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Abstract: The temporal resolution of input data and the computational time step are crucial factors 9 

affecting the accuracy of hydrological model forecasts. This study presents a four-source hydrological 10 

model tailored to the runoff characteristics of the mountainous areas in Northern China. Using this model, 11 

along with meteorological and hydrological data from seven catchments of varying sizes in Northern 12 

China, we investigated the impact of different input data resolutions and computational time steps on 13 

simulation accuracy, as well as the transferability of parameters across different time scales. The results 14 

show that: (1) The proposed model performs well across different spatial and temporal scales, with 15 

average NSE for daily and hourly flow forecasts of 0.93 and 0.85, respectively. (2) For daily streamflow 16 

simulations, there was a significant improvement in model performance when the data resolution was 17 

increased from 24 hours to 12 hours; however, beyond the 12-hour resolution, the improvement became 18 

negligible. For hourly streamflow simulations, the enhancement in overall flood process accuracy 19 

becomes insignificant when the resolution exceeds 6 hours, although higher resolutions continue to 20 

improve the precision of peak flow simulations. (3) When the computational time step is fixed (e.g., 1 21 

hour), model parameters are transferable across different data resolutions; parameters calibrated with 22 

daily data can be used in models driven by sub-daily data. However, parameters are not transferable when 23 

the computational time step varies. Therefore, it is recommended to utilize smaller computational time 24 

step when constructing hydrological models even in the absence of high-resolution input data. This 25 

strategy ensures that the same simulation accuracy can be achieved while preserving the transferability 26 

of model parameters, thus enhancing the robustness of the model. 27 

1 Introduction 28 

Hydrological modeling plays a critical role in water resources management, flood forecasting, and 29 

climate impact assessments. Accurate simulation of runoff processes is essential for understanding water 30 

balance and predicting hydrological extremes. The effectiveness of a hydrological model is influenced 31 

by the scale of input data (resolution), the scale of the model’s computation, and the scale of the 32 

hydrological processes being modelled (López-Moreno et al., 2013; Merheb et al., 2016).  33 

In the past, hydrological modeling has typically relied on daily or coarser resolution data, limiting its 34 

applicability for shorter time steps required in scenarios like flash flood forecasting. Models that utilize 35 

coarse or artificially enhanced data may introduce biases when applied to finer temporal scales, as they 36 

may fail to accurately represent the variability and magnitude of key hydrological variables. However, 37 

advancements in measurement technologies, including high-frequency automated rain/streamflow 38 

gauges and phased array rain-radars, have enabled access to high-resolution rainfall and runoff datasets. 39 
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Despite these technological advances, the quantitative benefits of high-resolution data in enhancing 40 

hydrological model performance remain unclear. For instance, studies on the impact of rainfall data 41 

resolution on hydrological models have produced inconsistent results. Research such as Jaehak et al. 42 

(2011) suggested that finer temporal resolution significantly improves model simulations, whereas other 43 

studies (Kannan et al., 2006; Ficchì et al., 2016) found that greater data resolution does not necessarily 44 

lead to better model performance. Our previous research (Tudaji et al., 2024) in southern China showed 45 

that high-resolution data does not always have positive impact on model performance. Nevertheless, we 46 

and other related studies acknowledge that further studies across different climate zones and models are 47 

necessary to validate and extend the generality of these findings. 48 

Moreover, there remain other unresolved issues regarding data resolution that warrant further 49 

investigation. When a certain resolution is selected for a watershed model based on current data 50 

availability (or a specific standard) and the model's parameters are calibrated accordingly, the model is 51 

essentially considered constructed. However, if the resolution of future input data differs from that used 52 

during the model's construction, it is uncertain whether the model’s forecast results will remain reliable. 53 

There is a need to explore whether the model's parameters were optimized solely to maximize simulation 54 

metrics for that particular resolution, and whether these parameters can be transferred effectively across 55 

different data resolutions. Reynolds et al. (2017) found that the model calibrated by the daily data 56 

performance almost as good as the model calibrated by data at sub-daily resolutions. However, this 57 

conclusion was reached under a fixed computational time step, and the study (including the 58 

aforementioned studies on input data resolution) also acknowledges that the generality of their 59 

conclusions to other regions and models warrants further investigation. 60 

Similarly, another issue that arises when constructing hydrological models is the choice of the model's 61 

computational time step. The time dependence and transferability of parameters has been widely studied. 62 

(Krajewski et al. 1991; Finnerty et al. 1997; Littlewood and Croke 2008; Reynolds et al. 2017). Recent 63 

studies have provided quantitative insights into relationship of parameters at different computation time 64 

steps. Wang et al. (2009) established the relationship between the parameters and the square root of the 65 

time step; Jie et al. (2017) established transformation function between parameter values at different time 66 

steps. However, it remains uncertain whether a finer computational time step consistently leads to 67 

improved simulation accuracy when the resolutions of input and output are fixed. Moreover, the extent 68 

to which parameters can be transferred across different computational time steps without transformation 69 

and the existence of an optimal computational time step that maximizes both parameter transferability 70 

and model performance are still questions that warrant further investigation. 71 

In light of these background, this study seeked to enhance our understanding of the value of high-72 

resolution data and transferability of parameters across temporal scales in hydrological modeling based 73 

on 7 small-to-medium catchments in northern China, using data resolutions ranging from 1 to 24 hours. 74 

We designed two experiments focusing on the most common hydrological forecasting timescales—daily 75 

and hourly, to investigate the value of the high-resolution data on hydrological modeling. Besides, two 76 

further experiments, one with various data resolutions and another with various computation time steps, 77 

were conducted to assess the transferability of parameters under different conditions. Specifically, this 78 

study seeks to address three key questions: 79 

(1) What is the necessary resolution of rainfall and streamflow data to provide reliable hourly and daily 80 

streamflow simulations? 81 

(2) When the computation time step is fixed as hourly, can parameters be transferred when adopting 82 

different temporal resolutions of input data? 83 
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(3) When the temporal resolution of input data is fixed as daily, can parameters be transferred when 84 

adopting different computation time steps? 85 

The rest of this paper is structured as follows: Section 2 outlines the materials and methodology, 86 

including the introduction of study catchments, the hydrological model used, and the experimental 87 

designs. Section 3 presents the results of the experiments. Section 4 explains the role of high-resolution 88 

data, discusses the transferability of parameters under different conditions, and provides insights into 89 

selecting data resolution and computation time step during the modelling. Finally, Section 5 offers 90 

concluding remarks and limitations in this study. 91 

2 Materials and methodology 92 

2.1 Study area and data 93 

The Chaobai River, located in northern China and flowing through Beijing, is one of the five major rivers 94 

in the Haihe River system of China. In this study, we utilized a set of 7 various size of catchments in the 95 

upper reaches of the Chaobai River as the study area (Figure1, Table1), where data quality is relatively 96 

high and human activities (such as reservoirs or dams) have minimal impact. Among them, the Xitaizi 97 

