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Abstract. The seasonal streamflow forecast (SSF) is a crucial decision-making, planning and management tool for disaster
prevention, navigation, agriculture, and hydropower generation. This study demonstrates for the first time the capacity of a
fully coupled operational global forecast system to directly provide skilful seasonal streamflow predictions through a physi-
cally consistent and convenient single-step workflow for forecast production. We assess the skill of the SSF derived from the
operational Météo France forecast system SYS8, based on the in-house fully coupled atmosphere-ocean-land general circula-
tion model of the sixth generation, CNRM-CM6-1. An advanced river routing model interacts with the land and atmosphere
via surface/sub-surface runoff, aquifer exchange and open water evaporation to predict river streamflow. The actual skill is
evaluated against streamflow observations, with the Ensemble Streamflow Prediction (ESP) approach used as a benchmark.
Results show that the online coupled forecast system is overall more skilful than ESP in predicting streamflow for the summer
and winter seasons. This improvement is particularly notable with enhanced land water storage initial conditions, especially in
summer and in large basins where the low-flow response is influenced by soil water storage. Predicting climate anomalies is
crucial in winter forecasting, and results consistently suggest that the atmospheric forecast of the fully coupled CNRM-CM6-1
model contributes to better seasonal streamflow forecasts than the climatology-based ESP benchmark. This study showcases
the capacity of an operational seasonal forecast system based on a General Circulation Model to deliver relevant streamflow
predictions. Additionally, the positive response to enhanced initial hydrological conditions pinpoints the efforts still needed to

further improve land initialisation strategies, possibly through land data assimilation systems.

1 Introduction

The seasonal streamflow forecast (SSF) is an essential decision-making and planning tool for disaster prevention (e.g., floods
and droughts), navigation, and water management applied to water supply, agriculture and hydropower generation (Clark
et al., 2001; Hamlet et al., 2002; Chiew et al., 2003; Wood and Lettenmaier, 2006; Regonda et al., 2006; Luo and Wood,
2007; Kwon et al., 2009; Cherry et al., 2005; Viel et al., 2016). However, many regions lack operational forecast systems and
dense streamflow/weather monitoring networks. To address this shortcoming, continental and global SSFs provide worldwide
coverage of worthy prediction information (e.g., Crochemore et al., 2020; Emerton et al., 2018; Candogan Yossef et al., 2017,

Pappenberger et al., 2013; Van Dijk et al., 2013).
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Troin et al. (2021) propose a comprehensive classification of streamflow forecast systems into three groups based on the ori-
gin of the forcing: statistics-based streamflow prediction systems (SBSP), climatology-based ensemble streamflow prediction
systems (ESP) and numerical weather prediction-based hydrological ensemble prediction systems (NWPB). SBSP approaches
use historical streamflow or weather (or both) data to train a data-driven hydrological model, which, due to the absence of the
physics to constrain it, requires long and continuous observational time series not always available (Troin et al., 2021). De-
spite statistical methods being the more widely developed and reliable methods in current operational forecast systems, their
applicability can be limited because of the lack of physics description and robustness to represent future quick or long-term
anthropogenic and climate changes (Candogan Yossef et al., 2017).

ESP approaches (Day, 1985) use an ensemble of historical climate observations or (pseudo-)observations (such as satellite,
radar and reanalysis of past weather data) to force one or more hydrological models (HMs). Most ESP multi-model studies
employ dynamical process-driven HMs rather than statistical data-driven HMs (Troin et al., 2021). Unlike SBSP, ESP can
include physics representation in the HM, while past weather data only represents the climatology of the atmosphere without
a link to the current initial state of the land or the atmosphere itself at the beginning of the forecast. Efforts to enhance the skill
of the classical ESP include conditional weighting of the ESP ensemble members based on the El Nifio—Southern Oscillation
signal (Werner et al., 2004). While modified versions of ESP can improve streamflow predictions for shorter lead times,
their skill decreases faster over time compared to NWPB systems (Trambauer et al., 2015). To overcome this issue, model-
based NWPB approaches propose using numerical weather prediction (NWP) systems or atmospheric predictions derived from
global circulation models (GCMs) to yield ensemble atmospheric forecasts as inputs to the HM (e.g., Crochemore et al., 2017,
Mendoza et al., 2017; Rosenberg et al., 2011).

