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Abstract. Field and remote sensing studies suggest that ice mélange influences glacier-fjord systems by exerting stresses on

glacier termini and releasing large amounts of freshwater into fjords. The broader impacts of ice mélange over long time scales

are unknown, in part due to a lack of suitable ice mélange flow models. Previous efforts have included modifying existing

viscous ice shelf models, despite the fact that ice mélange is fundamentally a granular material, and running computationally

expensive discrete element simulations. Here, we draw on laboratory studies of granular materials, which exhibit viscous flow5

when stresses greatly exceed the yield point, plug flow when the stresses approach the yield point, and stress transfer via force

chains. By implementing the nonlocal granular fluidity rheology into a depth- and width-integrated stress balance equation, we

produce a numerical model of ice mélange flow that is consistent with our understanding of well-packed granular materials and

that is suitable for long time-scale simulations. For parallel-sided fjords, the model exhibits two possible steady state solutions.

When there is no calving of new icebergs or melting of previously calved icebergs, the ice mélange is pushed down fjord by10

the advancing glacier terminus, the velocity is constant along the length of the fjord, and the thickness profile is exponential.

When calving and melting are included, the ice mélange evolves to another steady state in which its location is fixed relative

to the fjord walls, the thickness profile is relatively steep, and the flow is extensional. For the latter case, the model predicts

that the steady-state ice mélange buttressing force depends on the surface and basal melt rates through an inverse power law

relationship, decays roughly exponentially with both fjord width and gradient in fjord width, and increases with the iceberg15

calving flux. The increase in buttressing force with the calving flux, which depends on glacier thickness, appears to occur

more rapidly than the force required to prevent the capsize of full-glacier-thickness icebergs, suggesting that glaciers with high

calving fluxes may be more strongly influenced by ice mélange than those with small fluxes.

Copyright statement. TEXT

1 Introduction20

Ice mélange is an intrinsically granular material that is comprised of icebergs, brash ice, and sea ice packed together at the

ocean surface. In some fjords, where iceberg productivity is high, ice mélange can persist year round. In others, it forms for
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a few months in winter, when sea ice binds the iceberg clasts together, and then breaks apart each spring. Ice mélange is a

highly heterogeneous material, with clast dimensions varying from meters to hundred of meters in both horizontal and vertical

dimensions. The large vertical dimension of ice mélange suggests that some processes that are important for sea ice and river25

ice, such as ridging and rafting, are likely unimportant for the flow of ice mélange.

Previous work has established that glacier advance between major calving events can result in the formation of an ice

mélange wedge that flows quasi-statically and that exerts a force per unit width on the glacier terminus on the order of

107 N m−1 (Robel, 2017; Burton et al., 2018; Amundson and Burton, 2018). This load may be sufficient to inhibit calv-

ing and capsizing of new icebergs (e.g., Amundson et al., 2010; Krug et al., 2015; Bassis et al., 2021; Crawford et al., 2021;30

Schlemm et al., 2022), which is supported by studies that have linked break-up of a seasonal ice mélange wedge to the onset of

calving in early summer (Cassotto et al., 2015; Bevan et al., 2019; Xie et al., 2019; Joughin et al., 2020). In locations where ice

mélange persists year round, it appears to remain sufficiently strong to influence the timing and seasonality of calving events

(Wehrlé et al., 2023). Terrestrial radar data indicates that ice mélange flow becomes incoherent at the grain scale in the hours

preceding major calving events (Cassotto et al., 2021), suggesting a weakening of the ice mélange, and that dynamic jamming35

occurs once an iceberg calves into the fjord (Peters et al., 2015).

Recent work has demonstrated that icebergs are also important sources of freshwater in fjords (Enderlin et al., 2016, 2018;

Moon et al., 2017; Mortensen et al., 2020), especially during winter, and that this distributed release of freshwater has implica-

tions for fjord circulation and submarine melting of glacier termini. The presence of icebergs tends to freshen and cool fjords,

but also helps to enhance estuarine circulation and drive warm water into fjords, where it comes into contact with and melts40

glacier termini (Davison et al., 2020). Icebergs additionally create complex flow pathways and tend to decrease the velocity of

subsurface waters (Hughes, 2022).

The conclusion of many studies is that there is a strong need for an ice mélange model that is consistent with its granular

nature and that can be mechanically and thermodynamically coupled to the glacier-ocean system. Previous modeling attempts

have used discrete element models (Robel, 2017; Burton et al., 2018), modified existing ice shelf models (Pollard et al., 2018),45

incorporated sparse icebergs into sea ice models (Vaňková and Holland, 2017; Kahl et al., 2023), or used simple parameteri-

zations (Schlemm and Levermann, 2021). Here we develop a depth-integrated ice mélange flow model that uses the nonlocal

granular fluidity rheology (Henann and Kamrin, 2013), which has been developed from experiments of granular materials

and that has successfully described a variety of granular flows. In order to investigate the basic behavior of the model and to

expedite development of coupled glacier-ocean-mélange models, we convert the model into a quasi-one-dimensional model50

by separately parameterizing the longitudinal and shear stresses and then integrating across the fjord. This approach closely

mimics one that is commonly used for developing flow line models for ice shelves, as does the numerical implementation of

the model. Thus, this study provides a framework by which realistic models of ice mélange can be incorporated into coupled

glacier-ocean models.
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2 Model description55

Following recent advances in granular mechanics, we treat ice mélange as a continuum whose behavior is described by a

viscoplastic rheology. Although the rheology is more complicated than the power law rheology typically used for modeling

glacier flow (Cuffey and Paterson, 2010), our model set-up is similar to that of the shallow shelf approximation (SSA). After

subtracting the static pressure (modified to include the presence of water in between icebergs) from the stress tensor, we ver-

tically integrate the stress balance equations and incorporate a depth-averaged form of the nonlocal granular fluidity rheology60

(Henann and Kamrin, 2013). The result is two horizontal stress balance equations, which we refer as the nonlocal shallow

mélange approximation. Future work will implement these two-dimensional equations in the finite element method in order to

model flow through complex geometries.

Here, to expedite implementation into coupled glacier-ocean-mélange models and to explore the basic model couplings,

we width integrate the model to produce a quasi-one-dimensional model (Fig. 1). A fundamental difference from analogous65

ice shelf models is that the description of the nonlocal granular fluidity rheology contains a second-order partial differential

equation, which means that the rheology cannot be directly substituted into the stress balance equation(s) or be used to produce

a simple parameterization of the lateral shear stress. As a result, the model contains five highly coupled equations that describe

the ice mélange velocity, thickness, fluidity, length, and lateral shear stress. For comparison, the ice sheet/shelf model of Schoof

(2007) only contains equations for the velocity, thickness, and length. Similar to Schoof (2007), the equations are discretized70

using finite differences with a fully implicit time step and a moving grid that stretches from the glacier terminus to the end of

the ice mélange. Material enters the domain through calving of icebergs, and icebergs smaller than the characteristic iceberg

size are removed from the end of the domain. The velocity at the upstream boundary depends on the glacier terminus velocity

and iceberg calving rate, while the velocity gradient at the downstream boundary is set to 0 to prevent deformation below the

grain scale. The model equations are then solved simultaneously through a minimization procedure. A list of model variables75

is included in Table 1.

