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Response to Anonymous Referee #1 

Reply on RC1: 

Major comments: 

Based on Figure 1 and Figure 2, this computational method appears somewhat simple. There is 
relatively little research on the keyword "quasi double-precision." The Authors could explain why 
their work is novel compared to the existed methods already published nowadays. 

Thank you for your comments. We have added the significance and novelty of our work in section: 
introduction and section: Conclusions and discussion and have been summarized below. 
Line 98~107: Most works involving numerical models that reduce numerical precision adopt a 
mixed-precision scheme, where some variables use single precision while others remain in double 
precision to ensure integration stability, as demonstrated in the work of Chen et al. (2024). Currently, 
there are very few studies that almost entirely employ low precision (32-bit) in numerical models, 
only applied in IFS by Vánˇa et al. (2016). However, they only utilize single precision without 
considering error compensation for it. In this study, all variables in the numerical model were 
implemented using single precision, and error compensation was applied to key variables. By using 
error compensation methods (quasi double-precision), we can maintain integration stability 
comparable to that applying double precision scheme while significantly reducing memory 
requirements by lowering the numerical precision of all variables and improved the accuracy 
comparable to that applying the single precision. This approach not only reduces communication 
pressure but also allows for substantial increases in computational speed through vectorization 
optimization. 
Line 297~315: The algorithm can compensate for round-off errors by keeping corrections in 
addition of large and small numbers. And in numerical models, the basic field is generally much 
larger than the tends, which aligns with the principles of quasi double-precision, as well as the time 
integration process. Based on the it, we have established a strategy for applying the quasi double-
precision algorithm within the MPAS-A. Through the implementation of quasi double-precision 
methods, we maintain accuracy similarly to the tests using double precision and achieve comparable 
integration stability to the tests comparing to single precision tests. The error of surface pressure of 
4 cases are reduced by 68%, 75%, 97%, 96% (see Section 3). Overall, QDP using quasi double- 
precision algorithm demonstrates higher accuracy than the SGL, suggesting the potential for 
applying quasi double-precision algorithm in numerical models. 

We don’t apply it to spatial discretization process, because spatial discretization primarily 
involves subtraction, specifically the subtraction of a small number from a large number or the 
subtraction of two close values. Whether this algorithm is applicable in spatial discretization 
remains uncertain, therefore, we don’t consider it in this context. 
While mixed-precision approaches, where certain variables retain double precision for stability (e.g., 
Chen et al., 2024), are 305 common for reducing numerical precision in models, and they don’t 
consider the error compensation. This study distinguishes 
itself by implementing single precision for all model variables and applying error compensation for 
critical variables. 



When applied the quasi double-precision algorithm in MPAS-A, we achieved to reduce all 
double precision to single pre- cision, although increased few local variables and arrays in every 
time- integration variable, these have little impact on the overall memory reduction. In general, 
memory has been reduced by almost half, with a corresponding computational increase 310 of just 
6.0%, 0.3%, 2.2%, and 17.8% in the respective cases (see section 3.4), demonstrating a substantial 
improvement in computational efficiency. 

 

The main point of applying signal precision computing methods is ensuring predictive and reducing 
computational costs. The iterative precision compensation increases the computation load. Has this 
study considered the issue of computational efficiency? For example, runtime, reduced 
computational cost, they were mentioned in introduction literature review, but not studied in this 
study. 

We apologize for the oversight. The additional computational cost incurred from using error 
compensation is minimal; it only adds six global arrays to the entire model code. Therefore, we 
neglected to elaborate on this aspect. We appreciate your suggestion, following your insightful 
comment, we found the previously reported figures were indeed rough estimations, so we have re-
evaluated the exact computational performance using a measurement tool to determine the runtimes. 
So, we will: 

1. Add a dedicated section 3.4 in the paper to describe the computational performance. The size 
of the computational performance will be represented in terms of runtime, and we will discuss 
the runtime for each case in tabular form. 

2. Revise the description of computational performance in the abstract to reflect these updated and 
more accurate measurements. 

Line 286~292: In comparison with the SGL, although there is a slight increase in runtime, it is 
minimal, at only 6.0% (Jablonowski and Williamson baroclinic wave), 0.3% (Super-cell), 2.2% 
(Real data with resolution of 120km) and 17.8% (Real data with resolution of 240km) (Table 3). 
This slight increase is attributed to the addition of a small number of global variable arrays when 
using quasi double-precision. And compared to DBL, QDP demonstrated relatively better 
performance across different cases, reducing the runtime by 28.6% (Jablonowski and Williamson 
baroclinic wave), 28.5% (Super-cell), 21.1% (Real data with resolution of 120km) and 5.7% (Real 
data with resolution of 240km) (Table 3).  



 
Line 7～9: The bias of surface pressure are reduced respectively by 68%, 75%, 97% and 96% in 
cases, the memory has been reduced by almost half, while the computation increases only 6.0%, 
0.3%, 2.2%, and 17.8% respectively, significantly reducing computational cost. 
 

The model is described poorly. The solution method for the equations is not even mentioned. For 
example, the finite difference scheme is mainly used to calculate the primary equations for variables 
studied in this work. And at which step of the equation is the quasi double-precision algorithm 
specifically applied? The strategy used to compute cell edge, dry air density, potential temperature 
with quasi double-precision algorithm is also difficult to understand from Figure 3. 

Thank you for your valuable feedback regarding the clarity of our model description and the 
implementation of the quasi double-precision algorithm. We recognize that the solution method for 
the equations was not sufficiently detailed in our original manuscript. To address this, we will: 

1. Add the clear description of the solution method for the equations including temporal 
integration scheme and spatial discretization scheme in section 2.2. Moreover, the algorithm 
applied here primarily addresses the rounding error compensation between large and small 
numbers in addition. Currently, it is only applicable to the time integration process and has not 
been implemented in the spatial discretization process. I apologize for not mentioning that part 
in the manuscript. I will revise and provide the supplement. See below. 

2. Specify at which step the quasi double-precision algorithm is applied within the computation 
process in section 2.3 and replace the figure (corresponding to Figure 3 in the manuscript) and 
explain this process using formulas and explanations. See below. 

Line 135～153: The MPAS-A solves the fully compressible, nonhydrostatic equations of motion 
(Skamarock et al. 2011). The spatial dis- cretization uses a horizontal (spherical) centroidal Voronoi 
mesh with a terrain-following geometric-height vertical coordinate and C-grid staggering for 
momentum. The temporal discretization uses the explicit time-split Runge–Kutta technique from 
Wicker and Skamarock (2002) and Klemp et al. (2007).  

The algorithm applied here primarily addresses the rounding error compensation between large 
and small numbers in addi- tion. Currently, it is only applicable to the time integration process and 
has not been implemented in the spatial discretization process. Therefore, this section will provide 
a detailed introduction to the time integration scheme. For the spatial discretization scheme, please 
refer to Skamarock et al. (2011), and it will not be introduced upon here.  



The formulation of the scheme can be considered in on dimension as equation Wicker and 
Skamarock (2002):  
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= 𝑅𝐻𝑆∅                                (1)     

The variable ∅ represents any prognostic variable in the prognostic equations, while RHS represents 
the right-hand side of the prognostic equations (i.e., the spatial discretization equation). In MPAS-
A, a forward-in-time finite difference is used, and it can be written as Eq. (2): 
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Where superscript represent the time step, and subscript represent the position of grid zone.  

The two-order Runge-Kutta time scheme is used in MPAS-A as described in Gear et al. (1971): 
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Line 161～179：According to Equation Eq.(3), (4) and (5), it can be observed that in the time 
integration scheme, each step involves the process of adding tends on the basic field φt. In numerical 
models, the basic field is generally much larger than the tends, which aligns with the principles of 
numerical computation regarding the addition of large and small numbers, as well as the time 
integration process. It is important to note that the quasi double-precision algorithm currently only 
addresses time integration and has not been validated during the spatial discretization process. The 
spatial discretization primarily involves subtraction, specifically the subtraction of a small number 
from a large number or the subtraction of two close values. Whether this algorithm is applicable in 
spatial discretization remains uncertain, therefore, we will not apply it in this context.  