The seasonal streamflow forecast skill derives from the accuracy of the initial hydrological conditions (IHCs; of soil mois-
ture, groundwater, snowpack, and the current streamflow) and the future seasonal climate anomalies (FSCs; of temperature
and precipitation) (Wood et al., 2016; Arnal et al., 2017; Yuan et al., 2015). As time progresses, the predictability of seasonal
streamflow decreases, primarily due to the loss of memory in the IHCs and the increasing uncertainty in FSC predictions.
The persistence of IHCs, depending on the season, catchment climate zone, and physiography, can extend from one to six
months. Notably, the contribution of IHCs to predictability is more pronounced in arid and snowmelt-dominated hydroclimates
(Yuan et al., 2015; Shukla et al., 2013). Conversely, in regions dominated by rainfall, FSCs tend to significantly influence
the predictability of seasonal streamflow (Wood et al., 2016). Forecasts entirely derived from the climatology of observed
streamflow do not contain information on IHC and FSC since they are not initialised or atmospherically driven. Although
atmospheric forcing in the ESP framework is climatology-based, introducing a hydrological model with IHCs constrains the
forecast system and thus reduces the range of uncertainty. In NWPB approaches, FSC is simulated by a climate model, which
adds physics-based constraints to the system but may provide additional uncertainty in regions where it lacks skill. Therefore,
it may be more straightforward to predict streamflow in large river basins with long-lasting IHCs (low IHCs uncertainty) and
in regions with arid climates (lower rainfall FSCs uncertainty) (Wood and Lettenmaier, 2008; Shukla et al., 2013; Van Dijk
et al., 2013; Yuan et al., 2015). In such cases, NWPB offers a more narrow ensemble than ESP methods (Wood et al., 2016; Li
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et al., 2009). ESP is considered more reliable for long-range forecasting in regions where FSC dominates the other sources of
uncertainty, and NWPB fails to be skilful with respect to the long-term climatology (Demargne et al., 2014).

Shortcomings inherent to land surface hydrological parameterisations and land surface initialisation of coupled GCMs have
discouraged the direct use of streamflow (or runoff) forecast products from these systems (Yuan et al., 2015). For this reason,
previous global scale studies based on dynamical methods rely on stand-alone hydrological models driven by bias-corrected
atmospheric forecasts from a GCM (Candogan Yossef et al., 2017; Emerton et al., 2018), in which explicit two-way mass
and energy feedback between land-atmosphere is not represented. However, coupled GCMs with consistent IHCs can produce
improved atmospheric seasonal forecasts in regions prone to a strong land-atmosphere coupling (Koster et al., 2004; Ardilouze
et al., 2017).

On a global scale Candogan Yossef et al. (2017) suggest that the performance of the stand-alone approach, using the me-
teorological forecasts ECMWF S3, is close to that of the ESP forecasts. Such results, together with the recent evolution and
improvement of GCMs in terms of resolution, processes representation, hydrological parametrisation and land-surface initial-
isation, motivate the use of GCMs with embedded sophisticated river routing models (e.g., Decharme et al., 2019), to direct
production of seasonal streamflow forecasts.

