
Response to Reviewer 1 
 
We are incredibly grateful for your efficient review process, providing your feedback in just a few 
days. Your insightful comments have provided valuable guidance for revising the manuscript. We 
have revised the manuscript according to your suggestions and will respond to your comments 
paragraph by paragraph. The comments are given below in black, our responses are in blue, and 
proposed changes to the manuscript are in red. Additional references are provided at the end of this 
document. The final revisions and specific locations corresponding to the manuscript will be marked 
uniformly after receiving feedback from other reviewers.  
 
Major comments: 

Based on Figure 1 and Figure 2, this computational method appears somewhat simple. There is 
relatively little research on the keyword "quasi double-precision." The Authors could explain why 
their work is novel compared to the existed methods already published nowadays. 

Thank you for your comments. We have added the significance and novelty of our work in section: 
introduction and section: Conclusions and discussion and have been summarized below. 

Introduction 

Most works involving numerical models that reduce numerical precision adopt a mixed-precision 
scheme, where some variables use single precision while others remain in double precision to ensure 
integration stability, as demonstrated in the work of Chen et al. (2024). Currently, there are very 
few studies that almost entirely employ low precision (32-bit) in numerical models, only applied in 
IFS by Vánˇa et al. (2016). However, they only utilize single precision without considering error 
compensation for it. In this study, all variables in the numerical model were implemented using 
single precision, and error compensation was applied to key variables. By using error compensation 
methods (quasi double-precision), we can maintain integration stability comparable to that applying 
double precision scheme while significantly reducing memory requirements by lowering the 
numerical precision of all variables and improved the accuracy comparable to that applying the 
single precision. This approach not only reduces communication pressure but also allows for 
substantial increases in computational speed through vectorization optimization. 

Conclusion and discussion 

We have replaced the first and second paragraphs of the Conclusion section with the following 
revised paragraph: 

The quasi double-precision algorithm can compensate for round-off errors by keeping corrections 
in addition of large and small numbers. And in numerical models, the basic field is generally much 
larger than the tends, which aligns with the principles of quasi double-precision, as well as the time 
integration process. Based on the it, we have established a strategy for applying the quasi double-
precision algorithm within the MPAS-A. Through the implementation of quasi double-precision 
methods, we maintain accuracy similarly to the tests using double precision and achieve comparable 
integration stability to the tests comparing to single precision tests. The error of surface pressure of 



4 cases are reduced by 68%, 75%, 97%, 96% (see Section 3). Overall, QDP using quasi double-
precision algorithm demonstrates higher accuracy than the SGL, suggesting the potential for 
applying quasi double-precision algorithm in numerical models. 
We don’t apply it to spatial discretization process, because spatial discretization primarily involves 
subtraction, specifically the subtraction of a small number from a large number or the subtraction 
of two close values. Whether this algorithm is applicable in spatial discretization remains uncertain, 
therefore, we don’t consider it in this context. 
While mixed-precision approaches, where certain variables retain double precision for stability (e.g., 
Chen et al., 2024), are common for reducing numerical precision in models, and they don’t consider 
the error compensation. This study distinguishes itself by implementing single precision for all 
model variables and applying error compensation for critical variables. 
When applied the quasi double-precision algorithm in MPAS-A, we achieved to reduce all double 
precision to single precision, although increased few local variables and arrays in every time-
integration variable, these have little impact on the overall memory reduction. In general, memory 
has been reduced by almost half, with a corresponding computational increase of just 6%, 0.3%, 
2%, and 18% in the respective cases (see section 3.4), demonstrating a substantial improvement in 
computational efficiency. 

The main point of applying signal precision computing methods is ensuring predictive, and reducing 
computational costs. The iterative precision compensation increases the computation load. Has this 
study considered the issue of computational efficiency? For example, runtime, reduced 
computational cost, they were mentioned in introduction literature review, but not studied in this 
study. 

