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Abstract. The water balance of catchments will, in many cases, strongly depend on its state in the recent past (e.g., previous
days). Processes causing significant hydrological memory may persist at longer timescales (e.g., annual). The presence of such
memory could prolong drought and flood risks and affect water resources over long periods, but the global universality,
strength, and origin of long memory in the water cycle remain largely unclear. Here, we quantify annual memory in the
terrestrial water cycle globally using autocorrelation applied to annual time series of water balance components. These
timeseries of streamflow, global gridded precipitation, GLEAM potential and actual evaporation, and a GRACE-informed
global terrestrial water storage reconstruction indicate that, at annual timescales, memory is typically absent in precipitation
but strong in terrestrial water stores (rootzone moisture and groundwater). Outgoing fluxes (streamflow and evaporation)
positively scale with storage, so they also tend to hold substantial annual memory. As storage mediates flow extremes, such
memory also often occurs in annual extreme flows and is especially strong for low flows and in large catchments. Our model
experiments show that storage-discharge relationships that are hysteretic and strongly nonlinear are consistent with these
observed memory behaviours, whereas non-hysteretic and linear drainage fails to reconstruct these signals. Thus, a multi-year
slow dance of terrestrial water stores and their outgoing fluxes is common, it is not simply mirroring precipitation memory

and appears to be caused by hysteretic storage and drainage mechanisms that are incorporable in hydrological models.

1 Introduction

Temporal variability of weather, (subsurface) hydrological processes, and land-surface conditions can cause streamflow to
vary by orders of magnitude over time, leading to droughts and floods, and affecting water resources for society and ecosystems
(Van Loon, 2015; Bloschl et al., 2020; Berghuijs et al., 2017; Kreibich et al., 2022). Temporal autocorrelation in streamflow
timeseries tends to be strong at short (e.g. daily) timescales because streamflow often strongly depends on catchment storage
(e.g., Kirchner, 2009; Spence et al., 2010; McNamara et al., 2011; Riegger and Tourian, 2014) which, compared to
precipitation, changes relatively gradually with time (e.g., Lischeid et al., 2021; Li et al., 2024). At longer timescales (e.g., one

year or longer), streamflow can also be autocorrelated (e.g., Mudelsee, 2007; Godsey et al., 2014). This autocorrelation may
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be interpreted as evidence of the persistent influence of the prior hydroclimatic state of a catchment on current hydrologic
conditions. Signals of past climate, which are detectable in streamflow records for long periods, are known as “catchment-
state persistence”, or “catchment memory” (de Lavenne et al., 2022; Orth and Seneviratne, 2013). Catchment memory has the
potential to prolong the risks of droughts (Sutanto and Van Lanen, 2022), may lead to recorded flood-rich and flood-poor
periods (Bloschl et al., 2020), and could affect water availability for society and ecosystems (Klemes et al., 1981). These long
and short-term components of water storage often largely determine how streamflow responds to precipitation and, for

instance, may cause different hydrologic responses to the same precipitation amounts (e.g., Kirchner, 2024).

Long memory, defined here as a signal which persists for more than one year, is not uncommon in streamflow records, but it
is unclear whether, and to what extent, this characteristic is present across catchments. Following its discovery in annual flow
records of the River Nile (Hurst, 1951), more widespread evidence of long memory in annual flows has been reported for
many rivers worldwide (e.g., Mudelsee 2007; Labat, 2008; Kanthelhardt et al., 2006; Montanari, 2003; Markonis et al., 2018;
Szolgayova et al., 2014; Milly and Dunne, 2002; de Lavenne et al., 2022). Low flows and floods have been reported to
sometimes be significantly clustered in time (Gudmundsson et al., 2011; Bloschl et al., 2020; Lun et al., 2020; Sutanto and
Van Lanen, 2022), suggesting the possibility of memory effects even for streamflow extremes. However, globally, it remains

mostly unquantified how universal long memory is across the water cycle and to what extent it occurs in extreme flows.

Mass conservation dictates that streamflow memory cannot occur in full isolation but must interact with other water balance

components:
ds
L=pP-Q-E M

In this example catchment water balance (ignoring potential inter-basin groundwater flows or land-ocean transfers), S is
storage, P is precipitation, Q is streamflow, E is evaporation, and ¢ is time. This continuity equation implies that long memory
in one component is physically connected with other components. Such connections have also been demonstrated previously.
For example, Milly and Dunne (2002) show that, for several catchments, interannual carry-over of storage cascades into the
memory of annual flows. Godsey et al. (2014) shows how, in several catchments, seasonal low flows are significantly
correlated to both the current and the previous year's snowpacks. Yet, in most cases, such connections remain largely
unexplored, as most large-scale assessments of streamflow memory do not simultaneously analyse other water balance
components (e.g., Mudelsee 2007; Labat, 2008; Kanthelhardt et al., 2006; Montanari, 2003; Markonis et al., 2018; Szolgayova
etal., 2014).