Based on the application principles of the algorithm, which involve the processes of adding 
large and small numbers as well as the time integration process, we have established a strategy for 
applying the quasi double-precision algorithm within the MPAS-A. Specific improvements are 
provided based on the predictive equations: 
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The meaning of each variable in the equations exactly follows Skamarock et al. (2012), so that 
we don’t repeating explanation. For a numerical model, the most crucial variables are the prognostic 
variables. Therefore, In the MPAS-A model we applied the quasi double-precision algorithm to the 
time integration process of these prognostic variables, including horizontal momentum (𝑽() , dry 
air density (𝜌9+), potential temperature (Θ.) and vertical velocity (𝑊) , that is , the process in red 
of Eq. (6), (7), (8) and (9). (Only the predictive equations for the dynamic core are presented here, 
without the scalar transport.) 

 

The color scheme in Figure 5 is very hard to distinguish; the solid purple area is too large, making 
the gradient difficult to see. Figure 10 has the same issue. It is recommended to refer to the classic 
NCL color scheme. https://www.ncl.ucar.edu/Applications/era40.shtml 

Thank you very much for your suggestions and the website link. I have revised Figures 5 and 10 
according to the guidelines provided in the link. Please see below for Figure 1 (corresponding to 
Figure 5 in the manuscript) and Figure 2 (corresponding to Figure 10 in the manuscript). 

 

Figure 1. Spatial distributions of averaged (1-15days) difference of surface pressure (units: Pa) 
between DBL and (a) SGL simulations, (b) QDP simulations (round-off error has reduced) in case 
of Jablonowski and Williamson baroclinic wave. 

https://www.ncl.ucar.edu/Applications/era40.shtml


 

Figure 2. Spatial distributions of averaged (1-15days) difference of 500hPa height (units: m) 
between DBL and (a) SGL simulation, (b) QDP simulation (resolution: 240 km × 240 km). The 
RMSE of 500hPa height between DBL and (a) SGL simulation is 2.80 × 10$)m, (b) QDP 
simulation is 1.40 × 10$)m (round-off error has reduced). 

 

Figure 6 (a) shows that DBL-SGL decreases after 1.0, which appears to be caused by a coding error. 
Please check and confirm the validity of the data. 

Thank you for your insightful comment regarding Figure 6(a), we carefully reviewed our code based 
on your comments and identified that the issue was a problem with the data processing and plotting. 
We have corrected this issue, and the revised Figure 3 is provided below: 

 

Figure 3. The temporal evolution of spatially averaged difference of kinetic energy between DBL 
and SGL, as well as difference between DBL and QDP in case of super-cell. 

I apologize for needing to provide additional information regarding this section. In all cases 
presented in the manuscript, the time-evolution plots (Figures 4, 6, and 8 in the manuscript) 
currently utilize kinetic energy and surface pressure, which correspond to the conservation of energy 
and mass, respectively. However, I realize that directly using total energy and total mass would 
offer a more accurate representation. Please see the figures 4, 5 and 6 showing the temporal 



variations of energy and mass for all cases. If you allow it, I would be happy to replace the existing 
Figures 4, 6, and 8 (in the manuscript) with these updated versions (figures 4, 5 and 6). I want to 
emphasize that this change would not affect the overall results or conclusions of the study, which 
remain consistent with those currently presented in the manuscript. I think your suggestions are 
greatly appreciated and have been very helpful in improving the manuscript. 

  

Figure 4. The temporal evolution of spatially averaged difference of (a) total energy, (b) total mass 
between DBL and SGL, as well as difference between DBL and QDP in case of Jablonowski and 
Williamson baroclinic wave. 

 

Figure 5. The temporal evolution of spatially averaged difference of (a) total energy, (b) total mass 
between DBL and SGL, as well as difference between DBL and QDP in case of super-cell. 

It is important to note that, for enhanced clarity and to facilitate a better understanding of the trend, 
the x-axis unit for the figure representing Case 7 has been changed to hours (Fig. 6). 



 

Figure 6. The temporal evolution of spatially averaged difference of total energy between DBL and 
SGL, as well as difference between DBL and QDP in case of real data, with resolution of (a) 240 
km × 240 km, (b) 120 km × 120 km. 

 

Minor comments: 

The color bar in Figure 7 seems almost useless. 

Thank you very much for your careful review and valuable comments on my manuscript. Regarding 
the issue you raised about the color bar in the figure 7. After adjusting the color bar, two distinct 
areas of improvement are now evident, compared to only one in the original figure. I sincerely 
apologize that the previous color bar setting was not appropriate. I have adjusted the color bar 
according to your suggestion, and the revised figure is shown as Figure 7 (corresponding to Figure 
7 in the manuscript).  

 

Figure 7. Perturbation theta in super-cell development at 5400s in the (a) DBL simulation, (b) SGL 
simulation and (c) QDP simulation (bias has reduced), unit: K, the circle represents the pattern bias 
(the same color means the consistent value). 



Please mention “round-off error” in relevant figures' captions. 

Thank you very much for your suggestions. I have revised it. You can see it in Figure 6 and Figure 
9 in the manuscript. 

Figure 11 appears to be somewhat blurry. 

Thank you very much for your suggestions. I have revised it. Please see below for Figure 8 
(corresponding to Figure 11 in the manuscript). 

   

Figure 8. distributions of averaged (1-15days) difference of surface pressure (units: Pa) between 
DBL and (a) SGL simulation, (b) QDP simulation (resolution: 120 km × 120 km) (round-off error 
has reduced). The RMSE of surface pressure between DBL and (a) SGL simulation is 6.33 × 10$' 
Pa, (b) QDP simulation is 2.25 × 10$' Pa. It's important to note that the color bars for Figures (a) 
and (b) are intentionally set differently due to the significant disparity in their respective threshold 
ranges. If identical color scales were applied, Figure (b) would appear entirely white. 

 

Wicker, L. J., & Skamarock, W. C.: Time-splitting methods for elastic models using forward time 
schemes. Monthly Weather Review, 130(8), 2088. https://www.proquest.com/scholarly-
journals/time-splitting-methods-elastic-models-using/docview/198148677/se-2, 2002. 

Gear, C. W.: Numerical initial value problems in ordinary differential equations[M]. Englewood 
Cliffs, N.J: Prentice-Hall, 1971. 
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Reply on RC2: 

Response to Point 1: 

The calculation method used in this paper is based on the method of Møller, O. (1965)., which 
appears relatively simple. If the authors can find similar studies that employ this "quasi double-
precision" method for simulating atmospheric variables, it could demonstrate the advancement of 
this paper compared to existing research. Chen et al. (2024) and Vánˇa et al. (2016) did not use this 
method. If no similar studies are found, it could be stated that this paper is the first to do so, which 
could enhance its citation rate. 

Thank you very much for your insightful comment. We greatly appreciate your valuable suggestion, 
which has significantly improved the manuscript. Following your suggestion, we have added a 
statement highlighting this novel application in both the “Introduction” and “Conclusion and 
Discussion” sections of the manuscript. We believe this addition provides important context for our 
work and clarifies its contribution to the field. 

Line 95~97: The application of the Moller method to a realistic numerical model, as presented in 
this study, represents a novel contribution to the field, with no prior research exploring this specific 
implementation. 
Line 294~297: Although the Moller method (Quasi double-precision) has been extensively 
employed for the temporal integration of ordinary differential equations, its application within the 
context of realistic numerical models remains unexplored. This study addresses this gap by 
presenting a novel implementation of the Moller method, thereby expanding its scope and potential 
impact within the field. 

 
Response to Point 3: 

Regarding equations (6)-(9), it is suggested to select only one equation and present it in the form of 
Figure 2. This could be included as an appendix to specifically demonstrate the iterative calculation 
process. Because the pseudo-code in Fig. 3 is not sufficient to clearly explain the calculation process. 

Thank you very much for your valuable suggestion. We appreciate your feedback and agree that 
providing an algorithmic description of the iterative process for one of the equations would enhance 
the clarity of our work. As your recommendation, we will select a representative equation and 
include a detailed algorithmic description of its iterative calculation process in the Supplement (see 
Figure 1). We believe this addition will be beneficial for readers who wish to gain a deeper 
understanding of the computational aspects of our method. 

Supplement: 



 

Figure 1. The pseudo-code for variable of U. 

 
Response to Point 5: 

If the authors intend to replace the existing Figures 4, 6, and 8 (in the manuscript) with these updated 
versions (Figures 4, 5, and 6), feedback from other editors and reviewers regarding the revised 
structure of the paper should be considered. 

Thank you very much for your valuable suggestion. I appreciate your careful attention to detail. I 
will ensure that I obtain the consent of each reviewer and the editor before proceeding with the 
replacement of the figures, as you recommended. 