Thereby, we propose a global assessment of the SSF delivered by the Météo France operational forecast system SYSS,
based on CNRM-CM6-1 (Voldoire et al., 2019), an Atmosphere-Ocean General Circulation Model (AOGCM) embedding an
advanced river routing scheme coupled to the land-surface and atmosphere components, namely ISBA-CTRIP (Decharme
et al., 2019). To the best of our knowledge, the hydrological output of CNRM-CM®6-1, initially developed by Centre National
de Recherches Météorologiques (CNRM) and Cerfacs for the sixth phase of the Coupled Model Intercomparison Project 6
(CMIP6, Eyring et al. (2016)), has never been evaluated in a forecasting configuration. The standard method to initialise the
CNRM-CMB6-1 seasonal forecasts operational system is more advanced for ocean and atmosphere initial conditions than for
land initial conditions, given that the primary sources of seasonal predictability at the global scale originate from the ocean
(e.g., El Nifio - Southern Oscillation). For this reason, we proceed to a 2-tier assessment of the impact of using an (i) online
coupled AOGCM-river rather than ESP and (ii) improving IHCs in the land-river components of the AOGCM. Here, the IHC
improvement is based on enhancing the representation of soil water content variability through the relaxation to a soil moisture
reanalysis specially developed for this study.

The following section presents an overview of the forecast systems and experimental design, as well as the observational
global streamflow database and forecast evaluation metrics. In the subsequent two sections, we address the impact of the IHCs
and the atmosphere-land-river coupling from global to basin scale to demonstrate the potential benefits of our approach. Finally,

we conclude with future scientific challenges and some final remarks.
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2 Data and methods
2.1 Global forecast system

The Météo-France seasonal prediction system SYS8 (MF system 8; Batté et al., 2021) is based on the high-resolution version
of the coupled CNRM-CM6-1 global climate model (Voldoire et al., 2019, 2017) used for CMIP6 (Eyring et al., 2016). It
contributes to the seasonal forecast component of Copernicus Climate Change Services (C3S).

The streamflow forecast derives from the interaction between the atmosphere component ARPEGE-Climat 6.3 (Roehrig
et al., 2020), the land surface component (ISBA), which simulates the runoff, and the advanced river routing (CTRIP), which
simulates the streamflow river discharges (Decharme et al., 2019). In ISBA, the soil is discretised in 14 vertical layers, ac-
counting for the soil hydraulic and thermal properties, while the multi-layer snow model simulates water and energy budgets
separately in the soil and the snowpack. ISBA in one grid cell is tiled into 12 patches of soil and vegetation, which aggre-
gates 500 land cover units at 1 km resolution present in the ECOCLIMAP-II database (Faroux et al., 2013), where mean
seasonal cycles of snow-free albedo and leaf area index are prescribed from Moderate Resolution Imaging Spectroradiometer
MODIS products at 1-km spatial resolution and the Normalised Difference Vegetation Index product from the SPOT/Vegeta-
tion. The soil textural properties (clay, sand, and soil organic carbon content) are given by the Harmonized World Soil Database
(http://webarchive.iiasa.ac.at/Research/LUC/External- World-soil-database/HTML/) at a 1 km resolution. Topography is de-
rived from the 1 km Global Multi-resolution Terrain Elevation Data 2010 (https://topotools.cr.usgs.gov/gmted_viewer/). Het-
erogeneities in precipitation, soil infiltration capacity, topography, and vegetation are considered through a comprehensive
sub-grid hydrology scheme (Decharme and Douville, 2006; Decharme, 2007). In CTRIP, the result of rainfall excess, effec-
tive river-aquifer exchange, open water evaporation and inflow from the upstream cell is routed by a river model in which
the streamflow velocity is solved dynamically via Manning’s formula and assuming a rectangular river cross-section in a grid
resolution of 0.5° (Decharme et al., 2010).