Long memory in hydroclimatological variables has been quantified beyond streamflow. For example, precipitation can be
affected by large-scale multi-year climate oscillations (e.g., El Nifio, North Atlantic Oscillation, Pacific Decadal Oscillation)

(Ropelewski and Halpert, 1987; Jong et al., 2016). Such persistence of states in the ocean-atmosphere system (e.g. ENSO,
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Pacific Decadal Oscillation) can be a contributor to multi-annual persistence in precipitation and streamflow (Devon et al.,
2004; McKerchar, and Henderson, 2003; Ward et al., 2014) but global analysis suggests that significant memory in annual
precipitation is uncommon (Sun et al., 2018). Instead in regional and semi-global studies, autocorrelation rapidly declines in
precipitation timeseries (Markonis and Koutsoyiannis, 2016; Kantelhardt et al., 2006; Fraedrich and Blender, 2003; Potter,
1979). While evapotranspiration is the second-largest terrestrial water flux (Dorigo et al., 2021), its long memory has not been

systematically quantified globally.

Terrestrial liquid water storage mostly consists of groundwater and soil moisture. Aquifers in arid regions can exhibit long-
term memory as they integrate precipitation variabilities, the effects of which persist over long periods (e.g., Opie et al., 2020).
Groundwater often strongly fluctuates seasonally (Strassberg et al., 2007), but long timeseries can also exhibit multi-year
drying or wetting trends (e.g., Rodell et al., 2018; Jasechko et al., 2024) that likely hold significant long memory. Furthermore,
Gravity Recovery and Climate Experiment (GRACE) data can be used to forecast trends in global land water storage for the
following year (Li et al., 2024) indicating significant long memory. Nevertheless, long groundwater memory remains mostly
undocumented at global scales. Soil moisture storage memory has been mostly analysed for shorter timescales (e.g., Orth &

Seneviratne, 2012; Martinez-Fernandez et al., 2021), while its long memory remains unclear globally.

Here we simultaneously quantify the annual memory of different water balance components to reveal where this memory
originates, and how it cascades between processes. We assess to what extent this memory occurs in global precipitation,
temperature, soil moisture, total terrestrial water storage, streamflow, and evaporation timeseries. We subsequently use

empirical and model tests to establish which catchment factors shape the observed memory behaviours.

2 Methods
2.1 Global data

We use streamflow data from 15029 catchments from the Global Streamflow Indices and Metadata Archive (GSIM), a
worldwide collection of metadata and indices derived from streamflow time series (Do et al., 2018; Gudmundsson et al., 2018).
Gridded precipitation timeseries are from the Global Precipitation Climatology Centre (GPCC) V7 0.5° data set for 1981—
2020 (Becker et al., 2013; Schneider et al., 2008), and 2m global land surface temperature from 1981-2020 at 0.5° from the
Global Historical Climate Network (GHCN)/Climate Anomaly Monitoring System (CAMS) (Fan & van den Dool, 2008). We
also use 0.25° GLEAM V3.8a estimates of actual evaporation, potential evaporation, and rootzone soil moisture over the
period 1981-2020 (Martens et al., 2017). In GLEAM, potential evaporation is based on the Priestley and Taylor equation, and
actual evaporation is based on potential evaporation multiplied by an evaporative stress factor based on observations of
microwave Vegetation Optical Depth (VOD) and estimates of root-zone soil moisture (Martens et al., 2017). We use long-

term (i.e., 1981-2022) 0.25° resolution monthly terrestrial water storage estimates over the land surface from GTWS-MLrec
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(Yin et al., 2023), which is a reconstruction that uses a set of machine-learning models with several predictors and GRACE
(Yin et al., 2023). We exclude data from Greenland, Iceland, and Antarctica from our analysis due to their unique climatic and

environmental conditions, which differ significantly from other regions.

2.2 Annual memory and autocorrelation

We quantify memory as autocorrelation of annual values (mean, minimum, maximum) of hydrological fluxes or stores, at a
one-year lag time (Fig. 1). To compute autocorrelation, we linearly detrend timeseries of annual values and then calculate
autocorrelation p,, at lags of one year as:

Cov(ye ,ye-1) (2)

Py = Narovarten)
py measures the linear correlation between the detrended time series of variable y at year 7 and of that variable at year #-1. p,,
can range from -1 to 1, where larger positive values indicate a stronger tendency for adjacent values to be similar. We calculate

py, for time series with at least 20 years of continuous data. We test the probability of accepting the null hypothesis that the

residuals y, are uncorrelated (p-value<0.1 for statistical significance, consistent with Sun et al., 2018).

