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Abstract. Ozone (O3) pollution reduces wheat yields as well as the protein and micronutrient yield of the crop. O3 

concentrations are particularly high in India, and are set to increase, threatening wheat yields and quality in a country already 

facing challenges to food security. This study aims to improve the existing DO3SE-CropN model to simulate the effects of O3 

on Indian wheat quality by incorporating antioxidant processes to simulate protein, and the concentrations of nutritionally 

relevant amino acids. As a result, the improved model can now capture the decrease in protein concentration that occurs in 15 

Indian wheat exposed to elevated O3. The structure of the modelling framework is transferrable to other abiotic stressors and 

easily integrable into other crop models, provided they simulate leaf and stem N, demonstrating the flexibility and usefulness 

of the framework developed in this study. Further, the modelling results can be used to simulate the FAO recommended metric 

for measuring protein quality, the DIAAS, setting up a foundation for nutrition-based risk assessments of O3 effects on crops. 

The resulting model was able to capture grain protein, lysine and methionine concentrations reasonably well. As a proportion 20 

of dry matter, the simulated percentages ranged from 0.26% to 0.38% for lysine, and from 0.13% to 0.22% for methionine, 

while the observed values were 0.16% to 0.38% and 0.14% to 0.22%, respectively. For grain and leaf protein simulations, the 

interdependence between parameters reduced the accuracy of their respective relative protein loss under O3 exposure. 

Additionally, the decrease in lysine and methionine concentrations under O3 exposure was underestimated by ~10 percentage 

points for methionine for both cultivars, and by 37 and 19 percentage points for lysine for HUW234 and HD3118 respectively. 25 

This underestimation occurs despite simulations of relative yield loss being fairly accurate (average deviation of 2.5 percentage 

points excluding outliers). To provide further mechanistic understanding of O3 effects on wheat grain quality, future 

experiments should measure nitrogen (N) and protein concentrations in leaves and stems, along with the proportion of N 

associated with antioxidants, which will aid in informing future model development. Additionally, exploring how grain protein 

relates to amino acid concentrations under O3 will enhance the model’s accuracy in predicting protein quality and provide more 30 

reliable estimates of the influence of O3 on wheat quality. This study builds on the work of Cook et al. (2024) and supports the 
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second phase of the tropospheric O3 assessment report (TOAR) by investigating the impacts of tropospheric O3 on Indian 

wheat and the potential of this to exacerbate existing malnutrition in India. 

1. Introduction 

A growing body of literature from Europe, China and India has shown that exposure to O3 reduces wheat protein and 35 

micronutrient yields (Broberg et al., 2015; Yadav et al., 2020; Mishra, Rai and Agrawal, 2013; Feng, Kobayashi and 

Ainsworth, 2008). This is important as cereals often make up the most available protein source per capita and wheat is the 

dominant dietary cereal globally (Shiferaw et al., 2013). Therefore, any reduction in yield, protein and micronutrient contents 

caused by O3 could threaten both food and nutrition security, especially in countries such as India where O3 concentrations are 

high and food security is low (FAO et al., 2020; Herforth et al., 2020; Mills et al., 2018b). The first phase of the tropospheric 40 

ozone (O3) assessment report (TOAR) (https://igacproject.org/activities/TOAR/TOAR-I) compiled information on surface O3 

metrics to produce the world’s largest database for identification of global distribution and trends of O3. The second phase of 

TOAR (https://igacproject.org/activities/TOAR/TOAR-II), for which this paper is a part, expands on the goals of the first 

phase, to investigate O3 impacts on human health and vegetation. This study contributes to the second phase of TOAR by 

examining the impacts of tropospheric O3 on wheat yield and quality in India, enhancing our understanding of the broader 45 

implications for food and nutrition security. Understanding the interplay of different factors affecting O3 induced reductions 

in wheat yield and quality will be important for current, and future, food and nutritional security risk assessments. 

1.1 Malnutrition and the importance of wheat in India 

Malnutrition is prevalent in India with ~40% of the population unable to afford a nutritionally adequate diet, and ~80% unable 

to afford a healthy diet (FAO et al., 2023). In India, ~35% of children under the age of 5 are affected by stunting and ~20% 50 

affected by wasting, with the prevalence of wasting in India being one of the highest in the world (Development Initiatives, 

2020).  Stunting and wasting occur when an individual does not have sufficient calories or micronutrients in their diet to grow 

and develop (Gonmei and Toteja, 2018). Wasting and muscle function loss can result from a poor quantity, or quality, of 

dietary protein (Medek, Schwartz and Myers, 2017). For most Indian states, at least 30% of the population are at risk of protein 

deficiency, which is of concern for people who are pregnant or in poorer socioeconomic circumstances, who require higher 55 

qualities of protein for growth or fighting infections (Swaminathan, Vaz and Kurpad, 2012; Minocha, Thomas and Kurpad, 

2017).  

In India, cereals are the most available protein source per capita, and are a key dietary protein source (Minocha, Thomas and 

Kurpad, 2017). Wheat makes up the dominant dietary cereal in the north of India where the majority of the crop is grown 

(Khatkar, Chaudhary and Dangi, 2015).  Globally, India has the greatest area under wheat cultivation, 31.6 million hectares, 60 

and produced 109.5 million tonnes of wheat in 2021, second only to the amount of wheat produced by China (Ministry of 

Agriculture & Farmers Welfare, 2022). As a result, the country is self-sufficient/reliant when it comes to wheat (Tripathi and 
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Mishra, 2016). Consumption of wheat varies by state with the dominant wheat producing states (Punjab, Rajasthan, Haryana 

and Madhya Pradesh) consuming the most. Resulting from population growth and increases to income, the total demand for 

wheat is increasing (Tripathi and Mishra, 2016).  However, numerous experimental and modelling studies have shown that O3 65 

is substantially reducing wheat yields across India (Sharma et al., 2019; Sinha et al., 2015; Mills et al., 2018a; Yadav, Agrawal 

and Agrawal, 2021; Mishra, Rai and Agrawal, 2013). 

1.2 O3 pollution in India 

Ground level O3 is a secondary pollutant, formed when precursor gases (predominantly volatile organic compounds and nitrous 

oxides) react in the presence of ultraviolet light (Fowler et al., 2008). Current literature, and the first phase of TOAR, identified 70 

that South Asia, and in particular India, experience some of the highest O3 burdens of any region or country worldwide (Mills 

et al., 2018b; Emberson, 2020). Geographically, the highest O3 concentrations in India occur in the northern part of the country 

and the Indo-Gangetic planes (IGP), where the majority of wheat is grown (Rathore, Gopikrishnan and Kuttippurath, 2023; 

Lu et al., 2018; Ministry of Agriculture & Farmers Welfare, 2022). In the future, the changing climate will affect O3 

concentrations, with climatic conditions across the north of India favouring greater O3 production (Stevenson et al., 2013; Li 75 

et al., 2022a). Comparative to present day, Kumar et al. (2018) showed the greatest increase in O3 concentrations across India 

would be during the dry (wheat growing) season across the IGP. This is a critical finding given the majority of wheat is grown 

in the north of India, across the IGP (Ministry of Agriculture & Farmers Welfare, 2022).  

1.3 Effects of O3 pollution on wheat yields 

O3 diffuses into wheat leaves via the stomates and impacts photosynthesis and senescence when antioxidant defences are 80 

compromised (Emberson et al., 2018; Tiwari and Agrawal, 2018; Rai and Agrawal, 2012). Accelerated senescence shortens 

the grain filling period, and the decline in photosynthesis decreases biomass production, ultimately leading to lower crop yields 

(Tiwari and Agrawal, 2018; Emberson et al., 2018).  

