Referee #1:

This study estimates daily NOx emissions at a 3-km resolution in Beijing and its surrounding
areas using an emission inversion framework. The framework assimilates TROPOMI NO,
column concentrations with an Ensemble Kalman Filter coupled with CMAQ. The results
reveal that proxy-based bottom-up emission datasets tend to overestimate NO, emissions in
densely populated areas, providing crucial insights for urban air quality regulations. Robust
sensitivity analyses further strengthen the study by evaluating the effects of satellite retrieval
parameters (e.g., a priori profiles and averaging kernels) and an observation localization
radius parameter on the inversion results. Specific comments on the manuscript are outlined
below.

Response:

We thank the referee for the constructive and positive comments on our paper. We have
provided our point-by-point responses as follows and revised the manuscript accordingly.

Specific comments

1. Figure 3 and Figure S4: What ground air quality monitoring station data is used for this
comparison? Is it based on a single station or a multi-station average? Additionally, how does
this comparison vary across different ground stations, such as those in densely populated
areas versus suburban or rural areas?

Response:

Thanks for your valuable comments. We use the national control stations maintained by
China National Environmental Monitoring Center (CNEMC) to evaluate the model
simulations. Fig. S1 shows the spatial location of the stations. These stations are primarily
located in densely populated areas of each city.

According to your suggestion, we have classified the observation stations into two categories
based on NO: concentration characteristics, population density, and emission patterns:
low-emission areas and high-emission areas. The low-pollution areas refer to the two northern
cities in the D03 domain, Zhangjiakou and Chengde, where NO: concentrations are relatively
low. The observation stations in all other urban areas are classified as high-pollution stations.

Fig. S6 presents a comparison between CMAQ simulations and ground-based observations in
different regions. Compared to the highly polluted urban areas, the posterior NO: simulations
in Zhangjiakou and Chengde show much better consistency with observations during summer.
This indicates that in regions with low surface emissions, the accuracy of posterior
simulations in summer is relatively high. Furthermore, it reinforces the finding that in
high-emission urban areas, the constraint of satellite NO, column measurements on surface
emissions in summer is weaker, leading to an overestimation in posterior simulations.

We have added a description of the air quality monitoring stations in Sect. 2.6 (Lines 262-263)
as follows:

“Fig. S1 shows the spatial location of the ground-based stations used to evaluate the CMAQ
simulations. These stations are primarily located in densely populated areas of each city.”



We have added the analysis of the evaluation results for different regions in Sect. 3.1.2 (Lines
328-3306) as follows:

“Furthermore, we have classified the observation stations into two categories based on NO2
concentration characteristics, population density, and emission patterns: low-pollution areas
and high-pollution areas. The low-pollution areas refer to the two northern cities in the D03
domain, Zhangjiakou and Chengde, where NO: concentrations are relatively low. The
observation stations in all other urban areas are classified as high-pollution stations. Fig. S6
presents a comparison between CMAQ simulations and ground-based observations in
different pollution regions. Compared to other highly polluted urban areas, the posterior NO-
simulations in Zhangjiakou and Chengde show much better consistency with observations
during summer. This indicates that in regions with low surface emissions, the accuracy of
posterior simulations in summer is relatively high. Furthermore, it reinforces the finding that
in highly polluted urban areas, the constraint of satellite NO> column measurements on
surface emissions in summer is weaker, leading to an overestimation in posterior
simulations.”
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Figure S6. Comparison of the ground-based daily (a) NO; and (b) Os concentrations with the
CMAQ 3-km simulations utilizing prior and posterior NO, emissions as the model input.
High-emission areas refer to the average of station measurements in the urban areas of
Beijing, Tianjin, Baoding, Langfang, and Tangshan, while Low-emission areas refer to the
average of station measurements in Zhangjiakou and Chengde.

2. Page 4, Lines 118-119: “The MEIC emission inventory is spatially and temporally
allocated to match the CMAQ model domain using spatial proxies and empirical temporal
profiles.” What are the temporal and spatial resolutions of the MEIC inventory? What types
of spatial proxies and temporal profiles are used to allocate emissions to the CMAQ model
domain? Please elaborate further on these details in the paragraph.

