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Abstract. A variety-of numerical-analytical-and-statistiealnumber of models have been developed for estimating the mean an-
nual permafrost table temperature (MAPT) and active-layer thickness (ALT). These tools typically require at least a few ground

physical properties

as-as their input parameters in

air or ground
temperatures. However, ground physical properties are therefere-commonty-frequently unavailable or unrepresentative and

therefore need to be estimated, which may-yield-medeloutputsof-unknown-vakidityintroduces uncertainties into model outputs.
Hence, we devised two simple analytical—statistical models (ASMs) for estimating MAPT and ALT, which are driven solely by

addition to temperaty

pairwise-combinations-ef thawing and freezing indices ir-from two depth levels within the active layer;-, while no ground phys-
ical properties are required. ASMs reproduced MAPT and ALT wel-in-mestnumerical-validations;-which-corroborated-their

in-MAPT-and-AlET-were-less-than-0-03in _the Earth’s major permafrost regions with the total mean errors of less than 0.05 °C
and 58 %, respectively;-whieh-. This is similar or better than other analytical or statistical models—Fhis-, which suggests that
ASMs can be useful tools for estimating MAPT and ALT under a wide range of elimates-and-ground-physieal-environmental

conditions.

1 Introduction

Of ~11 % of the Earth’s exposed land surface underlain by permafrost (Obu, 2021), most seasonally thaws from the ground sur-
face to a depth of up to several meters and then completely refreezestaetive-tayer), which is mainly controlled by climate condi-
tions and ground physical properties (Bonnaventure and Lamoureux, 2013). Fhe-This superficial active layer greatly influences
the energy and mass transfer between the underlying permafrost, ground surface and the atmosphere, and is therefore critical for
the dynamics of hydrelogichydrological, geomorphic, pedogenic, biologie-andbiogeochemie-biological and/or biogeochemical
processes including greenhouse gas fluxes, as well as for human infrastructure in permafrost regions (e.g., Grosse et al., 2016;
Walvoord and Kurylyk, 2016; Hjort et al., 2022). As climate is a first-order control on ground temperatures and thaw depth
(Wang et al., 2019; Smith et al., 2022), the thermal state of permafrost and the thickness of the active layer have attracted a

huge interest over recent decades because they are important measures-indicators of how the climate system is evolving (Li et
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al., 2022; Hrbéacek et al., 2023b). Beﬁdeyfhﬂ%e}ma{eekmngeﬁmﬁgh&lm@m\promked permafrost warming and

active-layer thickening at a global scale ¥(Noetzli et al., 2024; Smith et al., 2024),

which can have severe consequences on landscape and ecosystem stability as well as infrastructure integrity. Carbon release
due to permafrost degradation is likely to trigger feedback mechanisms with impacts on the Earth’s climate system (Lawrence
et al., 2015; Schuur et al., 2022). The permafrost and active-layer monitoring is therefore of utmost scientific and societal
importance (Brown et al., 2000; Biskaborn et al., 2015).

The thermal state of permafrost and the thickness of the active layer have eommenty-been investigated by semi-continuous
temperature measurements using data loggers with temperature sensors distributed in vertical arrays across the active layer
and near-surface permafrost (e.g., Biskaborn et al., 2015; Noetzli et al., 2021), by periodic or semi-continuous geophysical
measurements using electric, electromagnetic or seismic methods (e.g., Hauck, 2002; Farzamian et al., 2020), or by peri-
odic thaw-depth measurements using physical probing with rigid rods or thaw-tube readings (e.g., Burn, 1998; Bonnaventure
and Lamoureux, 2013). Of these methods, temperature measurements using data loggers are the most convenient in terms

of accuracy, temporal resolution and/or logistics, which is well suitable for frequently-remote and poorly accessible per-

mafrost regions that have limited or no technical infrastructure Brown-et-al;2000; Biskabernetals20H5)—At-many-places;

however;temperatures-are-only-measured-(Biskaborn et al., 2015; Streletskiy et al., 2022). However, ground temperatures are
frequently measured only in the active layer, and therefore the permafrost temperatures and the active-layer thickness must

therefore-need to be estimated in these situations. This has been done using either statistical methods or numerical and an-
alytical models of various complexity fe-g-Rise
., Riseborough, 2008; Riseborough et al., 2008; Bonnaventure and Lamoureux, 2013; Aalto et al., 2018).

Of these solutions, analytical models in particular have become widely-popular for estimating the mean annual temperature
at the base-of-the—activelayer-or-the-top of permafrost (hereafter referred to as the mean annual permafrost table temper-
ature, MAPT) (Garagulya, 1990; Romanovsky and Osterkamp, 1995; Smith and Riseborough, 1996) and the active-layer
thickness (ALT) (Neumann, c. 1860; Stefan, 1891; Kudryavtsev et al., 1977) because of their simplicity, small number of
input parameters, computational efficiency and yet sufficient accuracy, which is highly-advantageous for diverse permafrost
regions and environmental settings (e.g., Anisimov et al., 1997; Nelson et al., 1997; Zhao et al., 2017; Obu et al., 2019, 2020).
However-thesetools-These tools typically require at least a few ground physical properties, such as thermal conductivity,