Basin, the smallest one, is a hydrological experimental catchment. The other six study catchments are 98 

the control regions of important hydrological stations located upstream of reservoirs or lakes on the major 99 

tributaries in the upper reaches of the Chaobai River Basin. 100 

The study area is characterized by a temperate monsoon climate, with precipitation highly seasonal and 101 

primarily concentrated in July and August, resulting in significant seasonal and interannual variations in 102 

river flow. During periods outside the rainy season, the flow is minimal, and in some cases, the river may 103 

even run dry. Therefore, we chose the 2021 flood season, which saw significant flood events and has 104 

relatively complete data, as the study period for this study. 105 

The streamflow and rainfall data were obtained from the Rain and Hydrological Database of Beijing, 106 

curated by the Beijing Hydrological Station. When selecting the above-mentioned hydrological stations 107 

as the outlets for the study basins, the following principles were followed: (1) The station must have 108 

discharge data with a resolution finer than hourly during flood events; (2) The upstream control area of 109 

the station should be free of water control structures such as reservoirs, dams, or lakes that could 110 

significantly affect the natural progression of floods; and (3) The study catchments should cover a range 111 

of different scales, from a few square kilometers to several thousand square kilometers. The selection of 112 

rainfall data followed similar principles, ensuring that each rain gauge station provided complete rainfall 113 

data with a resolution finer than hourly throughout the entire storm runoff process. We identified 56 high-114 

quality stations situated within the study catchments from the database. The number of rainfall gauges 115 

per catchment varied from 1 to 14, averaging 8 stations. Additionally, the rainfall gauging area—116 

calculated as the catchment area divided by the number of stations—ranged from 3 km² to 373 km², with 117 

an average of 157 km². The Thiessen Polygon method (Han and Bray, 2006) was employed to generate 118 

the areal rainfall data for each sub-basin in each catchment. 119 
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 120 

Figure 1: Geographic distribution of study catchments  121 

Table 1. Information of study catchments and data 122 

NO. Basin 
Hydrological 

Station 
Abbr. 

Drainage 

area 

(km2) 

Number of 

rainfall 

gauges 

Rainfall 

gauging 

area (km2) 

1 Xitaizi Xitaizi XTZ 3.11 1 3.11  

2 Yanqihe  Baiyachang BYC 96.06 6 16.01  

3 Baimaguanhe  Yaoziwa YZW 180.04 8 22.51  

4 Huaijiuhe  Qianxinzhuang QXZ 332.85 10 33.29  

5 Tanghe Tanghekou THK 1263.13 4 315.78  

6 Baihe Zhangjiafen ZJF 4660.91 14 332.92  

7 Chaohe Xiahui XH 4845.98 13 372.77  

2.2 Hydrological model 123 

The study catchments are located in a rocky mountainous region with severe weathering and high 124 

vegetation cover (Zheng et al., 2013; Yu et al., 2017). On the basis of intensive hydrological and isotopic 125 

observations from the Xitaizi experimental catchment, Zhao et al (2019) found that preferential flow in 126 

the heavily weathered granite and shallow soils makes up the majority of the stormflow. Recent studies 127 

also indicate that subsurface flow is a significant contributor to flood generation (Addisie et al., 2020; 128 

Xiao et al., 2020; Wang et al., 2022). To effectively capture the hydrological processes within the study 129 
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area, a four-source hydrological model was developed, designed to represent multiple hydrological 130 

pathways. The model's structural diagram (Figure 2) illustrates these pathways, where the I layer denotes 131 

the impervious layer, which occupies a small and relatively constant proportion in the study area. The W 132 

layer represents the soil moisture storage layer, which is responsible for simulating the soil moisture 133 

content. The S layer signifies the shallow subsurface layer, encompassing both the soil runoff layer and 134 

the weathered bedrock; when the S layer gets saturated, it generates surface runoff (Rs), which, along 135 

with subsurface runoff (Rss), constitutes the primary sources of stormflow. Lastly, the G layer represents 136 

the deep groundwater layer, which is the main contributor to baseflow. The equations for structure the 137 

model was listed in Appendix A.  138 

 139 

 140 
Figure 2: The structural diagram of the hydrological model 141 

The routing process is modeled using the Muskingum method (McCarthy, 1938; Cunge, 1969), with the 142 

equation given as: 143 

𝑄𝑖+1
𝑡+1 = 𝐶1𝑄𝑖

𝑡 +  𝐶2𝑄𝑖
𝑡+1 + 𝐶3𝑄𝑖+1

𝑡 + (𝐶1 + 𝐶2)𝑄𝐿   (1) 144 

where i is spatial index, t is temporal index, and QL is lateral flow. 145 

In the Muskingum method, the three parameters C1, C2, C3 must satisfy the conditions of being within 146 

the 0-1 range and their sum equaling 1. To accommodate these constraints within automatic parameter 147 

optimization algorithms, this study reparametrizes the model by optimizing the values of C1+C2 and C1/ 148 

(C1+C2), thereby determining the optimal values for the original parameters. 149 

2.3 Experimental design for the value of high-resolution data 150 

Daily streamflow and hourly streamflow are important modeling targets in hydrological research and 151 

practice. To test the value of rainfall and measured streamflow data at different resolutions for simulating 152 

streamflow at these two scales, we designed two specific experiments: the daily modeling test and the 153 

hourly modeling test. In this context, 'daily' and 'hourly' refer to the target time scales for the model's 154 

predictions. The flowchart of the tests was shown as Figure 3, and the details are as follows.  155 

(1) Daily modeling test: This test was designed to investigate the impact of high-resolution rainfall data 156 

on daily streamflow simulation. The model was driven by rainfall data at various resolutions (ranging 157 
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from 1h to 24h) and calibrated using daily resolution streamflow data. This setup aimed to assess whether 158 

(and to what extent) sub-daily rainfall data can enhance daily streamflow simulation. 159 