Thanks for your good suggestion. We have added the details on the spatiotemporal allocation
method for the MEIC emission inventory using spatial proxies and temporal profiles in Lines
126-132 (Sec. 2.1), as follows:

“The spatial proxies include total population density, urban population density, rural
population density, and road length. These spatial proxies are updated annually to reflect
interannual changes. The temporal profiles are unique for each major emission source. The



monthly profiles capture both seasonal variations and interannual trends in emissions,
reflecting real activity levels. The allocation from monthly to daily values is achieved using
sector-specific profiles that incorporate weekly and workday variations. In the CMAQ model,
the MEIC inventory is mapped to the CMAQ model grids. Emissions from point sources are
directly assigned to the grid cells where they are located, while emissions from area sources
are first allocated to 1 km X 1 km grid cells based on the spatial proxies and then aggregated
to the model grids based on WRF-CMAQ grid parameters.”

3. Page 5, Lines 151-152: Does the inversion system presented in this study scale prior
emissions on a daily scale? If so, how does the inversion system address hourly variations in
NO, emissions? Does the inversion system adjust the hourly profiles of the bottom-up
emission inventory? Please provide additional details on the time steps used for assimilating
TROPOMI NO; data to scale prior emission inventories.

Thank you for your valuable comments. Yes, the inversion system presented in this study
adjusts prior emissions on a daily scale. Due to the once-daily overpass of the TROPOMI
satellite, we are unable to utilize TROPOMI observations to resolve hourly variations in NOx
emissions. For hourly variations in NO, emissions, we still follow the daily variation pattern
in the prior MEIC inventory, using hourly profiles for temporal emission allocation. The
assimilation time step for scaling prior emissions using TROPOMI NO: data is set to one day.
Specifically, the differences between satellite observations and model simulations
(spatiotemporally collocated for afternoon overpasses) are used to update the daily scaling
factors of emissions.

We have clarified this issue in Sec. 4.3 and discussed the future outlook of using GEMS
satellite hourly observation data for hourly emission estimation (Lines 494-496 and Lines
499-502).

4. Page 9, Lines 249-250: I recommend including additional error metrics, such as mean
percentage error, to further illustrate the improvement in posterior emissions simulations. This
would help address the question, “In which season is the most significant improvement
observed after inversion?”

Thanks for your good suggestion. We chose to use the percentage change in the root mean
square error (RMSE) to quantify the improvement rate of posterior emissions relative to prior
emissions, which provides a more intuitive understanding that the improvements are greater
in the summer and autumn seasons compared to winter and spring. We made the following
modifications in Sect. 3.1.1, Lines 284-286:

“Compared to the prior simulations, the RMSE differences between the posterior simulated
NO: concentrations and the observations were reduced by 58.32%, 59.10%, 69.73%, and
70.03%, respectively.”

5. Page 9, Lines 251-252: What spatial proxies are used in MEIC? For example, does it utilize
road network shapefiles? Providing specific examples would make this argument more
compelling and relevant.



The spatial proxies include total population density, urban population density, rural
population density, and road length. We have clarified this in Lines 287 and 125-126.

6. Page 9, Lines 253-254: “However, the NO, TVCDs from prior simulations indicate
substantial overestimations in urban environments across various seasons...” Please specify
the seasons or months to provide clarification.

Done. We have clarified this in Line 296 (Sect. 3.1.1).

7. Page 10, Lines 282-286: Why doesn’t the simulated O3 concentration exhibit the “summer
bias” that is clearly evident in the comparison between simulated NO, and observations?
Please provide a more detailed discussion of the factors that could explain the differences
between the simulations of NO; and Os.

Thanks for your good suggestion. We have added the discussion of the factors that could
explain the differences between the simulations of NO» and Os in Lines 340-347 (Sect. 3.1.2),
as follows:

“The overestimation of bottom-up NOx emissions leads to negative biases in Os simulations
throughout the year. However, during the summer, the deviations between simulated Os
concentrations and observations are less pronounced compared to those observed in NO:
simulations. This is because the simulation of NO: is significantly influenced by surface NOx
emissions. In contrast, simulated Os concentrations are affected by multiple factors, with NOx
emissions being only one of them. For instance, during summer, increased biogenic emissions
and enhanced photochemical activity play critical roles. As a result, even in the prior Os
simulations, the discrepancies between modeled and observed Os values are less pronounced
compared to those in NO: simulations. Although the posterior Os simulations align well with
observations, they remain slightly below the observed values, indicating that the posterior
NOy emissions may still be overestimated during the summer.”