2.1 Depth-integrated flow equations

We start by defining the strain rate and effective strain rate as ε̇ij = 1/2(∂ui/∂xj + ∂uj/∂xi) and ε̇e = (ε̇ij ε̇ij/2)
1/2, where

ui = ⟨u,v,w⟩ and xi = ⟨x,y,z⟩ are the velocity and position vectors. We use the Cauchy stress tensor, σij = σji, with the

convention that positive stresses are extensional. In order to simplify depth-integration of the equations of motion (see van der80

Veen and Whillans, 1989), we partition the stress tensor into tectonic stresses Rij and the granular static pressure p̃ by setting

σij =Rij − p̃δij , where δij is the Kronecker delta. We assume that the ice mélange is tightly packed and incompressible

(ε̇kk = 0), at flotation, and evolving slowly enough that acceleration can be neglected. Consequently, the model is best suited

for simulating ice mélange behavior in fjords where it persists year round or for winter conditions in fjords where it forms

seasonally. Further modifications would be required to model rapid flow associated with calving events or complete dispersal85

of ice mélange in summer. For well-packed ice mélange the inertial number (the ratio of inertial forces to confining forces; GDR

MiDi, 2004) is typically very small (< 10−5; see Amundson and Burton, 2018), which places it well within the quasi-static
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Figure 1. Schematic of the quasi-one-dimensional flow model indicating some of the key variables and boundary conditions.

regime. Under steady flow conditions the equations of motion are then

∂σij

∂xj
= ρgeffδiz, (1)

where ρ is the material density and geff is an effective gravity that is given by90

geff =

g z ≥ 0(
1− ρw

ρ

)
g z < 0,

(2)

with ρw the density of water, g the gravitational acceleration, and z = 0 corresponding to sea level. This formulation differs

from that used to derive the shallow shelf approximation because seawater fills void spaces within ice mélange and thus

the static pressure does not depend solely on the weight of the overlying ice. The static pressure is found by noting that

dp̃/dz =−ρgeff and p̃= 0 at the top and bottom of the ice mélange. Integrating from z to the surface (i.e., z = (1− ρ/ρw)H)95

results in

p̃(z) =

ρg
[(

1− ρ
ρw

)
H − z

]
z ≥ 0

ρg
(
1− ρ

ρw

)(
H + ρw

ρ z
)

z < 0,
(3)

where H is the ice mélange thickness.

Hughes (2022) modeled the flow of water through and beneath ice mélange and found that the drag force per unit width is

1–10 kN m−1, which is one to two orders of magnitude smaller than the drag forces due to lateral shear that we calculate in our100

model. We therefore neglect basal shear stresses but note that future efforts may need to include them in order to model fjords

in which ice mélange does not remain well packed or persist year round. A consequence of neglecting basal shear stresses is
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Table 1. Description of model variables.

Variable Description

ρ, ρw densities of ice and water

xi = ⟨x,y,z⟩ position vector

g, geff , t gravitational acceleration, effective gravity, and time

ui = ⟨u,v,w⟩ velocity vector

ϵ̇ij , ϵ̇e strain rate tensor and effective strain rate

σij , σ′
ij , Rij stress, deviatoric stress, and tectonic stress tensors

δij Kronecker delta

p̃ granular static pressure

P , P̃ depth-averaged pressure and granular static pressure

W , L, U , H width, length, and depth- and width-averaged velocity and thickness

Ht, Ut, Uc depth- and width-averaged (glacier) terminus thickness, terminus velocity, and calving rate

H0, U0 thickness and depth- and width-averaged velocity at x= 0

F buttressing force

Ḃ surface plus basal mass balance rate

µ, µw effective coefficient of friction within the ice mélange and along the fjord walls

µs static yield coefficient

g′, g′loc granular fluidity and local granular fluidity

gx, gy granular fluidity for extension-dominated and shear-dominated flow

ξ cooperativity length

d characteristic iceberg diameter

b, A dimensionless parameters

δϵ̇ finite strain rate parameter

χ, τ , ϵ̇χ longitudinal position, time, and effective strain rate in the stretched coordinate system

that vertical shear is negligible and therefore velocities, strain rates, and tectonic stresses do not vary with depth. Thus, after

partitioning the stress tensor, vertical integration of the momentum equations leads to

∂

∂x
(HRxx)+

∂

∂y
(HRxy) = 2H

∂P̃

∂x

∂

∂y
(HRyy)+

∂

∂x
(HRxy) = 2H

∂P̃

∂y
, (4)105

where

P̃ =
1

2
ρg

(
1− ρ

ρw

)
H (5)

is the depth-averaged granular static pressure.
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The depth-averaged deviatoric stress is defined as σ′
ij = σij +Pδij , where the bar refers to depth-averaged values and

P =−(σxx +σyy +σzz)/3 is the depth-averaged isometric pressure. As with the tectonic stresses, the deviatoric stresses do110

not vary with depth in our model, and therefore σ′
ij = σ′

ij . By vertically integrating the tectonic stress and comparing the result

to the deviatoric stress (following van der Veen, 2013), we find that

Rij = σ′
ij −

(
P − P̃

)
δij . (6)

When i= j = z, Equation (6) can be re-written to show that(
P − P̃

)
= σ′

zz −Rzz =−σ′
xx −σ′

yy −Rzz. (7)115

Due to its granular nature ice mélange will not flex like ice shelves, which are often close to being in hydrostatic equilibrium

except near their grounding lines. We therefore assume that bridging effects are negligible (i.e., that the weight of the ice

mélange is locally supported by seawater) and therefore Rzz = 0. Thus Equation (6) becomes

Rij = σ′
ij +(σ′

xx +σ′
yy)δij . (8)

Following Amundson and Burton (2018), we assume a depth-integrated viscoplastic rheology for granular materials:120

σ′
ij =

µP

ϵ̇e
ϵ̇ij , (9)

where µ is an effective coefficient of friction within the ice mélange that depends nonlinearly on the strain rate (see below).

