
Response to Reviewer 4 

We are incredibly grateful for your efficient review process. Your insightful comments have 
provided valuable guidance for revising the manuscript. We have revised the manuscript according 
to your suggestions and will respond to your comments paragraph by paragraph. The comments are 
given below in black, our responses are in blue, and proposed changes to the manuscript are in red. 
Additional references are provided at the end of this document. The final revisions and specific 
locations corresponding to the manuscript will be marked uniformly after receiving feedback from 
other reviewers.  

 

Major Comments 

The abstract states: “Low precision computations can significantly reduce computational costs, but 
inevitably introduce rounding errors, which affect computational accuracy.” However, it is not 
clearly defined what is meant by “low precision computations,” and the statement that such 
computations inevitably affect accuracy may not always hold true. 

We thank the reviewer for the valuable feedback. In the revised manuscript, we have added a clear 
definition of "low precision computations".  

Regarding the assertion that "low precision computations inevitably affect accuracy," we appreciate 
the reviewer’s insight, and we will revise the description in the abstract. The specific modifications 
are detailed below. 

1 Introduction 

Specifically, we define low precision computations as those that utilize a limited number of 
significant digits (less than 64 bits) during numerical operations, which can significantly reduce the 
computational resources required while potentially introducing rounding errors. 

Abstract 

While low precision computations can significantly reduce computational costs, they may introduce 
rounding errors that can affect computational accuracy under certain conditions. 

 

Both the abstract and conclusions mention the computational impact of the proposed methods; 
however, these effects are not discussed further within the main body of the manuscript. 

We appreciate your suggestion, following your insightful comment, we will: 

1. Add a dedicated section 3.4 in the paper to describe the computational performance. The size of 
the computational performance will be represented in terms of runtime, and we will discuss the 
runtime for each case in tabular form. 

2. Revise the description of computational performance in the abstract to reflect these updated and 
more accurate measurements. 

3.4 Computational performance 



In comparison with the SGL, although there is a slight increase in runtime, it is minimal, at only 6% 
(Jablonowski and Williamson baroclinic wave), 0.3% (Super-cell), 2% (Real data with resolution 
of 120km) and 18% (Real data with resolution of 240km) (Table 1). This slight increase is attributed 
to the addition of a small number of global variable arrays when using quasi double-precision. And 
compared to DBL, QDP demonstrated relatively better performance across different cases, reducing 
the runtime by 29% (Jablonowski and Williamson baroclinic wave), 29% (Super-cell), 21% (Real 
data with resolution of 120km) and 6% (Real data with resolution of 240km) (Table 1).  

Table 1. Elapsed time of DBL, SGL and QDP test (unit:s). 

Case name DBL SGL QDP 

Jablonowski and Williamson baroclinic wave 1768 1191 1263 

Super-cell 1507 1073 1077 

Real data with resolution of 120km 19126 14765 15092 

Real data with resolution of 240km 1397 1118 1317 

Abstract 

The content ‘The round-off error of surface pressure is reduced by 68%, 75%, 97%, 96% 
in cases, the memory has been reduced by almost half, while the computation increases 
only 2%, significantly reducing computational cost.’ will be revised to ‘The bias of surface 
pressure are reduced respectively by 68%, 75%, 97% and 96% in cases, the memory has 
been reduced by almost half, while the computation increases only 6%, 0.3%, 2%, and 18% 
in cases, significantly reducing computational cost.’ 

 

Additional context would be beneficial in distinguishing which differences are relevant. Including 
an uncertainty analysis would help place the magnitude of the errors into perspective. For example, 
Figure 8 shows significant differences in errors between low- and high-resolution grids, with these 
discrepancies appearing more impactful than those arising from precision changes alone. 

Thank you for your insightful comments. As you mentioned, there are multiple factors contributing 
to the errors observed in our study. In addition to round-off errors associated with floating-point 
arithmetic, the choice of grid resolution also has a significant impact on bias. We appreciate your 
suggestion regarding the inclusion of an uncertainty analysis, and we will consider incorporating 
this into the revised manuscript to provide further context. We will add a description in Section 3.3, 
you can see as follows: 

3.3 Additional content 

In this research, we focus on the processes of summing the basic field and trends. When the 
resolution is increased, the basic field remains relatively unchanged; however, the trends become 
smaller. This characteristic aligns with the nature of adding large and small numbers, making the 
advantages of the quasi double-precision algorithm more pronounced. Thus, it is evident from 
Figure 8 that as the resolution increases, the improvement achieved by quasi double-precision 



algorithm also enhances. 

On the other hand, it is important to note that the propagation of rounding errors is not immediately 
apparent over short time scales. However, as the number of iterations increases, these errors can 
become more significant. The quasi double-precision algorithm employs compensation mechanisms 
that help mitigate the propagation of these errors. 

 

Section 2.3 would benefit from further detail on which parts of the code were modified and how 
these sections were selected for modification. 