Several experimental studies using wheat cultivars commonly grown in India have shown decreases in yield due to elevated 

O3 exposure (Yadav, Agrawal and Agrawal, 2021; Pandey et al., 2018; Tomer et al., 2015; Naaz et al., 2022). National 85 

estimates of relative yield (RY) loss due to O3 across India vary between 3.8-41% between studies (Ghude et al., 2014; Lal et 

al., 2017; Avnery et al., 2011; Van Dingenen et al., 2009; Sinha et al., 2015; Sharma et al., 2019; Droutsas, 2020). The effects 

of O3 on wheat yield also vary spatially (Mills et al., 2018a; Droutsas, 2020; Ghude et al., 2014; Lal et al., 2017; Sharma et al., 

2019). Mills et al. (2018) found the greatest yield losses across the north of the country as the meteorological conditions are 

more favourable to O3 uptake. Lal et al. (2017) also found the greatest wheat yield losses due to O3 in the north and west of 90 

India, where the majority of wheat is grown. Further, Naaz et al. (2022) exposed Indian wheat cultivars to different conditions 

representing future O3 and climate scenarios, finding that areas suitable for wheat cultivation will be reduced in the future.  
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1.4 Effects of O3 pollution on wheat quality 

Studies have shown that the starch, protein and micronutrient yield of wheat decreases under elevated O3 exposure (Broberg 

et al., 2015; Tomer et al., 2015; Piikki et al., 2008). Pre-anthesis, the accumulation of nitrogen (N) in upper plant parts is 95 

unaffected by elevated O3 concentrations (Brewster, Fenner and Hayes, 2024). However, after anthesis, the O3 induced 

acceleration of plant senescence limits the remobilisation of N from the leaves and stem to the grain (Broberg et al., 2017; 

Brewster, Fenner and Hayes, 2024; Chang-Espino et al., 2021). Brewster, Fenner and Hayes (2024) also suggest that an 

additional process affects N remobilisation to the grain, as they found an increase in residual N in the flag leaf, despite not 

detecting a difference in senescence onset. It is possible that the residual N is in the form of antioxidants (for example 100 

glutathione) which the plant creates for defence against O3 induced reactive oxygen species (ROS) (Brewster, Fenner and 

Hayes, 2024; Sarkar and Agrawal, 2010; Yadav et al., 2019). Overall, the reduction in N remobilisation, leads to reduced N 

deposition to the grain and a reduced grain N, and protein, yield (Broberg et al., 2015; Yadav et al., 2020; Cook et al., 2024). 

In wheat, since the grain yield is decreased to a greater extent than proteins and micronutrients under increased O3, the 

concentration of protein and micronutrients in the grains generally increases (Feng and Kobayashi, 2009; Piikki et al., 2008). 105 

However, some wheat varieties, particularly Indian wheat, have shown a different pattern, where the protein yield and 

concentration of the grains decreases under O3 exposure (Baqasi et al., 2018; Yadav et al., 2020; Mishra, Rai and Agrawal, 

2013).  

Indispensable amino acids (AA’s) are most important for nutrition as they cannot be synthesised by the body and must be 

obtained through diet (Brestenský et al., 2019). Additionally, the quantity of N containing compounds consumed is important 110 

for synthesis of dispensable AA (Brestenský et al., 2019). Nevertheless, while dispensable AA can be produced by the body, 

their consumption is still important for supporting metabolic functions (Brestenský et al., 2019). The production of different 

proteins in the body requires AA in differing proportions (Shewry and Hey, 2015). The AA that is available in the lowest 

proportion, the most limiting AA, determines protein production (Elango, Ball and Pencharz, 2008; Shewry and Hey, 2015). 

Un-utilised AA cannot be stored so if they are not used for protein production they are oxidised (Elango, Ball and Pencharz, 115 

2008; Brestenský et al., 2019). Yadav et al. (2020) looked at the AA profiles of a modern (HD3118), and old (HUW234), 

wheat cultivar exposed to O3, finding indispensable and dispensable AA decreased under O3 exposure. The effect of O3 on 

protein quality of wheat is of particular concern given the existing state of malnutrition in India. 

1.5 Crop modelling for O3 and nutrition 

Several crop models have been used to investigate the impacts of O3 pollution on crop yields in a wide range of countries and 120 

globally (Nguyen et al., 2024; Guarin et al., 2019, 2024; Schauberger et al., 2019; Tao et al., 2017; Tai et al., 2021; Tian et al., 

2015; Zhou et al., 2018; Droutsas, 2020; Xu et al., 2023). Ebi et al. (2021) highlight the usefulness of models for such risk 

assessments, while stressing that most do not consider aspects relevant for human nutrition in their simulations. Currently, 

only one model has been developed which captures the effect of O3 on crop nutrition: DO3SE-CropN (Cook et al., 2024). 
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DO3SE-CropN is built on the existing DO3SE-Crop model and simulates explicitly the effect of O3 on reducing the amount of 125 

N from the leaves and stems that is available for the grain. From the grain N content (gN m-2), grain protein content (gProtein 

m-2) is easily obtained using conversion factors (Mariotti, Tomé and Mirand, 2008).  

The DO3SE-CropN model was originally developed to capture the increase in N concentration (100gN gDM-1) and decrease 

in N yield (gN m-2) that occurs under O3 exposure in European wheat (Cook et al., 2024). However, Indian wheat experiences 

a decrease in grain protein concentration as well as a decrease in grain protein yield under elevated O3 concentrations (Mishra, 130 

Rai and Agrawal, 2013; Yadav et al., 2020). In India, the ambient O3 concentrations are high, leading to ROS production and 

subsequent yield losses (Tiwari and Agrawal, 2018; Sinha et al., 2015; Sharma et al., 2019). The production of antioxidants 

by the plant to defend against ROS reduces the proportion of proteins that would otherwise be remobilised to the grain, reducing 

grain protein (Yadav et al., 2019, 2020). Therefore, to capture the decrease in the protein concentration of Indian wheat under 

O3 exposure, the inclusion of antioxidant processes is essential. Further, the inclusion of such processes will improve the wider 135 

applicability of the model for simulating O3 effects on wheat quality for regions with high O3 concentrations. 

Further, to expand the nutritional relevance of the model, it would be useful to simulate the effect of O3 on protein quality. 

This can be done through simulating AA concentrations, which can subsequently be used to calculate the recommended metric 

for measuring protein quality by the FAO: the dietary indispensable AA score (DIAAS). The inclusion of protein quality would 

allow for risk assessments of O3 effects on wheat nutrition in addition to yield. 140 

1.6 Aims 

In the present study, the DO3SE-CropN model was further developed and applied with two years of meteorological data. The 

model was calibrated using phenology, photosynthesis and yield data collected for two cultivars (HUW234 and HD3118) 

grown under both ambient and elevated O3 treatments. All data were available from Yadav, Agrawal and Agrawal (2021). 

Grain quality data were obtained from an experiment on the same cultivars a year prior, however hourly meteorological and 145 

O3 data were not available for this year (Yadav et al., 2020). In the absence of further data, this study assumes that the grain 

protein concentration and grain protein quality will respond similarly to O3 between years. The aims of the present study were 

to use the available data for the following: 

1) Develop a framework to simulate the antioxidant response of wheat under O3 exposure for incorporation into the 

existing DO3SE-CropN model 150 

2) Develop a method for simulating the impact of O3 exposure on the protein quality of wheat, focussing on AA 

essential for human nutrition, for incorporation into the existing DO3SE-CropN model. 