A strong autocorrelation may not be hydrologically significant if it is associated with small volumes of water relative to other

terms in the water balance. Therefore, we also express memory in terms of their water volumes. These memory volumes V,,

can be calculated based on the autocorrelation p,,. Namely, p,, is essentially the equivalent to the slope of a linear regression
between y, and y,_; and thereby also expresses an elasticity of y; to y,_;:

Cov(ye yt-1) dye
= =~ 3
Py JVar(y¢)-Var(ye—q ) dye—1 ®

Thus, p,, approximately expresses the unit change in y, associated with a unit change in y,_;. To calculate the mean memory
volume, we calculate the mean absolute annual anomaly of a variable y, and multiply this with the autocorrelation of p,,.
V;/ = Py- O-zy 4)
where V) is the mean annual memory volume of process y, and Oz, is the standard deviation of the anomaly of process y.

Calculating V) for several water balance components (e.g., S, P, E, Q) allows tracing, in terms of water volumes, how much

long memory on average occurs in different components of the water cycle.
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Figure 1. Example streamflow timeseries of the Suidkaap River in South Africa (25.73 °S, 30.98 °E) highlighting the memory in
annual mean, minimum, and maximum flows. From these daily timeseries, annual streamflow indices (mean, maximum, minimum)
are selected (a). The associated annual anomalies of these streamflow indices (i.e., annual deviations from their mean value) already
suggest that years with above- (or below-) average rates tend to follow one another (b). Correlation coefficients between each year’s
streamflow and the previous year’s streamflow indices quantify the autocorrelation of the mean (0.29), minimum (0.57), and
maximum (-0.05) annual flow rates. Note that these correlations are based on linear regressions, but these linear regressions appear
non-linear on logarithmic axes. For this river, annual mean and annual minimum flows hold substantial memory, whereas annual
maximum flows are largely uncorrelated (and even show some, statistically insignificant, negative autocorrelation).

2.3 Model experiments

To further understand catchment functioning, we test how different model representations of drainage structures align with
empirically derived memory behaviours. Our model experiments seek the most compact representation capable of replicating
emergent behaviour across the many catchments. We examine different levels of model complexity and evaluate when the
model's behaviour aligns broadly with the observed memory signatures. These model experiments, which rely on the empirical

results, are discussed in detail in Section 3.2.2.
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3 Results and discussion
3.1 Memory of water balance components

Globally, terrestrial precipitation tends to have no significant annual memory (Fig. 2a), as its autocorrelation is on average
weak (mean pp = 0.006), and only 12% of grid cells globally have significant positive autocorrelation at a 90% confidence
interval (i.e., p-value <0.10). This pattern of overall weak autocorrelation is in line with earlier analysis that reports
autocorrelation as statistically significant for ~14% of the global land surface (Sun et al., 2018). The absence of systematic
long memory in precipitation timeseries does not indicate that long memory never occurs, as, for example, the El
Nifio/Southern Oscillation (ENSO), has widespread effects on regional precipitation (Ropelewski & Halpert, 1987). However,
the effects of such multi-year climate cycles appear to not result in widespread annual memory in precipitation time series
globally. Due to this weak precipitation memory (Fig. 2a), its memory volume also tends to be small (Fig. 2b). Memory
volumes are below 5 mm/year in over 96% of the grid cells, indicating that only a small water volume statistically relates to
the previous year’s precipitation rate. Thus, while precipitation is the water source of other water balance components, its
memory (as indicated by both the weak autocorrelation and the small associated memory volumes) is unlikely the direct cause

of systematic annual memory elsewhere in the water cycle.

Annual memory in water balance components can also originate from memory of other atmospheric conditions that drive
evaporation, such as potential evaporation or temperature, but neither shows particularly strong long memory. GLEAM
(Priestley-Taylor based) potential evaporation tends to have some more memory (mean pg,= 0.09) than precipitation and this
memory is significant for 26% of the land surface (Fig. 2c). The annual variability of potential evaporation tends to be relatively
small (compared to precipitation variability) thus the potential water volumes associated with it are also generally small in
volume (Fig. 2d). Air temperature tends to have weak autocorrelation (mean p;= 0.01; not shown here). The overall weaker
memory in climatic forcing compared to evaporation and streamflow (shown below) suggests that annual memory elsewhere

in the water cycle does not simply mirror memory in forcing timeseries and therefore also originates from other processes.