(2) Hourly modeling test: This test was designed to investigate the impact of high-resolution input and 160 

streamflow data on hourly streamflow simulation. In this test, the temporal resolutions of input rainfall 161 

data and calibration streamflow data were the same, both set as various resolutions (ranging from 1h to 162 

24h). The model was calibrated using streamflow data with the given temporal resolution, and then the 163 

hourly streamflow simulated by the calibrated model was evaluated based on the hourly measured 164 

streamflow. This setup aimed to determine the necessary data resolution for providing reliable hourly 165 

streamflow simulation. 166 

These experiments aimed to investigate how data resolution affects the accuracy and reliability of 167 

streamflow predictions across various temporal scales. To minimize potential impacts from varying 168 

computational time steps, the hydrological simulations were consistently set to a 1-hour time step for 169 

both tests. This standardization was maintained across all cases, with different input data resolutions used. 170 

Specifically, all input data, including rainfall, were resampled to a 1-hour resolution via prior averaging 171 

before driving the model. As a result, the model’s original outputs were always produced at an hourly 172 

scale. 173 

In the daily modeling test, rainfall data at varying temporal scales was input into the hydrological model 174 

to produce simulated hourly streamflow, which was later aggregated to the daily scale for comparison 175 

with observed daily streamflow. Model parameters were then optimized by aligning the simulation with 176 

observations using Python Surrogate Optimization Toolbox (pySOT, Eriksson et al., 2019), aiming to 177 

maximize the Nash-Sutcliffe efficiency (NSE). The optimization process, iterated via Symmetric Latin 178 

Hypercube Design (SLHD), concluded upon convergence or after reaching a 3000-iteration threshold. 179 

After 100 trials, the final parameters were selected based on maximum NSE. Additionally, after 180 

calibration, Relative Error of Peak flow (REP) was computed as a secondary performance metric. These 181 

metrics were calculated as follows: 182 

𝑁𝑆𝐸 = 1 −
∑  𝑛

𝑡=1 (𝑄𝑡
𝑜𝑏𝑠 − 𝑄𝑡

𝑠𝑖𝑚)

∑  𝑛
𝑡=1 (𝑄𝑡

𝑜𝑏𝑠 − 𝑄𝑜𝑏𝑠̅̅ ̅̅ ̅̅  )
(2) 183 

𝑅𝐸𝑃 =  
𝑄𝑠𝑖𝑚,𝑝 − 𝑄𝑜𝑏𝑠,𝑝

𝑄𝑜𝑏𝑠,𝑝

(3) 184 

where, 𝑄𝑡
𝑜𝑏𝑠  and 𝑄𝑡

𝑠𝑖𝑚  are the streamflow for the observed and simulated time series, 𝑄𝑜𝑏𝑠̅̅ ̅̅ ̅̅  is the 185 

average value of the observed streamflow, 𝑄𝑠𝑖𝑚,𝑝 and 𝑄𝑜𝑏𝑠,𝑝 are the simulated and observed peak flow, 186 

respectively. 187 

The hourly modeling test followed a similar procedure to the daily modeling test, inputting rainfall data 188 

at various temporal resolutions into the hydrological model to produce simulated hourly streamflow. This 189 

output was aggregated to match the resolution of the input data and compared with the corresponding 190 

observed data for calibration. The performance of calibrated model on simulating hourly streamflow was 191 

then assessed by calculating NSE and REP, based on the hourly simulated and observed streamflow data. 192 

The flowchart of the experimental tests was illustrated in Figure 3, where D and H refer to daily and 193 

hourly test, 𝑥𝑖 is each member of the time step (t.s.) set (TS), which consists of 1h, 2h, 3h, 4h, 6h, 12h 194 

and 24h. 𝑁𝑆𝐸𝐷,𝑥𝑖 and 𝑅𝐸𝑃𝐷,𝑥𝑖 are the NSE of and REP of daily streamflow forced by rainfall at time 195 

step of 𝑥𝑖. Similarly, 𝑁𝑆𝐸𝐻,𝑥𝑖 and 𝑅𝐸𝑃𝐻,𝑥𝑖  denote the NSE and REP for hourly streamflow at time step 196 

of 𝑥𝑖.  197 
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After tests, the paired two-sample t-test, a widely used statistical method to determine whether the means 198 

of two related groups of samples are significantly different (e.g., Xu et al., 2017), was adopted to test 199 

whether the performance of the hydrological model based on high-resolution data was significantly 200 

improved. 201 

 202 

Figure 3: Flowchart of the daily modeling and hourly modeling tests 203 

2.4 Experimental design for parameters transferability 204 

To test the potential impact of the resolution of training data and the computational time step on 205 

calibration of model parameters, as well as the transferability of these parameters across different time 206 

scales, we designed two tests: the data resolution test and the computational timestep test. The flowchart 207 

of the tests was shown as Figure 4, and the details are as follows. 208 

(1) Data resolution test: in this test, the model's computational time step was fixed as 1 hour, while the 209 

temporal resolution of the input and measured streamflow varied from 1 hour to 24 hours (as in the hourly 210 

test). Previously, optimal parameter sets, 𝑃𝑎𝑟𝑥𝑖 , have been obtained under varying resolutions (𝑥𝑖) of 211 

input and measured streamflow data in hourly modeling tests. In this data resolution test, the optimal 212 

parameter set obtained at one resolution (referred to as the pre-transfer resolution) was used to drive the 213 

model with input data at another resolution (referred to as the post-transfer resolution), resulting in hourly 214 

simulated streamflow. The simulation accuracy, measured by NSE, was then calculated. By comparing 215 
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the changes in the simulation metrics obtained by a same set of parameters and different input resolutions, 216 

the transferability of the parameters across varying resolutions was tested. 217 

(2) Computational time step test: in this test, the model's computational time step varied from 1 hour to 218 

24 hours, while the temporal resolution of the input rainfall and measured streamflow data was fixed as 219 

24 hours. Firstly, input data at the resolution of 24 hours was fed into the model, and the model was run 220 

at varied time steps, resulting simulated streamflow at varied time steps. Next, the simulated streamflow 221 

was aggregated in daily, and the model parameters were calibrated based on observed daily streamflow. 222 

In this way, the model parameters under different computational steps are obtained. Then, the optimal 223 

parameter set obtained at one computational time step (referred to as the pre-transfer computational time 224 

step) was used to drive the model at another computational time step (referred to as the post-transfer 225 

computational time step), and the NSE was calculated based on the simulated daily streamflow obtained 226 

at this time step. By comparing the changes in simulation metrics, the transferability of parameters 227 

obtained at one computational time step to another was tested.  228 

  229 
Figure 4: Flowchart of the data resolution and computational time step tests 230 
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3 Results 231 