2 Model development 

2.1 Integrating antioxidant processes into DO3SE-CropN 

The DO3SE-Crop model is a coupled stomatal conductance-photosynthesis model, which simulates stomatal O3 uptake and its 155 

impact on photosynthesis, recovery from O3 damage overnight, as well as O3 induced accelerated crop senescence (Pande et 
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al., 2024a). Daily photosynthate is partitioned between the leaves, stem, roots and grains according to the plant’s growth stage 

(Pande et al., 2024a; Osborne et al., 2015). Development of DO3SE-Crop has allowed the O3 impact on wheat production in 

China and Europe to be estimated (Pande et al., 2024a; Nguyen et al., 2024). The N module for DO3SE-Crop, developed by 

Cook et al. (2024), takes inputs of daily stem and leaf dry matter (DM), as well as the onset of crop senescence, to simulate 160 

the N accumulated by the leaf and stem. The remobilisation of N from the leaf and stem to the grain after anthesis is simulated 

using a sigmoid function. To account for the reduction in N remobilisation under O3 exposure, a relationship linking 

accumulated O3 flux to the minimum N levels in the leaf and stem is incorporated (Cook et al., 2024; Brewster, Fenner and 

Hayes, 2024). The model allowed the decrease in grain N yield (gN m-2) and increase in grain N concentration (100gN gDM-

1) of European wheat under O3 exposure to be simulated (Cook et al., 2024). A full write up of the equations and processes of 165 

the DO3SE-Crop model is given in Pande et al. (2024). Additionally, a full description of the equations and processes of version 

1.0 of the N module developed for DO3SE-Crop is given in (Cook et al., 2024). In this study version 4.39.16 of the DO3SE-

Crop model was used (Bland, 2024), along with version 2.0 of the N module (Cook, 2024). 

The first iteration of the N module for DO3SE-Crop (Cook et al., 2024), did not consider the utilisation of leaf/stem N in 

creating defence proteins, yet for Indian wheat this may be an important process to explain the decrease in grain protein 170 

concentration as well as yield (Yadav et al., 2019, 2020). Here we propose a method by which the leaf and stem N involved in 

antioxidant production may be quantified (Fig. 1). 
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Fig. 1: Diagram of the proposed method for integrating antioxidant response under O3 exposure into the existing N module for 

DO3SE-Crop. The lightning strikes represent where O3 can interrupt plant N processes. The lightning strikes represent the points 175 
where O3 interacts with the antioxidant processes in the model. 

Fig. 1 shows how antioxidant processes can be integrated within the existing DO3SE-CropN framework. When the leaf 

senesces, N is released from the leaf. The N module is linked to the existing DO3SE-Crop model so that increasing stomatal 

O3 flux accelerates senescence, which accelerates N release from the leaf. N is released until the minimum leaf N concentration 

is reached. Previously, the minimum leaf N concentration increased with O3 concentration to represent the increase in residual 180 

N (Cook et al., 2024). Now it is hypothesised that this increase in residual N is due to the leaf and stem using N for antioxidants 

which remain in the leaf. After a threshold of accumulated O3 flux has been exceeded, we allocate a proportion of the released 

N to an antioxidant pool, which means it is unavailable to the grain. Since the stem is also involved in antioxidant response 

and defence against ROS (Bazargani et al., 2011; Gao et al., 2018; Li et al., 2022b), the same mechanism is used for the stem. 

We determine the proportion of N that will be allocated to the antioxidant pool using an equation that follows a similar structure 185 

as the drought stress factor of Liu et al. (2018), as both O3 and drought stress are ROS mediated (Khanna-Chopra, 2012). Liu 

et al. (2018) use their drought stress factor to empirically modify the N:protein conversion factor under drought stress. Here, 

we introduce this method to the DO3SE-CropN model via equation (1) as a more mechanistic approach. Instead of modifying 

the N:protein conversion factor under an abiotic stress, we use the structure of Liu et al.'s (2018) equation to determine N 

allocation to the antioxidant pool, thereby reducing the N available to the grain, and subsequently affecting grain protein. 190 

The proportion of N allocated to the antioxidant pool, 𝑓𝑂3,𝐴𝑛𝑡𝑖𝑜𝑥𝑖𝑑𝑎𝑛𝑡𝑠, takes the following form: 
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𝑓𝑂3,𝐴𝑛𝑡𝑖𝑜𝑥𝑖𝑑𝑎𝑛𝑡𝑠 = {

0, 𝑓𝑠𝑡
𝑎𝑐𝑐

< 𝑐𝐿𝑂3

𝑓𝑠𝑡
𝑎𝑐𝑐

− 𝑐𝐿𝑂3

𝑎𝑝𝑎𝑟𝑡 × 𝑓𝑠𝑡
𝑒𝑛𝑑

− 𝑐𝐿𝑂3

, 𝑓𝑠𝑡
𝑎𝑐𝑐

≥ 𝑐𝐿𝑂3

 

 

(1) 

where 𝑓𝑠𝑡𝑎𝑐𝑐 is the current stomatal accumulation of O3 flux in the DO3SE model, 𝑓𝑠𝑡𝑒𝑛𝑑 is the stomatal accumulation of O3 

flux when N is only allocated to antioxidant pool and is not available to the grain, 𝑐𝐿𝑂3
 is the critical level above which O3 

flux starts affecting the onset of senescence in the DO3SE-Crop model, and 𝑎𝑝𝑎𝑟𝑡 is a constant modifier that can be calibrated 

to customise the O3 effect on antioxidants for each plant part (leaf and stem). 𝑎𝑝𝑎𝑟𝑡 must be equal to or greater than 
𝑐𝐿𝑂3

𝑓𝑠𝑡𝑒𝑛𝑑
 for 195 

the antioxidant factor equation to show a decrease in released N with accumulated O3 flux. Further, 𝑓𝑠𝑡𝑒𝑛𝑑 must be greater 

than 𝑐𝐿𝑂3
.  Of the N released that day, the proportion available to the grain is 1 − 𝑓𝑂3,𝐴𝑛𝑡𝑖𝑜𝑥𝑖𝑑𝑎𝑛𝑡𝑠. The 𝑐𝐿𝑂3

 term was chosen 

as the O3 stress factor as if O3 has exceeded a critical threshold and is affecting senescence onset, we can hypothesise that the 

allocation of N to antioxidants to protect against O3 stress will be increased. 𝑓𝑠𝑡𝑒𝑛𝑑 was incorporated into the equation to allow 

the end point of the slope to be customised. For varying values of 𝑎𝑝𝑎𝑟𝑡, the O3 stress factor is used to calculate the proportion 200 

of N available to the grain as a function of accumulated stomatal O3 flux according to Fig. 2. 

 

Fig. 2: Proportion of N released from stem or leaf senescence that is available to the grain for varying values of 𝒂𝒑𝒂𝒓𝒕. The plot uses 

𝒇𝒔𝒕𝒆𝒏𝒅 = 30000, and 𝒄𝑳𝑶𝟑
 = 15000. 
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2.2 Identification of nutritionally relevant AA for O3 exposed wheat 205 

The quality of a protein depends on the proportions of indispensable and dispensable AA’s in the food. While Yadav et al. 

