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ABSTRACT 13 

Increasing rates of coastal erosion and permafrost thaw along the Arctic coastline represent a major lateral 14 

source of dissolved organic matter (DOM) to the coastal environment, where it can meet multiple fates 15 

depending on its origin and composition. Along the (ground)water flow path, Iron (Fe)-hydroxides play an 16 

important role in the retention of terrestrial organic matter, but its role on DOM released from coastal thawing 17 

permafrost specifically remains poorly understood.  To address this gap, we sampled permafrost meltwater, 18 

beach groundwater, and seawater samples from several coastal bluffs transects up to 2 km from the shoreline. 19 

Across the salinity gradient – from permafrost meltwater to nearshore waters - we found that dissolved organic 20 

carbon (DOC) and chromophoric dissolved organic matter (CDOM) concentrations decreased drastically, 21 

indicating significant removal processes along this continuum. Optical indices (aCDOM350, SUVA254, HIX) 22 

reflected changes in DOM composition and aromaticity, suggesting microbial degradation and mineral-organic 23 

interactions occur to transform DOM. Furthermore, a PARAFAC analysis of fluorescent DOM indicated that 24 

permafrost-derived DOM had a high molecular weight (HMW), humic, and terrigenous origin, while coastal 25 

ocean-derived FDOM was protein-rich, low molecular weight (LMW), and from microbial (autochthonous) 26 

origin. The optical signature of permafrost meltwater faded along the permafrost-nearshore water continuum. 27 

Controlled experiments with excess Fe2+ along constant oxygen bubbling showed a rapid (within 6 hours) and 28 

major decrease in DOC and CDOM, suggesting interaction with reactive Fe-hydroxides, acting as a permanent 29 

or temporary trap of permafrost-derived DOM. Overall, our findings highlight the role of intertidal and 30 

nearshore zones where subsurface flows regulate the persistence and reactivity of terrestrial DOM as it transits 31 

from permafrost to marine environments in the Arctic.  32 

KEYWORDS: permafrost, Arctic coastal ocean, dissolved organic matter, dissolved organic carbon, iron 33 

hydroxide. 34 
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1 INTRODUCTION 41 

Permafrost stores around 1,300 Pg of organic carbon (OC) within its 13.9 × 106 km2 surface area, which 42 

represents 60 % of the world’s carbon stored in 15 % of the world’s soil (Obu et al. 2019; Schuur et al. 2015). 43 

The Arctic permafrost coastline is greatly impacted by global changes inducing unprecedented thawing rates, 44 

along with the deepening of the active layer, which, in turn, increases subsurface transport (Jones et al. 2020; 45 

Lantuit et al. 2012). Unlithified and ice-bonded permafrost cliffs, such as those that span the Beaufort Sea, are 46 

susceptible to coastal erosion. Over the past twenty years, they have experienced one of the highest coastal 47 

erosion rates recorded in the Arctic, with a recorded rate of 1.1 m yr-1 between 1950 and 2000. This rate has 48 

increased by 80–160 % in the last two decades (Jones et al. 2020; Lantuit et al. 2012). Accelerating coastline 49 

erosion is supplying increasing quantities of terrestrial materials (Kipp et al. 2018), associated nutrients (Fritz 50 

et al. 2017), carbon (Bristol et al. 2021), and contaminants (Kwasigroch et al. 2018) to the nearshore and coastal 51 

ocean. This additional, non-point source of solutes is remobilized in late summer mostly when thaw depths are 52 

at a maximum, and rapidly reaches nearshore waters via surficial and subsurface flows (Walvoord & Striegl 53 

2007; Lecher, 2017).  54 

Dissolved organic matter (DOM) represents a fundamental link between terrestrial and aquatic carbon cycles 55 

and plays a significant role in the biogeochemistry of aquatic ecosystems (Hedges & Keil 1995). Terrestrially 56 

derived dissolved organic matter (tDOM) strongly influences coastal ecosystem functioning (Vonk et al. 2015), 57 

food web dynamics (McMeans et al. 2015; Thingstad et al. 2008), ocean chemistry (Guo et al. 2007; Stedmon 58 

et al. 2011; Vonk et al. 2014) and optical conditions (Fichot et al. 2013; Matsuoka et al. 2012). A fraction of 59 

this tDOM can be rapidly mineralized through microbial and photochemical processes, affecting nutrient 60 

budgets, air-sea CO2 exchanges, biological productivity, as well as acidification, in coastal waters (Kaiser et al. 61 