CNRM-CMB6-1 incorporates an explicit two-way coupling between ISBA and CTRIP via the SURFEX and OASIS-MCT
interface (Voldoire et al., 2017). The coupling allows to consider (i) the dynamic river flooding in which floodplains interact
with the soil and the atmosphere through infiltration, open-water evaporation, and precipitation interception (Decharme et al.,
2012), while (ii) a two-dimensional diffusive groundwater scheme represents unconfined aquifers and upward capillarity fluxes
into the superficial soil (Vergnes et al., 2014). The latter contributes to capturing active groundwater—river connections crucial
to represent groundwater-sustained baseflow during dry seasons (Xie et al., 2024). More details on the model parametrisation

and structure can be found in Decharme et al. (2019); Voldoire et al. (2019).
2.2 Experimental design
2.2.1 Generation of land and river initial conditions

SYS8 derives land initial hydrologic conditions (IHCs) from a historical initialisation run, named ICL here, where the land-

river component is unconstrained whereas the ocean and atmosphere are nudged towards the GLORYS12V1 (Lellouche et al.,


http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/
https://topotools.cr.usgs.gov/gmted_viewer/
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2021) and the ERAS (Hersbach et al., 2020) reanalyses, respectively. We propose an enhanced initialisation run (ICL,,4) by
nudging soil moisture (W) to fields obtained from a current Wy,;; reconstruction. The soil moisture reconstruction was
yielded through an offline land simulation (e.i., forcing the land-river components with ERAS historical climate sequences).
Then, the W,;; of the historical initialisation run is nudged to the W,;; from this reconstruction. The proposed IHC accounts
for an enhanced representation of soil moisture variability through (pseudo-)observed atmospheric forcing aiming to improve
the forecast in basins where the initial soil water storage dominates the streamflow seasonal response.

The IHCs generated by ICL are applied to the benchmark forecast (Offline_ICL) and the online coupled SYS8 forecast (On-
line_ICL). The land-river component in the online system is also initialised with ICL,,4 to evaluate the impact on streamflow

forecasting. Details of the model configurations and forcing are presented in Section 2.2.2.
2.2.2 Forecast experiments

Seasonal hindcast experiments were conducted for the three model configurations described below (see Table 1 and Figure 1).

— Offline_ICL: is the benchmark hindcast configured as the ESP classical approach. It is a land-river offline simulation

initialised by the conventional initialisation run ICL.
— Online_ICL is produced by the online coupled system with conventional initialisation ICL.

— Online_ICLy,q is produced by the online coupled system with enhanced initialisation ICL,,4 based on a soil moisture

reconstruction (SMR).

For each of the three forecast system configurations, we have generated two sets of hindcasts composed of 25 ensemble
members, each one of them yielding a global four-month streamflow daily time series. The two sets were initialised on May
Ist (JJA predictions) and November 1st (DJF predictions) between 1993 and 2017. The system Online_ICL is identical to the
operational SYS8 hindcast, except that for the latter, the ensemble is partly generated via a lagged initialisation method (e.g.,
Hoffman and Kalnay, 1983) while the ensemble of Online_ICL (and Online_ICL,,4) stems from a burst initialisation, that is,
all members have the same initialisation date.

To generate the benchmark hindcast Offline_ICL, the land-river model ISBA-CTRIP is forced by ERAS historical cli-
mate (Figure 1) so that each year produces one of the 25 atmospheric forecast members. We use leave-three-years-out cross-
validation (L30CYV) to select the forcing. In L30CYV, the year of the climate forcing cannot match the hindcast year nor the
preceding year and the two following years to avoid artificially inflating the skill due to large-scale climate—streamflow depen-
dence with influences lasting from seasons to years like the North Atlantic Oscillation (Dunstone et al., 2016). For example,
to apply the L30CV selection method to the hindcast of 1993, forcing of years 1991 and 1996-2019 ensures 25 members. For
the hindcast of 2000, forcing from 1991 to 1998 and 2003 to 2019 is used. Unlike in the current hindcasting for validation,
in operational forecast systems based on the ESP Offline approach, future climate information is unavailable; thus, only past
climate information can be employed.

Before computing the forecast performance scores, the daily streamflow is averaged on a 3-month basis to represent the

seasonal mean. The 3-month streamflow mean (JJA and DJF) is assessed across a global dataset of gauged basins with the
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observational streamflow data described in Section 2.3. To localise the gauging stations in the correct grid pixel of the model
155 river network, we applied a homemade methodology based on a distance and drainage area station-to-pixel comparison (see

Munier and Decharme (2022) for more details and applications).