 

The new figures: 

There are several cases where figure legends and lines overlap, such as in Figure 3 in the review 
response. 

Thank you very much for your valuable suggestion. We have completed the revisions as you 
recommended. The updated figures are as follows: Figure 2 (corresponding to Figure 3 in RC1) and 
Figure 3 (corresponding to Figure 5 in RC1). 

 



Figure 2. The temporal evolution of spatially averaged difference of kinetic energy between DBL 
and SGL, as well as difference between DBL and QDP in case of super-cell. 

 

Figure 3. The temporal evolution of spatially averaged difference of (a) total energy, (b) total mass 
between DBL and SGL, as well as difference between DBL and QDP in case of super-cell. 

 

Thompson., Robert, J.:Improving round-off in Runge-Kutta computations with Gill’s method, 
Communications of the Acm, 13(12):739- 740.DOI:10.1145/362814.362823, 1970. 

Tomonori, Kouya., Hideko, Nagasaka.: On the correction method of round-off errors in the Yang’s 
Runge-Kutta method, The Japan Society for Industrial and Applied Methematics, 1995. 

Dmitruk, B., Przemysaw, Stpiczyn ́ski.:Improving accuracy of summation using parallel vectorized 
Kahan’s and Gill-Mller algorithms, Con- currency and Computation: Practice and Experience, 
doi:10.1002/cpe.7763, 2023. 

 

 

 

 

 

 

 

 

 



Response to Reviewer #2 

Reply on RC3: 

The manuscript titled “Enhancing Single-Precision with Quasi Double-Precision: Achieving 
Double-Precision Accuracy in the Model for Prediction Across Scales-Atmosphere (MPAS-A) 
version 8.2.1” explores the use of the quasi-double precision algorithm by Møller et al. (1965) 
within a numerical modelling framework. By implementing the algorithm in MPAS-A across 
various case studies and idealized scenarios, the study highlights its potential to lower computational 
costs compared to double-precision approaches while enhancing accuracy over single-precision 
approaches. 

Overall, the manuscript is well-organized and relatively clear, but there are several areas that could 
benefit from further clarification and elaboration. In particular, I have concerns regarding 1) the 
practical significance of the reported improvements, 2) the lack of detail and rationale in the model 
setup, and 3) the insufficient explanation or justification for the choice of metrics. Based on these 
issues, I recommend major revisions before the manuscript can be reconsidered for publication. 

Thank you for your thorough review and valuable feedback on our manuscript, we appreciate your 
positive comments on the organization and clarity of the manuscript. 

We understand your concerns regarding the practical significance of the reported improvements, we 
have carefully considered your feedback and addressed each of these points in the detailed responses 
below. We believe the revisions made in response to your comments significantly strengthen the 
manuscript and clarify the contributions of our work. 

We are grateful for your insights and believe that addressing your concerns has resulted in a 
substantially improved manuscript. We look forward to your further assessment. 

 

Below, you find a list of my main concerns:  

1. The practical impact of the improvements achieved with the quasi-double precision algorithm 
compared to the single-precision approach remains unclear to me. While the authors demonstrate 
large relative accuracy gains compared to single-precision, it is not evident that these improvements 
are meaningful in absolute terms. For example, in the idealized scenario of Section 3.1, the RMSE 
of surface pressure improves by only 10^-2 Pa at longer lead times (12+ days), with negligible 
improvements at shorter times. Similar patterns emerge in Section 3.3. Given that these 
improvements are an order of magnitude smaller than the World Meteorological Organization's 
(WMO) recommended measurement uncertainty for atmospheric pressure (e.g., 
https://gcos.wmo.int/en/essential-climate-variables/pressure), it might be difficult to justify the 
additional computational costs. I encourage the authors to elaborate on the significance of their 
results in absolute terms from both a practical and forecasting perspective. 

A related point: Are current operational implementations of MPAS-A defaulting to double- or single-
precision for the variables discussed in this manuscript? Given the results, if double precision is 
currently the standard, the authors might want to emphasise the potential of quasi-double precision 



as a substitute for double precision, rather than focusing primarily on its benefits over single-
precision. 

Thank you for your insightful comments and suggestions. We appreciate your careful review and 
have revised the manuscript accordingly. We address your points as follows: 

(1) This research is based on double precision testing as the benchmark experiment, we agree that 
highlighting the computational advantages of quasi-double precision compared to double 
precision is crucial. We apologize for the omission of this discussion in the original manuscript. 
As you suggested, we have now added a detailed analysis of computational costs in the revised 
manuscript, comparing SGL, DBL and QDP. This analysis demonstrates that QDP achieves 
accuracy very close to DBL while significantly reducing computational costs. We provide 
further details on this analysis in our response to your second point below. 

(2) You correctly pointed out that the SGL errors already meet the WMO's target values, and our 
primary focus should be the comparison between QDP and DBL. We included the comparison 
with SGL for the following reasons: within the MPAS-A model, the quasi double-precision 
algorithm is applied only to the basic and tend processes, while other parts remain in their 
original single-precision implementation. In essence, the quasi double-precision algorithm is 
applied to a limited portion of the dynamical core. Since MPAS-A supports single-precision 
calculations, we aimed to investigate the impact of the quasi double-precision algorithm on both 
computational cost and accuracy relative to the existing single-precision implementation. A 
modest increase in computational cost coupled with a substantial improvement in accuracy 
would suggest the potential of quasi double-precision as a replacement for single precision in 
scenarios where storage limitations are a major concern. We have retained the comparison to 
SGL to provide this context but have strengthened the emphasis on the comparison with DBL 
throughout the manuscript as you recommended. 

(3) You correctly pointed out that while the errors observed within the current 12+day simulations 
appear relatively small, these could accumulate over longer time scales. Therefore, we plan to 
conduct extended simulations (monthly to yearly) in future research to investigate the potential 
for error accumulation and to determine the feasibility of using quasi-double precision as a 
replacement for double precision in such long-term applications. As you suggested, our future 
work will prioritize direct comparisons between the QDP and DBL in these extended 
simulations to fully characterize the differences and evaluate the long-term viability of our 
proposed method. 

 

2. The experimental setup lacks sufficient detail and justification. It is unclear why the authors chose 
these particular case studies and idealised scenarios, especially in the applications to real data. This 
makes it difficult to assess the generalisability of the results to other atmospheric conditions or 
variables. Additionally, a more detailed comparison of computational costs among the three 
algorithms (single-precision, quasi-double precision, and double precision) is necessary, as 
improvements in accuracy may not be feasible in practice if they come with substantial increases in 
computational expense.  

Thank you for your constructive feedback. We address your concerns regarding the case selection 
and computational cost as follows: 



（1）Case Selection and Justification: We apologize that this rationale was not clearly articulated 
in the original manuscript. We will explain it. Thank you for your suggestions. We would like to ask 
whether you believe the descriptions and tables mentioned should be added to the main text of the 
manuscript. We look forward to your further input on this matter. 

（2）Computational cost: We will add it in the paper to describe the computational performance. 
The size of the computational performance will be represented in terms of runtime, and we will 
discuss the runtime for each case in tabular form. 
 

The type of initial conditions in MPAS-A cases (Table 1) can be found in “MPAS-Atmosphere 
Model User’s Guide Version 8.1.0” (can be download on MPAS website). Only configurations for 
the idealized cases 2, 5, and 6 are provided on the official website. To avoid redundancy, the results 
for Case 6 are not shown, as they were similar to those obtained for Cases 2 and 5. For real-data 
simulations, case 7 as shown in Table. We explored different resolutions for real-data simulations 
to assess the impact of grid refinement on the performance of the quasi-double precision algorithm. 
Our focus is on numerical precision in global models, where boundary condition effects are absent. 
Thus, we do not consider regional models like case 8 and case 9 in this study. 

Table 1. Cases in MPAS-A. 

type of initial conditions to create: 

1. Jablonowski and Williamson baroclinic wave (no initial perturbation) 

2. Jablonowski and Williamson baroclinic wave (with initial perturbation) 

3. Jablonowski and Williamson baroclinic wave (with normal-mode perturbation) 

4. squall line 

5. super-cell 

6. mountain wave 

7. real-data initial conditions from, e.g., GFS 

8. surface field (SST, sea-ice) update file for use with real-data simulations 

9. lateral boundary conditions update file for use with real-data simulations 

 
Line 286~292: In comparison with the SGL, although there is a slight increase in runtime, it is 
minimal, at only 6.0% (Jablonowski and Williamson baroclinic wave), 0.3% (Super-cell), 2.2% 
(Real data with resolution of 120km) and 17.8% (Real data with resolution of 240km) (Table 3). 
This slight increase is attributed to the addition of a small number of global variable arrays when 
using quasi double-precision. And compared to DBL, QDP demonstrated relatively better 
performance across different cases, reducing the runtime by 28.6% (Jablonowski and Williamson 
baroclinic wave), 28.5% (Super-cell), 21.1% (Real data with resolution of 120km) and 5.7% (Real 
data with resolution of 240km) (Table 3).  



