
Referee #1: 

This study estimates daily NOx emissions at a 3-km resolution in Beijing and its surrounding 
areas using an emission inversion framework. The framework assimilates TROPOMI NO2 
column concentrations with an Ensemble Kalman Filter coupled with CMAQ. The results 
reveal that proxy-based bottom-up emission datasets tend to overestimate NOx emissions in 
densely populated areas, providing crucial insights for urban air quality regulations. Robust 
sensitivity analyses further strengthen the study by evaluating the effects of satellite retrieval 
parameters (e.g., a priori profiles and averaging kernels) and an observation localization 
radius parameter on the inversion results. Specific comments on the manuscript are outlined 
below. 

Response: 

We thank the referee for the constructive and positive comments on our paper. We have 
provided our point-by-point responses as follows and revised the manuscript accordingly. 

Specific comments 

1. Figure 3 and Figure S4: What ground air quality monitoring station data is used for this 
comparison? Is it based on a single station or a multi-station average? Additionally, how does 
this comparison vary across different ground stations, such as those in densely populated 
areas versus suburban or rural areas? 

Response: 

Thanks for your valuable comments. We use the national control stations maintained by 
China National Environmental Monitoring Center (CNEMC) to evaluate the model 
simulations. Fig. S1 shows the spatial location of the stations. These stations are primarily 
located in densely populated areas of each city.  

According to your suggestion, we have classified the observation stations into two categories 
based on NO₂ concentration characteristics, population density, and emission patterns: 
low-emission areas and high-emission areas. The low-pollution areas refer to the two northern 
cities in the D03 domain, Zhangjiakou and Chengde, where NO₂ concentrations are relatively 
low. The observation stations in all other urban areas are classified as high-pollution stations. 

Fig. S6 presents a comparison between CMAQ simulations and ground-based observations in 
different regions. Compared to the highly polluted urban areas, the posterior NO₂ simulations 
in Zhangjiakou and Chengde show much better consistency with observations during summer. 
This indicates that in regions with low surface emissions, the accuracy of posterior 
simulations in summer is relatively high. Furthermore, it reinforces the finding that in 
high-emission urban areas, the constraint of satellite NO2 column measurements on surface 
emissions in summer is weaker, leading to an overestimation in posterior simulations. 

We have added a description of the air quality monitoring stations in Sect. 2.6 (Lines 262-263) 
as follows:  

“Fig. S1 shows the spatial location of the ground-based stations used to evaluate the CMAQ 
simulations. These stations are primarily located in densely populated areas of each city.” 



We have added the analysis of the evaluation results for different regions in Sect. 3.1.2 (Lines 
328-336) as follows:  

“Furthermore, we have classified the observation stations into two categories based on NO₂ 
concentration characteristics, population density, and emission patterns: low-pollution areas 
and high-pollution areas. The low-pollution areas refer to the two northern cities in the D03 
domain, Zhangjiakou and Chengde, where NO₂ concentrations are relatively low. The 
observation stations in all other urban areas are classified as high-pollution stations. Fig. S6 
presents a comparison between CMAQ simulations and ground-based observations in 
different pollution regions. Compared to other highly polluted urban areas, the posterior NO₂ 
simulations in Zhangjiakou and Chengde show much better consistency with observations 
during summer. This indicates that in regions with low surface emissions, the accuracy of 
posterior simulations in summer is relatively high. Furthermore, it reinforces the finding that 
in highly polluted urban areas, the constraint of satellite NO2 column measurements on 
surface emissions in summer is weaker, leading to an overestimation in posterior 
simulations.” 

 
Figure S6. Comparison of the ground-based daily (a) NO2 and (b) O3 concentrations with the 
CMAQ 3-km simulations utilizing prior and posterior NOx emissions as the model input. 
High-emission areas refer to the average of station measurements in the urban areas of 
Beijing, Tianjin, Baoding, Langfang, and Tangshan, while Low-emission areas refer to the 
average of station measurements in Zhangjiakou and Chengde. 

2. Page 4, Lines 118-119: “The MEIC emission inventory is spatially and temporally 
allocated to match the CMAQ model domain using spatial proxies and empirical temporal 
profiles.” What are the temporal and spatial resolutions of the MEIC inventory? What types 
of spatial proxies and temporal profiles are used to allocate emissions to the CMAQ model 
domain? Please elaborate further on these details in the paragraph. 