Table 1. Experiments configurations for land initial condition and hindcasts production (see Fig. 1).

Simulation Initial condition Integration

ID Description Atm. Ocean Land River Atm. Ocean Land  River

Soil moisture reconstruction (SMR)

SMR Offline land simulation to recon- | Disabled  Disabled  Spin-up  Spin-up | Prescribed Disabled  Free Free

struct soil moisture (ERAS)
Historical initialisation runs

ICL Online coupling with Atm./Ocean | ERAS Glorys Spin-up  Spin-up | Nudged Nudged Free Free
nudged to reanalysis (ERAS) (Glorys)

ICLyu4 ICL nudged to own soil moisture | ERAS Glorys Spin-up  Spin-up | Nudged Nudged Nudged Free
reconstruction SMR (ERA5S) (Glorys) (SMR)

Hindcasts

Offline_ICL ESP Benchmark: offline with land Disabled  Disabled ICL ICL Prescribed* Disabled Free Free
initialisation from ICL (ERAS)

Online_ICL Online with land initialisation | ERAS Glorys ICL ICL Free Free Free Free
from ICL

Online_ICL,,4 Online with land initialisation | ERAS Glorys ICL w4 ICL w4 Free Free Free Free
from ICLyq

*The atmospheric ensemble forcing for the Offline_ICL hindcast is constructed from past climate years selected by a leave-three-years-out cross-validation procedure.
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Figure 1. Schematic of offline and online forecast system configurations and corresponding land-river initialisations. ICL: initial condition
from the historical run with the online system; ICL,uq: initial conditions from a historical run with soil moisture relaxation to fields recon-
structed from the offline land simulation SMR. As illustrated by the grey-filled arrows, the design of the experiment allows the evaluation of

the coupling effect, the initialisation effect or both.
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2.3 Streamflow observational database

Most previous works evaluate the “potential” streamflow predictability of a forecast system by adopting the perfect-model
assumption, in which the streamflow forecast is compared to simulated streamflow (from a model driven by meteorological
observations) instead of observed streamflow. Meanwhile, we compare the forecasts against observations because, in addition
to the IHC and FSC, it incorporates the uncertainty associated with model error (due to structure, physics, and parameter
uncertainty) and provides actual (as opposed to potential) streamflow predictability, which is more valuable for end-users or
the development of climate services. A database of 1755 flow gauge stations has been created, compiling the global streamflow
open access datasets presented in Table 2. We have filtered the full dataset to remove stations with relatively small drainage
areas poorly represented by the model resolution and those stations with more than 25% of missing streamflow records in the

concerned season.

Table 2. Streamflow observed datasets.

Dataset Region Reference

GRDC: Global Runoff Data Centre Global http://www.bafg.de/GRDC/EN/Home/homepage_node.html
USGS: United States Geological Sur-

vey United States http://waterdata.usgs.gov/nwis/sw

HYDAT: National Water Data Archive = Canada https://collaboration.cmc.ec.gc.ca/cmc/hydrometrics/www/
French Hydro database France http://www.eaufrance.fr

Spanish Hydro database Spain http://ceh-flumen64.cedex.es/anuarioaforos/default.asp
HidroWeb Brazil http://www.snirh.gov.br/hidroweb/

R-ArcticNet Northern High Latitudes http://www.r-arcticnet.sr.unh.edu/v4.0/AllData/index.html
Australian Bureau of Meteorology Australia http://www.bom.gov.au/metadata/19115/ANZCW0503900339
China Hydrology Data Project China Henck et al. (2011)