 
Line 7～9: The bias of surface pressure are reduced respectively by 68%, 75%, 97% and 96% in 
cases, the memory has been reduced by almost half, while the computation increases only 6.0%, 
0.3%, 2.2%, and 17.8% respectively, significantly reducing computational cost. 

 

3. The manuscript currently employs only grid-point level and "spatial RMSE" as comparison 
metrics, but the term "spatial RMSE" is not clearly defined. I recommend the following: 

1) Clearly define "spatial RMSE," particularly when used as a summary statistic over a larger 
domain. For example, are the authors applying any latitude-based weighting? 

2) Justify the use of this metric and consider comparing the algorithms using additional relevant 
metrics. If alternative metrics are not applicable, please explain why they were not used. 

Thank you very much for your insightful comments regarding the metrics used in our study. Your 
feedback has been incredibly helpful in improving the clarity of our analysis. We address your 
concerns in three parts: 

(1) We apologize for the omission of a clear definition of spatial RMSE in the original manuscript. 
As your suggestion, we have now included a detailed explanation of the spatial RMSE calculation 
in Section 3.1. This explanation includes the formula and a description of its application in our study, 
as detailed below. 

(2) We selected spatial RMSE as a primary metric because it is widely used in the evaluation of 
atmospheric numerical models and effectively reflects model performance improvements. Studies 
such as Vánˇa et al. (2016), demonstrate its utility in assessing the accuracy of model simulations. 
Therefore, we believe spatial RMSE is an appropriate and informative metric for evaluating the 
impact of the quasi-double precision algorithm in our study. 

(3) We appreciate your suggestion to include additional metrics. We decide to add a new metrics of 
Mean Absolute Error (MAE) to improve our analysis. To facilitate comparison across different cases, 
we have also included a table summarizing the spatial RMSE and MAE values for each case in the 
revised manuscript. The specific changes are detailed below. 
 
Line 195～221: In this section, we introduce the Spatial RMSE and MAE(the accuracy indicators), 
and show results across four cases, include two ideal scenarios: Jablonowski and Williamson 
baroclinic wave and super-cell, as well as two real case ( with initial conditions generated using 
GFS data) using two different resolutions. By using the RMSE and MAE for quantitative 



comparison, the differences between the benchmark and control experiments are used to evaluate 
the effectiveness of the quasi double-precision algorithm in reducing round-off error.  

To quantify the difference between the simulations using SGL, QDP, and DBL, (used as the 
benchmark), we calculate the spatial root-mean-square error (RMSE). First, for each grid point, the 
temporal averages of the variables (e.g., surface pressure, 500hPa height) are computed across the 
entire simulation period for each experiment (SGL, QDP, and DBL). Then, the spatial RMSE is 
calculated as the root-mean-square difference between the temporally averaged fields of the control 
experiment (SGL or QDP) and the benchmark double-precision experiment (DBL), following (1): 

	Spatial	RMSE = @∑ (,%$-%)&'
%($

/
	                          (1) 

Where, N is the total number of grid points, Mᵢ is the temporally averaged value at grid point i for 
the benchmark double-precision experiment, Cᵢ is the temporally averaged value at grid point i for 
the control experiment (SGL or QDP). 

In addition to the spatial RMSE, we also calculate the Mean Absolute Error (MAE) to assess 
the magnitude of the difference between the control experiments (SGL and QDP) and the benchmark 
double-precision experiment (DBL), irrespective of the direction of the difference. Like the spatial 
RMSE calculation, we first compute the temporal average for each grid point across the entire 
simulation period for each experiment. The MAE is then calculated as the average absolute 
difference between the temporally averaged fields of the control experiment and the benchmark 
experiment, following (2): 

MAE = )
/
∗ ∑ |M0 − C0/

01) |                           (2) 

where N is the total number of grid points, Mᵢ represents the temporally averaged value at grid point 
i for the benchmark double-precision experiment, and Cᵢ represents the temporally averaged value 
at grid point i for the control experiment (either SGL or QDP). 

As shown in Table 1 (spatial RMSE) and Table 2 (MAE), the addition of the quasi-double 
precision algorithm consistently improves accuracy (compared to single precision) across all cases. 
For specific analysis, please refer to the following contents (The results of RMSE and MAE are 
consistent, so to avoid duplication, only the results of RMSE are analyzed in the following text).  

 



Minor concerns/technical corrections: 

 

- Figure 6a: The higher error with the quasi-double precision algorithm compared to the single-
precision in this subpanel is confusing. If the error with the single-precision algorithm is anyway so 
small that it does not matter in practice, why was this case study selected, and why include this 
figure? 
Thank you for bringing this to our attention. We sincerely apologize for the error in our data 
processing, which was also noted by Reviewer 1. We have carefully re-examined our code and 
identified a mistake. We have corrected the error in our data processing code and have now 
generated the revised results. The corrected figure is shown below (fig. 1), Figure 6(a) in manuscript: 

 

Figure 1. The temporal evolution of spatially averaged difference of kinetic energy between DBL 
and SGL, as well as difference between DBL and QDP in case of super-cell. 

I apologize for needing to provide additional information regarding this section. In all cases 
presented in the manuscript, the time-evolution plots (Figures 4, 6, and 8 in the manuscript) 
currently utilize kinetic energy and surface pressure, which correspond to the conservation of energy 
and mass, respectively. However, I realize that directly using total energy and total mass would 
offer a more accurate representation. Please see the figures 2, 3 and 4 showing the temporal 
variations of energy and mass for all cases. If you allow it, I would be happy to replace the existing 
Figures 4, 6, and 8 (in the manuscript) with these updated versions (figures 2, 3 and 4). I want to 
emphasize that this change would not affect the overall results or conclusions of the study, which 
remain consistent with those currently presented in the manuscript. We have received feedback from 
two reviewers so far, and Reviewer 1 has approved the replacement. We are eagerly awaiting your 
response. If all four reviewers agree, we will update the figure in the final version of the manuscript. 



 

Figure 2. The temporal evolution of spatially averaged difference of (a) total energy, (b) total mass 
between DBL and SGL, as well as difference between DBL and QDP in case of Jablonowski and 
Williamson baroclinic wave. 

 

Figure 3. The temporal evolution of spatially averaged difference of (a) total energy, (b) total mass 
between DBL and SGL, as well as difference between DBL and QDP in case of super-cell. 

It is important to note that, for enhanced clarity and to facilitate a better understanding of the trend, 
the x-axis unit for the figure representing Case 7 has been changed to hours (Fig. 4). 



 

Figure 4. The temporal evolution of spatially averaged difference of total energy between DBL and 
SGL, as well as difference between DBL and QDP in case of real data, with resolution of (a) 240 
km × 240 km, (b) 120 km × 120 km. 

- Figure 7: The phrase "the circle represents the most clear error" lacks objectivity, especially since 
other areas in the figure show similar errors. Consider rephrasing or finding a more precise way to 
characterize the comparison between errors in this case. 

Thank you very much for your careful review and valuable comments on my manuscript. Regarding 
the issue you raised in the figure 7. We decide to adjust the color bar, after adjusting, the two distinct 
areas of improvement are now evident, compared to only one in the original figure. I sincerely 
apologize that the previous color bar setting was not appropriate. and the revised figure is shown as 
Figure 5 (corresponding to Figure 7 in the manuscript).  

 

Figure 5. Perturbation theta in super-cell development at 5400s in the (a) DBL simulation, (b) SGL 
simulation and (c) QDP simulation (bias has reduced), unit: K, the circle represents the pattern bias 
(the same color means the consistent value). 

 

- Please avoid using the term "significant" or "significantly" when not referring to statistically 
significant results to avoid potential confusion. 



Thank you for this valuable feedback. We have corrected this oversight. 

 

- Unclear phrase (line 95): "achieves basically consistent results comparable to those of double 
precision" – Do you mean that the accuracy is similar in a specific case, or that the quasi-double 
precision consistently performs similarly to double precision in most cases? 