Thanks for your good suggestion. We have added the details on the spatiotemporal allocation 
method for the MEIC emission inventory using spatial proxies and temporal profiles in Lines 
126-132 (Sec. 2.1), as follows: 

“The spatial proxies include total population density, urban population density, rural 
population density, and road length. These spatial proxies are updated annually to reflect 
interannual changes. The temporal profiles are unique for each major emission source. The 



monthly profiles capture both seasonal variations and interannual trends in emissions, 
reflecting real activity levels. The allocation from monthly to daily values is achieved using 
sector-specific profiles that incorporate weekly and workday variations. In the CMAQ model, 
the MEIC inventory is mapped to the CMAQ model grids. Emissions from point sources are 
directly assigned to the grid cells where they are located, while emissions from area sources 
are first allocated to 1 km × 1 km grid cells based on the spatial proxies and then aggregated 
to the model grids based on WRF-CMAQ grid parameters.” 

3. Page 5, Lines 151-152: Does the inversion system presented in this study scale prior 
emissions on a daily scale? If so, how does the inversion system address hourly variations in 
NOx emissions? Does the inversion system adjust the hourly profiles of the bottom-up 
emission inventory? Please provide additional details on the time steps used for assimilating 
TROPOMI NO2 data to scale prior emission inventories. 

Thank you for your valuable comments. Yes, the inversion system presented in this study 
adjusts prior emissions on a daily scale. Due to the once-daily overpass of the TROPOMI 
satellite, we are unable to utilize TROPOMI observations to resolve hourly variations in NOₓ 
emissions. For hourly variations in NOx emissions, we still follow the daily variation pattern 
in the prior MEIC inventory, using hourly profiles for temporal emission allocation. The 
assimilation time step for scaling prior emissions using TROPOMI NO₂ data is set to one day. 
Specifically, the differences between satellite observations and model simulations 
(spatiotemporally collocated for afternoon overpasses) are used to update the daily scaling 
factors of emissions. 

We have clarified this issue in Sec. 4.3 and discussed the future outlook of using GEMS 
satellite hourly observation data for hourly emission estimation (Lines 494-496 and Lines 
499-502). 

4. Page 9, Lines 249-250: I recommend including additional error metrics, such as mean 
percentage error, to further illustrate the improvement in posterior emissions simulations. This 
would help address the question, “In which season is the most significant improvement 
observed after inversion?” 

Thanks for your good suggestion. We chose to use the percentage change in the root mean 
square error (RMSE) to quantify the improvement rate of posterior emissions relative to prior 
emissions, which provides a more intuitive understanding that the improvements are greater 
in the summer and autumn seasons compared to winter and spring. We made the following 
modifications in Sect. 3.1.1, Lines 284-286: 

“Compared to the prior simulations, the RMSE differences between the posterior simulated 
NO₂ concentrations and the observations were reduced by 58.32%, 59.10%, 69.73%, and 
70.03%, respectively.” 

5. Page 9, Lines 251-252: What spatial proxies are used in MEIC? For example, does it utilize 
road network shapefiles? Providing specific examples would make this argument more 
compelling and relevant. 



The spatial proxies include total population density, urban population density, rural 
population density, and road length. We have clarified this in Lines 287 and 125-126. 

6. Page 9, Lines 253-254: “However, the NO2 TVCDs from prior simulations indicate 
substantial overestimations in urban environments across various seasons…” Please specify 
the seasons or months to provide clarification. 

Done. We have clarified this in Line 296 (Sect. 3.1.1). 

7. Page 10, Lines 282-286: Why doesn’t the simulated O3 concentration exhibit the “summer 
bias” that is clearly evident in the comparison between simulated NO2 and observations? 
Please provide a more detailed discussion of the factors that could explain the differences 
between the simulations of NO2 and O3. 

Thanks for your good suggestion. We have added the discussion of the factors that could 
explain the differences between the simulations of NO2 and O3 in Lines 340-347 (Sect. 3.1.2), 
as follows: 

“The overestimation of bottom-up NOₓ emissions leads to negative biases in O₃ simulations 
throughout the year. However, during the summer, the deviations between simulated O₃ 
concentrations and observations are less pronounced compared to those observed in NO₂ 
simulations. This is because the simulation of NO₂ is significantly influenced by surface NOₓ 
emissions. In contrast, simulated O₃ concentrations are affected by multiple factors, with NOₓ 
emissions being only one of them. For instance, during summer, increased biogenic emissions 
and enhanced photochemical activity play critical roles. As a result, even in the prior O₃ 
simulations, the discrepancies between modeled and observed O₃ values are less pronounced 
compared to those in NO₂ simulations. Although the posterior O₃ simulations align well with 
observations, they remain slightly below the observed values, indicating that the posterior 
NOx emissions may still be overestimated during the summer.” 