We apologize for the oversight. The additional computational cost incurred from using error 
compensation is minimal; it only adds six global arrays to the entire model code. Therefore, we 
neglected to elaborate on this aspect. We appreciate your suggestion, following your insightful 
comment, we found the previously reported figures were indeed rough estimations, so we have re-
evaluated the exact computational performance using a measurement tool to determine the runtimes. 
So, we will: 

1. Add a dedicated section 3.4 in the paper to describe the computational performance. The size 
of the computational performance will be represented in terms of runtime, and we will discuss 
the runtime for each case in tabular form. 

2. Revise the description of computational performance in the abstract to reflect these updated and 
more accurate measurements. 

3.4 Computational performance 

In comparison with the SGL, although there is a slight increase in runtime, it is minimal, at only 6% 
(Jablonowski and Williamson baroclinic wave), 0.3% (Super-cell), 2% (Real data with resolution 
of 120km) and 18% (Real data with resolution of 240km) (Table 1). This slight increase is attributed 
to the addition of a small number of global variable arrays when using quasi double-precision. And 
compared to DBL, QDP demonstrated relatively better performance across different cases, reducing 



the runtime by 29% (Jablonowski and Williamson baroclinic wave), 29% (Super-cell), 21% (Real 
data with resolution of 120km) and 6% (Real data with resolution of 240km) (Table 1).  

Table 1. Elapsed time of DBL, SGL and QDP test (unit:s). 

Case name DBL SGL QDP 

Jablonowski and Williamson baroclinic wave 1768 1191 1263 

Super-cell 1507 1073 1077 

Real data with resolution of 120km 19126 14765 15092 

Real data with resolution of 240km 1397 1118 1317 

Abstract 

The content ‘The round-off error of surface pressure is reduced by 68%, 75%, 97%, 96% 
in cases, the memory has been reduced by almost half, while the computation increases 
only 2%, significantly reducing computational cost.’ will be revised to ‘The bias of surface 
pressure are reduced respectively by 68%, 75%, 97% and 96% in cases, the memory has 
been reduced by almost half, while the computation increases only 6%, 0.3%, 2%, and 18% 
in cases, significantly reducing computational cost.’ 

 

The model is described poorly. The solution method for the equations is not even mentioned. For 
example, the finite difference scheme is mainly used to calculate the primary equations for variables 
studied in this work. And at which step of the equation is the quasi double-precision algorithm 
specifically applied? The strategy used to compute cell edge, dry air density, potential temperature 
with quasi double-precision algorithm is also difficult to understand from Figure 3. 

Thank you for your valuable feedback regarding the clarity of our model description and the 
implementation of the quasi double-precision algorithm. We recognize that the solution method for 
the equations was not sufficiently detailed in our original manuscript. To address this, we will: 

1. Add the clear description of the solution method for the equations including temporal 
integration scheme and spatial discretization scheme in section 2.2. Moreover, the algorithm 
applied here primarily addresses the rounding error compensation between large and small 
numbers in addition. Currently, it is only applicable to the time integration process and has not 
been implemented in the spatial discretization process. I apologize for not mentioning that part 
in the manuscript. I will revise and provide the supplement. See 2.2 additional content below. 

2. Specify at which step the quasi double-precision algorithm is applied within the computation 
process in section 2.3 and replace the figure (corresponding to Figure 3 in the manuscript) and 
explain this process using formulas and explanations. See 2.3 additional content below. 
 

2.2 Additional content 



The MPAS-A solves the fully compressible, nonhydrostatic equations of motion (Skamarock et al. 
2012). The spatial discretization uses a horizontal (spherical) centroidal Voronoi mesh with a 
terrain-following geometric-height vertical coordinate and C-grid staggering for momentum. The 
temporal discretization uses the explicit time-split Runge–Kutta technique from Wicker and 
Skamarock (2002) and Klemp et al. (2007). 