Thank you for raising this point. The phrase 'the single-precision version improved with the quasi 
double-precision algorithm achieves basically consistent results comparable to those of double 
precision. However, we acknowledge that the phrasing was ambiguous. We have revised the 
sentence to more accurately reflect this finding.  The revised sentence now reads: 
Line 103～105: By using error compensation methods (quasi double-precision), we can maintain 
integration stability comparable to that applying double precision scheme while significantly 
reducing memory requirements by lowering the numerical precision of all variables and improved 
the accuracy comparable to that applying the single precision.  

 

- Reproducibility note: Although the manuscript adheres to GMD's guidelines by providing a DOI 
to a permanent repository, no instructions are provided on how to use the code or what the various 
files and subfolders contain. I suggest including at least a brief README file that describes the 
content and organization of the repository, providing users with clearer guidance. 

Thank you for your valuable suggestion regarding the code documentation. We have updated the 
supplemental material with a comprehensive description of the code structure and included a 
README file for each case, as you recommended. We apologize that this information was not 
initially referenced within the main manuscript. To ensure clarity and accessibility, we have also 
added explicit mentions of the code description and README files within the Code and data 
availability section of the manuscript, directing readers to the supplemental material for these details. 
Figure 6 shows a screenshot of the updated supplemental material, which now clearly includes these 
additions. Each case directory within the supplement contains a corresponding README file, an 
example of which is shown in Figure 7. 

We believe these revisions significantly improve the transparency and reproducibility of our 
research. Thank you again for your helpful feedback. 
Line 329～333: Code and data availability. Model code and plotting data related to this manuscript 
is available at: https://doi.org/10.5281/zenodo.13765422. Details regarding the code structure and 
instructions for running the code are provided in the supplementary material, which can be down- 
loaded and viewed in Fig. S1. This figure provides a visual overview of the code organization. The 
information of steps how to execute the simulations can be found in README file in each test case 
folder. 

 



 

Figure 6. The code layout in supplement. 

 

 

Figure 7. The screenshot of README file in case suppercell. 

 

Vánˇa, F., Düben, P., Lang, S., Palmer, T., Leutbecher, M., Salmond, D., and Carver, G.: Single 
Precision in Weather Forecasting Models: An Evaluation with the IFS, Monthly Weather Review, 
145, 495-502, doi:10.1175/MWR-D- 16-0228.1, 2016. 

 

 

 



Response to Reviewer #3  

Reply on RC4: 

The abstract states: “Low precision computations can significantly reduce computational costs, but 
inevitably introduce rounding errors, which affect computational accuracy.” However, it is not 
clearly defined what is meant by “low precision computations,” and the statement that such 
computations inevitably affect accuracy may not always hold true. 

We thank the reviewer for the valuable feedback. In the revised manuscript, we have added a clear 
definition of "low precision computations".  

Regarding the assertion that "low precision computations inevitably affect accuracy," we appreciate 
the reviewer’s insight, and we will revise the description in the abstract. The specific modifications 
are detailed below. 

Line 30~33: Specifically, we define low precision computations as those that utilize a limited 
number of significant digits (less than 64 bits) during numerical operations, which can significantly 
reduce the computational resources required while potentially introducing rounding errors.  
Line 2~3: While low precision computations can significantly reduce computational costs, they 
may introduce rounding errors that can affect computational accuracy under certain conditions. 

 
Both the abstract and conclusions mention the computational impact of the proposed methods; 
however, these effects are not discussed further within the main body of the manuscript. 

We appreciate your suggestion, following your insightful comment, we will: 

1. Add it in the paper to describe the computational performance. The size of the computational 
performance will be represented in terms of runtime, and we will discuss the runtime for each case 
in tabular form. 

2. Revise the description of computational performance in the abstract to reflect these updated and 
more accurate measurements. 

Line 286~292: In comparison with the SGL, although there is a slight increase in runtime, it is 
minimal, at only 6.0% (Jablonowski and Williamson baroclinic wave), 0.3% (Super-cell), 2.2% 
(Real data with resolution of 120km) and 17.8% (Real data with resolution of 240km) (Table 3). 
This slight increase is attributed to the addition of a small number of global variable arrays when 
using quasi double-precision. And compared to DBL, QDP demonstrated relatively better 
performance across different cases, reducing the runtime by 28.6% (Jablonowski and Williamson 
baroclinic wave), 28.5% (Super-cell), 21.1% (Real data with resolution of 120km) and 5.7% (Real 
data with resolution of 240km) (Table 3).  



 
Line 7～9: The bias of surface pressure are reduced respectively by 68%, 75%, 97% and 96% in 
cases, the memory has been reduced by almost half, while the computation increases only 6.0%, 
0.3%, 2.2%, and 17.8% respectively, significantly reducing computational cost. 

 
Additional context would be beneficial in distinguishing which differences are relevant. Including 
an uncertainty analysis would help place the magnitude of the errors into perspective. For example, 
Figure 8 shows significant differences in errors between low- and high-resolution grids, with these 
discrepancies appearing more impactful than those arising from precision changes alone. 

Thank you for your insightful comments. As you mentioned, there are multiple factors contributing 
to the errors observed in our study. In addition to round-off errors associated with floating-point 
arithmetic, the choice of grid resolution also has a significant impact on bias. We appreciate your 
suggestion regarding the inclusion of an uncertainty analysis, and we will consider incorporating 
this into the revised manuscript to provide further context. We will add a description you can see as 
follows: 

Line 279～285: In this research, we focus on the processes of summing the basic field and trends. 
When the resolution is increased, the basic field remains relatively unchanged; however, the trends 
become smaller. This characteristic aligns with the nature of adding large and small numbers, 
making the advantages of the quasi double-precision algorithm more pronounced. Thus, it is evident 
from Figure 8 that as the resolution increases, the improvement achieved by quasi double-precision 
algorithm also enhances.  

On the other hand, it is important to note that the propagation of rounding errors is not 
immediately apparent over short time scales. However, as the number of iterations increases, these 
errors can become more significant. The quasi double-precision algorithm employs compensation 
mechanisms that help mitigate the propagation of these errors.  
 

Section 2.3 would benefit from further detail on which parts of the code were modified and how 
these sections were selected for modification. 

Thank you for your valuable feedback. To address this, we will: 

1. Add the clear description of the solution method for the equations including temporal integration 
scheme and spatial discretization scheme. See Line 135～153 below. 

2. Specify at which step the quasi double-precision algorithm is applied within the computation 



process in section 2.3 and replace the figure (corresponding to Figure 3 in the manuscript) and 
explain this process using formulas and explanations. See Line 161～179 below. 

 

Line 135～153: The MPAS-A solves the fully compressible, nonhydrostatic equations of motion 
(Skamarock et al. 2011). The spatial dis- cretization uses a horizontal (spherical) centroidal Voronoi 
mesh with a terrain-following geometric-height vertical coordinate and C-grid staggering for 
momentum. The temporal discretization uses the explicit time-split Runge–Kutta technique from 
Wicker and Skamarock (2002) and Klemp et al. (2007).  

The algorithm applied here primarily addresses the rounding error compensation between large 
and small numbers in addi- tion. Currently, it is only applicable to the time integration process and 
has not been implemented in the spatial discretization process. Therefore, this section will provide 
a detailed introduction to the time integration scheme. For the spatial discretization scheme, please 
refer to Skamarock et al. (2011), and it will not be introduced upon here.  

The formulation of the scheme can be considered in on dimension as equation Wicker and 
Skamarock (2002):  

!∅
!#
= 𝑅𝐻𝑆∅                                (1)     

The variable ∅ represents any prognostic variable in the prognostic equations, while RHS represents 
the right-hand side of the prognostic equations (i.e., the spatial discretization equation). In MPAS-
A, a forward-in-time finite difference is used, and it can be written as Eq. (2): 

∅!
"#$$∅!

"

∆#
= 	𝑅𝐻𝑆∅                            （2）      

Where superscript represent the time step, and subscript represent the position of grid zone.  