From Equation (7) we see that P = P̃ +σ′
zz (since Rzz = 0) and therefore

σ′
ij =

µ(P̃ +σ′
zz)

ϵ̇e
ϵ̇ij . (10)

Setting i= j = z and rearranging yields125

σ′
zz =

µP̃ ϵ̇zz
ϵ̇e −µϵ̇zz

. (11)

Inserting Equation (11) into Equation (10) and simplifying results in

σ′
ij =

µP̃

ϵ̇e −µϵ̇zz
ϵ̇ij =

µP̃

ϵ̇e +µ(ϵ̇xx + ϵ̇yy)
ϵ̇ij . (12)

The tectonic stress is then found by inserting Equation (12) into Equation (8):

Rij =
µP̃

ϵ̇e +µ(ϵ̇xx + ϵ̇yy)
[ϵ̇ij +(ϵ̇xx + ϵ̇yy)δij ] . (13)130

Substituting Equation (5) into Equation (13) and the result into Equation (4), dividing by ρg(1− ρ/ρw)/2, and rearranging,

gives

∂

∂x

[
µH2

ϵ̇e +µ(ϵ̇xx + ϵ̇yy)
(2ϵ̇xx + ϵ̇yy)

]
+

∂

∂y

[
µH2

ϵ̇e +µ(ϵ̇xx + ϵ̇yy)
ϵ̇xy

]
= 2H

∂H

∂x

∂

∂y

[
µH2

ϵ̇e +µ(ϵ̇xx + ϵ̇yy)
(2ϵ̇yy + ϵ̇xx)

]
+

∂

∂x

[
µH2

ϵ̇e +µ(ϵ̇xx + ϵ̇yy)
ϵ̇xy

]
= 2H

∂H

∂y
. (14)
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In viscoplastic granular rheologies, µ is a complex function of ϵ̇e. We adopt the nonlocal granular fluidity rheology of Henann

and Kamrin (2013), which is derived from laboratory experiments that demonstrate viscous flow at high stress and plug flow135

at low stress. The rheology is nonlocal because it enables mesoscopic regions of yielding to cause elastic deformation in

adjacent jammed regions, and it is particularly well suited for ice mélange because it has been developed from experiments

of flows associated with low inertial numbers. The nonlocal granular fluidity rheology has successfully modeled a variety

of granular flows, including flow down a rough plane (Kamrin and Henann, 2015), creep of intruders in low stress regions

(Henann and Kamrin, 2014), annular shear with various grain geometries and materials (Fazelpour et al., 2022), and silo140

clogging (Dunatunga and Kamrin, 2022), and has also recently been applied to other geophysical systems (e.g., Damsgaard

et al., 2020; Zhang et al., 2022)

In the nonlocal granular fluidity rheology, the effective coefficient of friction depends on the granular fluidity, g′, which is a

measure of how easily the material can flow for a given stress:

µ≡ ϵ̇e
g′
. (15)145

The granular fluidity depends on local and distant stresses through the differential relation

∇2g′ =
1

ξ2
(g′ − g′loc) , (16)

where ξ is the cooperativity length and g′loc is the local granular fluidity (i.e., the fluidity in the absence of flow or stress

gradients). The local granular fluidity is based on experiments that suggest that granular materials behave like Bingham fluids

(solid at low stresses and viscous at high stresses):150

g′loc =


√

P̃

ρd2
(µ−µs)

µb
if µ > µs

0 if µ≤ µs,

(17)

where b is a dimensionless constant and µs is the static yield coefficient. The Laplacian term in Equation (16) spreads out the

fluidity into regions where µ < µs (Kamrin and Koval, 2012) and allows for deformation in regions of low stress. The distance

over which the fluidity spreads out is determined by the cooperativity length, which scales with grain size and diverges at the

yield point (Bocquet et al., 2009; Kamrin and Henann, 2015):155

ξ =
Ad√

|µ−µs|
, (18)

where A is a dimensionless constant.

Substituting Equation (15) into Equation (14) yields

∂

∂x

[
H2

g′ + ϵ̇xx + ϵ̇yy
(2ϵ̇xx + ϵ̇yy)

]
+

∂

∂y

[
H2

g′ + ϵ̇xx + ϵ̇yy
ϵ̇xy

]
= 2H

∂H

∂x

∂

∂y

[
H2

g′ + ϵ̇xx + ϵ̇yy
(2ϵ̇yy + ϵ̇xx)

]
+

∂

∂x

[
H2

g′ + ϵ̇xx + ϵ̇yy
ϵ̇xy

]
= 2H

∂H

∂y
. (19)
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Equation (19), along with the equations for g′ (Equations 15–18), is analogous to the shallow shelf approximation. We therefore160

refer to Equation (19) as the nonlocal shallow mélange approximation (NSMA). As with the shallow shelf approximation, the

NSMA requires some regularization to prevent infinite viscosity.

2.2 Width-integrated flow equations and boundary conditions

To reduce Equation (19) to a quasi-one-dimensional flow model we adopt an approach from glacier flow modeling in which

extension-dominated dynamics are used to characterize the longitudinal stresses and shear-dominated dynamics are used to165

characterize the shear stresses (Pegler, 2016). This approach allows for width-integration of the flow equations and, importantly,

asymptotes to the correct dynamics in extension- and shear-dominated regimes. Essentially, we assume that (i) flow is in the

x-direction and variations in width are small (i.e., |dW/dx| ≪ 1; Pegler, 2016), so that v ≈ 0 and ϵ̇yy ≈ 0, (ii) the ice mélange

thickness and longitudinal strain rates are uniform across the width of the fjord, and (iii) the granular fluidity in the longitudinal

stress term (Rxx) is only a function of ϵ̇xx while the granular fluidity in the shear stress term (Rxy) is only a function of ϵ̇xy .170

Under these assumptions, integrating the x-component of Equation (19) across the fjord and dividing by the width W yields

∂

∂x

[
H2

gx + ϵ̇xx
ϵ̇xx

]
− H2

W
µw

(
ϵ̇xy
ϵ̇e

)
y=0

=H
∂H

∂x
, (20)

where gx is used to indicate that the granular fluidity in the longitudinal stress term depends solely on ϵ̇xx, µw is the value of µ

along the fjord walls, y is taken to be the distance from the near wall of the fjord, and due to symmetry the shear strain rates at

y = 0 and y =W have the same magnitude but opposite sign. Due to our assumptions, the y-component of Equation (19) does175

not affect flow in the x-direction and can be ignored. The first and second terms in Equation (20) characterize extension- and

shear-dominated dynamics, respectively.

For shear-dominated flow, (ϵ̇xy/ϵ̇e)|y=0 = sgn(ϵ̇xy)|y=0 = sgn(U), where U is the depth- and width-averaged velocity.

Thus, combining and rearranging Equation (20) gives the one-dimensional stress balance equation:

∂

∂x

[
H2

gx +(∂U/∂x)

∂U

∂x

]
=H

∂H

∂x
+

H2

W
µw sgn(U). (21)180

Equation (21) is the key dynamical equation that is used to determine the ice mélange velocity along the length of the fjord.