The algorithm applied here primarily addresses the rounding error compensation between large and 
small numbers in addition. Currently, it is only applicable to the time integration process and has 
not been implemented in the spatial discretization process. Therefore, this section will provide a 
detailed introduction to the time integration scheme. For the spatial discretization scheme, please 
refer to Skamarock et al. (2012), and it will not be introduced upon here. 

The formulation of the scheme can be considered in on dimension as equation Wicker and 
Skamarock (2002): 
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= 𝑅𝐻𝑆∅                                (1) 

The variable ∅ represents any prognostic variable in the prognostic equations, while RHS represents 
the right-hand side of the prognostic equations (i.e., the spatial discretization equation). In MPAS-
A, a forward-in-time finite difference is used, and it can be written as Eq. (2): 
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Where superscript represent the time step, and subscript represent the position of grid zone.  

The two-order Runge-Kutta time scheme is used in MPAS-A as described in Gear et al. (1971): 

∅∗ = ∅# + ∆#
'
∗ 𝑅𝐻𝑆(∅#)                          （3）  

∅∗∗ = ∅# + ∆#
'
∗ 𝑅𝐻𝑆(∅∗)                        （4） 

∅#(∆# = ∅# + ∆𝑡 ∗ 𝑅𝐻𝑆(∅∗∗)                       （5） 

2.3 Additional content 

According to Equation Eq. (3), (4) and (5), it can be observed that in the time integration scheme, 
each step involves the process of adding tends on the basic field ∅#. In numerical models, the basic 
field is generally much larger than the tends, which aligns with the principles of numerical 
computation regarding the addition of large and small numbers, as well as the time integration 
process. It is important to note that the quasi double-precision algorithm currently only addresses 
time integration and has not been validated during the spatial discretization process. The spatial 
discretization primarily involves subtraction, specifically the subtraction of a small number from a 
large number or the subtraction of two close values. Whether this algorithm is applicable in spatial 
discretization remains uncertain, therefore, we will not apply it in this context. 



Based on the application principles of the algorithm, which involve the processes of adding large 
and small numbers as well as the time integration process, we have established a strategy for 
applying the quasi double-precision algorithm within the MPAS-A. Specific improvements are 
provided based on the predictive equations: 
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The meaning of each variable in the equations exactly follows Skamarock et al. (2012), so that we 
don’t repeating explanation. For a numerical model, the most crucial variables are the prognostic 
variables. Therefore, In the MPAS-A model we applied the quasi double-precision algorithm to the 
time integration process of these prognostic variables, including horizontal momentum (𝑽() , dry 
air density (𝜌9+), potential temperature (Θ.) and vertical velocity (𝑊) , that is , the process in red 
of Eq. (6), (7), (8) and (9). (Only the predictive equations for the dynamic core are presented here, 
without the scalar transport.) 

The color scheme in Figure 5 is very hard to distinguish; the solid purple area is too large, making 
the gradient difficult to see. Figure 10 has the same issue. It is recommended to refer to the classic 
NCL color scheme. https://www.ncl.ucar.edu/Applications/era40.shtml 

Thank you very much for your suggestions and the website link. I have revised Figures 5 and 10 
according to the guidelines provided in the link. Please see below for Figure 1 (corresponding to 
Figure 5 in the manuscript) and Figure 2 (corresponding to Figure 10 in the manuscript). 

https://www.ncl.ucar.edu/Applications/era40.shtml


 

Figure 1. Spatial distributions of averaged (1-15days) difference of surface pressure (units: Pa) 
between DBL and (a) SGL simulations, (b) QDP simulations (round-off error has reduced) in case 
of Jablonowski and Williamson baroclinic wave. 

 

Figure 2. Spatial distributions of averaged (1-15days) difference of 500hPa height (units: m) 
between DBL and (a) SGL simulation, (b) QDP simulation (resolution: 240 km × 240 km). The 
RMSE of 500hPa height between DBL and (a) SGL simulation is 2.80 × 10$)m, (b) QDP 
simulation is 1.40 × 10$)m (round-off error has reduced). 