heat capacity, water content or bulk density, as their input parameters in addition to temperature-variables;-which-are-seldom
avatlable-at-mest-sites—Ground-air or ground temperatures. However, ground physical properties are therefore-commonty
frequently unavailable or unrepresentative and therefore need to be estimated, which may-yield-model-outputsof unknown
vatdityintroduces uncertainties into model outputs. But even in-stti-measurements—in_sifu observations of ground physical
properties may not guarantee accurate model outputs either, as they-are-usuatty-taken-these properties are usually measured
annually or less frequently and are then typically-treated as constants in models, regardless of their temporal variability, which
can be considerable (e.g., Gao et al., 2020; Hrbé4cek et al., 2023a; Li et al., 2023; Kilazkova and Hrbacek, 2024; Wenhao et al.,
2024).
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Here, we devise two novel analytical-statistical models (ASMs) for MAPT and ALT, which are driven solely by thawing
and freezing indices at-two-distinet-depths—n{from two depth levels within the active layerto-address-the—general-Hack-and

and-Alaska. ASMs are primarily intended to be used for MAPT or ALT estimates where ground temperature measurements are
too shallow and MAPT or ALT therefore cannot be determined directly, while no information on ground physical properties

exists. We evaluate ASMs against in situ ground temperature measurements from the Earth’s major permafrost regions, and we
discuss their performance, advantages and limitations.

2 Model derivationsderivation

2.1 Mean annual permafrost table temperature

Besides-othersolution(Garagutya; 1996);-MAPT [°C] can be calculated by-using the TTOP model (Romanovsky and Os-
terkamp, 1995; Smith and Riseborough, 1996), which assumes that the ratio of thawed and frozen thermal conductivity and the
effects of latent heat produce the difference between MAPT and the mean annual ground surface temperature (thermal offset).
The TTOP formula for permafrost conditions (MAPT < 0°C) is as follows (Romanovsky and Osterkamp, 1995; Smith and
Riseborough, 1996)

oLy — I

k
MAPT = L ———
P )

6]
where k; [Wm™ K~!] and k; [W m~! K™!] is the thawed and frozen thermal conductivity, respectively, that defines the thermal
conductivity ratio, I;; [°Cd] and Iz, [°Cd] is the ground surface thawing and freezing index, respectively (both expressed
degree-days-and-assumed in absolute values), and P [365 d] is the length of one year.

Besides—surface-temperaturesHowever, Eq. (1) is-valid-for-temperatures-can work with thawing and freezing index mea-
sured at any depth in—within the active layer -—whieh—(Riseborough, 2004). This is highly convenient because ground sur-
face temperature-is—temperatures are difficult to measure due to surface-radiative and convective energy fluxes and due-to
problematic fixing of temperature sensors exactly at the ground surface level{Riseborough;2003)—Henee; MAPT based-on

Riseborough, 2003). Using ground temperatures measured at two distinet-depthsin-depth levels within the active layer z; and
22 (21 < 22 < ALT)ean-, MAPT can therefore be expressed as folows-

AARARAAARRRARARAIANAK

ky
]T}Ita - Ile

MAPT = )
k
*t.-[tz -1 Z:

MAPT = ’WQTJQ, 3)
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where I, [°Cd] and Iy, [°Cd]is the thawing and freezing index ;respeetively:-at the depth 21, and Iy, [°Cd] and I}, [°Cd]
is the thawing and freezing index ;respeetively;-at the depth 2. This implies that Eq. (2) and (3) are equivalent:

k¢ ki
]T;Itzl - Ile F}ItZQ - Ifz2

= . 4
P P “)
Solving Eq. (4) for the thermal conductivity ratio yields
ﬁ — Ile — IfZZ . (5)
kf It21 - ItZQ
Equation (5) can be then-substituted for the thermal conductivity ratio in Eq. (2) and (3) as follows
Ip, —1Ip.
MAPT = T (6)
= 5 ;
Ip, —1Ip.
MAPT = Tty e~ e %
= 5 .
Subsequently-Simplifying Eq. (6) and (7) beth-simplify-te-then produces the same formula for MAPT:
Lpoy Lty = Loy L1y
MAPT = — (a1 (8)
B P

Substantially, Eq. (8) implies that MAPT can be simply estimated using thawing and freezing indices at-two-distinet-depths
in-from two depth levels within the active layer alone, that is, without the-knowledge-of-the- knowing the thermal conductivity
ratio.

While-Since Eq. (8) was derived from Eg. (1), it has a physical basis (cf. Romanovsky and Osterkamp, 1995). However, it
can be shown that it is in principle a linear extrapolation of the freezing index to the depth, where the thawing index becomes

zero, with-the

r-and dividing it by the length of one year. Using
the same notation as before, this can be expressed as folews-
Ile - IfALT _ Ile — IfZ2

ItZl - ItALT Itz1 - Itzz ’

If22 - IfALT _ Ile - IfZ2
ItZz - ItALT Itz1 - Itzz ’

€))

(10)

where I, . [°Cd] and Iy, [°Cd] represents the thawing and freezing index at the base of the active layer. Note that the slope
of the relationship is determined by the thermal conductivity ratio. Solving Eq. (9) and (10) for Iy, . gives

Iy, —1Ip,

- IfALT = — Iz (Itzl - ItALT) - IfZN (11)
Itzl ItZQ
_ Iy, — I,

- IfALT Y (It22 - ItALT) - Ifz2~ (12)
tz1 tzo

Since the thawing index at the base of the active layer is zero, Eq. (11) and (12) become equivalent to Eq. (6) and (7), re-
spectively, when divided by the length of one year, and both simplify to Eq. (8). This documents that Eq. (8) for-MAPT-is
can be derived in two alternative manners consisting of analytical and statistical at-the-same-time-because-it-integrates-both
approachesprocedures.