We use a reference frame that moves with the glacier terminus and define x= 0 as being the glacier-ice mélange boundary. At

this boundary, material flows into the domain at a rate determined by the iceberg calving flux. Conservation of mass dictates

that the velocity there is given by

U0 = Uc
Ht

H0
, (22)185

where subscript 0 refers to values at x= 0, Uc is the calving rate, and Ht is the terminus thickness. We define the downstream

end of the ice mélange (x= L) as being the point where the ice thins to the grain scale, d. At thicknesses less than the grain

scale, the nonlocal granular fluidity rheology no longer applies. In order to prevent divergence for thicknesses less than the

grain scale, we therefore require that the velocity gradient there is

∂U

∂x

∣∣∣∣
x=L

= 0. (23)190
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This downstream boundary condition is similar to regularizations used in sea ice models to prevent ice floes with free bound-

aries from spreading under their own weight (Hibler, 2001; Leppäranta, 2012).

The granular fluidity gx is described by a simplified version of Equation (16) in which g′ and g′loc are replaced with gx and

gxloc, ∇2gx = ∂2gx/∂x2, and ϵ̇e = |ϵ̇xx|+δϵ̇. δϵ̇ is a strain rate parameter that is used to regularize the granular fluidity equations

in order to improve stability and efficiency. The regularization is applied when substituting µ (Equation 24) into Equations (17)195

and (18) to ensure that the granular fluidity is always greater than 0. Other regularization schemes are possible (Chauchat and

Médale, 2014); however, we have had success with this simple regularization scheme and therefore leave investigation of other

schemes for future work. For boundary conditions we set ∂gx/∂x= 0 at x= 0,L following the recommendation of Henann

and Kamrin (2013).

The value of µw in Equation (21) is related to the width-averaged velocity relative to the fjord walls, which is given by200

U +(Ut−Uc), where Ut is the glacier terminus velocity and Ut−Uc is the rate of glacier terminus migration. In other words,

the fjord walls move backward in our coordinate system, which is defined relative to the glacier terminus, at a rate given by

Ut −Uc. For shear-dominated flow, integration of the x-component of Equation (19) from y = 0 to y reveals that µw varies

linearly across the fjord. By comparing the result to Equation (20), we find that

µ= µw

(
1− 2y

W

)
(24)205

for 0≤ y ≤W/2 (see also Amundson and Burton, 2018). Using Equation (24), the local granular fluidity and cooperativity

length can be readily calculated as functions of position for a given value of µw. The results are then inserted into the gran-

ular fluidity differential equation (Equation 16), except that g′ and g′loc are replaced with gy and gyloc (to emphasize that the

granular fluidity for shear-dominated flow depends only on ϵ̇xy) and ∇2gy = ∂2gy/∂y2. As before, we set ∂gy/∂y = 0 at both

boundaries. The granular fluidity equation is then solved to determine gy(y,µw). If the flow is in the positive x-direction then210

ϵ̇e = (∂U/∂y)/2 and Equation (15) can be rewritten as

∂u

∂y
= 2µgy = 2µw

(
1− 2y

W

)
gy(y,µw). (25)

The average velocity in the transect is found by integrating Equation (25), which must equal the velocity in the bedrock

reference frame:

U +Ut −Uc =
2

W

W/2∫
0

y∫
0

2µw

(
1− 2y′

W

)
gy(y′,µw)dy

′ dy. (26)215

Finally, the ice mélange geometry changes in response to melting, flow divergence, and dispersal of icebergs at x= L. The

surface evolves according to the depth- and width-integrated mass continuity equation (van der Veen, 2013), in which

∂H

∂t
= Ḃ− 1

W

∂

∂x
(UHW ), (27)

where Ḃ is the surface plus basal mass balance rate, and the length evolves so as to ensure that the thickness at the end of the

ice mélange is always equal to the characteristic iceberg size.220

9



2.3 Numerical implementation and stability considerations

The quasi-one-dimensional ice mélange flow model that we have developed depends on five variables: U , gx, µw, H , and L.

We determine these variables by simultaneously solving the width-integrated NSMA, granular fluidity, transverse velocity, and

mass continuity equations (Equations 21, 16, 26, and 27), while also requiring that HL = d. We use finite differences with

a stretched coordinate system and a staggered grid for velocity and thickness. The mass continuity equation uses an implicit225

time stepping scheme and an upwind scheme for discretization. Our numerical scheme, which closely mimics that of Schoof

(2007), is described in detail in the Appendix.

The width-integrated NSMA is more computationally expensive than the analogous width-integrated SSA approximation

for two reasons. First, the nonlocal granular fluidity rheology introduces additional nonlinear differential equations that must

be solved as part of the iteration procedure, essentially doubling the number of unknowns. Second, because ice mélange tends230

to be considerably thinner than its parent glacier, ice mélange velocities must be several times higher than glacier terminus

velocities in order to balance the ice flux into the fjord. This latter effect becomes particularly critical if ice mélange thins to

close to its characteristic iceberg size.

For example, although we are using an implicit scheme, we find that the CFL condition (Courant-Fredrichs-Lewy; ∆t≤
Cmax∆x/U ) is a useful metric for determining appropriate time steps that maintain numerical stability. From our experience,235

Cmax = 1 provides good stability across a range of parameter choices and model states, although this is not a strict requirement.

At x0, the ice mélange velocity is U0 = UcHt/H0 (Equation 22). Thus the CFL condition at x0 can be expressed as

∆t≤ ∆xH0

UcHt
. (28)

For thick ice mélange (H0 ≈Ht), with a calving rate of 6000 m a−1, a terminus thickness of Ht = 600 m, and a grid spacing of

500 m, ∆t < 0.09 a. However if the ice mélange approaches the characteristic iceberg size, for example H0 ≈ d= 25 m, then240

∆t < 4× 10−3 a (assuming a similar grid spacing). In reality, higher velocities may occur farther down fjord, necessitating

shorter time steps. Since our model uses a moving grid and the ice mélange thickness and length may vary significantly over

seasonal time scales, we recommend using short time steps or an adaptive time step in prognostic simulations.

2.4 Ice mélange buttressing force

Although we do not model glacier flow in this paper, we do assess the impact of model parameters, glacier fluxes, melt rates,245

and fjord geometry on the buttressing force that ice mélange exerts on glacier termini, which is given by (−HWσxx)|x0
. The

force imposed on a glacier terminus (per unit width) due to the presence of ice mélange is therefore

F/W =
(
−HRxx +HP̃

)
x0

. (29)

Substituting in the nonlocal granular fluidity rheology yields

F/W =

(
−2HP̃ ϵ̇xx
gx + ϵ̇xx

+HP̃

)
x0

. (30)250

In the limit that ∂U/∂x→ 0, F/W scales with the thickness squared, H2
0 .
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3 Model results

3.1 Steady-state and quasi-static profiles

We begin exploring the model behavior by investigating the impact of model parameters and forcings on steady-state profiles.