3.1 The value of high-resolution data 232 

The results of the daily and the hourly modeling tests are shown in Figure 5. Subplots (a) and (b) represent 233 

the NSE and absolute values of REP in the daily modeling test, respectively. Subplots (c) and (d) depict 234 

these two metrics in the hourly modeling test. In the daily test, the average NSE obtained by various data 235 

resolutions varied in the range of 0.91 - 0.94. The model performed worst when using 24-hour resolution 236 

data, but even then, the lowest NSE value was 0.82 in the Yanqihe catchment at BYC station, and in the 237 

other 6 catchments, the NSE exceeded 0.89. As for REP, the average |REPD| at various data resolutions 238 

ranged between 2% and 4% indicating high accuracy in simulation on peak flow at daily scale. In the 239 

hourly modeling test, the metrics got slightly worse compared with the daily test. The average NSE across 240 

various data resolutions ranged from 0.78 to 0.87. The model performed worst when using 24h resolution 241 

data, with the lowest NSE of 0.64, but the NSE exceeds 0.8 in five of the study catchments. The model 242 

produced NSE higher than 0.83 in 6 catchments when using 1h rainfall and streamflow data. The average 243 

|REPH| varied in the range of 16% - 27%. Compared to the daily modeling test, the model's accuracy in 244 

simulating peak flow declined noticeably in hourly modeling, as the evaluation is more strict. Overall, 245 

these results demonstrated the high performance and reliability of the model in these catchments, with 246 

high NSE and low |REP|. 247 

 248 

Figure 5: Box plot of NSE, |REP| in the daily and the hourly modeling tests across 7 catchments 249 

In both daily and hourly modeling tests, there was an obvious improvement in model performance when 250 

the data resolution increased. For instance, in the daily modeling test, when the data resolution shifted 251 

from 24h to sub-daily 12h, the average NSE increased from 0.91 to 0.93 and the average |REP| decreased 252 

from 4.08% to 3.02%. In the hourly modeling test, the improvement was more obvious. The average 253 

NSE increased from 0.78 to 0.83 and the average |REP| decreased from 27% to 21%, when the data 254 
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resolution shifted from 24h to sub-daily 12h. But such improvement got increasingly limited as the 255 

resolution further increased.  256 

To quantify the difference in the model performances when adopting data with different resolutions, 257 

paired two-sample t-tests were conducted, and the results are shown in Table 2. In the daily modeling 258 

test, significant improvement (at 0.05 significance level) on streamflow simulation was brought by sub-259 

daily (1h – 12h) resolution rainfall data compared to the daily data, as indicated by the low p values in 260 

the last row of Table 2a and Table 2b. However, compared to 12h resolution, only the 1-hour resolution 261 

brought a significant improvement in NSE at the significance level of 0.05. As for |REP|, there were 262 

significant differences in |REP| at 2h and 8h resolution compared to 12h resolution. Overall, the results 263 

suggested that for daily streamflow forecasting, continuously increasing rainfall data resolution beyond 264 

the 12h threshold did not bring significant improvement on model performance. That is, the simulated 265 

daily streamflow obtained from a model driven by 12h rainfall input had comparable reliability to that 266 

forced by 1h data, and the effect of rainfall data with a temporal resolution exceeding 12h on enhancing 267 

daily forecasted flow was negligible.  268 

Similar results were observed in the hourly modeling test (Table 2c and Table 2d). Compared to the daily 269 

data, utilizing higher-resolution data effectively enhanced the model's forecasting performance for hourly 270 

streamflow. Specifically, regarding the NSE, there were significant differences in the model's 271 

performance when using 8h resolution data compared to that obtained by 2h to 6h resolution data. But, 272 

when the data resolution reached 6 hours or higher, there were no statistically significant differences in 273 

NSEs, indicating that further increasing the resolution did not consistently enhance overall simulation 274 

accuracy. Consequently, taking NSE as the performance metric, simulated hourly streamflow obtained 275 

by a model driven and calibrated by 6h data was comparably accurate to that obtained by higher 276 

resolution data. Data with a resolution higher than 6h did not provide significant additional value. 277 

Compared to NSE, the improvement in |REP| was more pronounced with the increase in data resolution 278 

in the hourly modeling test. Compared with daily (24h) resolution data, all sub-daily resolution (1h-12h) 279 

data showed significant improvement in |REP| (at 0.05 significance level). Comparing the effects of sub-280 

daily scale data, although there was no significant difference in the |REP| when resolutions were close 281 

(e.g., 6-hour and 8h resolutions), significant differences in |REP| still existed when the resolution was 282 

sufficiently high (e.g., 1h) compared to other resolutions. For instance, the first column of Table 2d 283 

indicated that only the |REP| obtained with 2h resolution data showed no statistically significant 284 

difference when compared to 1h resolution data. This suggests that continuously increasing data 285 

resolution has greater value in improving the accuracy of predictions on peak flow. 286 

Table 2 P-values of the paired two-sample t-tests for each metric 287 

Table 2a P-values of the paired two-sample t-tests for NSE in daily modeling test 288 

Resolution 1h 2h 3h 4h 6h 8h 12h 

2h 0.987       

3h 0.932 0.962      

4h 0.459 0.562 0.693     

6h 0.033* 0.175 0.043* 0.054    

8h 0.223 0.330 0.109 0.157 0.770   

12h 0.041* 0.095 0.148 0.061 0.537 0.599  

24h 0.036* 0.042* 0.031* 0.036* 0.039* 0.031* 0.046* 

Table 2b P-values of the paired two-sample t-tests for |REP| in daily modeling test 289 
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Resolution 1h 2h 3h 4h 6h 8h 12h 

2h 0.5581       

3h 0.1446 0.8063      

4h 0.6260 0.8122 0.3503     

6h 0.3196 0.9739 0.7922 0.6138    

8h 0.8420 0.6117 0.4098 0.8532 0.3476   

12h 0.0743 0.0164* 0.2985 0.1927 0.2364 0.0412*  

24h 0.0314* 0.0189* 0.0490* 0.0582 0.0763 0.0352* 0.0497* 

Table 2c P-values of the paired two-sample t-tests for NSE in hourly modeling test 290 