More substantial annual memory arises globally once precipitation accumulates in storage. Both rootzone soil moisture (mean
psu = 0.29) and terrestrial water storage tend to be strongly autocorrelated (mean pyy,s= 0.48). There are distinct regional
differences in the annual memory of these storages (Fig. 2e-h), with stronger memory in the overall store (terrestrial water
storage) than in the relatively shallower rootzone (here 250cm but note that rootzone estimates vary strongly between studies
(e.g., Wang-Erlandsson et al., 2016; Stocker et al., 2023)). Rootzone soil moisture is consistently autocorrelated and associated
with larger volumes of water that carry over to subsequent years (10.7 mm) compared to precipitation and potential evaporation
timeseries. The strength and associated storage volumes further increase if we consider total terrestrial water storage,
highlighting the role of larger long-term fluctuations than typically observed in the unsaturated zone. Terrestrial water storage

has mean memory volumes of 12.9 mm. Areas with negative autocorrelation in rootzone storage frequently overlap with

6
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regions of negatively autocorrelated precipitation and grasslands. We hypothesize that the limited rootzone storage capacity
in these regions is insufficient to buffer against variability in precipitation patterns. As a result, the temporal variability of
precipitation is mirrored in the rootzone storage, allowing the precipitation's negative autocorrelation to propagate through the

system.

Outgoing fluxes, streamflow and evaporation, also exhibit substantial annual memory, although less strongly than storage.
GLEAM evaporation data indicate that positive autocorrelation is also a common feature of evaporation globally (Fig. 2i) as
79% of grid cells have positive autocorrelation whereby 67% of all cells are significant). The average autocorrelation value
(pg = 0.16) and associated memory values (mean V; = 5.7 mm) are typically higher than in precipitation (and other forcing)
timeseries, but lower than in storage. Regional differences in GLEAM potential evaporation memory are substantially
correlated with regional differences in long memory of GLEAM evaporation (Spearman correlation coefficient s = 0.62).
However, evaporation memory appears to be further mediated by storage, as this is also positively correlated with evaporation
memory and because catchments with no potential evaporation memory still exhibit substantial evaporation memory. The
estimated linear relationship between evaporation memory as a function of potential evaporation memory is: pp = 0.67pg, +

0.090, which shows that also for pg ,equal zero, pg tends to hold memory. Regional variations in rootzone storage memory

are correlated with regional differences in memory of GLEAM evaporation (rs = 0.35; estimated linear relationship: py =
0.25 pgpr + 0.092). Thus, annual memory in actual evaporation seems to be controlled both by memory in potential

evaporation and by storage memory, reflecting the interplay between energy and water supply (e.g. Milly, 1994).

Streamflow records indicate that positive autocorrelation is a common feature of streamflow globally (Fig. 2k). The vast
majority (79%) of catchments show signs of positive annual memory (i.e. positive autocorrelation). The average
autocorrelation value (py = 0.16) indicates that annual flow rates are often significantly related to their preceding year’s values.
The volumes of water associated with this are generally also smaller than in the storage memory volume (mean V,, = 2.9 mm)
(Fig. 21). These patterns vary regionally with regions of stronger autocorrelation (e.g. western Europe, Prairie Pothole region
of the United States, Eastern Australia, most of Brazil and Russia, coastal western India), regions of weaker or negative
autocorrelation (e.g., Western Australia, inland India) (Fig. 2k), and large parts of Earth’s surface with few gauging stations

where it remains unquantified how common annual memory is.
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Figure 2. Spatial and frequency distributions of annual memory in terrestrial water fluxes and stores (left column) and associated
200 memory volumes (right column). Memory is, on average, absent in precipitation timeseries (a, b) and weak in potential evaporation
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(c, d). Rootzone storage (e, f) and especially terrestrial water storage (TWS) (g, h) exhibit strong memory. Outgoing fluxes still hold
annual memory, both in evaporation (i, j) and in streamflow (k, 1). Density plots of the autocorrelation and memory volumes also
indicate that most memory, both in terms of volume and in terms of autocorrelation strength, tends to occur in terrestrial water
storage (a-l).