2.2 Active-layer thickness

€ : = ~ALT [m] can be calculated by-using the Stefan (1891)
115 model, which builds on the premise that the conductive heat flux above the thaw front equals to the rate at which latent heat is

absorbed as the thaw front propagates downwards. Its simplest form is as follows (Lunardini, 1981)

ALT =,/ 2]25[”, (13)

where I [3.34x 108 J m~3] is the volumetric latent heat of fusion of water and ¢ [] is the volumetric water content. Note that the
thawing index must be multiplied by the scaling factor of 86 400 s d~'in-the Stefan-modelto-yield-correct outputs. As stated pre-
120 viously (Sect. 2.1), the-ground-surface-temperature-is-ground surface temperatures are difficult to measure (Riseborough, 2003),
and therefore the Stefan model has commonly been forced by temperatures—recorded-ground temperatures collected at some

depth in-within the active layer. However, this has rarely been accounted for, although it has been shown to substantially affect

the model outputs A€ - : St 4 o 5 Hrbacek and Uxa, 2020; Kaplan Pastirikova et al., 2023
. Yet, it can be easily implemented as follows (Riseborough, 2003; Hayashi et al., 2007)

thltz

125 ALT = 14
Z+ 7o s (14)
where z [m] nc-is the depth at which the thawing index
Iz [°Cd] is g z ' i ing-indiees-measured. Using ground temperatures
measured at two distinet-depths—in-depth levels within the active layer z; and 22 (21 < 22 < ALT)ean-, ALT can therefore be
expressed as follows-
2k 1y,

130 ALT =2z + (15)

Lo

ALT = 25+ 4| zkijtz“’ ) (16)

This implies that Eq. (15) and (16) are equivalent:

[ thitzl thltzz
A Lo = L(ZS ( )

The vertical distance between z5 and z; can be expressed as

2%y 1y, 21y,
135 zz—zlz\/ 2(; —\/ 2(; , (18)

which simplifies to

2k
n-n =\ 7o (VI —VI). (19)




Subsequently rearranging Eq. (19) gives

zZ9 — 21 th
== (20)

I tzp T 1 tzo L¢
140 where the right-hand side corresponds to the so-called edaphic term (Nelson and Outcalt, 1987), which has previeushy-been

ad 1n nia e die Nelcan—and a P OR7 - Hanleel-and-D halq 005- Nelecon-eta 007- An MOevV—et—a 002 - Shilkdomane
S S NCIS d a N S N at-; 3 V VAV v

been used to combine the ground-physical-properties—in-the-Stefan-model-thawed thermal conductivity and volumetric water
content into a single variable asfollows-in the modified Stefan model:

ALT = E\/T.\/Ty,, @

145 where Fms=23K=3} [m °C d-"7] denotes the edaphic term given by

(22)

150

derived-based-on-empirtecal-relationships-it has frequently been preferred for estimating ALT because the edaphic term can be

calibrated based on the relationship between ALT and thawing indexi

A A <HARO At o O hicled-on-the-one-hand—to
V a

155

< i , the-that is, without knowing the thawed thermal conductivity and volumetric
water content (Nelson and Outcalt, 1987; Hinkel and Nicholas, 1995; Nelson et al., 1997; Anisimov et al., 2002; Shiklomanov and Nelson

. The edaphic term can be implemented in Eq. (15) and (16) as follows

160 ALT =z, + Er/I,, , (23)
ALT = 25 + E\/I,,. (24)

Substituting the left-hand side of Eq. (20) for the edaphic term in Eq. (23) and (24) yields
Vit (25)
V I tzg - (26)

ALT = z1

Lomma

V Itzl -V ItZQ
Z9 — 21

ALT = —_—

= + \V Itzl -V ItZz
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Simplifying Eq. (25) and (26) then produces the same formula for ALT:

22/ Ttz — 217/ Ltz
ALT = . 27
V Itzl -V ItZQ
Substantially, Eq. (27) implies that ALT can be simply estimated using thawing indices at-twe-distinet-depths—in-from two
depth levels within the active layer alone, that is, without the-knewledge-of-the-ground-physical propertiesknowing the thawed

thermal conductivity and volumetric water content or the edaphic term.
While-Since Eq. (27) was derived from Eq. (13), it has a physical basis (cf. Lunardini, 1981). However, it can also be shown

that it is in principle a linear extrapolation of the depth at-whieh-where the square root of the thawing indices-index becomes

zero (cf. Riseborough, 2003);-with-th . This can be
expressed as foHows-
ALT — 2; _ 23— 21 (28)
\V Itzl Y ItALT \V It21 Y ItZQ ’
ALT —2zp 22 — 21 (29)

\V It22 Y ItALT B \V Itzl -V ItZQ '

Note that the slope of the relationship is determined by the edaphic term. Solving Eq. (28) and (29) for ALT gives
( V Itzl V ItA]_T) 9 (30)
(, r— /Itm) . 31)

ALT =2 + ——————

\/ \/ ItZ2
\/ Itzl \/ Itzz

Since the thawing index at the base of the active layer is zero, Eq. (30) and (31) are equivalent to Eq. (25) and (26), respectively,
and both simplify to Eq. (27). As with Eq. (8), this documents that Eq. (27) fer-AlT-s-can also be derived in two alternative

manners consisting of analytical and statistical at-the-same-time beeause-itintegrates-both-appreachesprocedures.