HyBAm Amazon basin https://hybam.obs-mip.fr/

We conducted a correlation analysis to select the minimum drainage area considered in the study. For basins with an area
higher than a certain threshold (A;preshoia), Figure 2 shows the correlation between the basins area (Apqs;,) and the area
estimated for the CTRIP routing model (Acrgrrp). With increasing Aypeshotd, the correlation increases, but the number of
available basins reduces. The threshold is set to 6 x 10 km? (about two CTRIP cells per basin in mid-latitudes) to main-
tain a balance between the number of basins analysed and their geometrical representation and to avoid considering basins
inside the spurious oscillating correlation curve (Figure 2). There are 1451 gauged basins with Apgsin > Athreshold With a

Apasin| Ao rip correlation of 0.9886.


http://www.bafg.de/GRDC/EN/Home/homepage_node.html
http://waterdata.usgs.gov/nwis/sw
https://collaboration.cmc.ec.gc.ca/cmc/hydrometrics/www/
http://www.eaufrance.fr
http://ceh-flumen64.cedex.es/anuarioaforos/default.asp
http://www.snirh.gov.br/hidroweb/
http://www.r-arcticnet.sr.unh.edu/v4.0/AllData/index.html
http://www.bom.gov.au/metadata/19115/ANZCW0503900339
https://hybam.obs-mip.fr/
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Figure 2. Correlation coefficient of A,cqi|AcTrrp and number of basins with area higher than a given A¢hreshold.

From the 1451 streamflow stations, we only consider those with less missing data than 25% of the total data in the analysed
season. Figure S1 in the Supplement shows the distribution, in spaces and frequency, of the full database and the selected
stations. The final dataset has 1071 stations in JJA and 1043 stations in DFJ, distributed in North America (= 82%), Europe
(=~ 13%), South America (3.5%), Africa (1.7%), Asia and Australia (0.4% = 4 stations). In Section 3.3, we remove 14 stations

where some performance score magnitude exceeded the maximum machine number in double precision.
2.4 Streamflow bias correction

Typically, statistical post-processing methods are applied to compensate for errors in model structure or initial conditions,
correct biases, and improve ensemble dispersion (Troin et al., 2021). Such bias correction can be applied to atmospheric
forecasts (such as precipitation, temperature, and evaporation) and/or to hydrological forecasts like runoff and streamflow
(e.g., Petry et al., 2023; Tiwari et al., 2022; Gubler et al., 2020; Crochemore et al., 2016; Wood and Schaake, 2008). Our study
uses an online atmosphere-ocean-land-river coupled model, for which bias correcting the atmospheric forcing is irrelevant.
Instead, we correct the streamflow forecast bias for each flow-gauge station using the Empirical Quantile Mapping method
(EQM). To ensure consistent comparisons, we apply streamflow bias correction to both offline and online forecasts.

Unlike adjusting parametric distributions, the EQM method removes bias using empirical cumulative distribution functions
(ECDFs) from observations and forecast percentiles. Roughly, the approach replaces the forecast values with observed values
corresponding to the same non-exceedance probability (i.e. it calibrates the forecast distribution with the observed distribution

by fitting the forecast values). Analogous to Tiwari et al. (2022), the bias-corrected streamflow (). is calculated as follows:
Qe =F; " [Fy(Qy)] (1)
where F'; and F), are the ECDFs of forecast () and observation @), streamflow, respectively.

2.5 Seasonal forecast assessment

Table 3 presents the deterministic and probabilistic scores used to evaluate the new forecast system performance. The thresholds

for the Brier score computation are based on the 3-month average of observed streamflow exceeded 66% (the lower tercile
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The skill of the online approach is relative to the performance of the Offline_ICL benchmark.

The significance of the precipitation correlation is calculated using the parametric Student t-test. All other significance
tests and confidence interval computations use the bootstrap approach, where 1000 random sub-samples are created from the
full sample to establish the probability distribution of the statistical estimator being analysed (e.g., the anomaly correlation
coefficient or the Kling-Gupta efficiency score). An estimator is considered significant if the p-value is less than or equal to
0.05.
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Table 3. Performance scores used to assess and compare seasonal streamflow forecasting approaches.