The two-order Runge-Kutta time scheme is used in MPAS-A as described in Gear et al. (1971): 

∅∗ = ∅# + ∆#
'
∗ 𝑅𝐻𝑆(∅#)                          （3）  

∅∗∗ = ∅# + ∆#
'
∗ 𝑅𝐻𝑆(∅∗)                        （4） 

∅#(∆# = ∅# + ∆𝑡 ∗ 𝑅𝐻𝑆(∅∗∗)                       （5） 

 
Line 161～179：According to Equation Eq.(3), (4) and (5), it can be observed that in the time 
integration scheme, each step involves the process of adding tends on the basic field φt. In numerical 
models, the basic field is generally much larger than the tends, which aligns with the principles of 
numerical computation regarding the addition of large and small numbers, as well as the time 
integration process. It is important to note that the quasi double-precision algorithm currently only 
addresses time integration and has not been validated during the spatial discretization process. The 
spatial discretization primarily involves subtraction, specifically the subtraction of a small number 
from a large number or the subtraction of two close values. Whether this algorithm is applicable in 
spatial discretization remains uncertain, therefore, we will not apply it in this context.  



Based on the application principles of the algorithm, which involve the processes of adding 
large and small numbers as well as the time integration process, we have established a strategy for 
applying the quasi double-precision algorithm within the MPAS-A. Specific improvements are 
provided based on the predictive equations: 
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The meaning of each variable in the equations exactly follows Skamarock et al. (2012), so that we 
don’t repeating explanation. For a numerical model, the most crucial variables are the prognostic 
variables. Therefore, In the MPAS-A model we applied the quasi double-precision algorithm to the 
time integration process of these prognostic variables, including horizontal momentum (𝑽() , dry 
air density (𝜌9+), potential temperature (Θ.) and vertical velocity (𝑊) , that is , the process in red 
of Eq. (6), (7), (8) and (9). (Only the predictive equations for the dynamic core are presented here, 
without the scalar transport.) 

 
In Section 3.1, the differences between cases only emerge after 10 days of integration. It would be 
valuable to contextualize these differences with the error growth from other potential sources of 
uncertainty. 

Thank you for your valuable suggestion. In response, we will add an analysis of other sources of 
error. The content will include the following: 

Line 239~245: The sources of unpredictability, as noted by Bauer et al. (2015), include instabilities 
that inject chaotic ‘noise’ at small scales 240 and the upscale propagation of their energy. For the 
cases examined, both SGL and QDP begin to exhibit errors after 10 days of integration. These errors 
arise from factors such as rounding errors due to reduced numerical precision and energy loss during 
the propagation process. The quasi double-precision algorithm can reduce the impacts of these 
errors. 

While we acknowledge other potential sources of uncertainty, such as initial condition errors, 
we have not conducted an in- depth study on them in this research. Our primary focus remains on 
evaluating the improvements provided by the compensation algorithm in addressing rounding errors.  
 
Section 3.2 states that “the errors are very small and can be ignored.” More context is needed here 
to help determine which differences are meaningful. 



Thank you for your insightful comment regarding Figure 6(a) of section 3.1. According to RC1, we 
carefully reviewed our code based on your comments and identified that the issue was a problem 
with the data processing and plotting. We have corrected this issue, and the revised Figure 1 is 
provided below, it can be seen, the average bias between DBL and QDP is smaller than DBL and 
SGL. 

 

Figure 1. The temporal evolution of spatially averaged difference of kinetic energy between DBL 
and SGL, as well as difference between DBL and QDP in case of super-cell. 

 

In Section 3.3, the authors note that “Differences in error begin to emerge after 500 steps.” This 
could be strengthened by comparing this error growth to that of other sources of uncertainty, some 
of which may become relevant earlier in the integration process. 

Thank you for your insightful suggestion. We will enhance our discussion in Section 3.3 by adding 
a comparison of error growth with other sources of uncertainty. The added content will be as follows: 

Line 262-266: Consistent with the analysis presented in Section 3.2, errors are relatively small in 
the early stages and begin to emerge after 140 hours. This increase is attributed to the accumulation 
of round-off errors and energy loss over time. The effects become more pronounced beyond 140 
hours. Overall, the quasi double-precision algorithm demonstrates a certain level of improvement 
in addressing these errors. The case with the total domain of 240 km × 240 km (Figs. 7a) show the 
larger error than 120 km × 120 km (Figs. 7b), and the error can be reduced in QDP caused by SGL.  
 
Minor Comments 

Line 19 – The authors reference a 2015 source to indicate that systems are expected to grow. While 
this is still valid, the “current systems” referenced in 2015 are no longer today’s current systems. 

Thank you for your suggestions, we have revised it by modifying the "current systems" to “2015’s 
systems" in Line 22. 

 
Line 47 – The mixed-precision reference for NEMO notes that “95.8% of the 962 variables could 
be computed using half precision,” though the publication itself refers to single precision. 



Thank you for your suggestions, we have revised it by modifying the "half precision" to “single 
precision" in Line 53. 

 
Line 143 – It is unclear if this version of MPAS-A is indeed the only one capable of utilizing single-
precision. 

We appreciate your comment. Upon reviewing the official documentation and user guide, we found 
that MPAS-A can be complied and run in single-precision since version 2.0. We apologize for the 
oversight and will revise the description accordingly. 

Line 159: It is not the only version that supports single precision, but the latest version currently 
released. 
 
Figures 5, 7, 9, 10, 11, and 12 – Alternative colormaps are suggested for all figures containing maps. 

Thank you for your suggestion regarding the colormaps. We have made the requested modifications 
to the colormaps in all relevant figures. The updated figures are provided as Figure 1(corresponding 
to Figure 5 in the manuscript), Figure 2(corresponding to Figure 7 in the manuscript), Figure 
3(corresponding to Figure 9 in the manuscript), Figure 4(corresponding to Figure 10 in the 
manuscript), Figure 5(corresponding to Figure 11 in the manuscript), Figure 6(corresponding to 
Figure 12 in the manuscript). 

 

Figure 1. Spatial distributions of averaged (1-15days) difference of surface pressure (units: Pa) 
between DBL and (a) SGL simulations, (b) QDP simulations (round-off error has reduced) in case 
of Jablonowski and Williamson baroclinic wave. 



 

Figure 2. Perturbation theta in super-cell development at 5400s in the (a) DBL simulation, (b) SGL 
simulation and (c) QDP simulation (bias has reduced), unit: K, the circle represents the pattern bias 
(the same color means the consistent value). 
 

 
Figure 3. Spatial distributions of averaged (1-15days) difference of surface pressure (units: Pa) 
between DBL and (a) SGL simulation, (b) QDP simulation (resolution: 240 km × 240 km). The 
RMSE of surface pressure between DBL and (a) SGL simulation is 6.68 × 10!" Pa, (b) QDP 
simulation is 2.25 × 10!#Pa. (The color bars of (a) and (b) are different) 

 

Figure 4. Spatial distributions of averaged (1-15days) difference of 500hPa height (units: m) 
between DBL and (a) SGL simulation, (b) QDP simulation (resolution: 240 km × 240 km). The 



RMSE of 500hPa height between DBL and (a) SGL simulation is 2.80 × 10$)m, (b) QDP 
simulation is 1.40 × 10$)m (round-off error has reduced). 

  

Figure 5. distributions of averaged (1-15days) difference of surface pressure (units: Pa) between 
DBL and (a) SGL simulation, (b) QDP simulation (resolution: 120 km × 120 km) (round-off error 
has reduced). The RMSE of surface pressure between DBL and (a) SGL simulation is 6.33 × 10$' 
Pa, (b) QDP simulation is 2.25 × 10$' Pa. (The color bars of (a) and (b) are different) 

 

Figure 6. Spatial distributions of averaged (1-15days) difference of 500 hPa height (units: m) 
between DBL and (a) SGL simulation, (b) QDP simulation (resolution: 120 km × 120 km). The 
RMSE of 500 hPa height between DBL and (a) SGL simulation is 4.35 × 10$2m, (b) QDP 
simulation is 1.90 × 10$2m. (The color bars of (a) and (b) are different) 

 
 

Line 241–242 – The phrase “but the process is more sensitive for the precision” lacks clarity and 
would benefit from rephrasing. 

Thank you for your valuable suggestion. I will rephrase this statement for improved clarity in the 
revised manuscript. See bellows: 

Line 323~325: Currently, the quasi double-precision algorithm is only implemented in the time 
integration scheme of the dynamic core of the MPAS-A model, without factoring in tracer transport. 



However, the tracer transport process involves numerous operations where large and small numbers 
are added together, making it more sensitive to precision requirements.  
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Response to Reviewer #4  

Reply on RC5: 

Specific comments: 

- The algorithm description needs more attention and description in the text. By comparison, the 
description of MPAS seems much better detailed and it could be argued that much of it is less 
important. I recommend finding ways to enhance the content of section 2.1. 