Resolution 1h 2h 3h 4h 6h 8h 12h 

2h 0.368       

3h 0.283 0.571      

4h 0.370 0.666 0.559     

6h 0.088 0.044* 0.109 0.096    

8h 0.037* 0.017* 0.032* 0.028* 0.016*   

12h 0.013* 0.007* 0.010* 0.011* 0.007* 0.028*  

24h 0.009** 0.007** 0.008** 0.009** 0.008** 0.011* 0.011* 

Table 2d P-values of the paired two-sample t-tests for |REP | in hourly modeling test 291 

Resolution 1h 2h 3h 4h 6h 8h 12h 

2h 0.327       

3h 0.006** 0.084      

4h 0.001** 0.009* 0.194     

6h 0.000** 0.001** 0.113 0.378    

8h 0.005** 0.006* 0.145 0.123 0.411   

12h 0.018* 0.023* 0.066 0.066 0.149 0.112  

24h 0.011* 0.015* 0.018* 0.020* 0.036* 0.031* 0.016* 

Note: ** and * indicates significance at 0.01 and 0.05 292 

3.2 Parameters transferability across data resolutions  293 

The optimized model parameters at various data resolutions were obtained under a fixed computational 294 

time step of 1-hour in the hourly modeling test. To assess the transferability of these parameters under 295 

different data resolutions, the data resolution test was conducted following the experimental design 296 

outlined in Section 2.4. The results are shown in Figure 6. In each subplot, each curve represents the NSE 297 

values obtained when the optimal parameters calibrated from a specific input resolution are transferred 298 

(without any transformation) to drive the model with other input resolutions. 299 

First, when examining the differences among the curves, it was found that in most catchments, the curve 300 

representing the 24h resolution consistently fell below the others. This aligns with the results from the 301 

previous section, indicating that the model's performance was the lowest when using 24h resolution 302 

rainfall and streamflow data. When these parameters are transferred to other resolutions, they also 303 

exhibited the lowest performance. 304 

In all catchments except for XTZ, when parameters calibrated with a specific data resolution were 305 

transferred to other resolutions, simulation accuracy improved as the resolution of the data used increased. 306 
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Notably, when the resolution increased from 24h to 12h, the NSE showed the most significant 307 

improvement. However, when the input data resolution ranged between 1h and 8h, the NSE remained 308 

relatively stable. This observation is consistent with the results and conclusions from Section 3.1. Even 309 

though there were some variations in model performance when parameters were transferred to other time 310 

scales, the performance remained acceptable, with the lowest NSE still exceeding 0.5. This lowest NSE 311 

occurred at the QXZ station when the pre-transfer resolution is 6h and post- transfer resolution is 24h. 312 

When the post- transfer resolution was finer than 24h, the NSE at QXZ was consistently above 0.7. 313 

Overall, after parameter transfer, the model continues to demonstrate satisfactory simulation performance. 314 

 315 

 316 
Figure 6: The NSE values after transferring the parameters obtained at one resolution to other resolutions 317 

3.3 Parameters transferability across computational time steps 318 

To assess the transferability of parameters under different computational time steps, the computational 319 

time step test was conducted following the experimental design outlined in Section 2.4. The results are 320 

shown in Figure 7. The value in the row i and column j represents the NSE value obtained when 321 

transferring the parameters calibrated with a computation time step of 𝑥𝑖 directly to a model with a 322 

computation time step of 𝑥𝑗 (𝑥𝑖, 𝑥𝑗 ∈{1h, 2h, 3h, 4h, 6h, 8h, 12h, 24h}, referred to as pre-transfer and 323 

post-transfer computational time step, respectively). The values on the diagonal represent the NSE values 324 

obtained when running the model with a specific computational time step and calibrating the parameters 325 

with daily streamflow. In this case, the parameters were not transferred (i.e., the pre-transfer and post-326 

transfer time steps are the same). First, the values on the diagonal are all greater than 0.7, with most 327 

https://doi.org/10.5194/egusphere-2024-2966
Preprint. Discussion started: 21 October 2024
c© Author(s) 2024. CC BY 4.0 License.



13 

 

exceeding 0.85, and the average is 0.88. This indicates that the model performs well across different 328 

computation time steps, further confirming its reliability. Secondly, within each basin, the values on the 329 

diagonal are very close to each other, implying that when both the input rainfall data resolution and the 330 

output streamflow resolution are at the daily scale, nearly identical simulation accuracy can be achieved 331 

regardless of the computation time step used (within the 1h-24h range). 332 

When parameters calibrated at one computation time step were transferred to other computation time 333 

steps (values in the same row in the Figure 7), the NSE values varied significantly. Compared to the 334 

results with the data resolution test in Section 3.2, the variation in NSE under the varying computation 335 

time step was much greater. In many cases, the NSE value after transferring parameters was even less 336 

than 0, indicating that the model parameters lose their transferability (with unreliable accuracy) when the 337 

model's computation time step is varied. Notably, in each subfigure, the values in the lower left part are 338 

even lower than those in the upper right part, suggesting that the model's performance is particularly 339 

unreliable when parameters calibrated at larger computation time steps are transferred to smaller ones. 340 

 341 

 342 

Figure 7: NSE values after transferring the parameters obtained at one computation time step to other time 343 

steps.  344 
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4 Discussion 345 

4.1 Potential factors for the limited impact of high-resolution data 346 

The results indicated that increasing input data resolution, especially from 24 to 12 hours, significantly 347 

boosted simulation accuracy for daily streamflow, consistent with expectations regarding the benefits of 348 

high-resolution data. However, beyond the 12-hour mark, performance became marginal or even 349 

declined. Similar patterns emerged in hourly simulations, where benefits of finer-than-6-hour data were 350 

negligible or negative, contradicting the intuitive expectations that higher-resolution data always 351 

enhances hydrological models. Similar findings were reported by previous studies that investigated the 352 

effects of temporal resolution on hydrological models across different regions and model types. Ficchì 353 

et al. (2016) explored 240 catchments in France using the GR4 rainfall-runoff model across eight 354 

temporal scales, ranging from 6 minutes to 1 day. Their analysis revealed that, on average, finer 355 

resolution data provided no additional value when model outputs were aggregated to a 6-hour reference 356 

scale. Similarly, Reynolds et al. (2017), while calibrating the HBV model in two small Central American 357 

basins, observed that using daily streamflow data produced results comparable to those obtained with 358 

sub-daily resolution. 359 

While the catchments and models vary across different studies, the overall findings are largely consistent, 360 

suggesting that simply increasing data resolution doesn't always lead to better model performance. 361 