2017a; Kaiser et al. 2017b). For example, Kaiser et al. (2017a) showed that ~50 % of the annual tDOC 62 

discharged by Siberian rivers was mineralized along the land-sea continuum: tDOC is strongly removed and 63 

lost as CO2 along the transport. Therefore, only a small fraction potentially persists in the ocean over centuries 64 

and millennia (Fichot & Benner 2014; Kaiser et al. 2017a). While the export of tDOC is known to strongly 65 
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influence the arctic marine ecosystem, little is known about the role and importance of erosional and thawing 66 

inputs in shaping the ecology and chemistry of nearshore coastal waters. This is due not only to the stochastic 67 

nature of erosion and thaw-related inputs but also to the complex nature of mineral and organic phases and their 68 

role in tDOM stabilization along the flow path. The mechanisms and processes related to organic matter 69 

transformations occurring at mineral-organic interfaces are complex (see Li et al., 2023; and references therein), 70 

particularly in dynamic systems where biological, geochemical, and redox conditions interplay to influence the 71 

concentrations and molecular compositions of DOM. For example, the formation of an iron (Fe) curtain can 72 

represent an important mechanism of terrigenous OC storage (Zhou et al. 2024), particularly along subterranean 73 

estuaries (STE) and intertidal discharge zones (Riedel et al., 2013; Linkhorst et al., 2017; Sirois et al. 2018; 74 

Zhou et al., 2023). In temperate and subarctic regions, STE is a complex hydrogeochemical system along the 75 

groundwater flow path which acts as a biogeochemical reactor where DOM is mineralized and/or trapped 76 

(Anschutz et al., 2009; Sirois et al., 2018; Hébert et al., 2022). Its role as a transient or permanent terrestrial 77 

organic carbon sink in the Arctic region is not known but could be a key zone of permafrost-derived DOM 78 

trapping. The behaviour and optical properties of the permafrost-derived DOM as it reaches STE and nearshore 79 

waters remain unclear, as does their affinity with amorphous Fe-hydroxide in STE.  80 

To understand the behaviour of DOM along the land-sea continuum, absorbance- and fluorescence-derived 81 

indices are commonly used to characterize its origin, reactivity, and transformations (Fichot & Benner 2014; 82 

Meilleur et al. 2023; Stedmon et al. 2003). In addition, the use of excitation-emission matrices (EEM) with 83 

parallel factor analysis (EEM-PARAFAC) of FDOM (Bro 1997) can allow for assessment of the composition 84 

and sources of permafrost-derived DOM delivered to nearshore waters via surface runoff and groundwaters. 85 

Recent findings by Fouché et al., (2020) characterized the permafrost-derived DOM as low molecular weight 86 

(LMW), proteinaceous and with low aromaticity, with this signature fading rapidly during lateral flow 87 

downslope of the permafrost table and within the fluvial continuum. This suggests that permafrost-derived 88 

DOM may be rapidly lost in the permafrost – nearshore water continuum. However, further investigation is 89 

needed to understand the mechanisms and processes that control this loss as DOM flows within intertidal 90 

sediments and into the coastal Arctic Ocean. This study aims to characterize the transformation pathways of 91 
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DOM released from the thawing of coastal permafrost cliffs, while better understanding the role of beach 92 

groundwater in the transfer of tDOM from permafrost to nearshore waters. More specifically, we have 93 

developed a site-specific scale approach (<2 km) in the Kugmallit Bay (NWT, Canada) to optically characterize 94 

and follow the behaviour of the DOC and DOM (CDOM and FDOM) along the permafrost – nearshore water 95 

continuum. In addition, the affinity of permafrost-derived DOM and DOC with amorphous Fe-hydroxides, as 96 

they flow from the subsurface to nearshore waters, was experimentally tested. 97 

2 MATERIALS AND METHODS  98 

2.1 Site Description 99 

The study area is located in the Inuvialuit Settlement Region of the Northwest Territories adjacent to the 100 

Mackenzie Delta region, the 4th largest river draining in the Arctic Ocean (Macdonald et al. 1998). A first 101 

sampling campaign took place from July 24th to August 6th, 2019, and a second campaign from June 22nd to 102 

August 31st, 2021, when thaw rates were at a maximum. About 60 samples were collected at four sampling sites 103 

characterized by continuous permafrost coastal cliffs with thaw slumps surrounded by sandy and clay beaches: 104 

Tuktoyaktuk Island, Peninsula Point, Crumbling Point and Reindeer Island (Fig. 1). Tuktoyaktuk Island, the 105 

main sampling site (N=27), is characterized by a coastal bluff of approximately 9 m high, 1.5 km length and 106 

100 m width (Ouellette 2021) and is located across the Hamlet of Tuktoyaktuk, in the south-east of the 107 

Kugmallit Bay. The island loses ~1.8 m of shore per year due to erosion induced by storms and thawing 108 

permafrost; an increase of 22% has been observed in the last 15 years (Berry et al. 2021; Tanguy et al. 2023; 109 