AlT =20+ ——+—

3 Model validationsevaluation

The-validity-of-ASMs for estimating MAPT and ALT giver

were evaluated using in sizu ground temperature
measurements from the Earth’s major permafrost regions that differ in climate, permafrost zone, ground surface cover and/or
ground physical properties and their distribution within the active layer to enhance the robustness of the model evaluation. Since
the accuracy of the observed ALT depends on the distance between the ground temperature sensors (Riseborough, 2003, 2008)
> we arbitrarily set their maximum spacing at 25
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water—iee-transition—at-Ocm for ALT of <1 C-while-ensuringnumerical-stability—Similarto-Sun-et-al(2020);the-apparent

Cf fOI‘TSTf
Cott = Cr +(Cy = Cp) =it + 7% for Ty <T < Ty
on forT > T,
kf fOl’TSTf

k= kf+(kit—kf)T:?;{f fOI‘Tf<TSTt7
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spaeing-was-0:0+m-0--m;-0-5-m-and >1 m;-5-m-and-10-m-in-the-depth-intervals-of 0—2m, 2-5-m;5—16-m;10-20m:20-50m
225

230

While this requirement excluded numerous sites, it ensured that the benchmark values for MAPT and ALT could be established
as accurately as possible.

235

eround-physical-conditions—A-total-of 142—192-and-162-210-yearsWe collected ground temperature data for a total of 43 sites

from monitoring networks and public databases of the Polar-Geo-Lab of the Masaryk University (MU) (e.g., Hrbacek et al., 2017a, b; Hrbac

Global Terrestrial Network for Permafrost (GTN-P; http://gtnpdatabase.org), Natural Resources Conservation Service of the
United States Department of Agriculture (USDA; https://www.nrcs.usda.gov/resources/data-and-reports/soil-climate-research-stations),

240 Geophysical Institute Permafrost Laboratory of the University of Alaska Fairbanks (GI-UAF, https://permafrost.gi.alaska.edu),
and National Tibetan Plateau/seasons-{Table-2)-with-quality-checked-observations-of MAPT-ALT-and-thawing-ane '

vartability-in-the-numberofavailable-yearsThird Pole Environment Data Center (NTP/

245 gaps—

https://data.tpdc.ac.cn/en/disallow/789e838e- 16ac-4539-bb7e-906217305ald) (Zhao et al., 2017). The dataset comprised five

different ground surface covers and three permafrost zones, spanned variable time periods during 1997-2023, and exhibited a
250 wide range of MAPT and ALT from ~ i



http://gtnpdatabase.org
https://www.nrcs.usda.gov/resources/data-and-reports/soil-climate-research-stations
https://permafrost.gi.alaska.edu
https://data.tpdc.ac.cn/en/disallow/789e838e-16ac-4539-bb7e-906217305a1d

255

260

e-and-Ground temperature data were first checked for quality and
then daily means were calculated for all available depths before further processing. Thawing and freezing indices were calcu-
lated as annual sums of positive and negative mean daily ground temperatures, respectively, and-for-convenience-expressed-in
265 degree-days-and-in-absehute values —textrmAdLt was-derived-which were expressed in absolute values for convenience. ALT
was determined as the maximum seasonal-annual depth of the 0 °C isotherm by-a-that was tracked by linear interpolation of the
depths-where-the-mean daily ground temperatures wemwsﬁbww&b&w@%%sequeﬁﬂﬁmwm

MAPT was calculated as the mean annual tem

ground temperature,
270 which was linearly interpolated to the depth that corresponds to ALT (e.g., Hrbacek et al., 2020, 2021; Knazkova and Hrbacek, 2024)
- Hereafter, these values are referred to as the observed MAPT and ALT.

Subsequently, MAPT and ALT were also modelled using ASMs given by Eq. (8) and (27) fernumerical-validations;
while-forced by the measured thawing and freezing indices from the depth intervals of 0-10 cm, 25-35 cm and 45-55 cm(fer

convenience-hereafter-alsoreferred-to-as-, which were combined into three pairs of 5/30 cm, 365/50 cm and 30/50 cm )-were

275

consisteney-of-field-validations-and-allowed-us-to-revealso that they were comparable across the validation sites. This provided
us with three sets of MAPT and ALT estimates that allowed to determine which depth combinations and-in-which-portion-of

the-aetive-layer-worked best. TheﬁASM&eiﬁpu%s—wefefempafed—wﬁh
We compared the modelled MAPT and ALT

280 directly with the observed MAPT and ALT, and evaluated the model accuracy for each site using common error metrics, such

as the-mean error (ME), the-mean percentage error (MPE), the-mean absolute error (MAE), the-mean absolute percentage error
(MAPE), and the-root-mean-square error (RMSE). The evaluation statistics were grouped by depth pairs and surface cover, as
the latter also broadly captures the common characteristics of the validation sites in terms of climate and composition of the
active layer.

10
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4 Results

4.1 Mean annual permafrost table temperature

4.1.1 Numerical validation

MAPT-estimated-The MAPT modelled using ASM given by Eq. (88) based on the numerically-modelled-measured thawing
and freezmg indices atfor the depth pairs of 5/30 cm, 5/50 cm and 30/50 cm for-the-five MAAT-seenarios-showed-almost-perfeet

total site-weighted ME from 0.01 °C to —0:0020.05 °C --MAE-was-0-002compared to the observed MAPT (Table 1). Since
the errors were scattered around zero (Fig, 1), the total site-weighted MAE was somewhat larger and ranged from 0.11 °E+te

ME-was—0-105C to —0:0030.16 °C, MAE-was-0-003while the total site-weighted RMSE was 0.12 °C to 6:3650.19 °C ;-and
RMSE-was-0:004(Table 1). The majority of errors were within +0.2 °C t6-0-124-C-(Fig. 1).

atrsThe accuracy of the modelled MAPT
W@WWSB&MSO cm and 30/50 cm at-the-Antaretic-and-Alaskan-sites-yielded-the
site-weighted-ME-of-0-02performed slightly better than 5/30 €-te-0-03-C-eompared-to-the-observed-MAPT(Fig-—3)—Sinee
the-errors-were seattered-aroundzero-cm (Table 1). Similarly, there were rather small differences between individual surface
covers (Fig. 3)-1) that exhibited the site-weighted MAE-was-somewhatlarger-of-0-08ME from —0.06 °C to 6-140.12 °C and

11



ith-modelled using ASM given by Eq. (8) based on the
numericatty-modeled-measured thawing and freezing indices atfor the depth pairs of 5/30 cm, 5/50 cm and 30/50 cm and diverse surface

covers.