8. Page 10, Lines 295-296: “However, the posterior emission maps substantially reduce
emissions from city centers and reallocate these emissions to other areas, such as increasing
emissions from inter-city transportation, among other changes.” This is an important finding,
but it requires more supporting evidence. From Figure 4 alone, it is challenging to identify the
locations of inter-city transportation, making it difficult to confirm whether the reduced
emissions from city centers are reallocated to road networks. Consider including an additional
figure that overlays the locations of major inter-city roadways with the areas of increased
emissions in the posterior estimates.

Thanks for your good suggestion. We have added a spatial distribution map of emissions for
2020 in the supplementary materials, overlaying road information on the third column of the
figure (see Fig. S7). The roads include national highways, provincial roads, and expressways.
Since these three types of roads cover the main arterial network, we did not display county
and rural roads to ensure the clarity of the figure.

Combined with the difference map between posterior and prior emissions in the third column
of Fig. 4, the results show reduced emissions in urban areas, while certain roads exhibit



significant emission increases. Notably, the emission increases along roads are most
pronounced during spring and summer.

We have made revisions in Sect. 3.2.1 (Lines 356-359):

“However, the comparison between posterior and prior emissions (third column of Fig. 4 and
Fig. S7) reveals that the posterior emission maps substantially reduce emissions in urban
centers and redistribute these emissions to other regions. For instance, emissions from
inter-city transportation (see the third column of Fig. S7 with the overlay of the road map) are
notably increased, particularly during spring and summer.”
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Figure S7. The spatial map of the prior and posterior emissions in 2020. The last column
displays the differences between the two emissions, overlaid with a road map that includes
national highways, provincial roads, and expressways.

9. Page 10, Lines 301-302: “The posterior NO, emissions for the year 2020 (657 kt NO,)
decreased by 23.7% compared to the prior inventory (861 kt NOx). The largest reductions
occurred in winter and autumn, with declines of 44.5% and 36.4%, respectively.” Does the
bottom-up emission inventory (prior) account for the impact of COVID-19? If so, please
provide an explanation in the paragraph.

Thanks for your good suggestion. We have clarified this in Lines 373-375 (Sect. 3.2.1)

“The bottom-up prior inventory is based on actual activity level data and emission factors,
which can somewhat reflect the emission reductions during the COVID-19 lockdown period.
However, due to statistical errors and the misrepresentation of emission factors, the prior
emission inventory still fails to provide an accurate estimate of the regional total NO.
emissions.”

10. Page 11, Lines 319-321: “The seasonal variation of the posterior NO, emission estimate in
our research is similar to the results obtained by previous studies (Wang et al., 2007; Qu et al.,
2017; Miyazaki et al., 2017). Qu et al. (2017) utilized OMI measurements to infer the NO,
emissions in China, and the seasonal pattern of NO, emissions for China and Beijing City is
consistent with our study.” How similar are these findings? Consider adding quantitative
metrics to describe the seasonality of NO, emissions as observed in this study and in previous
studies.



Sorry for not explaining it clearly. We found that in the studies listed (Wang et al., 2007; Qu
et al., 2017; Miyazaki et al., 2017), the seasonal variation pattern of NO, emissions derived
from satellite observations is similar to our study. Specifically, the posterior emissions based
on satellite observations show significant seasonal variation, in contrast to the relatively
insignificant seasonal changes in the prior emission inventories. Additionally, while the prior
emissions tend to have the lowest levels in summer, the posterior emissions are higher in
summer, comparable to or even higher than winter emissions (e.g., see Figures 12 and 14 in
Qu et al., 2017). We compared the seasonal variation plots from these studies, but since the
study areas differ in size, we did not perform a quantitative comparison of the changes in total
regional emissions.

We have made modifications in Lines 412-414 (Sect. 3.2.2), as follows:

“These studies, along with the results of our study, indicate that while the prior emissions tend
to have the lowest levels in summer, the posterior emissions are higher in summer,
comparable to or even higher than winter emissions.”