Whalen et al. 2022), and the site is projected to entirely disappear within 20–30 years (Jones et al. 2020). In 110 

front of the cliffs, a ~50 m wide beach is composed of a 0.3 to 0.5 m deep layer of fine to medium sandy 111 

sediment that overlays a frozen clay horizon. Peninsula Point site is in the Pingo Canadian Landmark, southwest 112 

of Tuktoyaktuk Island, and forms a complex retrogressive thaw slump system known for the presence of a 113 

massive ice body of between 5 m and 20 m thickness (Mackay, 1986). Large muddy lobs composed of thawed 114 

permafrost material and meltwater flow downslope to the nearshore (Hayes et al., 2022) where they sporadically 115 
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cover sandy intertidal sediment. Based on Hayes (2020), the recent shoreline retreat was of ~3.4 m yr-1 from 116 

1985 to 2018. Crumbling Point is also a retrogressive thaw slump system, located at the extreme northwest of 117 

the Kugmallit Bay. Finally, Reindeer Island is located at the north of Richards Island, in an important lagoon 118 

system formed by thermokarst lakes surrounded by coastal bluffs. To the best of our knowledge, there are no 119 

published data on the coastal retreat in these zones, but it could be similar, at least, to what is reported in the 120 

Canadian Beaufort-sea region (~0.5 m a-1 (Solomon, 2005)) and likely reach very high local retreat rates as 121 

presently observed in some location, as in Pullen Island (>12 m a-1 (Berry et al. 2021)). 122 

2.2 Water and Sediment Sampling 123 

At each site, we carried out a site-specific scale sampling where different water sample types were collected 124 

along a transect, from the coastal permafrost cliffs, through the sandy intertidal zones, to the near-shore 125 

seawater. Meltwater and groundwater (here defined as porewater into fine sandy coastal sediment) samples 126 

were collected on coastal permafrost slumps and the adjacent sandy shore, respectively. In contrast, seawater 127 

samples were collected in front of each study site between 0.5 to 1 km from the coastline. Meltwater was directly 128 

sampled in puddles formed on the slope of thaw slumps using a submersible pump. For beach groundwater, 129 

push-point piezometers were inserted to ~50 cm depth into the sandy ground, above the frozen clay layer, in 130 

front of thaw slumps in the intertidal zone and water was continuously pumped by a Solinst® peristaltic pump. 131 

A massive ice sample was also collected from a permafrost core collected at Richard Island. The core was 132 

sectionized and the different sections were defrosted gently in a hermetically closed acid-cleaned bucket. The 133 

thawing water was collected by a peristaltic pump. Finally, seawater was collected in front of the slump systems 134 

using a submersible pump placed between 0.5 and 1 m depth below the surface from a small vessel. For each 135 

location, water samples were pumped into an online flow cell where practical salinity (Sp), temperature and 136 

oxygen saturation were monitored using a daily calibrated multiparametric probe (600QS, YSI Inc.).  137 

After these parameters stabilized, water samples were collected for CDOM/FDOM into acid-washed 60 mL 138 

glass amber bottles after on-line filtration through a 0.22 µm Millipore Opticap® XL4 cartridge with a 139 

Durapore® membrane. The samples were stored in the dark at 4 °C. Total dissolved Fe samples were collected 140 
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in 60 mL metal-free Falcon® tubes after filtration through the same 0.22 µm Millipore Opticap cartridge. The 141 

samples were acidified with 3 drops of 70 % nitric acid to prevent the re-oxidation of reduced trace metals and 142 

stored at 4 °C. DOC samples were taken using 60 mL acid-cleaned polypropylene syringes and rapidly filtered 143 

with pre-combusted (450 °C for 5–6 hours) 0.7 µm glass microfiber filters GF/F Whatman™ and stored in pre-144 

combusted and acid-washed 12 mL borosilicate EPA tubes with PTFE caps. The DOC samples were acidified 145 

to pH <2 with high purity HCl 2N and stored in the dark at 4 °C until analysis. During the 2019 campaign, 146 

samples were also collected in 30 ml scintillation vials, hermetically sealed for further water isotope analysis. 147 

2.3 Chemical and Optical Analysis 148 

Stable isotopes of water were analyzed by EA-IRMS during the following year after the collection. Accuracies 149 

are ±0.05 ‰ and ±1 ‰ for d18O and d2H, respectively. Reference materials were used throughout the isotopic 150 

water analyses and isotopic analyses are reported compared to the international Vienna Standard Mean Ocean 151 

Water (VSMOW). DOC samples were analyzed a few weeks after data collection by Total Organic Carbon 152 

analyzer (TOC-Vcpn Shimadzu) based on the method of Wurl and Tsai (2009). The analytical uncertainty was 153 

less than 4 %, while the detection limit was 5.8 µM. To ensure instrument stability, fresh acidified deionized 154 

water (blank) and a standard solution (86.6 ± 1.7 µM) were regularly analyzed. The concentration of total 155 

dissolved iron (Fetot) was measured according to the ferrozine method proposed by Stookey (1970) and adapted 156 

by Viollier et al. (2000). The detection limit of the method was 0.4 µM and the reproducibility was better than 157 

0.3 %.  158 

Absorbance and fluorescence spectroscopy were used for the measurement of the chromophoric and fluorescent 159 

fractions of DOM (CDOM and FDOM) a few weeks after sampling. The CDOM absorbance was measured 160 

using a Lambda 850 UV-VIS Perkin Elmer spectrophotometer with 1 cm path-length quartz cuvettes. 161 