Annual memory in outgoing fluxes also occurs in extreme flows. Worldwide, memory is especially strong and common for
annual minimum daily flows (Fig. 3a). These annual low flows have on average stronger autocorrelation (mean p, . = 0.23)
than annual mean flows (Fig 2k; Fig. 3a). This relatively strong memory likely reflects that low flows tend to be more directly
sourced from groundwater-sustained baseflow and are relatively less influenced by shorter-term precipitation variability (Van
Loon, 2015). Therefore, they more directly represent the strongly autocorrelated signal of terrestrial water storage.
Autocorrelation is weakly present for annual maximum flows (Fig. 3b; mean pg,, . = 0.07). Annual maximum flows almost
always arise through the co-occurrence of high precipitation (rainfall + snowmelt) and baseflow or soil moisture (Wasko et
al., 2019; Berghuijs et al., 2016; 2019; Berghuijs & Slater, 2023). While these antecedent conditions tend to hold memory, this

is less the case for precipitation, resulting in relatively weak autocorrelation in annual maximum flows globally.

autocorrelation
maximum flows

autocorrelation
minimum flows

Figure 3. Spatial and frequency distributions of memory in annual extreme flows across the study catchments. Annual memory of
annual maximum (a) and minimum flows (b) is typically present but varies regionally. One-year lag autocorrelation of annual
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minimum flows is typically strong (mean p, . = 0.22) compared to annual maximum flows (mean p, = 0.07) across the 15209
study catchments.

3.2 Physical controls on memory

The spatial patterns indicate that places with stronger memory in annual mean flows also tend to have stronger memory in
annual low and high-flow conditions (Fig. 2k; Fig. 3; Fig. 4). This relationship between the memory of different flow extremes
is further substantiated by the Spearman rank correlation coefficients between autocorrelation of annual flows which is
especially strong with that of annual minimum flows (s = 0.54) but is also present for annual maximum flows (s = 0.36) (Fig.
4b; note that rank correlations of the plotted binned points are visibly much stronger but vary depending on the details of the
binning. Here, each bin contains 2% of the data). The consistent variation in memory between annual mean, high, and low
flows across different catchments suggests that these memory effects are not happening independently from one another but
are (at least partly) underlain by similar driving mechanisms and potentially similar catchment attributes. In storage, effects of
(at annual timescales largely random) temporal variations in precipitation (and outgoing fluxes) are integrated over time (Eq.
1). The typically randomly varying precipitation inputs integrate into more predictable storage patterns that often persist over
longer timescales (Klemes, 1974). The strong memory of storage subsequently leads to memory of outgoing fluxes of

evaporation and streamflow.

3.2.1 Empirical links to catchment attributes

Correlation analysis of the memory strength with catchment attributes shows that larger catchments tend to have a substantially
stronger long memory (Fig. 4c). This scaling effect is not the only factor determining the strength of autocorrelation (also
indicated by relatively weak Spearman correlation coefficients for mean (rs = 0.09, p-value<0.01), low (s = 0.06, p-
value<0.01), and high flows (rs = 0.13, p-value<0.01)) but there is a clear tendency of overall stronger memory for larger
catchments. The 369 largest catchments in the dataset exceed sizes of 100,000 km? and cover almost 30% of Earth’s land
surface. In these large catchments (Fig. 5), memory, on average, approximately doubles that of what is typical for the smallest
catchments (Fig. 4c). This finding is consistent for annual minimum, maximum, and mean flows. This growth in memory
across larger catchments is empirically consistent with earlier studies which attributed this to spatial aggregation effects

(Mudelsee, 2007). Larger catchments often have more substantial alluvial aquifers, potentially enhancing memory effects.

10
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Figure 4. Variations in annual memory are largely consistent across the flow regime and scale with catchment size. One-year lag
autocorrelation differs between mean and extreme flows (a). Memory of annual extreme flows is generally larger when the same
catchment also has stronger autocorrelation of annual mean flows (b) as shown by the binned plots (each bin contains 2% of the
data). Overall memory grows with catchment size: the largest catchments tend to have approximately twice as much memory as the
smallest catchments (c). The error bars display the standard error of the mean for each bin. Spearman rank correlations (r,) are
shown for the unbinned values. The rank correlations of the plotted binned points are visibly much stronger but vary depending on
the details of the binning.

Spearman correlations with several other catchment properties (Do et al., 2018), such as dam numbers per unit area (0.01; p-
value=0.07), population density (s = -0.003; p-value=0.18), drainage density (rs = -0.04; p-value<0.01), slope (s = -0.05; p-
value<0.01) all exhibit weaker correlations with long memory of annual mean flows. These results indicate that links between,
for example, drainage structure and groundwater flow (e.g. Luijendijk, 2022), travel times of water and catchment slopes (e.g.
Jasechko et al., 2016; Cardenas 2007) affect long memory, but rigorously testing this requires more directed analyses, and are
likely better explored at regional and local scales. Overall, from these generally weak correlations it is hard to distinguish what
catchment factors drive long memory and the results suggest that long memory can arise across a very wide variety of

catchment conditions.
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Figure S. Spatial and frequency distribution of memory in annual low flow rates across 369 catchments whose area exceeds 100,000
km?. 88% of these larger catchments have positive autocorrelation, and this autocorrelation tends to be relatively strong on average
(mean = 0.30).