Several factors may limit the additional benefits of higher resolution data. Firstly, a straightforward 362 

reason could be the choice of the evaluation metric. In the hourly modeling test, when the resolution 363 

exceeded 6 hours, there was no significant improvement in the NSE, but the |REP| showed a marked 364 

change. In some cases, different metrics may conflict with each other, making it impossible to optimize 365 

them simultaneously. Secondly, due to spatial and temporal autocorrelation in variables like rainfall and 366 

runoff, increasing resolution beyond a certain threshold may not provide effective new information. 367 

There may be no significant difference between actual high-resolution data and high-resolution data 368 

obtained by resampling from coarser data. The extent of this difference is related to the characteristics of 369 

the climate of the catchment and its runoff generation processes. Thirdly, model input data, particularly 370 

rainfall, may have a lower signal-to-noise ratio at higher temporal resolutions due to difficulties in data 371 

validation and increased uncertainty in areal average rainfall estimates (Ficchì et al., 2016; Moulin et al., 372 

2009). Besides, since hydrological models inherently simplify natural processes, they may dampen the 373 

natural smoothing effect seen in rainfall-runoff interactions. As a result, using high-resolution temporal 374 

data to drive the model could introduce excessive variability in the simulated flow, potentially degrading 375 

the model's performance. Finally, the model's structure might not be adequately designed to handle the 376 

added complexity that comes with shorter time steps. Melsen et al. (2016) pointed out that calibration 377 

and validation time intervals should align with the spatial resolution to accurately capture the relevant 378 

processes. Some empirical formulas within the model may not be applicable at shorter time scales. 379 

4.2 Further explanation of the transferability of parameters 380 

The results in Section 3.2 indicated that when the computation time step is fixed at 1-hour, the model 381 

demonstrated good performance even when parameters are transferred to input conditions with different 382 

resolutions. As shown in Figure 6, in most cases, as the input resolution improved, the NSE also increased. 383 

However, some exceptions were found. At hydrological stations such as the THK and ZJF, when using 384 

parameters calibrated with 24-hour data, there was an increase in NSE as the rainfall resolution decreased. 385 
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At the XTZ station, NSE also increased when the rainfall resolution dropped below 8 hours, regardless 386 

of the parameters used. This anomaly was particularly pronounced at the THK station. Conversely, at the 387 

BYC station, the NSE consistently decreased as the rainfall resolution decreased across all parameters. 388 

We selected the THK and BYC stations as representative cases and compared the streamflow processes 389 

driven by 1h and 24h rainfall resolutions using parameters calibrated with 24h data (as shown in Figure 390 

8). Based on these flow processes, we explored the reasons behind these observed phenomena. 391 

 392 

 393 
Figure 8:  streamflow processes at THK and BYC driven by 1h and 24h rainfall resolutions using 394 

parameters calibrated by 24h data 395 

In Figures 8(a) and (b), the model parameters were calibrated using 24h data, but the rainfall data used 396 

to drive the model were at resolutions of 1h and 24h, respectively. The same setup was applied in Figures 397 

8(c) and (d). We observed that when using 1h resolution rainfall data, the simulated value of the first 398 

flood peak at the THK station was closer to the measured value, even though the NSE at 1h resolution 399 

was statistically lower than the NSE at 24h resolution.  400 

To more comprehensively evaluate the simulation accuracy and the impact of different parameters, we 401 

conducted further analysis. As mentioned in Section 2.2, we ran 100 iterations using the pySOT program 402 

for parameter calibration, which resulted in 100 sets of optimized parameters. Using these 100 parameter 403 

sets and the rainfall data at both 1h and 24h resolutions, we evaluated the simulation accuracy of the 404 

THK station's streamflow using NSE, KGE, and REP indicators, as shown in Figure 9. 405 

Among the results obtained using the 100 sets of optimal parameters, the NSE values driven by 1h 406 

resolution rainfall data were generally lower than those driven by 24h resolution rainfall, with average 407 

values of 0.63 and 0.77, respectively. The KGE values were relatively close under both resolutions, with 408 

average values of 0.81 and 0.84, respectively. As for the |REP| indicator, the trend was reversed, with the 409 

1h resolution rainfall data yielding better results than the 24h resolution data, with average |REP| values 410 

of 9% and 16%, respectively. Based on the runoff processes shown in Figure 8 and the different indicators 411 

in Figure 9, we infer that the observed phenomenon, where simulation accuracy decreases as resolution 412 
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increases, may be related to the evaluation metrics used and the flood characteristics of the basin. 413 

Compared to the BYC station, the THK station exhibited a slower streamflow process during flood events, 414 

particularly during the recession phase. We defined a concept similar to half-life period, denoted as Thl, 415 

to characterize the rate of flood recession. Thl is the time taken for the streamflow to decay from its peak 416 

to half of the peak value. At the THK station, Thl is 16 hours, while at the BYC station, Thl is 8 hours, 417 

indicating that the flood recession at THK is slower than at BYC. In catchments with a more gradual 418 

recession, observed streamflow at a 24h resolution does not provide as much effective information for 419 

model’s calibration as higher-resolution data. Furthermore, when 24h resolution rainfall is used as input 420 

and 1h as the computational time step, the model tends to produce a smoother simulated streamflow 421 

process, since it distributes the rainfall evenly over each hour. Consequently, parameters related to flow 422 

routing are not accurately calibrated. As a result, when the model is driven by higher resolution rainfall 423 

data such as 1h, larger errors occur in the predicted peak time. However, when using 24h resolution 424 

rainfall data, the smoothing effect of the 1h computational time step leads to a simulated recession 425 

process that more closely matches the observed values, thus improving the NSE. 426 

 427 

 428 

Figure 9: Metrics at THK station using 100 sets of parameters and different resolutions of rainfall 429 

The results indicated that when the computational time step is fixed as 1h, parameters calibrated under 430 

different data resolutions can be transferred and used in models with other resolutions. To further explain 431 

the transferability of parameters and identify any patterns as resolution changes, we compared parameters 432 

across different resolutions. However, due to the parameter equifinality (Her and Chaubey, 2015; Foulon 433 

and Rousseau, 2018), a single optimal parameter set may not be representative enough to accurately 434 

reflect the patterns. Therefore, we analyzed 100 sets of parameters calibrated at each resolution, with 435 

partial results shown in Figures 10-12. The findings revealed that most parameters did not exhibit a 436 

significant and consistent trend of variation with changes in resolution. In other words, parameters 437 

calibrated under different resolutions showed little variability, which explains their transferability across 438 

resolutions. However, some parameters did show a certain consistent trend with resolution changes. 439 