11. Page 12, Lines 364-365: “To evaluate the impact of different L values on the NO,
emission inversions, we perform two additional experiments with L = 3 km (Exp_L3km) and
L = 81 km (Exp_L81km), respectively.” What are the reasons for choosing these specific L
values, 3 km and 81 km, for the sensitivity analysis? Please provide an explanation.

Thanks for your good suggestion. Firstly, based on theoretical analysis, we initially
determined that a localization radius of 36 km is appropriate. As elaborated in Section 2.4, the
selection of this radius (36 km) was guided by the typical lifetime of NO2 (~4 hours) and wind
speed (~3 m/s) in the Beijing region (Wu et al., 2021) (see Lines 205-208 in our manuscript).
However, this value serves only as a preliminary estimate, as the lifetime of NO. varies with
environmental conditions and wind speed is not constant. To assess the sensitivity of emission
inversion results to localization radius, we tested values smaller and larger than 36 km. We
chose 3 km because the resolution of our model is 3 km, and this choice can be roughly
understood as ignoring the effects of emission transport between grids. The choice of 81 km
is based on the typical lifetime of NO2 and wind speed, providing a relatively larger transport
distance. Additionally, following the suggestion of Referee #2, we added another experiment
with L = 10 km to test whether the results would be better than those from the L = 36 km
experiment. We have made modifications in Sect. 4.2 (see Lines 466-481).

12. Figure 5: Consider adding a visual marker to highlight the implementation and relaxation
of COVID-19 containment measures, as well as notable events such as the Chinese Lunar
New Year holiday.

Thanks for your good suggestion. We have made revisions according to your comments as
below (see Lines 380-386 and Fig. 5).

“The reduction of NO, emissions due to the pandemic lockdown measures lasted from early
2020 to mid-March 2020, with emission levels gradually returning to normal by late April.
However, although the prior emission inventory partially reflects real monthly production
activity levels, it fails to accurately capture such dynamic changes in emissions. The prior
emission inventory only distinctly captures the emission reduction that occurred from early



February to mid-February 2020, mainly caused by the Chinese Lunar New Year. In addition,
the posterior emission estimates also indicate a period of emission reduction and rebound
from mid-June to mid-July 2020, coinciding with the sudden outbreak of the epidemic and the
subsequent lockdown measures implemented at the Xinfadi market in Beijing, China.”
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Figure 5. Time series of the bottom-up and top-down daily NO; emissions for domain D03 and
Beijing City. The gray dashed line indicates the Chinese Lunar New Year, which also marks
the date when Beijing began implementing COVID-19 control measures. The blue dashed
line represents the start date of control measures following the sudden outbreak at the Xinfadi
market in Beijing. The gray shaded area represents the period affected by COVID-19
measures in 2020, and the light blue shaded area highlights the time frame impacted by the
Xinfadi market outbreak.

13. Figure 5: It appears that the prior emission inventory exhibits a consistent diurnal cycle of
hourly NO, emissions. How does this compare to the diurnal cycle in the posterior NOx
emissions? Does the inversion system reveal a similar pattern? Please consider adding a
figure and/or a paragraph to discuss this comparison.

Thank you for your valuable feedback and comments. Actually, Fig. 5 shows the time series
of daily emissions, not hourly NO, emissions. The daily time series of the prior inventory
shows periodic variations between weekdays and weekends, i.e., the MEIC inventory shows a
clear weekly pattern. This is because, for the prior inventory, the allocation from monthly
emissions to daily values is achieved using sector-specific profiles that incorporate weekly
and workday variations. However, our satellite-derived emissions do not display a distinct
weekly pattern. Previous studies on satellite observations and ground concentration variations

have also indicated that such a weekly pattern is not prominent in China (Wei et al., 2022).

As for the MEIC inventory, it does include a diurnal cycle of hourly NO, emissions, as the
MEIC inventory uses hourly profiles to allocate hourly emissions. However, since the
TROPOMI satellite observations used in this study only provide afternoon overpasses per day,
they do not support the derivation of hourly emission variation patterns. We have clarified this
issure and added a discussion on the future aim to utilize GEMS hourly data to reveal the

hourly variation patterns of emissions in Sect. 4.3 (Lines 494-496 and Lines 499-502).
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