Thank you for your valuable feedback. The algorithm itself is proposed by Møller (1965), and it 
only apply in the step-by-step integration of ordinary differential equations, how to apply it in 
numerical models is core content, so to address this, we will: 

1. Add the clear description of the solution method for the equations including temporal 
integration scheme and spatial discretization scheme in section 2.2. Moreover, the algorithm 
applied here primarily addresses the rounding error compensation between large and small 
numbers in addition. Currently, it is only applicable to the time integration process and has not 
been implemented in the spatial discretization process. I apologize for not mentioning that part 
in the manuscript. I will revise and provide the supplement. See below. 

2. Enhance the algorithm description in Section 2.3. Specify at which step the quasi double-
precision algorithm is applied within the computation process in section 2.3 and replace the 
figure (corresponding to Figure 3 in the manuscript) and explain this process using formulas 
and explanations. See below. 

3. we will select a representative equation and include a detailed algorithmic description of its 
iterative calculation process in the Supplement (see Figure 1). We believe this addition will be 
beneficial for readers who wish to gain a deeper understanding of the computational aspects of 
our method. 

 

Figure 1. The pseudo-code for variable of U. 

Line 135～153: The MPAS-A solves the fully compressible, nonhydrostatic equations of motion 



(Skamarock et al. 2011). The spatial dis- cretization uses a horizontal (spherical) centroidal Voronoi 
mesh with a terrain-following geometric-height vertical coordinate and C-grid staggering for 
momentum. The temporal discretization uses the explicit time-split Runge–Kutta technique from 
Wicker and Skamarock (2002) and Klemp et al. (2007).  

The algorithm applied here primarily addresses the rounding error compensation between large 
and small numbers in addi- tion. Currently, it is only applicable to the time integration process and 
has not been implemented in the spatial discretization process. Therefore, this section will provide 
a detailed introduction to the time integration scheme. For the spatial discretization scheme, please 
refer to Skamarock et al. (2011), and it will not be introduced upon here.  

The formulation of the scheme can be considered in on dimension as equation Wicker and 
Skamarock (2002):  

!∅
!#
= 𝑅𝐻𝑆∅                                (1)     

The variable ∅ represents any prognostic variable in the prognostic equations, while RHS represents 
the right-hand side of the prognostic equations (i.e., the spatial discretization equation). In MPAS-
A, a forward-in-time finite difference is used, and it can be written as Eq. (2): 

∅!
"#$$∅!

"

∆#
= 	𝑅𝐻𝑆∅                            （2）      

Where superscript represent the time step, and subscript represent the position of grid zone.  

The two-order Runge-Kutta time scheme is used in MPAS-A as described in Gear et al. (1971): 

∅∗ = ∅# + ∆#
'
∗ 𝑅𝐻𝑆(∅#)                          （3）  

∅∗∗ = ∅# + ∆#
'
∗ 𝑅𝐻𝑆(∅∗)                        （4） 

∅#(∆# = ∅# + ∆𝑡 ∗ 𝑅𝐻𝑆(∅∗∗)                       （5） 

 
Line 161～179：According to Equation Eq.(3), (4) and (5), it can be observed that in the time 
integration scheme, each step involves the process of adding tends on the basic field φt. In numerical 
models, the basic field is generally much larger than the tends, which aligns with the principles of 
numerical computation regarding the addition of large and small numbers, as well as the time 
integration process. It is important to note that the quasi double-precision algorithm currently only 
addresses time integration and has not been validated during the spatial discretization process. The 
spatial discretization primarily involves subtraction, specifically the subtraction of a small number 
from a large number or the subtraction of two close values. Whether this algorithm is applicable in 
spatial discretization remains uncertain, therefore, we will not apply it in this context.  

Based on the application principles of the algorithm, which involve the processes of adding 
large and small numbers as well as the time integration process, we have established a strategy for 
applying the quasi double-precision algorithm within the MPAS-A. Specific improvements are 
provided based on the predictive equations: 
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The meaning of each variable in the equations exactly follows Skamarock et al. (2012), so that we 
don’t repeating explanation. For a numerical model, the most crucial variables are the prognostic 
variables. Therefore, In the MPAS-A model we applied the quasi double-precision algorithm to the 
time integration process of these prognostic variables, including horizontal momentum (𝑽() , dry 
air density (𝜌9+), potential temperature (Θ.) and vertical velocity (𝑊) , that is , the process in red 
of Eq. (6), (7), (8) and (9). (Only the predictive equations for the dynamic core are presented here, 
without the scalar transport.) 
 
- For clarification, is the QDP runtime is 2% more expensive compared to the DBL runtime or the 
SGL runtime? Also how much reduction in runtime was there for the SGL version compared to the 
DBL version? This can be used to give context to what benefits are achieved for the more noticeable 
errors in SGL. 

Thanks for your suggestion, following your insightful comment, we found the previously reported 
figures were indeed rough estimations, so we have re-evaluated the exact computational 
performance using a measurement tool to determine the runtimes. So, we will: 

3. Add a dedicated section in the paper to describe the computational performance. The size of the 
computational performance will be represented in terms of runtime, and we will discuss the 
runtime for each case in tabular form. 

4. Revise the description of computational performance in the abstract to reflect these updated and 
more accurate measurements. 

Line 286~292: In comparison with the SGL, although there is a slight increase in runtime, it is 
minimal, at only 6.0% (Jablonowski and Williamson baroclinic wave), 0.3% (Super-cell), 2.2% 
(Real data with resolution of 120km) and 17.8% (Real data with resolution of 240km) (Table 3). 
This slight increase is attributed to the addition of a small number of global variable arrays when 
using quasi double-precision. And compared to DBL, QDP demonstrated relatively better 
performance across different cases, reducing the runtime by 28.6% (Jablonowski and Williamson 
baroclinic wave), 28.5% (Super-cell), 21.1% (Real data with resolution of 120km) and 5.7% (Real 
data with resolution of 240km) (Table 3).  



 
Line 7～9: The bias of surface pressure are reduced respectively by 68%, 75%, 97% and 96% in 
cases, the memory has been reduced by almost half, while the computation increases only 6.0%, 
0.3%, 2.2%, and 17.8% respectively, significantly reducing computational cost. 
 
- Given errors appear to become noticeably larger beyond 10+ days, how are these figures dependent 
with different spatial time average lengths? Do they all only look drastically different because of 
errors after round off error becomes significant around day 10+? Is this error tied to simulation 
length or is this more determined by the number of time steps taken? 

Thank you for your insightful questions. As you noted, errors become significantly larger after 
approximately 10 days due to factors such as round-off errors arising from reduced numerical 
precision and energy loss during the propagation process. Around day 10, the accumulation of 
rounding errors becomes pronounced, continuing to accumulate over time, which can ultimately 
lead to model instability. 

In this study, we did not conduct a comparative analysis involving different time step lengths; 
therefore, we cannot definitively conclude whether the observed errors are related to the chosen 
time step sizes. However, round-off errors do accumulate with the simulation length. 

We appreciate your suggestion, and in future research, we will focus on whether integration step 
lengths have an impact on error growth. 

 

-  In some experiments, the reduction of error is a large percentage but feels like a small error. In 
general to the reader, it's not very clear that reducing these errors will matter that much. For example, 
while the error is reduced using QDP in a lot of cases, reduction of the surface pressure (hPa) error 
by a RSME of 2.8x10-1 to 1.4x10-1 seems like a small amount. Likewise for other sources of error 
and that this all needs context. It is important to consider these errors relative to other sources of 
model errors. 

Thank for your suggestion. The core of this study is the introduction of error compensation methods 
(quasi double-precision). By using error compensation methods (quasi double-precision), we can 
maintain integration stability comparable to that applying double precision scheme while 
significantly reducing memory requirements by lowering the numerical precision of all variables 
and improved the accuracy comparable to that applying the single precision. This approach not only 
reduces communication pressure but also allows for substantial increases in computational speed 



through vectorization optimization. So, we will add a section to describe it (see 3.4 Computational 
performance) 

And we will add an analysis of other sources of error. The content will include the following: 

Line 239~245: The sources of unpredictability, as noted by Bauer et al. (2015), include instabilities 
that inject chaotic ‘noise’ at small scales 240 and the upscale propagation of their energy. For the 
cases examined, both SGL and QDP begin to exhibit errors after 10 days of integration. These errors 
arise from factors such as rounding errors due to reduced numerical precision and energy loss during 
the propagation process. The quasi double-precision algorithm can reduce the impacts of these 
errors. 