Measurements were taken from 220 to 800 nm at 1 nm intervals with a scanning speed of 100 nm min-1 and a 162 

5 nm slit width. Blanks and references were measured using fresh Milli-Q water. The FDOM was measured 163 

concomitantly using a Varian Cary Eclipse spectrofluorometer. Fluorescence spectra were measured within the 164 

emission wavelengths of 220 to 600 nm and the excitation wavelengths of 220 to 450 nm at 5 nm intervals as 165 
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described by Couturier et al. (2016). Similarly, fresh Milli-Q water was used as a blank to rinse the cuvette in 166 

between samples. Fresh deionized water was used as a blank and absorbance measurements of the samples were 167 

used to correct the inner-filter effect and the dataset was corrected for Rayleigh and Raman scattering, according 168 

to the method used by Pucher et al. (2019).  169 

2.4 Optical-derived indices and PARAFAC model 170 

Absorbance and fluorescence indices were extracted using the staRdom toolbox on the R Studio Software 171 

(Pucher et al. 2019). Different indices were explored but here we only reported 3 of them to characterize the 172 

DOM pool because they presented significantly different values between the different categories of samples 173 

(e.i. groundwater, melting water, massive ice, and seawater). The spectral absorption coefficient at 350 nm 174 

(aCDOM350) was used as a tracer of CDOM absorption and content. It was calculated as 2.303 times the 175 

absorbance at the wavelength λ=350 nm divided by the pathlength of the cuvette (m). The specific UV 176 

absorbance (SUVA254 in mgC L-1) was calculated as the absorbance at the wavelength λ=254 nm divided by 177 

the DOC concentration. It allows tracking the CDOM aromaticity (Weishaar et al. 2003): greater SUVA254 178 

values correspond to a greater degree of aromaticity (Helms et al. 2008). It also has been shown as positively 179 

correlated with the molecular weight of the DOM compounds.  In the FDOM pool, the humification index 180 

(HIX) corresponds to the peak area under emission of 435–480 nm divided by the peak area under emission of 181 

300–345 nm, at an excitation of 254 nm. HIX is an indicator of humic substances and the extent of humification 182 

of DOM compounds (Hansen et al., 2016; Ohno, 2002): higher HIX indicates a greater humification of the 183 

DOM source and HMW compounds.  184 

In combination with the absorbance and fluorescence indices, a PARAFAC model was developed to investigate 185 

further the composition and the sources of FDOM across samples (Bro 1997; Murphy et al. 2013; Stedmon et 186 

al. 2003). Three components were validated using the method adapted from Pucher et al. (2019), in R studio 187 

(R2>92 %). The components were also matched with the literature for identification and external validation, 188 

using OpenFluor (Murphy et al. 2013). The three fluorescing peaks (C1-3) identified are presented in Fig. 2 and 189 

their theoretical characteristics based on the literature are summarized in Table 1. Briefly, C1 and C3 190 
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components are mainly related to terrestrial and humic-like compounds of high (HMW) and low molecular 191 

weight (LWM), respectively.  In contrast, the C2 component is likely related to freshly produced protein-like 192 

compounds, of autochthonous origin and is mainly composed of LMW compounds.  193 

2.5 Affinity of Permafrost derived DOM with Iron Hydroxides 194 

Iron-spiked experiments were performed to assess the affinity of flowing DOM and DOC with amorphous Fe-195 

hydroxides. Samples of beach groundwater, seawater and meltwater were collected in 1-L acid-washed glass 196 

bottles. In the laboratory, ~20 mM of FeCl2·4H2O were added to filtered (Pall® GWV High-Capacity 197 

Groundwater Sampling Capsule, 0.45 µm porosity) water samples. The concentration of Fe was intentionally 198 

added in excess compared to Fetot concentration measured in the samples (median Fetot concentration ~ 1.1 µmol 199 

L-1; with maximum values of 680 µmol L-1) to favor the oxidative precipitation of amorphous Fe-hydroxides. 200 

The experiments were performed rapidly after the sampling (<24h) during the 2021 campaign. The 201 

experimental bottles were kept in the dark, at room temperature (~ 21°C). They were continuously air-bubbled 202 

to maintain well-oxygenated conditions and favoured the precipitation of Fe-hydroxides. Sub-samples for DOC 203 

and CDOM analysis were collected at times 0, 6, 12, 24 and 48 hours. DOC and CDOM samples were analyzed 204 

as previously described. 205 

3 RESULTS AND DISCUSSION 206 

3.1 Physico-chemical characteristics along the permafrost-nearshore continuum 207 

In this study, we refer to samples collected at the nearshore as “seawater”; nevertheless, we acknowledge that 208 

these samples more accurately represent a brackish environment, with practical salinity Sp values ranging from 209 