(2020) found that dispensable AA’s were reduced to a greater extent than indispensable AA’s under O3 exposure, the most 

limiting for protein production were the indispensable AA’s lysine and methionine. Additionally, the concentrations of lysine 

and methionine were reduced under O3 exposure for both the HD3118 and HUW234 cultivars (Yadav et al., 2020). Therefore, 

to simulate the protein quality under O3 exposure, lysine and methionine were focussed on. 210 

2.3 Protein and AA calculations 

The DO3SE-CropN model outputs a grain N yield (gN m-2) and concentration (100gN gDM-1). From the grain N content, the 

protein content can be calculated by considering a standard N:protein conversion factor. The Jones’ factors are commonly used 

to convert from N to protein, however, these factors vary between foods and within the same food group (Jones, 1941; Mariotti, 

Tomé and Mirand, 2008). On average for whole wheat, the conversion factor is 5.49, which is used in this study to convert 215 

grain N to protein (Mariotti, Tomé and Mirand, 2008). The regressions used to calculate lysine and methionine concentrations 

of the wheat grain from grain protein percentage are taken from Table 5 of Liu et al. (2019). 

2.4 The DIAAS score 

The metric recommended by the FAO for evaluating food protein quality is the dietary indispensable AA score (DIAAS), 

which corrects for the AA digestibility at the end of the small intestine (FAO, 2013). It therefore reflects the fact that the 220 

nutritional quality of protein should account for the AA required for metabolism (FAO, 2013). The metric also varies for 

different age groups which have different protein quality requirements (FAO, 2013). Currently, no crop model has incorporated 

a nutrition measure such as the DIAAS into their models. Additionally, no model has considered the impact of O3 pollution on 

protein quality which is critical for risk assessments of O3 stress on food and nutrition security. 

There are two steps in calculating the DIAAS score. First, the DIAAS reference ratio is calculated for each AA as follows:  225 

 
 

𝐷𝐼𝐴𝐴𝑆
𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑟𝑎𝑡𝑖𝑜

=  
𝑇𝑟𝑢𝑒 𝑖𝑙𝑒𝑎𝑙 𝐼𝐴𝐴 𝐷𝑖𝑔𝑒𝑠𝑡𝑖𝑏𝑖𝑙𝑖𝑡𝑦 × 𝑚𝑔 𝑜𝑓 𝐴𝐴 𝑖𝑛 1𝑔 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑖𝑒𝑡𝑎𝑟𝑦 𝑝𝑟𝑜𝑡𝑒𝑖𝑛

𝑚𝑔 𝑜𝑓 𝑑𝑖𝑔𝑒𝑠𝑡𝑖𝑏𝑙𝑒 𝑖𝑛𝑑𝑖𝑠𝑝𝑒𝑛𝑠𝑖𝑏𝑙𝑒 𝐴𝐴 𝑖𝑛 1𝑔 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑖𝑒𝑡𝑎𝑟𝑦 𝑝𝑟𝑜𝑡𝑒𝑖𝑛
 (2) 

where IAA stands for indispensable AA. 

Once the AA concentrations have been obtained from grain protein simulations, as detailed in Section 2.3, then Eq. (2) is re-

written using the parameters used in the crop modelling as: 

 

 
𝐷𝐼𝐴𝐴𝑆

𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑟𝑎𝑡𝑖𝑜
=  

𝑇𝑟𝑢𝑒 𝑖𝑙𝑒𝑎𝑙 𝐼𝐴𝐴 𝐷𝑖𝑔𝑒𝑠𝑡𝑖𝑏𝑖𝑙𝑖𝑡𝑦 ×
1000 × 𝐺𝑟𝑎𝑖𝑛 𝐴𝐴 (% 𝑖𝑛 𝐷𝑀)

𝐺𝑟𝑎𝑖𝑛 𝑝𝑟𝑜𝑡𝑒𝑖𝑛 (% 𝑖𝑛 𝐷𝑀)
𝑚𝑔 𝑜𝑓 𝑑𝑖𝑔𝑒𝑠𝑡𝑖𝑏𝑙𝑒 𝑖𝑛𝑑𝑖𝑠𝑝𝑒𝑛𝑠𝑖𝑏𝑙𝑒 𝐴𝐴 𝑖𝑛 1𝑔 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑖𝑒𝑡𝑎𝑟𝑦 𝑝𝑟𝑜𝑡𝑒𝑖𝑛

 
(3) 

 

In the second step, the lowest DIAAS reference ratio is selected and used to calculate the DIAAS score as in Eq. (4). The 230 

lowest reference ratio is selected as this corresponds to the AA which is most limiting in the food, and is available in the 
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smallest proportion relative to a person’s requirements (Elango, Ball and Pencharz, 2008). The AA with the lowest availability 

determines protein production, and quality, and the other AA which are in excess of the most limiting one will be oxidised 

(Elango, Ball and Pencharz, 2008). 

  
𝐷𝐼𝐴𝐴𝑆
𝑠𝑐𝑜𝑟𝑒

=  100 × 𝑙𝑜𝑤𝑒𝑠𝑡(𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑟𝑎𝑡𝑖𝑜) (4) 

The true ileal IAA digestibility coefficients for wheat flour required for Eq.(3) can be obtained from Shaheen et al. (2016) for 235 

the different AA. Additionally, the mg of digestible indispensable AA in 1g of the dietary protein are tabulated for the different 

AA and age groups in FAO (2013). There are different requirements for different age groups as adults only require AA for 

maintenance, whereas children require them for growth and maintenance (Shewry and Hey, 2015).  

3. Parameterisation and calibration of DO3SE-CropN model 

3.1 Experimental datasets 240 

Datasets for training and evaluation of the DO3SE-CropN model were taken from three years of field experiments for wheat 

harvested between March 2016-2018 at the Botanical Garden, Banaras Hindu University, Varanasi, India using the HUW234 

and HD3118 cultivars. The cultivars are both late sown and heat tolerant wheat varieties. For all years, O3 fumigation began 3 

days after seed germination, the 13th, 14th and 15th of December respectively for the 2015, 29016 and 2017 sowing on the 14th 

of December.  The wheat was exposed to ambient O3 concentrations and an elevated O3 treatment (ambient + 20 ppb), with 245 

the seasonal maximum O3 concentrations ranging from 80-100 ppb, and an average ambient M7 of 48 ppb across 2017 and 

2018. Across all experiments the wheat was sown on the 5th of December and harvested on the 30th of March. The wheat was 

grown in non-filtered open top chambers across all three years. The wheat did not experience any soil water or N stress. For 

greater detail of the experimental set up and measurements taken, the reader is referred to Yadav et al. (2020) and Yadav et al. 

(2021). A scaling factor was applied to each AA concentration in Yadav et al. (2020) based on the mean concentration of AA 250 

in Siddiqi et al. (2020) to ensure values were consistent with the wider literature on AA concentrations for Indian wheat. 

The meteorological data for the model input was taken from an onsite weather and O3 monitoring system. The input 

temperature data were corrected for the heating effect of the open top chambers, with the chambers found to be approximately 

2°C warmer than the ambient air (see supplementary information). Due to gaps in the hourly meteorological data, gap filling 

was performed according to Emberson et al. (2021). 255 

3.2 Model calibration and evaluation 

3.2.1 Model calibration 

The calibration for DO3SE-CropN is performed sequentially to allow the interactions between parameters at each stage to be 

limited (Cook et al., 2024). The key parameters calibrated in the DO3SE-CropN model are given in Cook et al. (2024) and the 
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same method of calibration is used in this study. In the present study, there are 3 additional parameters to calibrate based on 260 

the newly introduced antioxidant module: 𝑓𝑠𝑡𝑒𝑛𝑑, 𝑎𝑙𝑒𝑎𝑓 and, 𝑎𝑠𝑡𝑒𝑚.  