Thank you for your valuable feedback. To address this, we will: 

1. Add the clear description of the solution method for the equations including temporal integration 
scheme and spatial discretization scheme in section 2.2. See 2.2 additional content below. 

2. Specify at which step the quasi double-precision algorithm is applied within the computation 
process in section 2.3 and replace the figure (corresponding to Figure 3 in the manuscript) and 
explain this process using formulas and explanations. See 2.3 additional content below. 

2.2 Additional content 

The MPAS-A solves the fully compressible, nonhydrostatic equations of motion (Skamarock et al. 
2012). The spatial discretization uses a horizontal (spherical) centroidal Voronoi mesh with a 
terrain-following geometric-height vertical coordinate and C-grid staggering for momentum. The 
temporal discretization uses the explicit time-split Runge–Kutta technique from Wicker and 
Skamarock (2002) and Klemp et al. (2007). 

The algorithm applied here primarily addresses the rounding error compensation between large and 
small numbers in addition. Currently, it is only applicable to the time integration process and has 
not been implemented in the spatial discretization process. Therefore, this section will provide a 
detailed introduction to the time integration scheme. For the spatial discretization scheme, please 
refer to Skamarock et al. (2012), and it will not be introduced upon here. 

The formulation of the scheme can be considered in on dimension as equation Wicker and 
Skamarock (2002): 
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The variable ∅ represents any prognostic variable in the prognostic equations, while RHS represents 
the right-hand side of the prognostic equations (i.e., the spatial discretization equation). In MPAS-
A, a forward-in-time finite difference is used, and it can be written as Eq. (2): 
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Where superscript represent the time step, and subscript represent the position of grid zone.  

The two-order Runge-Kutta time scheme is used in MPAS-A as described in Gear et al. (1971): 
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2.3 Additional content 

According to Equation Eq. (3), (4) and (5), it can be observed that in the time integration scheme, 
each step involves the process of adding tends on the basic field ∅#. In numerical models, the basic 
field is generally much larger than the tends, which aligns with the principles of numerical 
computation regarding the addition of large and small numbers, as well as the time integration 
process. It is important to note that the quasi double-precision algorithm currently only addresses 
time integration and has not been validated during the spatial discretization process. The spatial 
discretization primarily involves subtraction, specifically the subtraction of a small number from a 
large number or the subtraction of two close values. Whether this algorithm is applicable in spatial 
discretization remains uncertain, therefore, we will not apply it in this context. 

Based on the application principles of the algorithm, which involve the processes of adding large 
and small numbers as well as the time integration process, we have established a strategy for 
applying the quasi double-precision algorithm within the MPAS-A. Specific improvements are 
provided based on the predictive equations: 
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The meaning of each variable in the equations exactly follows Skamarock et al. (2012), so that we 
don’t repeating explanation. For a numerical model, the most crucial variables are the prognostic 
variables. Therefore, In the MPAS-A model we applied the quasi double-precision algorithm to the 
time integration process of these prognostic variables, including horizontal momentum (𝑽() , dry 
air density (𝜌9+), potential temperature (Θ.) and vertical velocity (𝑊) , that is , the process in red 
of Eq. (6), (7), (8) and (9). (Only the predictive equations for the dynamic core are presented here, 
without the scalar transport.) 



 

In Section 3.1, the differences between cases only emerge after 10 days of integration. It would be 
valuable to contextualize these differences with the error growth from other potential sources of 
uncertainty. 

Thank you for your valuable suggestion. In response, we will add an analysis of other sources of 
error in Section 3.1. The content will include the following: 

3.1 Additional content 

The sources of unpredictability, as noted by Bauer et al. (2015), include instabilities that inject 
chaotic ‘noise’ at small scales and the upscale propagation of their energy. For the cases examined, 
both SGL and QDP begin to exhibit errors after 10 days of integration. These errors arise from 
factors such as rounding errors due to reduced numerical precision and energy loss during the 
propagation process. The quasi double-precision algorithm can reduce the impacts of these errors. 

While we acknowledge other potential sources of uncertainty, such as initial condition errors, we 
have not conducted an in-depth study on them in this research. Our primary focus remains on 
evaluating the improvements provided by the compensation algorithm in addressing rounding errors. 

 

Section 3.2 states that “the errors are very small and can be ignored.” More context is needed here 
to help determine which differences are meaningful. 

Thank you for your insightful comment regarding Figure 6(a) of section 3.1. According to RC1, we 
carefully reviewed our code based on your comments and identified that the issue was a problem 
with the data processing and plotting. We have corrected this issue, and the revised Figure 1 is 
provided below, it can be seen, the average bias between DBL and QDP is smaller than DBL and 
SGL. 

 

Figure 1. The temporal evolution of spatially averaged difference of kinetic energy between DBL 
and SGL, as well as difference between DBL and QDP in case of super-cell. 