Figure 6 (a) shows that DBL-SGL decreases after 1.0, which appears to be caused by a coding error. 
Please check and confirm the validity of the data. 

Thank you for your insightful comment regarding Figure 6(a), we carefully reviewed our code based 
on your comments and identified that the issue was a problem with the data processing and plotting. 
We have corrected this issue, and the revised Figure 3 is provided below: 



 

Figure 3. The temporal evolution of spatially averaged difference of kinetic energy between DBL 
and SGL, as well as difference between DBL and QDP in case of super-cell. 

I apologize for needing to provide additional information regarding this section. In all cases 
presented in the manuscript, the time-evolution plots (Figures 4, 6, and 8 in the manuscript) 
currently utilize kinetic energy and surface pressure, which correspond to the conservation of energy 
and mass, respectively. However, I realize that directly using total energy and total mass would 
offer a more accurate representation. Please see the figures 4, 5 and 6 showing the temporal 
variations of energy and mass for all cases. If you allow it, I would be happy to replace the existing 
Figures 4, 6, and 8 (in the manuscript) with these updated versions (figures 4, 5 and 6). I want to 
emphasize that this change would not affect the overall results or conclusions of the study, which 
remain consistent with those currently presented in the manuscript. I think your suggestions are 
greatly appreciated and have been very helpful in improving the manuscript. 

 

Figure 4. The temporal evolution of spatially averaged difference of (a) total energy, (b) total mass 
between DBL and SGL, as well as difference between DBL and QDP in case of Jablonowski and 
Williamson baroclinic wave. 



 

Figure 5. The temporal evolution of spatially averaged difference of (a) total energy, (b) total mass 
between DBL and SGL, as well as difference between DBL and QDP in case of super-cell. 

It is important to note that, for enhanced clarity and to facilitate a better understanding of the trend, 
the x-axis unit for the figure representing Case 7 has been changed to hours (Fig. 6). 

 

Figure 6. The temporal evolution of spatially averaged difference of total energy between DBL and 
SGL, as well as difference between DBL and QDP in case of real data, with resolution of (a) 240 
km × 240 km, (b) 120 km × 120 km. 

Minor comments: 

The color bar in Figure 7 seems almost useless. 

Thank you very much for your careful review and valuable comments on my manuscript. Regarding 
the issue you raised about the color bar in the figure 7. After adjusting the color bar, two distinct 
areas of improvement are now evident, compared to only one in the original figure. I sincerely 
apologize that the previous color bar setting was not appropriate. I have adjusted the color bar 



according to your suggestion, and the revised figure is shown as Figure 7 (corresponding to Figure 
7 in the manuscript).  

    

Figure 7. Perturbation theta in super-cell development at 5400s in the (a) DBL simulation, (b) 
SGL simulation and (c) QDP simulation (bias has reduced), unit: K, the circle represents the 
clearest error. 

Please mention “round-off error” in relevant figures' captions. 

Thank you very much for your suggestions. I have revised it. You can see it in the manuscript after 
receiving feedback from other reviewers. 

Figure 11 appears to be somewhat blurry. 

Thank you very much for your suggestions. I have revised it. Please see below for Figure 8 
(corresponding to Figure 11 in the manuscript). 

   

Figure 8. distributions of averaged (1-15days) difference of surface pressure (units: Pa) between 
DBL and (a) SGL simulation, (b) QDP simulation (resolution: 120 km × 120 km) (round-off error 
has reduced). The RMSE of surface pressure between DBL and (a) SGL simulation is 6.33 × 10$' 
Pa, (b) QDP simulation is 2.25 × 10$' Pa.  



It's important to note that the color bars for Figures (a) and (b) are intentionally set differently due 
to the significant disparity in their respective threshold ranges. If identical color scales were applied, 
Figure (b) would appear entirely white. 
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