The empirical patterns presented (Figs. 2-5) are subject to observational and model uncertainties. Global precipitation datasets
often contain significant uncertainties, which propagate to derived data products such as soil moisture storage and evaporation
(Khan et al., 2018). Storage time series from GTWS-MLrec combine GRACE observational time series with machine learning
models—partially trained on meteorological data—to extend terrestrial water storage estimates to periods preceding satellite
observations (Yin et al., 2023). Streamflow time series, while relatively independent indicators of long-term hydrological
variability, may also partially reflect processes like riverbed aggradation and degradation (Slater et al., 2019), which likely
exhibit long-term memory effects. As a result, local-scale memory behaviour is likely to carry considerable uncertainty. In the
following sections, we concentrate on the broader patterns that emerge across multiple catchments, which are likely to be

largely unaffected by local data uncertainties.

3.2.2 Catchment functioning driving memory: model experiments

To further understand the drivers of memory in catchments, we identify that the data have shown several key memory
signatures that represent typical catchment behaviour:

Memory in annual mean streamflow arises, despite no annual memory in precipitation time series.
Memory is stronger for annual minimum flows than for annual mean flows.

Memory is weaker for annual maximum flow conditions than for annual mean flow

Memory in storage is substantially stronger than in streamflow.

We seek to explain how catchments function to be consistent with these memory signatures and search for explanations
constructed with the smallest set of elements that can reproduce these signatures (i.e., we follow Occam's razor). In this search,
we use synthetic model experiments that do not aim to mimic the behaviour of any particular catchment realistically, but
instead, provide elementary representations of catchment functioning that capture the typical behaviour of catchments. By
starting with the simplest model, we combine a top-down modelling approach (Klemes, 1983; Sivapalan et al., 2003) with a
search for model structures that are consistent with emergent behaviour across many catchments, consistent with the concept
of “functional relationships” proposed by Gnann et al. (2023). We explore various levels of model complexity (Fig. 6) and test
when the model behaviour becomes broadly consistent with the observed memory signatures. If a simple model can broadly
explain the signatures, we will deliberately ignore all the catchment heterogeneity and complexity that is ubiquitous in real-

world catchments but that appears not to be central in the key memory behaviours.

The models we develop are forced by synthetic rainfall forcing without significant autocorrelation at annual timescales.
Synthetic 500-year randomized daily rainfall timeseries vary in size at a daily scale according to a gamma distribution (shape
parameter = 0.2; scale parameter = 10). In addition, annual precipitation rates vary randomly (normally distributed) with a

standard deviation of 20%. We exclude, for the interests of simplicity, evapotranspiration from the models (Fig. 6). We
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understand that real-world catchments evaporate part (and often even most) of their incoming precipitation (Budyko, 1974;
Dorigo et al., 2021), but streamflow memory arises across a broad range of climate conditions (Fig, 2a, 3). This variety of
climates, and thus long-term water balances, suggests no substantial evaporation is needed to generate long memory. In
addition, evaporative fluxes can be modelled using a variety of representations (e.g., Zhao et al.., 2013; Knoben et al., 2018).
Therefore, we do not explore its role in these experiments but encourage this as a potentially interesting avenue for further

studies on long memory.

(a) linear drainage (b) non-linear drainage (c) hysteretic drainage
dQ/dt=
(-2a;+ a7 Qs — axQ;
dQAdt=-aQ dQAdt= -aQf : Q=Q,+Q;,
Q=aS Q= ((2'3)03)1/(2-5) R1 = 01 = 0131

Figure 6. Overview of catchment structures used in model experiments. The simplest model (linear drainage) (a) is expanded to
include drainage nonlinearity (b), and hysteresis (c).

Linear drainage

Arguably one of the simplest catchment representations is linear drainage (Fig. 6), where:
do _

2= —aQ 5)
Q =aS (6)
A linear reservoir drains water at rate Q [LT'], directly proportional to its (effective) water storage S [L] but at a rate dependent

on the (fixed) drainage constant o [T!].