Figure 10 illustrates the trend of the parameter Lag1 with changes in resolution. This parameter in the 440 

model reflects the lag time of surface runoff (the time from the generation of surface runoff until it 441 
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reaches the outlet of the sub-basin). As the resolution becomes coarser (from 1h to 24h), the effective 442 

information provided by the observed streamflow to the model decreases, and the requirement for 443 

precision in peak time also reduces. This relaxation in constraints led to an increase in both the mean 444 

value and the range of variation of Lag1. Notably, at stations XTZ, THK, and ZJF, when the data 445 

resolution is 24h, the mean value of Lag1 exceeds 10h or even 15h, showing a significant difference from 446 

the value at 1h resolution. In contrast, at stations BYC, YZW, and QXZ, when the data resolution is 24h, 447 

the mean value of Lag1 is less than 5h, which is not significantly different from the value at 1h resolution. 448 

This also validates the previous explanation for why the NSE at stations like THK decreases as resolution 449 

improves. 450 

 451 

Figure 10: optimized values of Lag1 across various resolutions 452 

The parameter C1+C2 also exhibited a regular trend of variation with changes in resolution (Figure 11). 453 

Generally, the larger this parameter, the faster the model’s runoff responds to rainfall, resulting in a flood 454 

process that rises and falls sharply. When the time resolution is coarse, the variability of runoff may not 455 

be fully captured in the observed data. As a result, a model calibrated by a coarser resolution data tend 456 

to produce a smoother streamflow process. This is evident at stations such as YZW and QXZ, where the 457 

optimized C1+C2 value decreased as the resolution became coarser. However, we also observed that at 458 

most stations, including XTZ, THK, ZJF and XH, this parameter increased as the resolution became 459 

coarser. This may be due to the model’s computational time step of 1h; when driven by coarse-resolution 460 

data, the input data are averaged over each hour, causing the runoff to be smoothed. Consequently, a 461 

larger C1+C2 value was selected by the parameter optimization algorithm to counterbalance this excessive 462 

smoothing. 463 
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 464 

Figure 11: optimized values of C1+C2 across various resolutions 465 

Besides, in certain catchments, specific parameters exhibited regular changes across varying resolutions. 466 

At BYC station, the parameter Ksg decreased as the resolution became coarser. Ksg represents the ratio 467 

of water transfer from the shallow subsurface layer to the deep groundwater layer. A decrease in Ksg 468 

would lead to the shallow subsurface layer becoming saturated more easily, resulting in more surface 469 

runoff. Similarly, at YZW station, the parameter Kg decreased with coarser resolution. Kg represents the 470 

ratio of water conversion from the groundwater layer to groundwater runoff. A reduction in Kg would 471 

cause the groundwater layer to saturate more readily, also indirectly leading to increased surface runoff. 472 

The 1h computational time step evenly distribute rainfall under coarse resolution, which reduces the 473 

simulated peak runoff compared to the actual peak. Therefore, the lower Ksg and Kg values improve 474 

simulation accuracy under coarse resolution conditions by increasing surface runoff. 475 

   476 
Figure 12: optimized values of Ksg at BYC station and Kg in YZW station across various resolutions 477 
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4.3 Implications for the selection of data resolution and computation time step 478 

The findings of this study offer several key insights for building hydrological models with limited data.   479 

1) Data Resolution Considerations: 480 

For daily runoff simulations, it is found that a data resolution of 12h is sufficient to provide accurate 481 

simulation results with relatively high precision. This suggests that higher resolution data may not yield 482 

significant additional benefits for daily scale modeling. However, for hourly runoff simulations, the 483 

adequacy of data resolution depends on the specific objectives of the simulation. If the primary focus is 484 

on capturing the overall flood process, such as total runoff volume and approximate duration, a 6h 485 

resolution is adequate. On the other hand, if the simulation aims to achieve higher accuracy in peak flow 486 

estimation, employing data with finer temporal resolution can enhance the precision of these predictions. 487 

This offers practical insights for building numerical models and establishing monitoring stations, 488 

suggesting that high-resolution monitoring may not always be necessary. It is essential to balance the 489 

additional information gained from higher resolution against the associated costs, aligning with our 490 

objectives, enabling efficient resource allocation and ensuring that expenditures yield valuable returns. 491 

2) Selection of Computational Time Step: 492 

Regardless of whether the model is intended for daily or hourly runoff simulations, and irrespective of 493 

the input data resolution, it is advisable to adopt a smaller computational time step when constructing the 494 

model. This is because the results showed that the simulation accuracy on the coarse scale (24h) with 495 

different computation time steps is almost the same, while the model running at a smaller computation 496 

step can produce results on a finer scale, which provides the possibility for further analysis. And the 497 

model's performance is particularly unreliable when parameters calibrated at larger computation time 498 

steps are transferred to smaller ones. This approach also ensures that the model parameters remain 499 

applicable across different data resolutions, thereby enhancing the model's flexibility and enabling it to 500 

generate accurate simulation results across a range of temporal scales. With the appropriate spatial scale 501 

and sufficient computational capacity, opting for a lower computational time step can make the model 502 

better equipped to maintain robust performance under varying input conditions and produce results at 503 

more time scales, which is crucial for ensuring the transferability of the model parameters and achieving 504 

consistent results. 505 

5 Conclusions 506 

5.1 Summary 507 

This study assessed the value of different resolution data for daily and hourly streamflow simulations 508 

utilizing meteorological and runoff data with resolutions ranging from 1 hour to 24 hours from 7 small-509 

to-medium-scale catchments in northern China. Additionally, the transferability of model parameters 510 

across varying data resolutions and computation time steps were investigated. Key findings are 511 

summarized as follows: 512 

1) For both daily and hourly streamflow simulations, utilizing sub-daily resolution rainfall and 513 

streamflow data leads to substantial improvements in model performance compared with the using of the 514 

daily data. However, further enhancements in data resolution yield diminishing returns. Specifically, for 515 

daily streamflow simulations, improvements in model performance become negligible when the 516 

resolution exceeds 12 hours. As for hourly streamflow simulations, improvements in overall flood 517 
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process accuracy become negligible when the resolution exceeds 6 hours, while higher resolutions further 518 

enhance the precision of peak flow predictions. 519 

2) When the model's computation time step is fixed at 1h, most parameters, are generally independent of 520 

the input data resolution. Even when using model parameters obtained from daily data, utilizing sub-521 

daily resolution data helps improve the accuracy of hourly streamflow simulations. Conversely, when 522 

the computation time step varies, the model parameters are not applicable for direct transfer to other time 523 

steps. In particular, the performance of the model deteriorates more when the computation time step is 524 

shifted from large to small. 525 

3) It is recommended to utilized smaller computational time step when constructing hydrological models 526 

even in the absence of high-resolution input data. This strategy ensures that the same prediction accuracy 527 

is achieved while preserving the transferability of model parameters, thus enhancing the robustness of 528 

the model. 529 

5.2 Limitations and further research needs 530 

While this study has provided valuable insights into the impacts of data temporal resolution and 531 

computational time step on hydrological models, several limitations should be acknowledged. First, this 532 

study focuses on a specific geographical area in Northern China and covers a limited temporal range. 533 