0.5 to 20. The massive ice and meltwater samples exhibited the lowest salinities with Sp<1 whereas the salinity 210 

of beach groundwater samples ranged between 0 and 5.4. The Sp range measured in these groundwater samples 211 

mostly reflected the tidal pumping effect and the recirculation of the seawater within the permeable sediments. 212 

The higher salinities (Sp>5.4) were only measured in seawater samples. The temperature varied between 8.1 213 

and 16.7 °C (with a mean value of 13.0 ± 2.6 °C) with the higher temperatures measured in meltwater and some 214 
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beach groundwater samples. Oxygen saturations ranged from 6 to 141 % of saturation. The nearshore surface 215 

seawater and the meltwater samples were all over-saturated because of their contact with the atmosphere. 216 

However, the low-salinity beach groundwater samples exhibited low oxygen saturation (6 - 48 %) despite the 217 

recirculation of well-oxygenated seawater. Redox oscillations and transitory oxygen-depleted conditions are 218 

observed in microtidal sandy intertidal zones (Hébert et al. 2022; Sirois et al. 2018; Waska et al. 2021) where 219 

the tidally input of oxygen is rapidly consumed by heterotrophic processes (Chaillou et al., 2024; Moore et al., 220 

2024).  221 

3.2 Origin of the subsurface water flow in the intertidal zone 222 

The d18O and d2H values measured in water samples collected in 2019, mostly at Tuktoyaktuk Island, Peninsula 223 

Point sites, and Crumbling Point (Fig. 1), ranged from -28 to -10 ‰ and from -215 to -82 ‰, respectively, the 224 

massive ice sample (N=1) presenting the most depleted signature (Fig. 3). These depleted values are largely 225 

explained by low air temperatures and are typical of permafrost hydrology reported in the western Arctic (Fritz 226 

et al. 2011; Utting et al., 2012). The samples are well aligned along the local meteoric water line (LMWL; d2H 227 

= 7.39 × d18O - 6.70; Fritz et al., 2022), whatever their salinity values, except for the three (3) meltwater samples 228 

that are slightly below it, probably due to evaporation processes at the surface. The similarity between the 229 

massive ice, beach groundwater and seawater isotopic distribution and the LMWL regression line suggests a 230 

common meteoric origin, probably from permafrost watershed. The subsurface flow that transits across the 231 

beach sediment does not seem to be affected by surficial processes (e.g. evaporation process), as observed in 232 

the meltwaters, likely limiting photochemical degradation of the flowing DOM.  These results agree with recent 233 

study of Kipp et al. (submitted) that showed the occurrence of high activities of radon isotope (222Rn) in the 234 

same groundwater samples, a noble gas that rapidly escapes as soon as it is in contact with the atmosphere. The 235 

absence of light and the low oxygen content in the subsurface were then suitable for microbial transformations 236 

and mineral-organic interactions as observed in other STEs, both limiting the export of tDOM into adjacent 237 

coastal waters (Couturier et al., 2017; Linkhorst et al., 2017; Sirois et al. 2018; Hébert et al., 2022; Zhou et al., 238 

2023). 239 
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3.3 Behaviour of the DOC and DOM pool  240 

The distribution of the variables used to characterize the DOM pool along the permafrost-nearshore water 241 

continuum is presented in Fig. 4. The DOC concentrations dropped from 2,360 µmol L-1 in meltwater samples 242 

to 236 µmol L-1 in the saltiest seawater sample (Fig. 4A). The concentrations decreased sharply along the 243 

continuum to reach values  lower than 400 µmol L-1 in beach groundwater and seawater, whatever the salinity. 244 

Absorption coefficients at 350 nm were less variable, from 2 to an extreme value of 134 m-1 measured in one 245 

meltwater sample (Fig. 4B). As for the DOC concentrations, the aCDOM350 decreased along the continuum, 246 

with a median value of 24.0 m-1 in meltwater samples and median values of 8.4 and 7.8 m-1 in beach groundwater 247 

and seawater, respectively. The HIX values exhibited a large range of values for each type of sample. The 248 

median values, however, tended to decrease along the continuum, from 3.5 (unitless) in meltwater samples to 249 

1.4 in beach groundwater and 0.8 in seawater samples (Fig. 4C). Whereas DOC, aCDOM350 and HIX values 250 

negatively decreased along the continuum, the SUVA254 values tend to increase from the massive ice and 251 

meltwater samples to the beach groundwater and nearshore seawater samples. The median SUVA254 value of 252 

2.4 mg C L-1 in the meltwater samples increased slightly to median values of 2.9 mg C L-1 in the beach 253 

groundwater samples and they reached a median value of 3.4 mg C L-1 in seawater samples (Fig. 4D).  254 

DOC concentration and aCDOM are routinely used as proxies to characterize the quantity and quality of the 255 