The model is capable of producing two types of steady state solutions: one in which material is continuously flowing through255

the ice mélange domain and the geometry is steady in the bedrock reference frame, and one in which no material enters or

leaves the ice mélange and the geometry is steady in a reference frame that moves down fjord with the glacier terminus and

the velocity is constant (∂U/∂x= 0). We refer to these two states as the “steady-state” and “quasi-static” regimes. We focus

primarily on the steady-state regime as the quasi-static regime has already been analyzed in some detail in Amundson and

Burton (2018).260

To produce steady-state profiles, we set the terminus velocity and calving rate to be constant and equal to each other and

we set the surface mass balance rate equal to a constant. We then run prognostic simulations until the ice mélange length and

thickness are no longer changing with time (dL/dt= 0 and ∂H/∂t= 0). The approach that we adopt here differs from that

of Amundson and Burton (2018), where we derived an expression for steady-state profiles in the quasi-static limit in several

important ways: (i) we do not set the calving and melt rates equal to 0, (ii) we do not require µw to be constant but instead265

solve for it, (iii) we allow for variable width, and (iv) the ice mélange length is not specified a priori but rather is determined

by the balance of the inflow and melt rates. We then turn off calving and melting and allow the ice mélange to evolve to a new

steady-state in order to demonstrate the changes in flow and geometry that occur during the transition from the steady-state

regime to the quasi-static regime.

Example steady-state and quasi-static profiles are shown in Figure 2. Velocities increase in the down fjord direction in the270

steady-state scenario (solid lines in Fig. 2) which, when combined with surface and basal melting, leads to a relatively large

thickness gradient. The extensional flow is also associated with an increase in µw in the down fjord direction. Once calving and

melting are turned off the ice mélange evolves toward the quasi-static limit (dashed lines in Fig. 2). The velocities drop because

there is no longer a flux of new material into the ice mélange and the icebergs are simply pushed at the rate of glacier terminus

advance. Consequently the shear stresses decrease, which is reflected in a decrease in µw. The reduction in shear stresses and275

lack of surface or basal melting allow the ice mélange to thin and spread outward. At the quasi-static limit the ice mélange has

a roughly exponential thickness profile and µw is spatially constant. In Amundson and Burton (2018) we assumed that µw is

a constant in the quasi-static limit and showed that this leads to a roughly exponential thickness profile; here we see it arise

naturally through the momentum and mass continuity equations in a manner that is consistent with our prior assumptions.

3.1.1 Sensitivity to model parameters280

The nonlocal granular fluidity rheology depends on several parameters that must be specified: the characteristic iceberg size

d, dimensionless constants b and A (described below), and the static yield coefficient µs. For default values we have selected

d= 25 m, b= 1×104, A= 0.5, and µs = 0.3, which produces thickness and velocity profiles that are roughly consistent with

observations from Sermeq Kujalleq (Jakobshavn Isbræ), Helheim Glacier, and Kangerdlugssuaq Glacier (e.g., Foga et al.,
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Figure 2. Steady-state (solid curves) and quasi-static (dashed curves) profiles. (a)–(d) Longitudinal profiles of velocity, thickness, granular

fluidity, and limit of internal friction along the fjord walls. (e) Transverse velocity profiles at various fractions χ of the distance along the

ice mélange. For the steady-state simulation, Ut = Uc = 6000 m a−1, Ht = 600 m, W = 4000 m, Ḃ =−0.6 m d−1, d= 25 m, µs = 0.3,

A= 0.5, and b= 1× 104. Longitudinal coordinates are relative to the glacier terminus.

2014; Amundson and Burton, 2018; Bevan et al., 2019; Xie et al., 2019). Here, we provide some context for our selection of285

default values and explore how adjusting these parameters affects the steady-state model behavior (refer to Figure 3 throughout

this section).

– The characteristic iceberg size influences the local granular fluidity (Equation 17), the cooperativity length (Equation

18), and the ice mélange extent (since the end of the domain is defined as being where H = d). Ice mélange is a highly

heteorogeneous material, with iceberg dimensions ranging from meters to hundreds of meters. Several studies indicate290

that iceberg area (in map view) follows power-law size distributions, p(a)∝ a−α, with α ranging from 2.1–3.4 (e.g.,

Enderlin et al., 2016; Sulak et al., 2017; Kirkham et al., 2017; Kaluzienski et al., 2023). Power law distributions require
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Figure 3. Steady-state profiles for various model parameter choices. For all simulations, Ut = Uc = 6000 m a−1, Ḃ =−0.6 m d−1, Ht =

600 m, and W = 4000 m. The solid curves represent the results produced using the default values (A= 0.5, b= 1× 104, d= 25 m, and

µs = 0.3). For the other curves, we adjusted one model parameter, as indicated in the legend, but kept all other parameters set to their default

values. Longitudinal coordinates are relative to the glacier terminus.

a minimum size threshold. Using a minimum area of 10 m2 gives median and mean iceberg areas of about 13–18 m2

and 17–110 m2 (see Equations 6 and 8 in Kaluzienski et al., 2023), resulting in a characteristic diameter on the order of

4–10 m. It is unclear, however, how iceberg heterogeneity affects ice mélange flow or if there is a controlling iceberg size.295

Nonetheless, we find that decreasing the iceberg size causes the ice mélange to become weaker (more fluid; Fig. 3c) by

both increasing the local granular fluidity and decreasing the cooperatively length; consequently, a smaller characteristic

iceberg size leads to faster (Fig. 3a,e), thinner, and longer ice mélange (Fig. 3b).

– Dimensionless constant b is given by the ratio of the range of effective friction coefficients to the inertial number (see

Kamrin and Henann, 2015), which is itself a function of grain size, characteristic strain rate, and pressure. These values300
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are poorly constrained for ice mélange at present. Using typical values, we find that b is likely in the range of 104–106. b

only affects the local granular fluidity (Equation 17), and as such its impact on model behavior is more transparent than

that of iceberg size. Increasing b reduces the local granular fluidity, making the ice mélange more stiff (less fluid; Fig.

3c) and leading to thicker and longer ice mélange (Fig. 3b) and lower velocities (Fig. 3a,e).

– Dimensionless constant A affects the cooperativity length (Equation 18) and is thought to be of order one; fitting to305

laboratory experiments and discrete element simulations suggests that A equals 0.5 for glass beads and 0.9 for stiff disks

(Henann and Kamrin, 2013; Kamrin and Koval, 2014). For our simulations, using values of A= 0.5 gives cooperativity

lengths of a few kilometers in the longitudinal direction. Changing A does not have much impact on our results other

than changing the curvature of the transverse velocity profiles (Fig. 3e).

– Lastly, the static yield coefficient determines the stress at which the ice mélange will begin to flow (Equation 17).310

Reducing the yield coefficient causes the ice mélange to deform more easily (Fig. 3c) and become thinner and shorter

(Fig. 3b).