SeenarioDepth pair  MAAT-Surface cover Sites  MAPTgs [°Cl  MAPToummod [°Cl  MAPTs5-ME [°C]  MAPTFssrMAE [°C] M

Onedayer5/30em  —+Bedrock —+242. SEY —251.59 25001 007
Bare 14 884 25881 0.03 022
Shrub_ 6 212 238214 238002 380,06
—8Forest 3505 —0.53_ —3.510.54 -3.54-0.01 —3.510.19
—10.Total —46237. =541 462540 0.01 016

5/50em Bedrock_ 2 SE 462159 462002 016
Bare 14 884 -877 0.07 013
Grass_ 12 -593450 ~5.93-4.56 -5.93-0.06 —5730.12
Mean-Shrub 3496 350212 —3:502.12 -3.500.00 0,04

Twolayers- —4-Forest —5H5 72052 —1630.55 —1:520.03 0.08
—6Total 26239 297503 —2.705.03 —2.620.00 011
Grass_ 10 —481535 —4:865.33 —4:83-0.02 —4:810.07
—12.Shrub 5886 212 590212 ~5:880.00 588004
Mean-Forest 5 052 37053 ~3.81-0.01 0.07_

320

%mem the site-weighted MAE swas
0-+0-Cte-and RMSE there were mostly less than ~0.15 °C;and-thesite-weighted RMSE-was-0-13-Cto-018-CIn-Alaskas, while
325 the bedrock and bare-ground sites mostly showed the site-weighted ME-was—0:0+-C0-0:09-C;-the-site-weighted-MAE was
0:67-Cto-0-13-C-and-the site-weighted RMSE-was-0-08-C-to-and RMSE greater than ~0.15 °C —Heweverthe ASM-deviations

12
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Figure 1. Comparison of the observed MAPT and MAPT modelled using ASM given by Eq. (8) based on the measured thawing and freezin,

indices for the depth pairs of 5/30 cm, 5/50 cm and 30/50 cm and diverse surface covers. The black solid and dashed lines in the upper plots

represent the line of identity and the deviation of +1 °C, respectively.

exhibited-very-similar-distributions-in-beth-regions(Fig—)—(Table 1). The site-weighted errors also tended to be somewhat
larger at higher MAPT for all three depth pairs.

4.2 Active-layer thickness

330 4.2.1 Numerical validation

335 termsi-the-individualdayers(Fig—4)—

13



340

345

ith-modelled using ASM given by Eq. (27) based on the

numericalty-modeted-measured thawing and freezing indices atfor the depth pairs of 5/30 cm, 5/50 cm and 30/50 cm and diverse surface

covers.

SeenarioDepth pair  MAATSurface cover  Sites. ALTg [€cm]  ALTpumpga [om]  AEFsME [om]  ABFys-MPE [%]  MAE [em

Onedayer5/30cm  —Bedrock 4952 4931168 1941548 495380 B3 38.0
—6-Bare 014 40851 170891 7440 43 13
—5-Grass HE10 6L 48582 39, 4818 16
Shuub_ 6 643 42 201 —0310 423201

I —~4+Bare 5714, 90863 H6907 45844 24 91
Shrub 6 133643 79577 10266 134-10.3 6.6
Forest 5. 894 338 =256 $177 49257

3050 cm Bedrock 4. 1848 1767 8.1 Sl 219
Bare 14 864 932 68 37 14
Grass. 10 §776.5 59801 7536 9910 87
Shrub_ 6. 643 6238 SES 225 6538
69Forest 5. 894 22, ~172 -8 181
Mean-Total 10239 69:290.9 88:691.0 12:60.1 03 121

AET-estimated-The ALT modelled using ASM given by Eq. (27) based on the numerically-modelled-thawing-indices—at
measured thawing indices for the depth pairs of 5/30 cm, 5/50 cm and 30/50 cm fer-the-five MAATseenarios-was-weH-consistent

h-A mulated by-the numerical-modelinthe one-layerprofile able-22)-as ME-was-0-8exhibited the total site-weighted
ME from -7.5 cm (8:9=8.3 %) to +80.1 cm (+-5-0.3 %) - MAE-was—+-6compared to the observed ALT (Table 2). The total
site-weighted MAE was larger (Fig. 2) and reached 12.1 : : . 5 : : -

aetive-layer-thickened-in-the-two-layer profiles(Table 222).
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Shrub Shrub Shrub
Forest Forest Forest
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Figure 2. Comparison of the observed ALT and ALT modelled using ASM given by Eq. (27) based on the measured thawing and freezin

indices for the depth pairs of 5/30 cm, 5/50 cm and 30/50 cm and diverse surface covers. The black solid and dashed lines in the upper plots

represent the line of identity and the deviation of £10 %, respectively.