The maximum catalytic rate at 25°C (𝑉𝑐𝑚𝑎𝑥,25) and the maximum rate of electron transport at 25°C ( 𝐽𝑚𝑎𝑥,25) were fixed at the 

values provided by Yadav et al. (2020) in their supplementary data. The author’s supplementary data on maximum 

photosynthetic rate were combined with data provided by the authors on maximum stomatal conductance to vary the species-

specific sensitivity of stomatal conductance to assimilation rate (𝑚), and the parameter describing variation in stomatal 265 

conductance in response to VPD (𝑉𝑃𝐷0), until a close match between photosynthetic rate and stomatal conductance was 

achieved (Yadav et al., 2020). Additional data provided by the authors of Yadav et al. (2020) were utilised to calculate the 

dark respiration rate; allowing calibration of the dark respiration coefficient for all simulations. Subsequently, the parameters 

controlling biomass accumulation and O3 damage were calibrated using biomass data provided and assuming a seasonal 

maximum LAI of 5. The O3 damage parameters were incorporated at this stage due to high ambient O3 concentrations which 270 

caused an O3 induced reduction in yield even under the ambient treatment. The parameters controlling leaf and stem N were 

varied to achieve a close match for the leaf and grain protein simulations, as no stem N data was available for calibration. 

During this stage of the calibration, the gradient of the equations describing the effect of O3 on N remobilisation of the leaf 

and stem were set to 0 to allow the newly developed antioxidant processes to be tested, as it was hypothesised in Cook et al. 

(2024) that the O3 impact on N remobilisation occurs due to antioxidant processes. However, as the calibration was performed, 275 

the best results were achieved when the new antioxidant processes were used in combination with the previously developed 

O3 effect on remobilisation. Therefore, the parameters controlling N remobilisation from the leaf and stem (calibrated in Cook 

et al. (2024)) were varied as little as possible from their defaults to allow the newly developed antioxidant processes to be 

parameterised. For a tabulation of parameters calibrated for, and the values they were calibrated to, please refer to the 

supplementary data.  280 

Model parameters were calibrated using a combination of genetic algorithm and a trial-and-error approach, to minimise the 

difference between simulated and observed values while also retaining parameterisations that are physiologically realistic for 

the plant. For further details of the calibration method see Cook et al. (2024). 

3.2.2 Model evaluation 

The input data available for the present study were limited. Initially, the data were split in half with the 2017 data used for 285 

model calibration and the 2018 data used for the model evaluation. However, when looking at the results of the evaluation it 

was clear that the limited input data led to overfitting of the 2017 dataset (see supplementary Fig.’s S8 and S9). Therefore, to 

focus on the development of the modelling framework, all available data were used for model calibration. The root mean 

square error (RMSE) and R2  were used to evaluate the model’s suitability at simulating the yields and protein contents of the 

two cultivars using Scikit-Learn (Pedregosa et al., 2011). Using the R2 calculation from Pedregosa et al. (2011) can give 290 

negative R2 values, where a negative value means that using the mean of the observed values is a better fit to the data than 
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using the model. In this paper the units of the RMSE are the same as the units of the model variable, e.g. for yield RMSE is 

reported in in g m-2 and for protein percentage (% or 100gProtein/gDM-1) RMSE is reported as percentage points. 

4. Results 

4.1 Biomass and protein simulations 295 

Overall, the calibrations for grain yield, and leaf and grain protein, were reasonable for both cultivars. The grain yield and RY 

loss simulations performed better for 2018 than 2017. However, there was little difference in the model’s capacity to capture 

the leaf and grain protein concentrations, and the relative loss in these, under O3 exposure between the years. From Fig. 3a, 

the grain yield calibration was satisfactory with a RMSE of 141 gm-2, however it is clear that the calibration was able to 

simulate the grain DM better for 2018 than 2017. The underestimation of the grain DM in the 2017 dataset ranged between 300 

35-46%.  Further, the negative R2 implies that using the mean of the observed data would be a better estimate of grain DM 

than the model (Pedregosa et al., 2011). The RY loss was captured much better than the grain DM. In Fig. 3b, the model 

captures the RY loss of cultivar HD3118 well. However, cultivar HUW234 has a large difference in RY loss between the two 

years which the model was unable to capture. The average deviation of RY loss from the observed value is 2.5 percentage 

points excluding the HUW234 cultivar for 2018. When this cultivar is included, the deviation increases to 7 percentage points. 305 

 

Fig. 3: Calibration of grain DM (a) and RY loss (b) using the DO3SE-Crop model for the Varanasi dataset. RY loss was calculated 

comparative to preindustrial O3 concentrations (CLRTAP, 2017). 

Fig. 4 shows the grain and leaf protein simulations, and the relative protein (RP) loss between the ambient and elevated 

treatments. The grain protein (Fig. 4a) is captured better for 2017 than 2018, but overall, the results are good, with an R2 of 310 
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0.5 and a RMSE of only 1.3%. The grain RP loss between the ambient and elevated O3 treatment is slightly overestimated for 

the HUW234 cultivar, and for the HD3118 cultivar in 2017 it is slightly underestimated, all by ~2.5 percentage points. 

However, in 2018 the grain RP loss of the HD3118 cultivar was heavily overestimated by ~6.5 percentage points. 

The simulations of leaf protein (Fig. 4c) showed a good fit to the experimental data and were closer to the observed values 

than grain protein simulations, with an R2 of 0.6 and a RMSE of 0.8%. Nevertheless, the model captured the pattern of the 315 

grain protein concentrations under ambient and elevated O3 concentrations better than the pattern of the leaf protein 

concentrations (Fig.’s 4a and 4c). The leaf RP loss (Fig. 4d) was not well captured. For the HD3118 cultivar, the leaf RP loss 

was underestimated, and for the HUW234 cultivar it was overestimated. For the HUW234 cultivar leaf RP loss was 

overestimated by ~42 percentage points and for the HD3118 cultivar, the RP losses were more variable, with the leaf RP loss 

underestimated by ~13.5 and ~25 percentage points for 2017 and 2018 respectively. 320 

 

Fig. 4: The concentration of grain (a) and leaf (c) protein of HUW234 and HD3118 cultivars under ambient and elevated O3. 

Calibration of the RP loss in grain (b) and leaf (d). In figure (b) the relative change in grain protein for the HUW234 cultivar for the 

years 2017 and 2018 was almost identical, hence the overlaid points. In figure (c) the leaf protein concentration for HD3118 cultivar 
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in the ambient treatment was almost identical for 2017 and 2018, giving the overlaid points. The RMSE and R2 of the calibration 325 
are indicated on the plot. 

4.2 AA simulations 

Lysine and methionine were the key AAs focussed on as they were found to be the most limiting to protein production under 

O3 exposure (Yadav et al., 2020). To calculate their concentrations the grain protein concentrations (Fig. 4) were used along 

with the regressions from Liu et al. (2019). Fig.’s 5a and 5c show the concentration of methionine in the wheat grains is 330 

predicted better than the lysine concentrations, with a higher R2 of 0.73 (compared with 0.31) and a lower RMSE (0.02 

compared with 0.06). However, the decrease in both AA concentrations under O3 exposure was not captured as well (Fig.’s 

5b and 5d). For both lysine and methionine, the decrease in AA under O3 exposure was heavily underestimated. The decrease 

in methionine for HUW234 and HD3118 was underestimated by 9 and 10.5 percentage points respectively. The decrease in 

lysine concentrations were underestimated by 37 and 19 percentage points for HUW234 and HD3118 respectively. The 335 

decrease in AA concentration for HUW234 was similar between years for both methionine and lysine, whereas for the HD3118 

cultivar, the simulations showed a drastically different decrease in AA concentration between years. 
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Fig. 5: A comparison of the simulated concentrations of lysine (a) and methionine (c) for the different cultivars and years of 

treatment. The change in AA from ambient for lysine (b) and methionine (d) is also shown for both cultivars. 340 

