conclusions

Sediments in Lake Magadi track the environmentally driven changes in archaeal communities over the

past ~ 456 ka. Using the MI to track the predominantly archaeal inputs at Lake Magadi, we have observed
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sudden and distinct shifts between mixed communities of Euryarchaeotal methanogens and
methanotrophs transitioning to mesophilic AOA Thermoproteota communities and back again. This shift
is driven, in part, by moisture balances in the East African Rift, with wetter conditions periodically
causing freshwater floods into a saline lake to form a meromictic waterbody at Magadi, and with more
archaea derived from the upper water column rather than the sediments, as evidenced by low MI, low
[2]/[3], and relatively '*C-enriched bulk §'*Com. Methane indices were typically higher during periods of
reduced hydrothermal activity, indicating more Euryarchaeal communities, whereas Thermoproteota
communities thrived during periods of higher hydrothermal activity. This is a clear relationship between
low MI values, spring/runoff ratios, lake salinity, alkalinity and the development of mesophilic
Thermoproteota. This study is one of the first to examine methane cycling in a soda lake over geologic
time and provides valuable insights into how variable these systems can be. Soda lakes are important
ecosystems for methane cyclers and should be studied more closely so that we can improve understanding

of global methane contributions in the past, and constrain sources in the future.
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980 Figure 1. Map of the drilling location of MAG-14-2A (yellow triangle) in Lake Magadi for the Hominin
Sites and Paleolakes Drilling Project (HSPDP).
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Figure 2. Downcore variations in Lake Magadi of the a) % 0/ Cren, b) M1, ¢) % 2 / Cren, d) bulk §'*Com,
and e) the GDGT-2 / GDGT-3 ([2] / [3]) values from ca. 14.9 to 456 ka. Sections 1, 3, and 5 are low MI
intervals outlined in blue, the high MI intervals in Sections 2, 4, and 6 are in yellow. Checkered patterns
indicate periods of tuffaceous silt deposit, which align with the low MI intervals. Bands at the top of the
graph indicate the inferred (via Renaut and Owen, 2023) lake levels and major inputs with dark blue
indicating a perennial lake, brown indicating a sand or mud flat, and purple indicating tephra. Dotted lines
on each section denote the cut-off points for methane related indices MI (> 0.5), % GDGT-2 / cren (> 33
%), and % GDGT-0 / cren (> 67 %). See Section 2.3.2 for more details. Note the breaks in the X-axis

scale.
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Figure 3. Downcore plot for Lake Magadi of a) Ca/Na, b) % REE abundance, and ¢) MI. Values range
from ca. 14.9 to 456 ka and Sections 1, 3, and 5 are outlined in blue reflecting a low MI interval, while
995 high MI intervals are outlined in yellow. The checkered pattern is indicative of periods of higher inferred
hydrothermal flow. Bands at the top of the graph indicate the inferred (via Renaut and Owen, 2023) lake
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levels and major inputs with dark blue indicating a perennial lake, brown indicating a sand or mud flat,
and purple indicating tephra. The dotted line on the MI plot (¢) denotes the cutoff point > 0.5 for values
significantly affected by methane cycling archaea. Note the breaks in the X-axis scale. REE values are

1000 from Owen et al. (2019).
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1005

Figure 4. Both a) PCA and b) Spearman Correlation Matrix showing the relationship between methane
related indices (MI and [2] / [3]) and REEs (La, Ce, Nd, Sm, Eu, Tb, Yb, and Lu) in the sampled intervals
of the core. A negative relationship is seen between the methane indices and REEs as shown by opposing
eigenvectors on the PCA (a) and negative r values on the correlation matrix (b). REE values are from

Owen et al. (2019).
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Figure S. Ternary plot of crenarchaeol, GDGT-0, and GDGT-2, which are used to calculate the methane
1010 indices. Samples are split by both their interval (denoted by their shape) and whether they are from a high
MI (yellow) or low MI (blue) interval. Higher proportions of GDGT-0 indicate methanogenic inputs,
higher GDGT-2 indicate methanotrophy, and higher crenarchaeol indicates more mesophilic conditions

influenced by hot springs.
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