4.2.1 Field-validation

AbTestimated by Bq-(27) based-on the thawing indiees-at the The accuracy of the modelled ALT was higher for the depth pairs
of 5/36-em;-5/50 cm and 30/50 cm at-the-Antaretic-and-Alaskan-sites-showed-the-site-weighted-ME-of —2-6compared to 5/30 em

m, especially at the bedrock, shrub and forest sites (Table 2).
Additionally, there were rather large differences between individual surface covers (Fig. #%)—Fhe-2), among which the site-
weighted MAE-was-somewhat-arger-as-itattained-4-8ME ranged from —38.1 cm (6:9=34.6 %) to 8:838.0 cm (+3:533.8 %) 5
while-the-(Table 2). The most accurate ALT estimates were at the bare-ground sites and those with grass and shrub cover, as
their site-weighted RMSE-was-53-emto-9-8em-(Fig—2D—
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365

370

375

380

385

390

12 %)—the-site-weighted-MAE was—3-5ranged from 3.8 cm (4:66.0 0%) to 8:420.1 cm (H931.0 %), and the site-weighted
RMSE was 4-6from 3.8 cm to 9:720.3cm —F

{—5-6%)(Table 2). Somewhat worse was the model performance at the bedrock and forest sites, with the site-weighted MAE
was-5:2from 9.0 cm (8:27.9 %) to 9-138.1 cm (34:934.6 %) -and the site-weighted RMSE was-5-8from 10.4 cm to 16:043.4 cm

were also larger at thicker ALT for all three depth pairs.

5 Discussion

5.1 MoedelperformaneesMean annual permafrost table temperature

were-1), with the mean errors close to zero en-average;-and the majority of them was-below-within +0.2 °C at-the-Antaretic-and
Alaskan-sites(Fig-—3(Table 1), which is within-the-aceuracy-of many-temperature-sensors-and-similar or better than in most pre-

vious studies that used other analytical or statistical models for MAPT e

Somewhat larger errors in the modelled MAPT arose especially under warmer conditions and within a thicker active layer
where MAPT needs to be extrapolated to greater depth. Warmer climates are also dominated by vegetated sites (Table C1) with
well-developed soils and therefore a more heterogeneous active layer where MAPT estimates are more difficult. In addition,
it may also be associated with increased complexity of the system at permafrost temperatures approaching 0°C when simple
models tend to fail to a greater extent (Riseborough, 2007). The worst MAPT estimates at the bedrock sites were also likely.
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Figure 3. Comparison of the observed thermal conductivity ratio for the whole active layer and thermal conductivity ratio estimated usin
Eq. (5) based on the measured thawing and freezing indices for the depth pairs of 5/30 cm, 5/50 cm and 30/50 cm and diverse surface covers.
The black solid and dashed lines represent the line of identity and the deviation of £0.1.

because active layer is thick there (Table 1). Moreover, the boreholes were drilled into vertical rockwalls, and therefore it is

ossible that lateral flows of heat and moisture occur in the fractured bedrock, which further complicates MAPT estimates.
So far, MAPT-medels-have-alse-models for estimating MAPT have typically assumed that thawed-the ratio of thawed

and frozen thermal conductivity is tewer-thanfrozen-oneless than or equal to 1, and that the thermal offset is therefore negativ
negative (e.g., Gisnas et al., 2013; Obu et al., 2019, 2020), which would -heweveryieldresult in invalid MAPT estimates under

warmer-eonditions-with-thicker active Jayers-and-hightif the actual conditions were reversed. However, although nearly half
of the bedrock and bare-ground sites exhibited a positive thermal offset with a thermal conductivity ratio above 1, the MAPT
was modelled with similar accuracy at these locations as elsewhere (Table 1, Fig. 1). This is because ASM utilizes measured
thawing and freezing indices within the active layer and can therefore easily capture this behaviour. This is also demonstrated

by the thermal conductivity ratios modelled using Eq. (5) for the three depth levels that are close to those for the whole active
. 3),
see Sect. 2.1) and its slope varies rather slightly with vertical changes in ground physical properties.

layer (Fi which is likely because the relationship between the thawing and freezing indices within the active layer is linear

5.1.1 Aetive-layer-thickness

17



415 5.2 Active-layer thickness

Unlike MAPT, the modelled ALT showed variable performance for individual depth pairs and surface covers (Fig. 22—Under

52, Table 2). However, the errors were mostl

2 Which is also

similar or better than in most previous studies that used other analytical or statistical models for ALT (Anisimov et al., 1997; Nelson et al., 1

420

~

Notably, the modelled ALT showed variable accuracy for the depth pair of 365/5030 cm ;-which-excluded-the-thawing-index

425

. This is because the active layer is typically more heterogeneous

at the vegetated sites and may often comprise a surface organic layer there, the physical properties of which strongly differ
from the ground underneath. This alters the temperature gradient within the active layer and results in worse ALT estimates
430 which can be observed especially at the shrub and forest sites (Fig. fL‘L}—Ovef&H—however—%he—aeetmaefof—ASM@a%by

showed substantially lower errors for the depth pairs of 5/50 cm and 30/50 cm (Fig. 2), which largely to completely eliminated

435 the influence of the surface layer. This also explains the consistently high accuracy of the modelled ALT at the bare-ground
M@M&m active layer there is relatlvely homogeneous in terms of its stratlgraphy and
physical properties;—where
MWW&&M&MM

440 under warmer conditions dominated by vegetated sites with a more heterogeneous and thick active layer (Table C1) where ALT
needs to be extrapolated to greater depth.