Logically, linear reservoirs have been reported to yield some memory effects, but these effects tend to occur at shorter than
annual timescales. Many real-world catchments have linear drainage timescales of weeks (e.g., Beck et al., 2013; Botter et al.,
2013; Brutsaert et al., 2008), and variations in o can help, for example, to discriminate erratic regimes (with enhanced intra-
seasonal streamflow variability) from persistent regimes (with more regular flow patterns) (Botter et al., 2013). However,
findings on the persistence of flow regimes by Botter et al. (2013) represent memory effects of the system at sub-annual
timescales. Our model experiments indicate that linear drainage does not capture annual streamflow memory, unless drainage
timescales become much longer than the typically reported timescales of weeks (Fig. 7). In addition, long memory does not
vary substantially across flow conditions, and is not stronger in storage than streamflow because streamflow rates directly
mirror storage conditions (Fig. 7; Eq. 8). Thus, linear drainage (unsurprisingly) fails to reproduce most of the identified key

memory signatures. We also note that model experiments suggest that absolute rates of autocorrelation can be sensitive to the
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forcing pattern as results vary slightly between simulations. This suggests earlier reported local autocorrelation values (e.g.,
Fig. 2 and 3) are not an intrinsically stable metric of catchment behaviour at the scale of an individual catchment but will vary,

even when forcing statistics appear rather stable.
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Figure 7. Example of the scaling of drainage timescales (x-axis) and one-year lag autocorrelation (y-axis) for annual mean flows,
annual maximum flow, annual minimum flow, and annual mean storage for linear drainage. The slow growth of autocorrelation
with drainage timescale indicates that only for much longer than typically observed drainage timescales (e.g. >100 days) substantial
(>0.1) autocorrelation is generated. In addition, long memory does not vary substantially across flow conditions and is not stronger
in storage than streamflow.

Non-linear drainage
One step more complex catchment representation can also have non-linear drainage (e.g., Brutsaert and Nieber, 1977; Harman

et al., 2009; Kirchner, 2009), where:

T = —aQf (7)
0 =2#/C=p)as ®

Here f [-] and a [L' ~PTP~2] are recession constants. For =1 drainage behaviour is linear and Egs. 7 and 8 would become
equivalents to Egs. 5 and 6. However, for f>1, which is commonly observed, drainage timescales become longer at low flows
compared to high flows. For <1 the opposite occurs, but this behaviour is less commonly observed in real-world catchments

(e.g., Bogaart et al., 2016; Berghuijs et al., 2016). Eq. 7 can be rewritten as:

L= a0 ©)

where Q = Q/Q, and a, [T'] is the drainage constant at the mean streamflow rate Q. This allows expressing nonlinear

drainage in terms of a recession timescale 1/a, [T] and drainage nonlinearity £ [-] (McMillan et al., 2014).

Our model experiments (Fig. 8) indicate that longer (normalized) recession timescales (1/a,) lead to memory in annual mean

streamflow (Fig. 8a), largely independent of the degree of drainage nonlinearity (). In addition, these simulations show
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stronger memory in low flows than in mean and high flows (Fig. 8a-c), whereby the low flows exhibit more memory when
drainage becomes more nonlinear whereas high flows show decreasing memory under more nonlinear drainage. Memory in
storage and streamflow is still near equivalent (Fig. 8d). The latter is shown by differences between annual mean storage and
annual mean flow all being very close to zero (Fig. 8d). Combinations of a and /5 that are derived from streamflow timeseries
across many catchments (e.g., Bogaart et al., 2016; Berghuijs et al., 2016) tend to be mostly outside the range expected to yield
substantial annual memory. These inferences suggest that drainage non-linearity by itself is not yet a mechanism that solely

can be responsible for all the observed long memory signatures.
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Figure 8. Memory generated in nonlinear drainage conditions as a function of the normalized drainage timescale (1/ay) and the
drainage nonlinearity (). Colors indicate 1-year lag autocorrelation for annual mean flows (a), annual maximum flow (b), annual
minimum flow (c), and the memory of annual mean storage minus the memory of annual mean flows (d) which shows no substantial
differences. The latter emphasizes that there is no clear memory difference between storage and streamflow. Note that y-axes
displaying the drainage timescale are logarithmic.

