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Figure S1. Time series of the probability density function of hygroscopic parameter (κ-PDF). Red rectangles 17 

denote clear days, and others are cloudy days. 18 
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Figure S2. The size-resolved chemical mass fraction at five particle sizes.  20 

 21 

Figure S3. Averaged diurnal variations in κ-PDF for 40 and 150 nm particles, particle number size 22 

distribution, mass fraction of five organic aerosols and mass concentration of primary and secondary organic 23 

aerosols on clear and cloudy days. 24 
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Figure S4. Diurnal variations of ambient temperature (T), relative humidity (RH) and PM1 mass 27 

concentrations on clear and cloudy days. 28 
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Table S1. The aging timescale of particles reported in literatures. 40 

Region Model Aerosol type Aging timescale Rreference 

global 

 (model default) 

GCM 
carbonaceous 

Aerosol 
1.15 days Cooke et al., 2002 

GISS-GCM 
carbonaceous 

Aerosol 
1.15 days Chung and Seinfeld, 2002 

GISS-GCM BC 1 day Koch and Hansen, 2005 

TOMAS 
carbonaceous 

aerosol 
1.5 days Pierce et al., 2007 

GEOS-Chem 
carbonaceous 

aerosols 
1.2 days Yu and Luo, 2009 

GEOS-4 
carbonaceous 

aerosols 
2.5 days Colarco et al., 2010 

GFDL-AM3 BC 20 days Liu et al., 2011 

RegCM4 
carbonaceous 

Aerosol 
 1.15 days Ghosh et al., 2021 

south-western 

Germany 
KAMM/DRAIS soot 

daytime: 2-8 h 

nighttime: 10-40 h 
Riemer et al., 2004 

global GEOS-Chem 
carbonaceous 

aerosols 
3.1 days Huang et al., 2013 

central-eastern 

China 
NAQPMS+APM BC 

12 h-7 days 

Chen et al., 2017 

Beijing 2 h 

south Asia RegCM4 
carbonaceous 

aerosol 
7.6-167.6 h Ghosh et al., 2021 

Mexico City ATOFMS soot 3 h Moffet and Prather, 2009 

California SP2 BC ~4 h Akagi et al., 2012 

Los Angeles SP2 BC ~3 h Krasowsky et al., 2016 

Beijing 
environmental 

chamber approach 
BC 

2.3 h & 4.6 h 

Peng et al., 2016 

Houston 9 h & 18 h 
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