The findings, therefore, may not be fully generalizable to other regions with different climatic, 534 

hydrological, or geological conditions. Further studies across various regions and under different 535 

hydrological conditions are necessary to validate and extend the applicability of these results. Second, 536 

the study's conclusions are drawn based on a particular hydrological model and specific parameter 537 

settings. Other models or configurations might exhibit different sensitivities to data resolution and 538 

computational time step. Therefore, the generalization of these findings to other hydrological models 539 

should be approached with caution. Next, results showed that the benefit of high-resolution 540 

rainfall/streamflow data to daily and hourly streamflow simulation was negligible when the temporal 541 

resolution was higher than a threshold, and the possible mechanism of such phenomenon was primarily 542 

discussed according to the variation of runoff process and some parameters under different conditions 543 

and other existing literatures. However, a deeper analysis and validation on such threshold effect are still 544 

lacking, which needs further investigation. Last, the number of iterations for the optimization algorithm 545 

during the model calibration process was limited. Although our previous modeling and calibration 546 

practices (e.g., Nan and Tian, 2024a, 2024b) demonstrated that the current number of iterations is 547 

sufficient to produce a good simulation, it does not guarantee the discovery of a globally optimal result. 548 

Consequently, it is challenging to determine whether the slight decline in model performance in certain 549 

catchments is due to the high-resolution data or the influence of local optima. 550 
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Appendix A: List of equations for structure the model light in this study 564 

Evaporation equations: 565 

𝐸𝑤 =  𝑃𝐸𝑇 ∗ 𝐾𝑒𝑤  (𝐴1) 566 

where PET is the mean potential evapotranspiration of the basin, 𝐸𝑤  is the actual 567 

evaporation in W layer, 𝐾𝑒𝑤  is the linear coefficient. Es, Eg are calculated by similar equations 568 

with the linear coefficients of Kes, Keg. 569 

Runoff equations: 570 

WMM = WM * (1+B)  (𝐴2) 571 

A = WMM [1-(1-
W

WM
)

1
1+B]  (𝐴3) 572 

𝑅 = 𝑃 −  𝐸𝑤 + 𝑊 − 𝑊𝑀, 𝑖𝑓 𝑃 − 𝐸𝑤 + 𝐴 ≥ 𝑊𝑀𝑀 (𝐴4) 573 

𝑅 = 𝑃 − 𝐸𝑤 + 𝑊 − 𝑊𝑀 [1 − (1 −
𝑃 − 𝐸𝑤 + 𝐴

𝑊𝑀𝑀
)

1+𝐵

] , 𝑖𝑓 𝑃 − 𝐸𝑤 + 𝐴 < 𝑊𝑀𝑀 (𝐴5) 574 

SMM = SM * (1+EX) (𝐴6) 575 

AU = SMM [1-(1-
S

SM
)

1
1+EX] (𝐴7) 576 

𝑅𝑆 = 𝑅 + 𝑆 − 𝑆𝑀,   𝑖𝑓 𝑅 + 𝐴𝑈 ≥ 𝑆𝑀𝑀 (𝐴8) 577 

𝑅𝑆 = 𝑅 + 𝑆 − 𝑆𝑀 × [1 − (1 −
𝑅 + 𝐴𝑈

𝑆𝑀𝑀
)

1+𝐸𝑋

] , 𝑖𝑓 𝑅 + 𝐴𝑈 < 𝑆𝑀𝑀 (𝐴9) 578 

𝑅𝑠𝑠 =  𝑆 ∗ 𝐾𝑠𝑠 (𝐴9) 579 

𝑅𝑔 = 𝐺 ∗ 𝐾𝑔 (𝐴10) 580 

𝑅𝑖 =  𝑃 (𝐴11) 581 

where WM, SM, B and EX are storage of W, S layer and their exponential coefficients.  582 

Routing equations: 583 

𝑄𝑖,𝑡 =  𝑅𝑖,𝑡 ∗ 𝐴𝑟𝑒𝑎 ∗ 𝑖𝑚𝑝/𝑑𝑇 (𝐴12) 584 

𝑄𝑠,𝑡 = [ 𝑅𝑠,𝑡−1−𝑙𝑎𝑔1 ∗ 𝐶𝑠 + 𝑅𝑠,𝑡−𝑙𝑎𝑔1 ∗ (1 − 𝐶𝑠) ] ∗ 𝐴𝑟𝑒𝑎 ∗ (1 − 𝑖𝑚𝑝)/𝑑𝑇 (𝐴13) 585 

𝑄𝑠𝑠,𝑡 = [ 𝑅𝑠𝑠,𝑡−1−𝑙𝑎𝑔2 ∗ 𝐶𝑠𝑠 + 𝑅𝑠𝑠,𝑡−𝑙𝑎𝑔2 ∗ (1 − 𝐶𝑠𝑠) ] ∗ 𝐴𝑟𝑒𝑎 ∗ (1 − 𝑖𝑚𝑝)/𝑑𝑇 (𝐴14) 586 

𝑄𝑔,𝑡 = [ 𝑅𝑔,𝑡−1 ∗ 𝐶𝑔 + 𝑅𝑔,𝑡 ∗ (1 − 𝐶𝑔) ] ∗ 𝐴𝑟𝑒𝑎 ∗ (1 − 𝑖𝑚𝑝)/𝑑𝑇 (𝐴15) 587 

where 𝐴𝑟𝑒𝑎 is the area of the basin, 𝑖𝑚𝑝 is the proportion of impervious area, and dT is the 588 

calculation time step. 589 
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