Hysteretic drainage
Non-linearity can cause some annual memory (Fig. 8) but non-hysteretic catchment representations (i.e. with a unique storage-
discharge relationship) used thus far cause storage and outflows to be similarly autocorrelated (Fig. 8d). A model of two (in

series) connected reservoirs, that both linearly drain water but at two different timescales results in hysteretic drainage (e.g.,
Fovet et al., 2015; Gharari et al., 2018), where:

(Z_f = (—2a; +a;)Q; — 2,0, (10)
Q=0;+0Q; =5 + a5, (11)

Drainage timescales of the upper reservoir (parameterized by a, [T-']) broadly reflect (typically faster) runoff generation in
and over the unsaturated zone, whereas drainage timescales from the lower reservoir (parameterized by a, [T-!]) broadly
reflect (typically slower) groundwater drainage. Recharge R; [LT!] from the upper box (where all precipitation enters) towards
the lower box is also set at a rate Q, [LT-!] which means that half of the drainage from the upper reservoir passes through the
lower reservoir before becoming streamflow. This simplified relationship is broadly consistent with estimates that just over

half of global river flow originates from groundwater (Xie et al., 2024).
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In this hysteretic (and thus non-linear) drainage setup, a catchment can have a fast streamflow response in the upper reservoir
while also exhibiting an underlying lower frequency streamflow variation driven by the lower reservoir. Half of the drainage
from the upper reservoir passes through the lower reservoir before becoming streamflow, therefore, long-term averages of Q;

and @, must be similar. This also implies that the mean storage volumes of the two reservoirs are related to one another

according to the ratio of the two drainage timescales: S, ~ %S_l Thus, when the lower reservoir has a substantially longer
2

drainage timescale than the upper reservoir, most water will be stored in the lower reservoir and this storage will vary more
slowly than the upper reservoir. Consequently, in this setup, memory can become substantially stronger in overall storage

(81+S2) than in streamflow (Q:+Qz).

Our model experiments indicate that, especially for sufficiently long drainage timescales of the lower reservoir, streamflow
can exhibit annual memory in streamflow (Fig. 9a). This memory in annual mean flows is largely independent of the faster-
draining upper reservoir. When the drainage in the upper reservoir is much faster than in the lower reservoir, several other
simulated memory signatures also become consistent with the observations. Namely, memory becomes stronger for annual
low flows than annual mean flows (Fig. 9a-c) because low flows are more determined by the slower lower reservoir. In
addition, memory is much weaker for annual maximum flow conditions than annual mean flow, because high flows are more
determined by the faster upper reservoir (which holds less memory). Furthermore, annual memory in storage is substantially
stronger than in streamflow because most storage is present in the lower reservoir (Fig. 9d), and this storage varies across

longer timescales than overall streamflow (of which only 50% originates from this slower reservoir).

Our simulations suggest that hysteresis is central to the observed memory signatures. We acknowledge that these simulations
are overly simplified catchment representations and not a detailed and accurate model for any specific catchment. However,
they demonstrate how some basic mechanisms (which are also encodable in more complex and detailed models) can lead to
behaviour that is consistent with the observed memory signatures. Bucket-type spatially lumped models are widely employed
in catchment modelling (for a good overview see: Knoben et al., 2019). More complex (spatially distributed) model structures
could also be explored to examine their degree of nonlinearity and hysteresis. In addition, the model outcomes also reflect
those of detailed model implementations in real-world catchments where the addition of a groundwater component that allowed
for very low-frequency fluctuations in groundwater flows helped to simultaneously improve streamflow and water storage

predictions substantially (e.g., Hulsman et al., 2021).
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Figure 9. Memory generated in hysteretic drainage conditions. The axes indicate variations in the drainage timescales of both
reservoirs whereas colors indicate 1-year lag autocorrelation for annual mean flows (a), annual maximum flow (b), annual minimum
flow (c), and the memory of annual mean storage minus that of annual mean flows (d). Note that y-axes are logarithmic.

4. Conclusions

Long memory has been discovered decades ago in annual flow records of the River Nile and later more widespread evidence
of long memory in annual flows has been reported for many rivers worldwide. The presence of such memory could prolong
drought and flood risks and affect water resources over long periods, but the global universality, strength, and origin of long
memory in the water balance components and hydrological extremes remained largely unquantified. Here, we quantified
annual memory in the terrestrial water cycle using autocorrelation applied to annual time series of water balance components
globally. The global gridded and catchment-scale datasets used here indicate that annual memory is typically weak in incoming
terrestrial fluxes and forcing but becomes strong in terrestrial water stores, and cascades into outgoing fluxes. Annual memory
is not limited to annual streamflow rates but often extends toward annual extreme flows and is especially strong for low flows
and in large catchments. Our model experiments indicate that this memory arises with increasing nonlinearity of catchment
response, but storage-discharge relationships also need to account for hysteresis effects to produce all observed memory
signatures. Incorporating these dynamics may be important to produce multi-year low-frequency variations in the terrestrial
water cycle as recently demonstrated by Hulsman et al. (2021) and could also have implications for our understanding of other
processes that may be affected by memory of water stores and fluxes such as vegetation dynamics (Koirala et al., 2017) and

atmospheric CO2 growth rates (Humphrey et al., 2018).
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