Notation

Name

Equation

Description

Deterministic scores

bias

Percent mean bias

100 x 72(;': —oi)

0q

Range (—o0,00). It represents the average ten-
dency of the forecast to underestimate or overes-
timate the observations, with 0 indicating that there

is no bias.

RMSE

Root Mean Square Error

V& (fi—0i)?

Range [0, co). Lower values indicate better perfor-

mance.

ACC

Anomaly Correlation Coeffi-

cient

> (fi = f)(o:s — 0)
V(i — )2 (0 —0)?

Range [—1, 1], with perfect score of 1. It measures
the linear association between forecasts and obser-

vations (or pseudo-observations).

KGE

Kling-Gupta Efficiency Score

1-,/(ACC —1)2 + (DQR—1)* + (QR —1)?

Range (—oo0, 1], with 1 being the optimal value. It

considers correlation, bias, and variability error.

Probabilistic scores

BS

Brier Score

N (A= Fr(Qunr) — H (0s — Qenr))?

Range [0, 1], where lower values indicate better
and sharper forecasts. Measures the accuracy of
probabilistic predictions and the bias in the prob-

ability space.

CRPS

Continuous Ranked Probabil-

ity Score

F N [T (Fp(fs) — H(oi — f2))?dfs

Range [0, co]. Quadratic difference between the
cumulative distribution function (CDF) of an en-
semble forecast and the empirical CDF of the
observation. Lower values indicate better perfor-

mance.

Generic Skill score

ABS

RES

Absolute Skill Score

Relative skill score

|Scoreomine — Scoreperl’ecll — |Scoreon]ine - Scoreperl'ecll

Scoreonline — Scoreperfecl

Scoreoffiine — SCOr€perfect

ABS ranges (— oo, 1] and RES ranges (—oo, 00).
It compares the current online system forecast
against the offline reference forecast.

perfect skill: RES = 1 (ABS = |Scoft — Scperf|)-
no skill: RES = 0 (ABS = 0).

skill degradation:RES < 0 (ABS < 0).

Note: Any deterministic or probabilistic score can
be used. ABS/RES is the magnitude/fraction of
the score improvement (or degradation for negative

values).

N': Total number of forecasts; f;: Forecast 3-months ememble mean for year 4; o;: Observation 3-months mean for year i; f: Temporal average over forecast ensemble

means; 6: Temporal average of observations; DQR = f : forecast-to-observation standard deviation ratio; Q R =

threshold that represents the occurrence of a hydrologlcal event, the step function H' (0; —

distribution function of ensemble forecast; the Heaviside step function # (o;

reference forecast; Scoreperfect score of a perfect forecast.

11

L: forecast-to-observation mean ratio; Q¢p,, is a

Qthr) is zeroif o; < Q”W or one otherwise; F'y (f;): Cumulative

— fi)iszeroif f; < o; oroneif f; > 0;; Scoreosine: Score of Offline_ICL benchmark
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3 Results

The first two sub-sections explore the performance of the two primary factors of hydrologic predictability, namely the initial
hydrologic conditions (Section 3.1) and the future climate seasonal anomalies (Section 3.2). Section 3.3 presents the evaluation

of the seasonal prediction skill to highlight the joint and separate impacts of the coupling and the enhanced land initialisation.
3.1 Initial hydrologic conditions

We assess the global performance of the river streamflow simulated by the initialisation runs (ICL and ICL,,4) against historical
streamflow observations. For this purpose, we compare the initial-month mean streamflow (May for JJA and November for