DOM pool in aquatic continuum. The relationships in between is used to reveal the biogeochemical source and 256 

processing of organic matter through physical and biogeochemical conditions (Massicotte et al., 2017; Fichot 257 

and Benner, 2011; Spencer et al., 2013; Stedmon et al., 2003). A linear relationship between DOC and aCDOM 258 

means that the DOC portion stays constant within the DOM pool, whatever the salinity and their respective 259 

origin. In freshwater systems, for example, DOC concentrations were often highly correlated with the DOM 260 

pool (Frenette et al., 2012; Massicotte et al., 2017 and reference therein). However, the decoupling between 261 

DOC and aCDOM350 was observed as soon as mixing, photo-oxidation, and microbial degradation operate at 262 

different rates on DOC and CDOM/FDOM fractions of the DOM pool (Del Vecchio and Blough, 2004; Nelson 263 

et al., 1998; Nelson and Siegel, 2013). This decoupling suggests active processing of DOM during its transit 264 

from freshwater to marine environment, for example, in subterranean estuaries in which the photo-oxidation 265 
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processes were null, the CDOM and DOC coupling resulted from microbial degradation that simultaneously 266 

mineralized both (Hébert et al., 2022). In contrast, Couturier et al. (2016) showed a strong CDOM-DOC 267 

decoupling in another STE, with most of the high molecular weight (HMW) DOM compounds tending to be 268 

trapped in the system and not reaching the receiving nearshore waters. In this latter STE, Sirois et al. (2018) 269 

highlighted the importance of the Fe curtain, where reactive Fe phases in sediments act as an efficient trap for 270 

terrestrial DOM at the oxic/anoxic interface, thereby promoting its long-term sequestration. The exact 271 

mechanisms of the Fe-DOM trapping in STEs are not well known.  However, Linkhorst et al. (2018) showed 272 

that the precipitation of amorphous Fe-oxides preferentially traps HMW compounds enriched in aromatic, 273 

carboxylic, and hydroxyl moieties, such as altered lignin and polysaccharide compounds of terrestrial origin, 274 

compared to the more aliphatic-rich compounds characteristic of marine DOM.  275 

The DOC-CDOM decoupling observed along the permafrost-nearshore continuum (Fig. 5) suggested the 276 

occurrence of distinct transformative processes between DOC and CDOM in beach groundwater and nearshore 277 

waters, irrespective of salinity values. In the intertidal zone, the mixing between O2-depleted beach groundwater 278 

and well-oxygenated seawater induced suitable conditions for oxidative precipitation of Fe. In the absence of 279 

light, microbial degradation and mineral-organic interactions likely dominated the fate of the flowing DOM 280 

pool. As these processes operate simultaneously, they tend to decrease DOC and CDOM concentrations along 281 

the continuum and change the degree of humification, lowering the molecular weight of the flowing material 282 

(Fig. 4A to 4C). Despite this general trend, the impact on the aromaticity, as revealed by the SUVA values, is 283 

less significant and surprisingly, the degree of aromaticity of the material tends to slightly increase along the 284 

continuum. This suggests a higher proportion of aromatic compounds in the DOM pool. This increase is likely 285 

due to the selective degradation of larger organic molecules by microbial and photochemical processes taking 286 

place in the fresh-to-saltwater continuum (Benner and Amon, 2015). This increase could also be explained by 287 

the preferential precipitation of non-humic material. As a result, the remaining DOM pool becomes dominated 288 

by smaller, more aromatic compounds, thereby enhancing the overall aromaticity of the DOM. The low 289 

fluorescent and biological indexes (FI<1.5, 0.5<BIX<0.9; data not shown) in nearshore water samples in 290 

addition to high SUVA values indicated the occurrence of decomposed and more refractory DOM (McKnight 291 
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et al. 2001; Huguet et al. 2009) probably resulting from the large draining of the Mackenzie River. However, 292 

the magnitude of the production of autochthonous DOM might be equivalent to the degradation processes, 293 

which explains why the optical parameters in nearshore waters remain stable, regardless of the salinity. Indeed, 294 

it suggests that freshly produced, protein-like FDOM (C2) from permafrost meltwater could be replaced by an 295 

equivalent amount from local autochthonous sources, maintaining a consistent overall contribution of this DOM 296 

despite variations in source origins. 297 

3.4 Affinity with amorphous Fe-hydroxides and DOC-DOM decoupling 298 

The different affinity of DOC and CDOM350 on Fe-hydroxides was experimentally tested by carrying out Fe-299 

spiked experiments of filtered meltwater, groundwater, and nearshore seawater samples. Here, the Fe-spiked 300 

experiments were carried out to promote oxidative precipitation of amorphous Fe-hydroxides irrespective of 301 

the total dissolved Fe concentrations measured in our samples (between the limit of detection to 680 µmol L-1 302 

in some groundwater samples). The sporadic presence of high Fetot concentration in beach groundwater samples 303 

likely results from the redox oscillation tidally induced by the input of well-oxygenated seawater as currently 304 

observed in STE systems (Charette et al., 2002, 2006).  305 

In the Fe-spiked experiments, the initial DOC concentration of the seawater, groundwater and meltwater 306 

samples were 383, 334 and 1019 μmol L-1, respectively, in agreement with the median DOC values reported in 307 