Determining appropriate model parameters that are able to describe ice mélange flow across a range of forcings and fjord

geometries remains a major task. The default parameters that we have selected produce ice mélange geometries and velocity

profiles that appear to be roughly consistent with field observations (e.g., see figures in Amundson and Burton, 2018, Bevan315

et al., 2019, and Xie et al., 2019). Adjusting any of the parameters appreciably from our default parameters will likely require

modifying one or more additional parameters in order to produce profiles that are not too thin or too thick. For example, we

can also produce similar profiles if we reduce the static yield coefficient but only if we increase b appropriately.

3.1.2 Sensitivity of ice mélange flow, geometry, and buttressing force to external forcings and fjord geometry

The modeled ice mélange flow, geometry, and buttressing force depend on glacier fluxes, surface and basal melt rates, and fjord320

geometry. These parameters enter the model through the upstream boundary condition (Equation 22), the lateral shear stress

(Equations 21 and 26), and the mass continuity equation (Equation 27). We address each of these in turn by considering their

impact on steady-state solutions.

To investigate the impact of glacier fluxes, we considered three glacier scenarios (small, medium, and large) in which the

glacier velocity and calving rate scale with the fjord width and terminus thickness. We varied the terminus thickness from325

600–800 m while simultaneously varying the glacier velocity from 6000–8000 m a−1 and the fjord width from 4000–6000 m.

We find that the ice mélange becomes longer and thicker as the fluxes increase (Fig. 4). An important consequence of this is

that ice mélange produced by large, highly active glaciers is more likely to exert high stresses against glacier termini and to

persist year round than ice mélange produced by small glaciers. For example, the ice mélange was over 40% thicker in the large

glacier scenario than in the small glacier scenario (Fig. 4b), resulting in a buttressing force that was 100% larger (see Equation330

30). The buttressing force required to prevent the capsize of full-glacier-thickness icebergs, which can be used to estimate the

force required to inhibit large-scale calving events, scales with H2
t (see Equation 1 in Amundson et al., 2010 and Equation 18

in Burton et al., 2012). Thus, a full-glacier-thickness iceberg that is initially 800 m tall requires a buttressing force that is 77%
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Figure 4. Steady-state profiles for various size glaciers as follows: (small glacier: solid lines) Ut = Uc = 6000 m a−1, Ht = 600 m, and

W = 4000 m; (medium glacier: dashed lines) Ut = Uc = 7000 m a−1, Ht = 700 m, and W = 5000 m; (large glacier: dotted lines) Ut =

Uc = 8000 m a−1, Ht = 800 m, and W = 6000 m. (a)–(d) Longitudinal profiles of velocity, thickness, granular fluidity, and coefficient of

friction along the fjord walls. (e) Transverse velocity profiles at the ice mélange midpoint. For all simulations, Ḃ =−0.8 m d−1, d= 25 m,

µs = 0.3, A= 0.5, and b= 1× 104. Longitudinal coordinates are relative to the glacier terminus.

larger to prevent it from capsizing than does a 600 m tall iceberg, which is less than the difference in ice mélange buttressing

force predicted by our model for the large and small glacier scenarios. Although our imposed calving rates are ad hoc, these335

results suggest that large, highly productive glaciers are more likely to be affected by ice mélange buttressing because as Ht

increases, the buttressing force from the ice mélange increases more rapidly than the force required to prevent icebergs from

capsizing.

We next considered the impact of surface and basal melting on ice mélange characteristics. Iceberg melt rates in fjords can

range from 0.1–0.8 m d−1 (Enderlin et al., 2016) and icebergs are particularly important sources of freshwater in winter (Moon340
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Figure 5. Effect of melt rates on (a) steady-state thickness profiles and (b) the ice mélange buttressing force per unit width. The dotted curve

represents force estimates computed by neglecting longitudinal strain rates, whereas the dashed curve includes the effect of longitudinal

strain rates. For all simulations, Ut = Uc = 6000 m a−1, Ht = 600 m, W = 4000 m, d= 25 m, µs = 0.3, A= 0.5, and b= 1× 104.

et al., 2017). We find that ice mélange thickness and length are sensitive to melt (Fig. 5a) due to its effect on lateral shear

stresses, and that the buttressing force depends on the melt rate through an inverse power law relationship with an exponent of

about -3 (Fig. 5b).

Finally, fjord width also has important impacts on ice mélange extent and buttressing force. Increasing the fjord width

reduces the ability of shear stresses to build an ice mélange wedge, and thus the ice mélange is thinner and sheds icebergs more345

readily. Consequently the buttressing force decays roughly exponentially with fjord width (Fig. 6a–b), as also observed in the

analysis of quasi-static flow (Amundson and Burton, 2018; Burton et al., 2018). The width gradient has similar effects on the

buttressing force. Converging walls (dW/dx < 0) create extra flow resistance that allows for the development of a thicker ice

mélange wedge. The buttressing force also decays roughly exponentially with the width gradient (Fig. 6c–d).

3.2 Transient simulations350

The ice mélange buttressing force is clearly sensitive to changes in ice mélange thickness. From field and remote sensing

observations we expect ice mélange to be weakest in summer, when melt rates and calving activity are highest (e.g., Joughin
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et al., 2020). To investigate the implications of these fluctuations, we impose seasonal variations in melting and calving rates

with amplitudes of 0.2 m d−1 and 600 m a−1, respectively.

We find that the buttressing force decreases as the melt rate increases (Fig. 7a–b), as might be expected during the summer355

months. However, there is a lag of 2 months between the highest melt rates and the weakest ice mélange. The lag is smallest

for ice mélange experiencing higher melt rates because smaller ice mélange will respond more rapidly to external forcings.

There is also less variability in the buttressing force for smaller ice mélange.

Iceberg calving also varies seasonally and tends to be highest in the summer. The model, which assumes the ice mélange

remains well packed year round, predicts that it will thicken and grow in response to the addition of new material. As with360

melting, there is a lag of 2 months between variations in calving rates and the force exerted on the glacier termini, and the

amplitude of the variations in force also decrease with ice mélange extent (Fig. 7c–d). Thus, melt and calving, which both vary

seasonally, have opposite effects on the model behavior.

Following observations that suggest that iceberg calving is affected by the ice mélange buttressing force, we use an ad hoc

linear relationship between calving and the buttressing force to begin investigating their coupled impacts on ice mélange. We365

suppose that

Uc = 2Uc,ss −
Uc,ss

Fss
F, (31)

where Uc,ss and Fss are the steady-state calving rate and buttressing force for a given set of model parameters. An imposed

variation in melt rates causes F to vary, which is coupled to the calving rate via a negative feedback loop. This coupling reduces

the lag time between the melt rate and the buttressing force to about 0.1 a and, as a result, the calving rate is high when melt370

rates are also high (Fig. 7).