Previous studies have estimated the edaphic term based on the relationship between ALT and thawing index (Nelson and QOutcalt, 1987; H

» which is restrictive, as it requires ALT. However, the edaphic term modelled using Eq. (20) for the three depth levels was close
to the edaphic term calculated for the whole active layer (Fig. 22)-as ‘ iehis :

445 thermalinsulator-thatsubstantially-alters-the-temperature-gradientin4). As with MAPT, this is because the square root of the
physical properties (Riseborough, 2003).
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Figure 4. Comparison of the observed edaphic term for the whole active layer and edaphic term estimated using Eq. (20) based on the
measured thawing and freezing indices for the depth pairs of 5/30 cm, 5/50 cm and 30/50 cm and diverse surface covers. The black solid and
dashed lines represent the line of identity and the deviation of il/g/rpj\(;ﬁff.m

5.3 Model advantages

Unlike other analytical or statistical models for estimating MAPT (e.g., Garagulya, 1990; Romanovsky and Osterkamp, 1995;
450 Smith and Riseborough, 1996) and ALT (e.g., Neumann, c. 1860; Stefan, 1891; Kudryavtsev et al., 1977), ASMs given by
Eq. (8) and (27) can be-utilized-in-any-substrates-work in any grounds where conductive heat transfer prevails ;sueh-as-—soil;
peat-orsolidrockwitheut-the knowledge-of-without knowing their physical properties. Sinee-ASMs-build-solety-on-
Although ASMs utilize only thawing and freezing indices at-tweo-distinet-depths-in-from two depth levels within the active
layer - the vatues of which reflect the rate of heat transfe oss-theirintermediate tayer-the solutions-also-intrinsicatty-as inputs,
455  they inherently account for the temperal-natural variability of ground physical properties —Likewise-they-in the intermediate
layer between these two depths. Similarly, ASMs consider latent and sensible heat and-any-otherfactors-that-might-affect-the
or other factors there, although these are not explicitly accounted for. This is because the relative values of the thawing and
freezing indices at the two depth levels reflect the rate of heat transfer in the active-tayerseme-of-which-other-models-do-net
explieitly-aceountfor—intermediate layer between them (see Eq. 5 and 20) that is influenced by seasonal changes in ground
460 physical properties. So in principle it is analogous to, for instance, the calculations of apparent thermal diffusivity, which are
based on damping of temperature amplitude or phase lag between two depth levels (Horton et al., 1983).

This is highly convenient because data—en—ground physical properties, such as thermal conductivity, heat capacity, wa-

ter content or bulk density, are netreadiy-avalable-at-many-sitesfrequently unavailable or unrepresentative. Ground physi-

o

cal properties for-othermodels-estimating MAPT(e-g-Gisnas-et-al5 2013 Obu-et-al 52019, 2020 Garibaldiet-al; 202 b-an

465

set-empirically-or-have-been-in other models for MAPT and ALT have therefore been estimated empirically or based on pub-

lished values -and-therefore-theirvalueshave frequently been-of unknown-validity-with unknown validity (e.g., Hinkel and Nicholas, 1995;
. Ground physical properties also eemmeonlty-show more or less variability on seasonal and annual time scales (e.g., Gao et al.,
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2020; Hrbacek et al., 2023a; Li et al., 2023; Knazkova and Hrbacek, 2024; Wenhao et al., 2024), which most other models
470 cannot handle because they typically treat ground physical properties as constants —for whole modelling periods. Of course
ASMs in principle also treat them as constants, but their values are representative for individual years (Eq. 8) or thawing seasons
Eq.27)

and ALT (e.g., Neumann, c. 1860; Stefan, 1891; Kudryavtsev et al., 1977).

, which is a major improvement over other analytical or statistical models for MAPT (e.g., Garagulya, 1990; Romanovsky and Oste;

at-Therefore, we believe that in addition

475 to MAPT and ALT estimates. ASMs could also be useful for investigating temporal and spatial variations in the thermal
conductivity ratio (Fi
loggers collecting data only in shallow parts of the active layer. This is because another advantage of ASMs is that their inputs
can be any depth combinations from within the active layerbased-on-temperatare-data-availability-and-site-characteristies—For
best MAPT-and-AlTestimatesitis-therefore-suggested-to-tise-. For most accurate outputs, however, we suggest using thawing
480 and freezing indices from depths-depth levels as close as possible to the permafrost table;-where-available, For instance, this

could improve ALT estimates at the bedrock sites where active layer is thick.
Besidesfield-measurements;-ASMs-ean-In addition to in situ ground temperature measurements, we suppose that ASMs

could also be forced by diverse climate reanalysis-oreclimate-model-outputsreanalyses or Earth system models, if these at least
partially eensider-account for the physics of ground thawing and freezing. These-products-While these products have been
2020; Kaplan Pastirikovd et al., 2024; Liu et al., 20295), they typically

. 3) and edaphic term (Fig. 4), which might be investigated using networks of miniature temperature

485 widely used for permafrost applications (e.g., Cao et al.

3

provide only ground surface and shallow active-layer temperatures with limited-erne-information-en-ground physical properties
largely unknown, which is frequently insufficient to determine MAPT and ALT either-directly or using conventional sehutions:
However-thistsnotanissaeforASMsmodels. If the active layer is thick, MAPT and ALT have therefore usually been confined

to the deepest ground temperature level available in these products, which can obviously be misleading (e.g., Cao et al., 2020
490 . However, ASMs are designed so that they should be able to provide MAPT and ALT estimates even under these conditions.