Fig. 4A for the different types of samples. As soon as Fe was added, the DOC concentrations dropped rapidly, 308 

losing ~40% of initial concentrations. Then, the DOC concentrations decreased over the next hours, reaching 309 

their lowest concentrations 6 hours after the start of the incubation (Fig. 6A). After 48 hours, however, the DOC 310 

was gradually released in solution to reach a final concentration of 260, 219 and 710 μmol L-1 for nearshore 311 

seawater, beach groundwater, and meltwater samples, respectively. Since the experiment was conducted for 312 

only 48 hours, it is uncertain whether DOC concentrations continued to increase beyond this point or if a plateau 313 

was eventually reached. Over the 48h experiment, however, the DOC seemed to be gradually desorbed from 314 

the Fe-mineral phase and the net loss of DOC in the solution was only 32%, 34% and 30% for nearshore 315 

seawaters, beach groundwaters and meltwaters, respectively. The Fe-DOC trapping showed consistent 316 
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behaviour in all three sample types, indicating that the DOC pool reacted in the same way regardless of salinity. 317 

In contrast, the loss of aCDOM350 (or tDOM) in the solution was almost complete 6 hours after the Fe-spike 318 

and the concentrations remained very low over the rest of the experiment (Fig 6B). At the end of the experiment, 319 

the net tDOM loss was 62%, 57% and 94% of the initial content of nearshore seawaters, beach groundwaters 320 

and meltwaters, respectively. The meltwaters exhibited the strongest tDOM loss in agreement with the initial 321 

occurrence of HMW compounds with a high degree of humification, a material likely stabilized by amorphous 322 

Fe.  The preferential trapping of specific compounds during the transit favours the export of non-Fe-stabilized 323 

material from beach groundwaters to nearshore seawaters. The DOC-CDOM decoupling observed along the 324 

continuum might thus result from their different affinities on the amorphous Fe-mineral surface. The exact 325 

mechanism controlling the molecular fractionation of the DOM pool in arctic groundwater remains to be 326 

determined, and further studies are required to explore the role of Fe-curtain in arctic STEs.  327 

3.5 PARAFAC components in the DOM pool  328 

Among the three fluorescing peaks identified by the PARAFAC model, the C2 component mostly dominated 329 

the FDOM pool whatever the type of samples and salinities (Fig.7). No significant trend in component 330 

distribution was observed along the salinity gradient. The protein-like compound C2 was significantly 331 

negatively correlated to C1 and C3 (r2=-0.89, p <0.001) and HIX (r2=-0.92, p <0.001) and the median values of 332 

C2 increased along the continuum, the highest median value being in the nearshore seawater samples. The two 333 

humic-like components (C1 and C3) were well correlated with each other (r2=0.81, p <0.001) and with HIX 334 

(r2=0.85 and 0.69, respectively, p <0.001). As observed for HIX, DOC and aCDOM350, C1 and C3 decreased 335 

along the continuum, with the lowest median values being measured in the seawater samples.  336 

Upstream of the permafrost-nearshore continuum, massive ice and meltwater samples were mostly composed 337 

of humic-like, HMW and terrestrially derived FDOM (C1) and they are rich in DOM and DOC, agreeing with 338 

the active layer-derived FDOM also measured by Fouché et al. (2020). As the DOM transits, the loss of humic-339 

like compounds appears concomitant to the production of biologically-derived tyrosine-like FDOM, which is 340 

typically produced by microbial organisms (Table 1 and references therein). The occurrence of non-Fe-341 
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stabilized DOM and the redox conditions are then suitable for bacterial mineralization and the production of 342 

lower MW and protein-like material. Bacterial mineralization of the transiting DOM is supported by the high 343 

DIC concentrations measured in beach groundwater with concentrations higher than 3,000 µmol L-1 as observed 344 

in samples collected in 2019 (Lizotte et al, 2022). Subterranean estuaries are biogeochemical reactors where 345 

solutes of both marine and terrestrial origin are transformed and released to nearshore waters (Moore, 1999; 346 

Anschutz et al., 2009). Moreover, a recent study in a subarctic beach suggested that the discharge zone may be 347 

a hot spot of CO2 degassing (Chaillou et al., 2024).  The fraction of the permafrost-derived DOM which escaped 348 

the Fe-curtain along the groundwater pathway was highly transformed through microbial degradation before 349 

becoming diluted with the marine DOM pool.  350 

4 CONCLUSION 351 

In this study, we observed a rapid decrease in DOC and CDOM concentration across a short spatial scale, 352 

indicating rapid and significant removal processes as DOM flows across the land-nearshore water continuum. 353 