DJF) against the observed one over the 1993-2017 period. Figure 3 presents three performance metrics of the comparison
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Figure 3. Comparison between May streamflow mean of initialisation run against the observed one over 1993-2017. Left column: ICL bias
(a), root mean square error (mm/d) (d), and anomaly correlation (g). Middle column: difference with the ICL,,4 enhanced land initialisation
bias (b), root mean square error (mm/d) (e), and anomaly correlation (h). Right column: distribution of bias for each experiment (c), accu-

mulated distributions of the root mean square (f), and anomaly correlation (i).
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(BIAS, RMSE and ACC). Note that only stations with less than 25% of missing data during the corresponding month are

considered in the following analysis.
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Figure 4. Comparison between November streamflow mean of initialisation run against the observed one over 1993-2017. Left column: ICL
bias (a), root mean square error (mm/d) (d), anomaly correlation (g). Middle column: difference with the ICL,uq enhanced land initialisation
bias (b), root mean square error (mm/d) (e), anomaly correlation (h). Right column: distribution of bias for each experiment (c), accumulated

distributions of the root mean square (f), and anomaly correlation (i).

For May, the streamflow bias of ICL tends to be positive in the driest regions (Fig. 3a), particularly in the west of North
America, Northeastern Brazil, south of Africa, Iberian peninsula and Australia. The higher concentration of red markers in
Figure 3b suggests a reduction in bias from ICL to ICL,,4. This reduction is more pronounced for negative bias, as indicated
by the shift of the negative peak towards zero bias in the frequency distribution shown in Figure 3c. Besides, the RMSE is
generally smaller with ICL,,4, in particular over regions with large RMSEs in ICL (Figure 3d-f). In seasonal forecasts, the
temporal correlation between the forecasted and the observed anomalies is crucial since it indicates the capability of capturing

the inter-annual variability of streamflow departures from the mean value. The spatial distribution of the difference in anomaly
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correlation coefficient |ACCjc, — 1| — |ACCycy,,, — 1| in Fig. 3h shows that the soil moisture nudging improves the temporal
dynamics of the simulated streamflow in May over most of the 1067 gauging stations. The result is verified in Fig. 3i, which
reports up to 20% more stations with ACC > (0.4 — 0.6).

The performance of the river initialisation in November (used for DJF forecasts) is presented in Fig. 4. ICL,,4 tends to
reduce the mean bias of stations displaying a high positive bias in ICL (Figure 4a-b). The bias global distribution in Fig. 4c
confirms a reduction of high positive bias, favouring the concentration of bias values closer to zero than ICL. However, unlike
JJA, in DJF, ICL,,;4 induces more stations with higher RMSE and lower ACC. In Section 3.3, we show and discuss the impact

of the initial hydrologic condition (IHC) degradation on the hindcasts in boreal winter.
3.2 Precipitation and temperature skill

One way to bring out the influence of the land-atmosphere coupling is to assess the impact of different land THCs on the
atmospheric forecast. The performance of the atmospheric seasonal forecast is presented in Figures 5 and 6, in particular, for
two of the most important water cycle drivers: precipitation and near-surface temperature. Precipitation is compared against
the Multi-Source Weighted-Ensemble Precipitation (MSWEP v2, Beck et al. (2019)) and the temperature against the Climatic
Research Unit gridded Time Series (CRU TS v4.05, Harris et al. (2020)).

A global view does not reveal marked changes in terms of ACC for the atmospheric predictions. However, from a continental
to regional view, differences are noticeable. In boreal summer (Figure 5), enhanced initialisation ICL,,q tends to increase
precipitation correlation in the middle region of South America, including the Parand River basin and southern Amazon basin
(red box), with degradation in the northeast of Brazil, Australia, and some areas of North America and Asia on the north of
40° N (cyan boxes). Notably, Europe experiences improved precipitation predictions. Temperature predictions are less sensitive
to the land initialisation in summer, but degradation is concentrated in higher latitudes (north of 40° N and south of 20°5).
In winter, regions with reduced performance for both precipitation and temperature predictions are primarily found in North
Africa, Europe, and Asia (Figure 6).

We have found that the ICL,4 initialisation can have a detrimental effect on the accuracy of precipitation and temperature
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