Lastly, ASMs can also be easily reformulated to be used for estimating the mean annual temperature at the base of seasonally

frozen ground and frost depth (see Appendix A and B).
5.4 Model limitations

Since ASMs assume

495 stepwise-that active layer is vertically homogeneous, they can be biased if there are strong vertical changes in ground physical
properties and/or higher ground-ice eontents-content near the base of the active layer (Riseborough, 2003). H;-forinstance;For

instance, if temperature measurements are used only-from-the-top-layer-the-physical-properties-of-which-differ from-those-o

the-layer-belowfrom the topmost layer, whose physical properties differ from the rest of the active layer, ASMs may therefore
500 and ALT may be unreliable if only shallow temperature measurements in thick-active-layers-are-usedbeecause-they-a thick active
layer are used. This is because the estimates would be based on the-rate-of-heat-transferin-a-tiny-physical properties of a
small portion of the active layer, which may differ-be different in its deeper seetions-{Fig—2-and—4)—On-the-otherhand,parts.
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Nevertheless, the natural variability of ground physical properties with-re-without sharp changes in their vertical distribution

is unlikely to affeetASMs-substantially-have a major influence on the MAPT and ALT estimates (see Fig. 1 and 2, Table 1 and
2)..
Other downside of ASMs is that they require temperature measurements a{—fw&depfh&ﬂ%from two depth levels within

the active layer, which may not be available at many sites;

6 Conclusions

We devised two novel ASMs-analytical—statistical models (ASMs) for estimating MAPT and ALT given by Eq. (8) and (27)fer

estimating- MAPT-and-ALF, respectively, which are driven solely by pairwise-combinations-ef-thawing and freezing indices
in-from two depth levels within the active layer while no ground physical properties are required. ASMs reproduced MAPT

and ALT wve

in the Earth’s major permafrost
regions with the total mean errors of less than 0.05 °C and 58 %, respectively, which is very promising because it is similar or

better than other analytical or statistical models. ASMs worked best in hemegeneous-activetayers-a homogeneous active layer
with small vertical changes in ground physical properties and when permafrost table was close below the temperature sensors
considered for MAPT and ALT ealeulations—estimates. By contrast, they performed worst in a heterogeneous and thick active
layer when the topmost organic layer influenced the estimates.

Henee, ASMs—for-estimating MAPT-and-ALT-eanfind-We believe that ASMs can find useful applications under a wide

range of climates, ground surface covers and ground physical conditions wherever at least two temperature measurements i

within the active layer are available. Besides-field-measurements—-They are primarily intended to be used for MAPT or ALT

estimates where ground temperature measurements are too shallow and MAPT or ALT therefore cannot be determined directly,
estimates in the past and in the future or for modelling their spatial variations. In addition to in situ measurements, they could
utilize diverse climate reanalyses or elimate-model-ground-temperature-productsEarth system models. Lastly, they can be easily

reformulated for estimating the mean annual temperature at the base of seasonally frozen ground and frost depth.
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Appendix A: Derivation of ASM for mean annual temperature at the base of seasonally frozen ground

Similarly to Eq. (1), the mean annual temperature at the base of seasonally frozen ground (MASFT > 0°C) is calculated as

follows (Romanovsky and Osterkamp, 1995)

I~
MASFT = =k (A1)

MASFT based on temperatures measured at two distinct depths in the season-

ally freezing layer z; and 2z (21 < 21 < FD) can therefore be expressed as follows

k
Itzl - ]?ijzl

MASFT = A2
o (A2)
I, —Sr,.
MASFT — 22 ki J2 (A3)
P
This implies that Eq. (A2) and (A2) are equivalent:
k k
Itll - ]Tille _ Itzz - ]T);Ifzz ' (A4)
P P
Solving Eq. (A4) for the inverse of the thermal conductivity ratio yields
k I, — I,
S _ Lt tez (AS)
ki Ile - If22
Equation (A5) can be then substituted for the thermal conductivity ratio in Eq. (A2) and (A3) as follows
Itz _Iz
Itzl - [le ,Ijzz fz1
MASFT = ' ]13 2 , (A6)
I —1I
Itz _ it - tzg fz
MASFT = —— il 72 (A7)
P
Subsequently, Eq. (A6) and (A7) both simplify to the same formula for MASFT:
Lpy Lty — Loy L1y
MASFT = — 1tz (A8)

P

which only slightly differs from Eq. (A8)and-has-the-same-attributes.

Appendix B: Derivation of ASM for frost depth

Similarly to Eq. (13), the frost depth (FD) can be calculated by-using the Stefan (1891) model as follows

| 2kpg
FDﬂ/iLqﬁ . (B1)
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LikewiseAs with Eq. (13), note that the freezing index must be multiplied by the scaling factor of 86400 s d~'in-the-Stefan
modelto-yield-cerrect-outputs. FD estimated using freezing indices measured at two distinct depths 27 and 25 (21 < 21 <FD)

can be expressed as follows

_ 2kply,,
FD =2 + 4 et (B2)
Qkfffz
FD = il B
z2+4/ Lo (B3)

This implies that Eq. (B2) and (B3) are equivalent:

|2k I, |2k, I,
z+ zéflzzﬁ 7252 (B4)

The vertical distance between z5 and z; can be expressed as

ksl ks Iy,
zQ—zlz\/ j.:df —¢ qu (B5)

which simplifies to

[2k
2y — 2 = ]j; (\/Ile - w/IfZQ) . (B6)

Subsequently rearranging Eq. (B6) gives

n-n |2k
VA =1z Lo’

where the right-hand side corresponds to the edaphic term, which combines the ground physical properties in the Stefan model

(B7)

into a single variable. The edaphic term can be implemented in Eq. (B2) and (B2) as felews-

FD =z, + E\/Ip,, (B8)
FD = 2o+ E\/If,. (B9)

Substituting the left-hand side of Eq. (B7) for the edaphic term in Eq. (B8) and (B9) yields

zZ9 — 21
T S N (B10)
V Ifll —V Iflz '
zZ9 — 21
FD =20 + ————=1/1fs,. (B11)
VN
Simplifying Eq. (B10) and (B11) then produces the same formula for FD:
_ 2 — 2/,
FD = , (B12)
V Ile —V Ifzz

which is the same and-has-the-same-attributes-as Eq. (27), enly-but with the freezing indices are-used-instead of the thawing

FD:,Zl

ones.
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