8. Page 10, Lines 295-296: “However, the posterior emission maps substantially reduce 
emissions from city centers and reallocate these emissions to other areas, such as increasing 
emissions from inter-city transportation, among other changes.” This is an important finding, 
but it requires more supporting evidence. From Figure 4 alone, it is challenging to identify the 
locations of inter-city transportation, making it difficult to confirm whether the reduced 
emissions from city centers are reallocated to road networks. Consider including an additional 
figure that overlays the locations of major inter-city roadways with the areas of increased 
emissions in the posterior estimates. 

Thanks for your good suggestion. We have added a spatial distribution map of emissions for 
2020 in the supplementary materials, overlaying road information on the third column of the 
figure (see Fig. S7). The roads include national highways, provincial roads, and expressways. 
Since these three types of roads cover the main arterial network, we did not display county 
and rural roads to ensure the clarity of the figure. 

Combined with the difference map between posterior and prior emissions in the third column 
of Fig. 4, the results show reduced emissions in urban areas, while certain roads exhibit 



significant emission increases. Notably, the emission increases along roads are most 
pronounced during spring and summer. 

We have made revisions in Sect. 3.2.1 (Lines 356-359): 

“However, the comparison between posterior and prior emissions (third column of Fig. 4 and 
Fig. S7) reveals that the posterior emission maps substantially reduce emissions in urban 
centers and redistribute these emissions to other regions. For instance, emissions from 
inter-city transportation (see the third column of Fig. S7 with the overlay of the road map) are 
notably increased, particularly during spring and summer.” 

 
Figure S7. The spatial map of the prior and posterior emissions in 2020. The last column 
displays the differences between the two emissions, overlaid with a road map that includes 
national highways, provincial roads, and expressways. 

9. Page 10, Lines 301-302: “The posterior NOx emissions for the year 2020 (657 kt NOx) 
decreased by 23.7% compared to the prior inventory (861 kt NOx). The largest reductions 
occurred in winter and autumn, with declines of 44.5% and 36.4%, respectively.” Does the 
bottom-up emission inventory (prior) account for the impact of COVID-19? If so, please 
provide an explanation in the paragraph. 

Thanks for your good suggestion. We have clarified this in Lines 373-375 (Sect. 3.2.1) 

“The bottom-up prior inventory is based on actual activity level data and emission factors, 
which can somewhat reflect the emission reductions during the COVID-19 lockdown period. 
However, due to statistical errors and the misrepresentation of emission factors, the prior 
emission inventory still fails to provide an accurate estimate of the regional total NOx 
emissions.” 

10. Page 11, Lines 319-321: “The seasonal variation of the posterior NOx emission estimate in 
our research is similar to the results obtained by previous studies (Wang et al., 2007; Qu et al., 
2017; Miyazaki et al., 2017). Qu et al. (2017) utilized OMI measurements to infer the NOx 
emissions in China, and the seasonal pattern of NOx emissions for China and Beijing City is 
consistent with our study.” How similar are these findings? Consider adding quantitative 
metrics to describe the seasonality of NOx emissions as observed in this study and in previous 
studies. 



Sorry for not explaining it clearly. We found that in the studies listed (Wang et al., 2007; Qu 
et al., 2017; Miyazaki et al., 2017), the seasonal variation pattern of NOx emissions derived 
from satellite observations is similar to our study. Specifically, the posterior emissions based 
on satellite observations show significant seasonal variation, in contrast to the relatively 
insignificant seasonal changes in the prior emission inventories. Additionally, while the prior 
emissions tend to have the lowest levels in summer, the posterior emissions are higher in 
summer, comparable to or even higher than winter emissions (e.g., see Figures 12 and 14 in 
Qu et al., 2017). We compared the seasonal variation plots from these studies, but since the 
study areas differ in size, we did not perform a quantitative comparison of the changes in total 
regional emissions. 

We have made modifications in Lines 412-414 (Sect. 3.2.2), as follows:  

“These studies, along with the results of our study, indicate that while the prior emissions tend 
to have the lowest levels in summer, the posterior emissions are higher in summer, 
comparable to or even higher than winter emissions.” 