 



In Section 3.3, the authors note that “Differences in error begin to emerge after 500 steps.” This 
could be strengthened by comparing this error growth to that of other sources of uncertainty, some 
of which may become relevant earlier in the integration process. 

Thank you for your insightful suggestion. We will enhance our discussion in Section 3.3 by adding 
a comparison of error growth with other sources of uncertainty. The added content will be as follows: 

3.3 Additional Contents 

Consistent with the analysis presented in Section 3.1, errors are relatively small in the early stages 
and begin to emerge after 500 steps. This increase is attributed to the accumulation of round-off 
errors and energy loss over time. The effects become more pronounced beyond 500 steps. Overall, 
the quasi double-precision algorithm demonstrates a certain level of improvement in addressing 
these errors. 

 

Minor Comments 

Line 19 – The authors reference a 2015 source to indicate that systems are expected to grow. While 
this is still valid, the “current systems” referenced in 2015 are no longer today’s current systems. 

Thank you for your suggestions, we have revised it by modifying the "current systems" to “2015’s 
systems". 

 

Line 47 – The mixed-precision reference for NEMO notes that “95.8% of the 962 variables could 
be computed using half precision,” though the publication itself refers to single precision. 

Thank you for your suggestions, we have revised it by modifying the "half precision" to “single 
precision". 

 

Line 143 – It is unclear if this version of MPAS-A is indeed the only one capable of utilizing single-
precision. 

We appreciate your comment. Upon reviewing the official documentation and user guide, we found 
that MPAS-A can be complied and run in single-precision since version 2.0. We apologize for the 
oversight and will revise the description accordingly. 

 

Figures 5, 7, 9, 10, 11, and 12 – Alternative colormaps are suggested for all figures containing maps. 

Thank you for your suggestion regarding the colormaps. We have made the requested modifications 
to the colormaps in all relevant figures. The updated figures are provided as Figure 1(corresponding 
to Figure 5 in the manuscript), Figure 2(corresponding to Figure 7 in the manuscript), Figure 
3(corresponding to Figure 9 in the manuscript), Figure 4(corresponding to Figure 10 in the 
manuscript), Figure 5(corresponding to Figure 11 in the manuscript), Figure 6(corresponding to 
Figure 12 in the manuscript). 



 

Figure 1. Spatial distributions of averaged (1-15days) difference of surface pressure (units: Pa) 
between DBL and (a) SGL simulations, (b) QDP simulations (round-off error has reduced) in case 
of Jablonowski and Williamson baroclinic wave. 

 

    

Figure 2. Perturbation theta in super-cell development at 5400s in the (a) DBL simulation, (b) 
SGL simulation and (c) QDP simulation (bias has reduced), unit: K, the circle represents the 
pattern bias. 

 



Figure 3. Spatial distributions of averaged (1-15days) difference of surface pressure (units: Pa) 
between DBL and (a) SGL simulation, (b) QDP simulation (resolution: 240 km × 240 km). The 
RMSE of surface pressure between DBL and (a) SGL simulation is 6.68 × 10!" Pa, (b) QDP 
simulation is 2.25 × 10!#Pa. (The color bars of (a) and (b) are different) 

 

Figure 4. Spatial distributions of averaged (1-15days) difference of 500hPa height (units: m) 
between DBL and (a) SGL simulation, (b) QDP simulation (resolution: 240 km × 240 km). The 
RMSE of 500hPa height between DBL and (a) SGL simulation is 2.80 × 10$)m, (b) QDP 
simulation is 1.40 × 10$)m (round-off error has reduced). 

  

Figure 5. distributions of averaged (1-15days) difference of surface pressure (units: Pa) between 
DBL and (a) SGL simulation, (b) QDP simulation (resolution: 120 km × 120 km) (round-off error 
has reduced). The RMSE of surface pressure between DBL and (a) SGL simulation is 6.33 × 10$' 
Pa, (b) QDP simulation is 2.25 × 10$' Pa. (The color bars of (a) and (b) are different) 



 

Figure 6. Spatial distributions of averaged (1-15days) difference of 500 hPa height (units: m) 
between DBL and (a) SGL simulation, (b) QDP simulation (resolution: 120 km × 120 km). The 
RMSE of 500 hPa height between DBL and (a) SGL simulation is 4.35 × 10$*m, (b) QDP 
simulation is 1.90 × 10$*m. (The color bars of (a) and (b) are different) 

 

Line 241–242 – The phrase “but the process is more sensitive for the precision” lacks clarity and 
would benefit from rephrasing. 

Thank you for your valuable suggestion. I will rephrase this statement for improved clarity in the 
revised manuscript. See bellows: 

Currently, the quasi double-precision algorithm is only implemented in the time integration scheme 
of the dynamic core of the MPAS-A model, without factoring in tracer transport. However, the tracer 
transport process involves numerous operations where large and small numbers are added together, 
making it more sensitive to precision requirements. 
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