While we acknowledge other potential sources of uncertainty, such as initial condition errors, 
we have not conducted an in- depth study on them in this research. Our primary focus remains on 
evaluating the improvements provided by the compensation algorithm in addressing rounding errors.  
 

- Additionally, I was wondering if the authors could leverage the test case where grid resolution was 
also incorporated as the model discretization is a source of model error compared to the model error 
due to precision differences. 

Thank you for your insightful comments. As you mentioned, there are multiple factors contributing 
to the errors observed in our study. In addition to round-off errors associated with floating-point 
arithmetic, the choice of grid resolution also has a significant impact on bias. We will add a 
description, you can see as follows: 

Line 279～285: In this research, we focus on the processes of summing the basic field and trends. 
When the resolution is increased, the basic field remains relatively unchanged; however, the trends 
become smaller. This characteristic aligns with the nature of adding large and small numbers, 
making the advantages of the quasi double-precision algorithm more pronounced. Thus, it is evident 
from Figure 8 that as the resolution increases, the improvement achieved by quasi double-precision 
algorithm also enhances.  

On the other hand, it is important to note that the propagation of rounding errors is not 
immediately apparent over short time scales. However, as the number of iterations increases, these 
errors can become more significant. The quasi double-precision algorithm employs compensation 
mechanisms that help mitigate the propagation of these errors.  
 

- For the cases in 3.3, it is not clear why the decision to have the higher resolution simulation of 120 
km x 120 km have the same time step of 720 seconds as the 240 km x 240 km case. This seems 
rather unusual as typically a reduction in grid cell size is accompanied by a proportionate reduction 
in time step size to maintain a consistent Courant number. 

Thank you for your question. As you mentioned, it is common for time step sizes to decrease 
proportionally with grid resolution. However, in our experiments, we found that the simulation 
could run stably at the finer resolution (i.e., 120 km) without requiring a reduction in the time step 
size. To minimize errors arising from differences in resolution during data processing, we chose to 
maintain the same time step across both simulations. 
 

Minor comments: 



 

- Figure 1, Figure 2 and a lesser extent Figure 3: The algorithm are written in a way that is difficult 
to read. I suggest that it is better distinguished the text (i.e. "evaluation") from variables (i.e. s,u,v). 
In Figure 2, everything is appears quite mathematical while Figure 3 is quite the opposite. It would 
be beneficial to have these all looking the same. 

Thank you for your valuable feedback. We have made the necessary modifications. For details on 
these changes, please refer to the responses provided in the first specific comments. 

 

- Line 150: "so we close the scalar transport in all cases". Does this mean it's turned off/not solved? 
Unless "closed" is a common term in the MPAS community, I suggest the authors consider a term 
closer to "disable/disabled" instead of "close/closed" when talking about model processes that are 
not absent in the simulation. 

Thank you for your insightful comment. We have revised it from "closed" to "turned off" in Line 
180. 

 

- Line 179: Has this set of simulation parameters been utilized in a previous published work as a 
test case? This would be preferred to stating it was on a website that is subject to change. 

Thank you for your suggestion. We will revise this section to clarify the source of our simulation 
parameters. The modified content will state:  

Line 223~224: This case is a deterministic initial-value test case for dry dynamical cores of 
atmospheric general-circulation models (Jablonowski and Williamson 2006). 

 

- Line 195 states the resolution is 84 km x 84 km where I believe this is actually the total domain 
size and not resolution. Assuming my understanding is correct, how many grid cells are within this 
domain and/or what is the average grid cell size in this simulation? Is it the ~500 m in Klemp 2015? 

Thank you for your question. As you pointed out, 84 km × 84 km refers to the total domain size. We 
will revise this in the manuscript. Within this domain, there are a total of 28,080 grid cells, which is 
not the 500 m that you mentioned. 

 

- Line 197: While the errors in Figure 6(a) are indeed quite small, it may be beneficial to say how 
small relative to the actual values of kinetic energy? And I think a more clear statement explaining 
this figure's behavior would help clarify the plot as it's not the expected behavior throughout the 
manuscript that QDP does better in terms of error. 

Thank you for your insightful comment regarding Figure 6(a) of section 3.1. According to RC1, we 
carefully reviewed our code based on your comments and identified that the issue was a problem 
with the data processing and plotting. We have corrected this issue, and the revised Figure 2 is 
provided below, it can be seen, the average bias between DBL and QDP is smaller than DBL and 
SGL. 



 

Figure 2. The temporal evolution of spatially averaged difference of kinetic energy between DBL 
and SGL, as well as difference between DBL and QDP in case of super-cell. 

 

- Figure 7:  The location of the Y (km) should be moved up near the axes (and should probably be 
labeled X?) and not under the color bar and Z is used which is typically thought of as a vertical 
direction is on the y axis. Color bar should probably have different scaling with a smaller range. 
Additionally why are the circles different colors between the different panels? 

Thank you for your valuable suggestions. We have made the necessary modifications as follows, as 
seen in Figure 3 (which corresponds to Figure 7 in the manuscript): 

1. The axis labels have been updated. 
2. The position of the color bar has been adjusted. 
3. The range of the color bar has been modified for better scaling. 

Furthermore, we have added a note in the caption to clarify the differences in circle colors between 
the various panels. 

 

Figure 3. Perturbation theta in super-cell development at 5400s in the (a) DBL simulation, (b) SGL 
simulation and (c) QDP simulation (bias has reduced), unit: K, the circle represents the pattern bias 
(the same color means the consistent value). 
 

- Figure 9 is one of the only figures that has color bar limits change between the SGL and QDP 



panels. Given that quite often the color bar limit have been fixed ranges in most figures, a note in 
the caption may be beneficial for this. 

Thank you for your suggestion. We have included a note in the caption of Figure 9 indicating that 
the color bars used in panels (a) and (b) are different. This will help clarify the distinction for readers. 

 

- Figure 10(b) uses the same color bar as Figure 10(a) but reveals no detail because the same color 
bar limits are too large. I suggest that a new color bar range is selected (and it is then noted in the 
caption as being different in an and b as suggested for Figure 9). 

Thank you for your suggestion. I believe you may be referring to Figure 11 rather than Figure 10. I 
will revise the color bar for Figure 11 to improve clarity and detail, as well as update the caption 
accordingly. Please see below for Figure 4 (corresponding to Figure 11 in the manuscript). 

  

Figure 4. distributions of averaged (1-15days) difference of surface pressure (units: Pa) between 
DBL and (a) SGL simulation, (b) QDP simulation (resolution: 120 km × 120 km) (round-off error 
has reduced). The RMSE of surface pressure between DBL and (a) SGL simulation is 6.33 × 10$' 
Pa, (b) QDP simulation is 2.25 × 10$' Pa. (The color bars in (a) and (b) are different) 

 

For code and data availability section, it is mentioned that "model code and plotting data" is 
available While I was able to find the versions of the model code, the simulation inputs and plotting 
scripts, I was unable to locate actual data. It's unclear if this is intended as the wording indicates 
"plotting data" and we should rather anticipate running the model to produce the data. 

Thank you for your valuable feedback. Due to the large size of the output data generated by the 
model, we have not uploaded the actual output files. If you would like to obtain the processed output 
data, you can compile and run the model following the instructions in the README file, which will 
allow you to generate the output data. 

To enhance clarity, I will revise the description in the "Code and Data Availability" section 
accordingly. The updated wording is provided below. 

Line 329-332: Code and data availability. Model code and plotting data related to this manuscript 
is available at: https://doi.org/10.5281/zenodo.13765422. Details regarding the code structure and 

https://doi.org/10.5281/zenodo.13765422


instructions for running the code are provided in the supplementary material, which can be 
downloaded and viewed in Fig. S1. This figure provides a visual overview of the code organization. 
The information of steps how to execute the simulations can be found in README file in each test 
case folder. 
 

Technical comments: 

- Negative exponents have been routinely miswritten throughout the manuscript such as 10-2 rather 
than 10-2. 

Thank you for your suggestion. We have corrected these errors throughout the manuscript. 

- Line 218: "The Spatial RMSE of with 120 km x 120km.." is missing the variable name, which 
appears to be surface pressure. 

Thank you for your observation. I appreciate your attention to detail. I have corrected this in the 
revised manuscript (Line 272) by including the variable name, which is indeed surface pressure. 
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