4.3 DIAAS of the nutritionally relevant AA 

Methionine and lysine are the most limiting AA for protein production for the HUW234 and HD3118 cultivars, and experience 

a decrease in concentration under O3 exposure (Yadav et al., 2020). Since the relative impact of O3 on the AA concentrations 

was not captured well, the observed concentrations of the AA were used to calculate the DIAAS score, with the value that 

would be obtained if using the simulated outputs in brackets. After calculating the reference ratios for lysine and methionine 345 

using Eq. (3), lysine was found to give the lowest reference ratio for all O3 treatments and cultivars, and was used to calculate 

the DIAAS using Eq. (4). Error! Reference source not found. shows the results of the DIAAS calculation. Using the observed 

data, both cultivars experience a decrease in protein quality under elevated O3 with the HUW234 cultivar experiencing a greater 

reduction than the HD3118 cultivar. Overall, the quality of wheat protein was lower for children aged between 6 months – 3 

years than for older children and adults (>3 years). When using the simulated outputs to calculate the DIAAS, there is an 350 

increase in protein quality under O3 exposure. This discrepancy occurs due to the construct of the DIAAS equation. As the 
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decrease in AA concentrations under O3 were underestimated by DO3SE-CropN in comparison to the grain protein (see Fig.’s 

4 and 5), it led to a greater ratio of grain AA to grain protein (Eq. (3)). The greater ratio under elevated O3 then led to a higher 

value DIAAS under the treatment compared to the ambient, though this would not be the case in reality. 

Table 1: The DIAAS for the HUW234, and HD3118 cultivars under the two O3 treatments and for the age categories 6 months – 3 355 
years, and for older children and adults (>3 years). The reduction in DIAAS under O3 for the HUW234 and HD3118 cultivars was 

also calculated. The numbers in brackets represent the DIAAS score calculated using model outputs, the average AA and protein 

concentrations across the 2017 and 2018 simulations were used in the calculation. 

  DIAAS 

Age category 

HUW234 

Ambient  

HUW234 

Elevated  

HUW234 

rel. change 

HD3118 

Ambient  

HD3118 

Elevated  

HD3118 

rel. change 

DIAAS Score (> 3 

years) 49.9 (59.1) 31.0 (61.1) 

- 37.9% 

(+3.3%) 

49.9  

(50.8) 

39.9 

(52.4) 

- 20.1% 

(+3.2%) 

DIAAS Score (6 

months - 3 years) 

42.0 

(49.80) 26.1 (51.5) 

- 37.9% 

(+3.3%) 

42.0  

(42.8) 

33.6 

(44.1) 

- 20.1% 

(+3.2%) 

4.4 Difference between the 2017 and 2018 simulations 

After performing the simulations for 2017 and 2018 in section 4.1, it was clear there was a large difference in grain DM for 360 

the two years. The reasons for this discrepancy are important to understand since uncertainties on grain DM simulation will 

compound errors in protein concentration and yield (Cook et al., 2024). To investigate the grain DM discrepancy further, the 

meteorological variables, stomatal conductance and photosynthetic rate were plotted for both years. The accumulation of 

biomass each day and the LAI were overlaid to see if there were any differences that could explain the large difference in 

biomass. The temperature in 2018 was greater at the beginning and end of the growing season compared to 2017 (Fig. 6). The 365 

reverse was true for relative humidity (Fig. S2). With relation to the other inputs, air pressure, precipitation and wind speed 

had negligible differences between the years (Fig.’s S1, S3 and S4). O3 concentrations were generally greater in 2017 than 

2018 (Fig. 7), and photosynthetic photon flux density (PPFD) was greater at the start of the growing season in 2018 (Fig. 8). 

Daily photosynthetic rate was mostly greater in 2018 than 2017 and showed the same pattern for both cultivars (Fig.’s 9 and 

S5). The difference in stomatal conductance between the years for both cultivars mimicked the shape of the photosynthetic 370 

rate plots (Fig.’s S6 and S7). Given that the O3 effect is more strongly determined by senescence than the instantaneous impact 

on photosynthesis (Pande et al., 2024b), and senescence onset did not differ strongly between years (Fig. S11), it is unlikely 

that the differences in yield were caused by O3 effects. Instead, it is likely that 2018's higher early-season PPFD and 

temperatures, along with lower RH, promoted earlier LAI development and increased biomass production in simulations. 
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 375 

Fig. 6: Plot of the difference in daily temperature between 2017 and 2018, along with the difference in aboveground DM accumulation 

for the ambient treatment for both years and the LAI profiles. The LAI and aboveground DM profiles are for the HUW234 cultivar.  

 

Fig. 7: The difference in daily O3 between 2017 and 2018 along with the difference in aboveground DM accumulation for the ambient 

treatment for both years and the LAI profiles. LAI has been multiplied by 2 to easier show the profile. The LAI and aboveground 380 
DM profiles are for the HUW234 cultivar.  
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Fig. 8: The difference in daily PPFD between 2017 and 2018 along with the difference in aboveground DM accumulation for the 

ambient treatment for both years and the LAI profiles. LAI has been multiplied by 50 to more clearly show the profile. The LAI 

and aboveground DM profiles are for the HUW234 cultivar. 385 

 

Fig. 9: The difference in net photosynthetic rate for 2017 and 2018 along with the difference in aboveground DM accumulation and 

LAI for the ambient treatment for the 2 years. The LAI and aboveground DM profiles are for the HUW234 cultivar.  
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5 Discussion 

We developed the DO3SE-CropN model to address a current limitation in the ability of crop models to assess the effects of O3 390 

stress on not only crop yields, but also quality. We describe the further development and applications of the model to simulate 

O3 effects on nutritionally important AA based on current understanding of antioxidant processes and implications for N 

remobilisation. This work is important since currently there are few models that consider protein quality in their simulations. 

CN-Wheat considers AA from the perspective of being used for leaf, stem and grain protein production (Barillot, Chambon 

and Andrieu, 2016). They do not explicitly consider the AA of the wheat grains, relevant for nutrition (Barillot, Chambon and 395 

Andrieu, 2016). In SiriusQuality, Martre et al. (2006) consider the fractions of N that are split between gliadin, glutenin, 

albumin-globulin and other proteins in the wheat grains as a measure of wheat quality for bread production, not human 

nutrition. To our current knowledge, Liu et al. (2019) are the only authors who have extended a crop model to simulate protein 

quality, in the form of AA, from the perspective of human nutrition. In their work they extended the CERES-Wheat model to 

simulate lysine and other indispensable AA concentrations. Further, none of these crop models that consider crop quality have 400 

incorporated the effects of antioxidants. In our study we extend the equations used by Liu et al. (2019) to produce the first 

framework by which the effect of O3 on protein quality (through antioxidants, AA and the DIAAS) can be captured. 