3.3 Buttressing forces in the steady-state and quasi-static regimes

The ice mélange buttressing force depends on the thickness, tectonic stress Rxx, and granular static pressure P̃ at the glacier-ice

mélange boundary (Equation 30). In the quasi-static limit the velocity gradient is zero and therefore the buttressing force scales

with H2
0 . However, we find that when calving and melting are nonzero the flow is extensional, which causes the buttressing375

force to be less than would be expected if buttressing force estimates were based solely on ice thickness (Figs. 5 and 6).

We find that, for parallel-sided fjords, the buttressing force in the steady-state regime also scales with H2
0 despite the com-

plexity introduced by nonzero strain rates (Fig. 8). During our transient simulations the buttressing force circles around the

initial steady-state solutions as the flow becomes more/less extensional. We never observe compressional flow in our simu-

lations, and field and remote sensing observations indicate that compressional flow only occurs during and in the immediate380

aftermath of iceberg calving events (Peters et al., 2015; Amundson and Burton, 2018; Cassotto et al., 2021). Thus, observations

of ice mélange thickness from satellite data, along with the quasi-static approximation of Equation (30), can be used to provide

an upperbound on the ice mélange buttressing force.
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Figure 7. Ice mélange response to temporally varying melt rates and calving rates. (a) Sinusoidal variations in melt rate (dashed curve) and

buttressing force (solid curves). (b) Hysteresis curves between buttressing force and melt rate for different baseline melt rates (and therefore

ice mélange sizes). (c) Sinusoidal variations in calving rates (dashed lines) and buttressing force (solid lines). (d) Hysteresis curves between

buttressing force and calving rate for different baseline melt rates (same as in panel b). The starting points of the hysteresis curves in (b)

and (d) are indicated by dots. The black curves in (a) and (b) correspond to a simulation in which the calving rate depends linearly on the

buttressing force. For all simulations, d= 25 m, µs = 0.3, A= 0.5, and b= 1× 104.
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4 Conclusions

We have developed a depth-averaged continuum model of ice mélange flow, which we refer to as the nonlocal shallow mélange385

approximation, that is based on recent advances in our understanding of granular materials and that is suitable for long time-

scale glacier simulations. Consistent with other granular flows, the model exhibits viscous flow where the stresses are far from

the yield point and plug flow where the stresses approach the yield point.

The model contains four parameters (the iceberg size, two dimensionless constants, and the static yield coefficient) that must

be tuned. We have selected a set of parameters that produce velocity and thickness profiles that are roughly consistent with390

remote sensing observations from Greenland (Foga et al., 2014; Amundson and Burton, 2018; Bevan et al., 2019; Xie et al.,

2019). Ultimately, the profiles depend on the ice mélange stiffness; stiff ice mélange does not spread very easily and tends to

result in thick, extensive ice coverage. Each of the four model parameters can affect the overall fluidity; thus, other parameter

combinations may also produce suitable model results. Determining the best parameter values that work across a range of

forcing and fjord geometries remains a major task for laboratory experiments and field observations.395

We assume that the ice mélange is well packed and homogeneous, and we do not account for cohesion. The model is likely

to perform best for winter ice mélange and for systems where ice mélange persists year round since the flow approximation

is not applicable for granular materials far from the well-packed limit. The impacts of iceberg heterogeneity and cohesion

on ice mélange flow require further investigation. We suggest that both could potentially be incorporated into our modeling

framework through modification of the model parameters, which are currently treated as constants, and/or by tuning the model400

parameters with field observations, laboratory experiments, and discrete element simulations. Future work should also attempt

to quantify the degree to which the quasi-one-dimensional model can replicate the behavior of ice mélange in fjords with

complex geometry.
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Ultimately, we find that the nonlocal shallow mélange approximation produces thickness and velocity profiles that are

roughly consistent with previously published field observations (Amundson and Burton, 2018; Bevan et al., 2019; Xie et al.,405

2019) and evolves in response to glaciological, atmospheric, and oceanographic forcing. Ice fluxes, melt rates, and fjord ge-

ometry strongly affect the model geometry and ice mélange buttressing forces. Addition of new material into the ice mélange

via iceberg calving makes it longer, thicker, and more resistive, whereas removal of material through surface and basal melting

does the opposite. Thus the model may be capable of explaining temporal variations in buttressing forces and why ice mélange

appears to have larger impacts in some glacier-fjord systems than others.410

Code availability. The model code (glaciome1D) and files used to produce the figures in this manuscript are available at

https://github.com/jmamundson/glaciome1D. The code is written in Python and uses standard Python libraries.

Appendix A: Coordinate stretching

We use a coordinate system that moves with the glacier terminus and, following Schoof (2007), we introduce a coordinate

stretching to deal with the moving boundary at the end of the ice mélange (x= L):415

χ=
x

L
, (A1)

which maps 0≤ x≤ L to 0≤ χ≤ 1. According to the chain rule,

∂

∂x
=

∂χ

∂x

∂

∂χ
=

1

L

∂

∂χ
. (A2)

The coordinate stretching also necessitates a transformation of time derivatives. The material derivative is

D

Dt
=

dx

dt

∂

∂x
+

∂

∂t
. (A3)420

The grid points move with velocity

dx

dt
= χ

dL

dt
. (A4)

The material derivative of a quantity that is moving with the grid is the same as the partial derivative of that same quantity

in the grid’s reference frame. As in Schoof (2007), we therefore let t= τ to distinguish between partial derivatives when x

and χ are held constant, respectively, which allows us to replace D/Dt with ∂/∂τ . Thus, after rearranging Equation (A3) and425

inserting Equations (A2) and (A4), we arrive at

∂

∂t
=

∂

∂τ
− χ

L

dL

dτ

∂

∂χ
. (A5)
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The coordinate transformations are then applied to the stress balance, granular fluidity, and mass continuity equations (Equa-

tions 21, 16, and 27), yielding

1

L

∂

∂χ

(
1

gx +(∂U/∂χ)/L
H2 1

L

∂U

∂χ

)
=

H

L

∂H

∂χ
+

H2

W
µw sgn(U)

1

L2

∂2gx

∂χ2
=

1

ξ2
(gx − gxloc)

∂H

∂τ
− χ

L

dL

dτ

∂H

∂χ
+

1

WL

∂

∂χ
(UHW ) = Ḃ. (A6)430

The granular fluidity depends on ϵ̇e, which is transformed as

ϵ̇e =
ϵ̇χ
L
, (A7)

where ϵ̇χ is the second invariant of the strain rate in the stretched coordinate system. The transverse velocity equation is

unaffected by the coordinate transformation.