11. Page 12, Lines 364-365: “To evaluate the impact of different L values on the NOx 
emission inversions, we perform two additional experiments with L = 3 km (Exp_L3km) and 
L = 81 km (Exp_L81km), respectively.” What are the reasons for choosing these specific L 
values, 3 km and 81 km, for the sensitivity analysis? Please provide an explanation. 

Thanks for your good suggestion. Firstly, based on theoretical analysis, we initially 
determined that a localization radius of 36 km is appropriate. As elaborated in Section 2.4, the 
selection of this radius (36 km) was guided by the typical lifetime of NO₂ (~4 hours) and wind 
speed (~3 m/s) in the Beijing region (Wu et al., 2021) (see Lines 205-208 in our manuscript). 
However, this value serves only as a preliminary estimate, as the lifetime of NO₂ varies with 
environmental conditions and wind speed is not constant. To assess the sensitivity of emission 
inversion results to localization radius, we tested values smaller and larger than 36 km. We 
chose 3 km because the resolution of our model is 3 km, and this choice can be roughly 
understood as ignoring the effects of emission transport between grids. The choice of 81 km 
is based on the typical lifetime of NO₂ and wind speed, providing a relatively larger transport 
distance. Additionally, following the suggestion of Referee #2, we added another experiment 
with L = 10 km to test whether the results would be better than those from the L = 36 km 
experiment. We have made modifications in Sect. 4.2 (see Lines 466-481). 

12. Figure 5: Consider adding a visual marker to highlight the implementation and relaxation 
of COVID-19 containment measures, as well as notable events such as the Chinese Lunar 
New Year holiday. 

Thanks for your good suggestion. We have made revisions according to your comments as 
below (see Lines 380-386 and Fig. 5). 

“The reduction of NOx emissions due to the pandemic lockdown measures lasted from early 
2020 to mid-March 2020, with emission levels gradually returning to normal by late April. 
However, although the prior emission inventory partially reflects real monthly production 
activity levels, it fails to accurately capture such dynamic changes in emissions. The prior 
emission inventory only distinctly captures the emission reduction that occurred from early 



February to mid-February 2020, mainly caused by the Chinese Lunar New Year. In addition, 
the posterior emission estimates also indicate a period of emission reduction and rebound 
from mid-June to mid-July 2020, coinciding with the sudden outbreak of the epidemic and the 
subsequent lockdown measures implemented at the Xinfadi market in Beijing, China.” 

 

Figure 5. Time series of the bottom-up and top-down daily NOx emissions for domain D03 and 
Beijing City. The gray dashed line indicates the Chinese Lunar New Year, which also marks 
the date when Beijing began implementing COVID-19 control measures. The blue dashed 
line represents the start date of control measures following the sudden outbreak at the Xinfadi 
market in Beijing. The gray shaded area represents the period affected by COVID-19 
measures in 2020, and the light blue shaded area highlights the time frame impacted by the 
Xinfadi market outbreak. 

13. Figure 5: It appears that the prior emission inventory exhibits a consistent diurnal cycle of 
hourly NOx emissions. How does this compare to the diurnal cycle in the posterior NOx 
emissions? Does the inversion system reveal a similar pattern? Please consider adding a 
figure and/or a paragraph to discuss this comparison. 

Thank you for your valuable feedback and comments. Actually, Fig. 5 shows the time series 
of daily emissions, not hourly NOx emissions. The daily time series of the prior inventory 
shows periodic variations between weekdays and weekends, i.e., the MEIC inventory shows a 
clear weekly pattern. This is because, for the prior inventory, the allocation from monthly 
emissions to daily values is achieved using sector-specific profiles that incorporate weekly 
and workday variations. However, our satellite-derived emissions do not display a distinct 
weekly pattern. Previous studies on satellite observations and ground concentration variations 
have also indicated that such a weekly pattern is not prominent in China (Wei et al., 2022). 

As for the MEIC inventory, it does include a diurnal cycle of hourly NOx emissions, as the 
MEIC inventory uses hourly profiles to allocate hourly emissions. However, since the 
TROPOMI satellite observations used in this study only provide afternoon overpasses per day, 
they do not support the derivation of hourly emission variation patterns. We have clarified this 
issure and added a discussion on the future aim to utilize GEMS hourly data to reveal the 
hourly variation patterns of emissions in Sect. 4.3 (Lines 494-496 and Lines 499-502). 
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