5.1 Ability of the model to simulate DM and protein 

The present model was able to reproduce the observed grain DM for 2018 but underestimated it for 2017 due to differences in 

meteorology that triggered earlier LAI development, leading to greater photosynthesis and biomass production in the model 405 

for 2018. The model was able to capture the RY loss of the HD3118 cultivar well for both years. However, the HUW234 

cultivar experienced a large difference in RY loss between the two years, with the model only able to capture the RY loss well 

for one year. With only 2 years of data, it was not possible to determine which of the observed RY loss is the most common 

response for HUW234. Data for additional O3 treatments and years are required to develop a more robust model 

parameterisation for different meteorology’s and cultivars. 410 

While the model underestimated the grain DM for 2017 by ~ 40%, there appears to have been no effect of this underestimation 

on the capacity of the model to capture grain protein concentration (100gProtein gDM-1). A possible reason for this is that the 

lower photosynthesis in 2017, led to lower simulations of leaf and stem biomass. As a result, the N required by the leaf and 

stem for growth in the model was reduced, leading to lower N accumulation in these parts. Upon remobilisation to the grains, 

the reduction in N accumulated by the grains in 2017 compared to 2018, along with the reduced grain DM in 2017, led to 415 

similar protein concentrations. The model's ability to reproduce the observed grain protein concentration, despite yield 

discrepancies, suggests that the underlying N allocation and remobilisation equations reasonably approximate plant processes. 

This outcome supports the reliability of the equations, though further validation is needed to confirm their accuracy. Future 

work should focus on improving the model’s estimates of protein yield and concentration so that O3 threats to food security 

can be assessed with greater confidence. 420 
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In the model, there was a strong interdependence between the parameters controlling protein accumulation in the leaf and stem 

with grain protein, which is to be expected as protein remobilisation from the leaf and stem are key contributors to grain protein 

(Feller and Fischer, 1994; Gaju et al., 2014; Nehe et al., 2020). On calibrating the model, this interdependence meant that any 

attempt to improve the model’s accuracy in capturing the decrease in leaf protein under elevated O3 resulted in a reduced 

model accuracy in capturing the decrease in grain protein under elevated O3, and vice-versa (see Fig.’s 4b and 4d). This meant 425 

that there was a trade-off between calibrating leaf and grain RP loss under O3 exposure. No data was available on stem RP 

loss, so the accuracy of the stem parameterisation is unclear. Given this study focussed on grain quality, capturing the grain 

RP loss under O3 was prioritised over the leaf. If the model is not able to match the decrease in leaf protein with the 

corresponding decrease in grain protein under O3 exposure for a given cultivar, then it implies a problem with the 

parameterisation or model construct. Regarding the parameterisation, leaf DM data were not available which would affect leaf 430 

N, and hence protein, accumulation. Therefore, in the future leaf (and stem) DM data at anthesis and harvest would aid in 

parameterising the equations describing the partitioning of photosynthate each day and could improve simulations of RP loss.  

5.2 Modelling antioxidant processes under O3 exposure 

The first iteration of the DO3SE-CropN model simulated the decrease in grain protein yield (gProtein m-2), and increase in 

grain protein concentration (100gProtein gDM-1) experienced by European and Chinese wheat cultivars (Broberg et al., 2015; 435 

Cook et al., 2024). However, Indian wheat has been shown to experience a decrease in both protein yield and concentration 

under O3 exposure (Yadav et al., 2020; Mishra, Rai and Agrawal, 2013). Through the incorporation of antioxidant processes, 

the present model is now able to capture the decrease in protein concentration, and yield, of protein in Indian wheat under O3 

exposure, improving the regional applicability and nutritional relevance of the model. 

The design of the antioxidant equations has several benefits which make it useful for further applications. Firstly, the structure 440 

of Eq. 1 means that it could be easily translated to other ROS mediated stressors, provided the corresponding equation 

parameters are identified, meaning the framework is flexible. Secondly, the modelling framework is simple. It does not require 

a large number of additional parameters, which reduces the complexity of the modelling process and makes it easier for other 

modellers to introduce into their models. Thirdly, it is compatible with the structure of other models that simulate plant N. The 

equations can be used to simply divide leaf and stem N into pools that are accessible or inaccessible (antioxidants) to the grain. 445 

Following this, the modeller only needs to ensure that any N remobilised from the leaf and stem to the grain comes from the 

accessible pool. 

It was hypothesised that the introduction of the antioxidant processes would replace the previous O3 effect on leaf and stem 

residual N that was parameterised in Cook et al. (2024), as it was previously hypothesised that the increase in residual N 

occurred as a result of antioxidant production (Brewster, Fenner and Hayes, 2024; Sarkar et al., 2010; Cook et al., 2024). 450 

However, during model calibration it was noted that the simulations of leaf and grain protein were improved when both 

processes were used in combination (see model parameterisation in supplementary information). There are two potential 

explanations for this: 1) The shape of the antioxidant response to O3 is such that the two effects working in combination are a 
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more effective approximation, meaning further data to investigate the effect could provide insight into the truer shape of the 

response, 2) O3 has an effect on N remobilisation from the leaf and stem to the grains that is separate to antioxidant production. 455 

For example, ROS have been shown to oxidise proteins which would decrease protein concentrations but lead to greater 

residual N in the leaf and stem (Gill and Tuteja, 2010). Given this, and the previously described trade-off when calibrating leaf 

and grain RP loss, there is clearly a knowledge gap in our current understanding of antioxidant production and remobilisation 

of nutrients under O3 exposure. Therefore, a study with multiple O3 treatments that identifies the proportion of N in the leaf 

and stem at anthesis, and the leaf, stem and grains at harvest, as well as the corresponding proportion of proteins, would allow 460 

identification of how much N is associated with proteins, and whether this fraction changes under O3 exposure and affects N 

remobilisation. Such data would also allow further development of the antioxidant equations in this study, as for simplicity, 

and lack of data to test a more complex relationship, we have assumed linearity, but this may not be the case. Additionally, 

identification of the N associated with antioxidants at anthesis and harvest, and how these change under O3 exposure, would 

also allow further development of the antioxidant equations. If combined with protein measurements at anthesis and harvest, 465 

mechanistic understanding of O3 impacts on protein, antioxidant processes and grain filling with N could be developed further 

and used to refine existing model processes. 

5.3 Antioxidant processes and grain quality 

For consideration of O3 effects on nutrition, it is important to consider the protein quality, in addition to its concentration. 

From a dietary perspective, indispensable AA, such as lysine and methionine, are the most important to consider when thinking 470 

about protein quality as they cannot be produced by the body and must be obtained through diet (Elango, Ball and Pencharz, 

2008; Shewry and Hey, 2015). Lysine and methionine are key as they are the AA available in the lowest quantity in wheat 

exposed to O3, and therefore limit the body’s capacity to produce proteins from them (Yadav et al., 2020). If a person does not 

consume enough, or a high enough quality, of protein, then they are at risk of wasting and loss of muscle function (Medek, 

Schwartz and Myers, 2017). Understanding how O3 induced changes to wheat protein will affect protein quality, and hence 475 

quality of diet, is key in understanding O3 effects on human nutrition and its potential role exacerbating malnutrition. 

The regressions from Liu et al. (2019) were used to simulate grain lysine and methionine concentrations as these were the most 

limiting for protein production under O3 exposure (Yadav et al., 2020). However, there is variability in the response of AA in 

wheat grains under O3 due to the differential activation of metabolic pathways under stress (Ali et al., 2019; Li et al., 2024; 

Wang et al., 2018; G A et al., 2024). Yadav et al. (2020) found that while overall protein concentrations decreased under 480 

elevated O3, lysine and methionine concentrations decreased, while grain serine concentrations increased. The responses also 

differed between cultivars with HUW234 having an increase in threonine, while HD3118 had a decrease (Yadav et al., 2020). 