Appendix B: Nondimensionalization435

We nondimensionalize the model equations to improve model convergence. We start by assuming that we know characteristic

scales for the length [L], velocity [U ], and mass balance rate [Ḃ]. We then set scales for the thickness and time:

[L] =
[U ][H]

[Ḃ]

[τ ] =
[L]

[U ]
(B1)

The model is scaled by defining

L= [L]L∗

H = [H]H∗

U = [U ]U∗

Ḃ = [Ḃ]Ḃ∗

W = [L]W ∗

d= [H]d∗, (B2)440

where ∗ is used to indicate dimensionless variables. We also note that g′ = g′∗[U ]/[L] since g′ = ϵ̇e/µ. Dropping the asterisks

and defining γ = [H]2/[L]2, the nondimensional stress balance, granular fluidity, transverse velocity, and mass continuity
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equations become

1

L2

∂

∂χ

(
H2

gx +(∂U/∂x)/L

∂U

∂χ

)
=

H

L

∂H

∂χ
+

H2

W
µw sgn(U)

γ

L2

∂2gx

∂χ2
=

1

ξ2
(gx − gxloc)

γ
∂2gy

∂y2
=

1

ξ2
(gy − gyloc)

U +(Ut −Uc) =
2

W

W/2∫
0

y∫
0

2µw

(
1− 2y

W

)
gy dy′ dy

∂H

∂τ
− χ

L

dL

dτ

∂H

∂χ
+

1

WL

∂

∂χ
(UHW ) = Ḃ. (B3)

Using dimensionless variables, the cooperativity length and local granular fluidity are calculated as445

ξ =
Ad√

|µ−µs|
(B4)

and

gxloc = gyloc =


[L]

[U ]

√
P̃

ρd2[H]

(µ−µs)

µb
if µ > µs

0 if µ≤ µs.

(B5)

When calculating gx, the effective coefficient of friction is given by µ= (ϵ̇χ/L+ δϵ̇)/gx, and when calculating gy it is given

by µ= µw(1− 2y/W ) and ∂u/∂y = 2µgy .450

The boundary conditions are unchanged in dimensionless variables.

Appendix C: Finite difference discretization

We use finite differences with a staggered grid and implicit time step to simultaneously calculate U , g′xx, µw, H , and L at each

time step. Indices j and n refer to grid points and time steps. We define j = 0 :N , so that there are N+1 grid points each for U

and µw and N points each for H and g′xx. Altogether the model solves for 4N+3 unknowns in the x-direction. The discretized455

stress balance, granular fluidity, µw, and mass continuity equations provide 4N +2 equations. One additional equation comes

from defining the end of the ice mélange as being where the thickness equals the grain size:

3HN−1/2 −HN−3/2 = d. (C1)
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C1 Stress balance equation

The discretized stress balance equation is460

1

(L∆χ)2
[
νj−1/2Uj−1 −

(
νj+1/2 + νj−1/2

)
Uj + νj+1/2Uj+1

]
=

1

L∆χ

Hj+1/2 +Hj−1/2

2

(
Hj+1/2 −Hj−1/2

)
+

1

2

(
Hj+1/2 +Hj−1/2

)2
Wj+1/2 +Wj−1/2

µw,j sgn(Uj) , (C2)

which is used for j = 1 :N − 1 and where we have defined

νj−1/2 =
H2

j−1/2

gxj−1/2 +(Uj −Uj−1)/(L∆χ)
. (C3)

The upstream boundary condition is U0 = UcHt/H0 (Equation 22), while the downstream boundary condition is UN−UN−1 =

0 (Equation 23).465

C2 Nonlocal granular fluidity equation

The equation for the granular fluidity is discretized using a standard difference formula, such that

γ
gxj−3/2 − 2gxj−1/2 + gxj+1/2

(L∆χ)2
=

1

ξ2j−1/2

(
gxj−1/2 − gxloc,j−1/2

)
, (C4)

with boundary conditions gx3/2 − gx1/2 = 0 and gxN−1/2 − gxN−3/2 = 0 (∂gx/∂x= 0 at x= 0,L). The granular fluidity is only

calculated on N grid points because it depends on the velocity gradient, which we calculate using a one-sided difference. As470

result, gxj−1/2 depends on Uj and Uj−1. Similarly, gxloc,j−1/2 (Equation 17) depends on Uj and Uj−1 as well as Hj−1/2.

C3 Transverse velocity equation

We calculate transverse velocity profiles at each χ grid point. We use M +1 grid points in the y-direction. The discretized

granular fluidity equation in the y-direction is then

γ
gym−1 − 2gym + gym+1

∆y2
=

1

ξ2m

(
gym − gyloc,m

)
. (C5)475

At the boundaries we set dgy/dy = 0, and therefore gy1 − gy0 = 0 and gyM -gyM−1 = 0. gyloc,m and ξm both depend on µ (see

Equations 17 and 18). For shear-dominated flow, µ varies linearly across the fjord (Equation 24). Therefore, for a given value

of µw, gyloc,m and ξm can be directly calculated. Equation (C5) is then solved to determine gy(y).

Finally, we integrate Equation (25) twice to find the average velocity in the transect, which is required to equal the velocity

U in the ice mélange’s reference frame plus the glacier terminus velocity:480

Uj +Ut −Uc =
2

Wj

Wj/2∫
0

y∫
0

µw,j

(
1− 2y′

Wj

)
gy dy′ dy. (C6)
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C4 Mass continuity equation

For the mass continuity equation we use an upwind scheme with a backward Euler step; the advective term is discretized with

centered differences:

Hj+1/2 −H⋆
j+1/2

∆τ
−
(
χj+1/2

dL

dτ

)
Hj+3/2 −Hj−1/2

2L∆χ
+

1

Wj+1/2

(Uj+1 +Uj)Hj+1/2Wj+1/2 − (Uj +Uj−1)Hj−1/2Wj−1/2

2L∆χ
= Ḃj+1/2, (C7)485

where superscript ⋆ is now used to refer to values from the previous time step. At both boundaries (j = 0 and j =N − 1) we

use one-sided differences for the advective term, and at the upstream boundary (j = 0) we use a forward difference for the

diffusive term. Consequently, the discretized mass continuity equations at the upstream and downstream boundaries are

H1/2 −H⋆
1/2

∆τ
−
(
χ1/2

dL

dτ

)
H3/2 −H1/2

L∆χ
+

(U2 +U1)H3/2W3/2 − (U1 +U0)H1/2W1/2

2W1/2L∆χ
= Ḃ1/2 (C8)

and490

HN−1/2 −H⋆
N−1/2

∆τ
−
(
χN−1/2

dL

dτ

)
HN−1/2 −HN−3/2

L∆χ
+

(UN +UN−1)HN−1/2WN−1/2 − (UN−1 +UN−2)HN−3/2WN−3/2

2WN−1/2L∆χ
= ḂN−1/2. (C9)
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