During stress conditions, the concentrations of AA vary to enhance plant defence mechanisms against abiotic stressors (Ali et 

al., 2019; Li et al., 2024; Wang et al., 2018; G A et al., 2024). In HUW234 and HD3118, lysine concentrations decreased under 

elevated O3, due to its breakdown for energy production and plant defence (Ali et al., 2019; Yadav et al., 2020). Lysine 485 

breakdown produces proline, the concentration of which increased in both cultivars, which has been shown to protect against 
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ROS-induced oxidative damage (Nayyar and Walia, 2003; Yadav et al., 2020; Yang, Zhao and Liu, 2020). Additionally, the 

concentration of methionine decreased in both cultivars under elevated O3 (Yadav et al., 2020). The decrease is likely due to 

methionine’s role as an antioxidant, and that it is very sensitive to oxidation by ROS (Ali et al., 2019). The changes in AA aid 

in the maintenance of photosynthetic rate and protection of photosynthetic pigments from ROS (Kaur and Kapoor, 2021; Naidu 490 

et al., 1991; Simon-Sarkadi and Galiba, 1996). The specific response of an AA to abiotic stress is cultivar specific and depends 

on the intensity of the stress (Ali et al., 2019). As a result, grain AA concentrations are linked to the stress response of the plant 

under O3. Measurements of AA concentrations under multiple O3 treatments would help to elucidate the shape of the response 

of AA’s to O3 stress. This is a field which has largely been neglected with only Yadav et al. (2020) having investigated it so 

far. Such data would allow the effect of O3 on nutrition to be better understood. 495 

5.4 Protein quality estimates using the DIAAS 

Through extending DO3SE-CropN to simulate the DIAAS, estimates of protein quality are translated into a metric that is 

commonly used to assess dietary quality in the nutrition field (e.g. Kurpad and Thomas (2020)). Using the observed data, the 

HUW234 cultivar experienced the greatest loss in protein quality under increased O3 concentrations, despite showing the 

smallest RP and RY loss. The reason for this is that HUW234 experienced the greatest decrease in lysine concentrations, and 500 

lysine is the most limiting AA in wheat (Meybodi et al., 2019; Siddiqi et al., 2020). The DO3SE-CropN model was not able to 

reproduce the reduction in protein quality calculated through the DIAAS as it was not able to reproduce the magnitude of the 

decrease in protein and lysine concentrations under elevated O3 for either cultivar (Error! Reference source not found., Fig.’s 

5b and 5d). Using the observed data, the calculations of DIAAS were the same for both cultivars due to the scaling factor used 

for the AA (see section 3.1) but, in reality, the DIAAS would differ between the cultivars. While using the simulations of grain 505 

protein and AA’s was able to produce a difference in DIAAS between cultivars, it was only able to reproduce the DIAAS 

calculated from the observed data for the HD3118 cultivar in the ambient O3 treatment, as the protein and lysine concentrations 

were captured well for this cultivar and treatment. To develop crop models that use the DIAAS to understand the reduction in 

protein quality under abiotic stress, the reduction in grain protein and the most limiting AA’s for protein production under that 

stress need to be understood. 510 

5.5 Data requirements for effective model calibration 

Initially in this study, the data were split in half, and the 2017 data were used for model calibration and the 2018 for evaluation. 

However, due to the model overfitting to the 2017 dataset (see supplementary data), the decision was made to utilise all 

available data for calibration. This allowed the paper to focus on the development of the antioxidant processes and protein 

quality simulations. Should future work utilise the antioxidant or protein quality framework presented in this work, a thorough 515 

model calibration and evaluation is recommended. Calibrations that use data from contrasting growing conditions, such as 

different growing seasons/years, sowing dates or experimental conditions have been shown to reduce the chance of multiple 

combinations of parameters giving the same answer (equifinality), reduce model uncertainty, and improve simulation accuracy 
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(He et al., 2017; Zhang et al., 2023). This is likely a result of achieving a truer parametrisation for the cultivar, leading to 

improved generalisation of the model upon application (Wallach, 2011). Hence, if there are few growing seasons of data 520 

available, it would be helpful to have data spanning a range of crop treatments. 

5.6 Further work for understanding O3 effects on wheat nutrition 

Understanding cultivar-specific responses to increasing O3 concentrations will be important for food security in order to breed 

cultivars that can maintain yields and protein quantity, as well as quality, in the future. Additionally, it can be seen in the 

calculations of the DIAAS score, and reflected in the wider literature, that the quality of protein in wheat is low, even without 525 

the impact of O3,  which will exacerbate protein deficiencies in consumers who rely on wheat based diets (Swaminathan, Vaz 

and Kurpad, 2012). Therefore, to reduce malnutrition, cultivars with a high protein quality, that can maintain yields and protein 

concentration under O3 exposure should be investigated for their potential to maintain wheat supply and quality under 

conditions of elevated O3 concentration. Additionally, existing barriers to diet diversification need to be overcome, so that 

individuals may have access to higher quality protein sources (Agrawal et al., 2019). 530 

To develop an understanding of cultivar specific responses to abiotic stress, a modelling approach similar to that used in this 

study would be useful, as such a model can capture the effect of antioxidant processes under stress on grain quality. To ensure 

the applicability of the model in addressing this goal there are a few existing barriers identified in this study: 

1) Before model application, models need to be thoroughly calibrated and evaluated. To perform a thorough 

calibration and evaluation, a range of treatments and/or years of data need to be available to provide a set of 535 

calibration parameters that are more general for that cultivar and prevent over-fitting. Additionally, obtaining leaf 

and stem DM anthesis and harvest will aid in parameterising partitioning and remobilisation of photosynthate. 

2) Differences in meteorological conditions between the two years of experiments in the present study had a large 

effect on simulations of grain DM. The effect of meteorology on simulations of photosynthetic processes and 

biomass production in crop models should be further investigated in the future to ascertain crop model sensitivity to 540 

input data choices. 

3) To advance the antioxidant equations, and understand O3 effects on grain quality, an experiment measuring N and 

protein concentrations in the leaf and stem at anthesis, and harvest, should be conducted. The proportion of N 

associated with antioxidants under the same O3 treatments should also be obtained to improve mechanistic 

understanding of plant antioxidant response to O3 which can be used to further develop the model. 545 

4) Relationships linking grain protein to grain AA concentrations should be investigated for how they change under 

the influence of O3. The modified equations could be integrated in the model so improve its ability to simulate AA 

concentrations under stress, and hence provide more trustworthy estimates of protein quality. 

Reliable estimates of DIAAS would allow dietary protein quality to be incorporated into O3 risk assessments. Performing yield 

and nutrition-based risk assessments utilising AA and DIAAS simulations under future O3 scenarios would allow for 550 
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assessment of which wheat growing areas will experience a decrease in wheat protein quality as well as yield. Such results 

could then be combined with dietary surveys to evaluate adult’s and children’s risk of not getting enough, or a high enough 

quality of, food under increasing O3. 

6. Conclusions 

In summary, the present study has developed a framework by which the antioxidant response of wheat under O3 exposure can 555 

be incorporated into wheat quality simulations in the existing crop model DO3SE-CropN. The key benefits of the framework 

are that it is flexible, simple and compatible with other crop models provided they simulate leaf and stem N. The AA’s most 

limiting for human nutrition under O3 exposure were found to be lysine and methionine. The new modelling framework 

allowed the effect of high O3 concentrations leading to a decrease in grain protein, lysine and methionine concentrations of 

Indian wheat to be simulated. Through calculations of the AA’s, the FAO recommended metric for simulating wheat quality, 560 

the DIAAS, can be calculated. To improve the present model, we identified key experimental data needed to test and refine 

model formulations and parametrisations for a wider range of meteorological conditions and wheat cultivars. These include 

greater calibration data across multiple years and treatments with leaf and stem DM and N measurements, mechanistic 

understanding of plant antioxidant response, and further development of relationships linking grain protein concentrations to 

AA concentrations under elevated O3. 565 
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