Microbial degradation and mineral-organic interactions would be preferentially removing HMW humic-like 354 

material, leaving behind more aromatic, refractory compounds. Fe-hydroxides appear to play a key role in 355 

rapidly and selectively trapping this tDOM during subsurface water transit, acting as a sink and shaping the 356 

composition and concentration of DOM released in nearshore waters. The contribution of beach groundwater 357 

and associated submarine discharge at the front of the coastal bluffs remains to be quantified, as it may regulate 358 

carbon exports from permafrost watersheds to the Arctic Coastal Ocean.  359 

Our findings highlight the role of intertidal and nearshore zones in regulating the persistence and reactivity of 360 

terrestrial DOM as it transits from terrestrial to marine environments. The rapid loss of permafrost-derived 361 

DOM in these environments, coupled with its interaction with mineral phases like amorphous iron oxides, 362 

suggests that these zones may act as a permanent or transient terrestrial carbon sinks, as also observed in 363 

temperate regions. However, the potential for rapid transformation and mineralization of this carbon along the 364 

land-sea continuum indicates that much of it may be lost as CO2 before reaching the ocean. This study 365 

https://doi.org/10.5194/egusphere-2024-2945
Preprint. Discussion started: 11 October 2024
c© Author(s) 2024. CC BY 4.0 License.



 

 

17 
 

underscores the need for further research to understand the fate of DOM in Arctic coastal regions, particularly 366 

in the context of accelerating permafrost thaw and coastal erosion. Further research is crucial for predicting the 367 

impact of Arctic carbon fluxes on global biogeochemical cycles and developing strategies to mitigate the 368 

consequences of permafrost degradation on climate systems. Given the ongoing effects of climate change, there 369 

is an urgent need to comprehensively characterize and quantify these lateral and non-point source of carbon 370 

within coastal Arctic budgets. 371 
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TABLES 631 

Table 1: Description of the EEM-PARAFAC modelled FDOM components based on the literature results of 632 

literature references. PARAFAC components and their characteristics 633 
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FIGURE CAPTIONS 646 

Fig. 1 Map of the four sampling sites (red dots) located in the Northwest Territories, Canada. 647 

Fig. 2 EEMs of the 3-components PARAFAC model. Fluorescence is expressed in Raman Unit (R.U.). 648 

Fig. 3 Isotopic composition of massive ice, meltwater, beach groundwater and seawater samples collected in 649 

2019 showing the mixing line between samples across the salinity gradient, from the meltwater to the 650 

seawater. global (GMWL; Craig, 1961) and the local meteoric water line for Inuvik (LMWL, Fritz et al., 651 

2022) are also reported. Note that only one massive ice sample (N=1) was collected. 652 

Fig. 4 Distribution of (A) DOC, (B) CDOM350, (C) HIX and (D) SUVA254 indexes in the salinity gradient 653 

and for the different types of collected samples (i.e., beach groundwater, massive ice, meltwater and 654 

nearshore seawater samples). Note that there is only one massive ice sample reported here.  For the boxplots, 655 

the black lines are the median values, the whiskers are the extent of the data, and the dot points are the outlier 656 

values. 657 

Fig. 5 Global relationship between absorption coefficients at 350 nm (aCDOM350 in m-1) and DOC 658 

concentrations (in µmol L-1) along the permafrost to nearshore aquatic continuum. Note that the data is 659 

reported in Log units. 660 

Fig. 6 Behaviour of (A) DOC and (B) aCDOM350 concentrations with excess iron and constant oxygenation 661 

in the different type of samples incubated over 48 hours. The non-colored points represent the concentrations 662 

before the addition of Fe-spike at t=0h. 663 

Fig. 7 Distribution of PARAFAC components (A) C1, (B) C2, and (C) C3 along the salinity gradient and for 664 

the different types of collected samples (i.e., beach groundwater, massive ice, meltwater and nearshore 665 

seawater samples). Note that there is only one massive ice sample reported here.  For the boxplots, the black 666 
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lines represent the median values, the whiskers represent the extent of the data, and the dot points represent 667 

the outlier values.  668 
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 670 

Fig. 1 Map of the four sampling sites (red dots) located in the Northwest Territories, Canada. 671 

 672 

Fig. 2 EEMs of the 3-components PARAFAC model. Fluorescence is expressed in Raman Unit (R.U.). 673 
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 676 

Fig. 3 Isotopic composition of massive ice, meltwater, beach groundwater and seawater samples collected in 677 
2019 showing the mixing line between samples across the salinity gradient, from the meltwater to the 678 
seawater. global (GMWL; Craig, 1961) and the local meteoric water line for Inuvik (LMWL, Fritz et al., 679 
2022) are also reported. Note that only one massive ice sample (N=1) was collected. 680 
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 681 

Fig. 4 Distribution of (A) DOC, (B) CDOM350, (C) HIX and (D) SUVA254 indexes in the salinity gradient 682 

and for the different types of collected samples (i.e., beach groundwater, massive ice, meltwater and 683 

nearshore seawater samples). Note that there is only one massive ice sample reported here.  For the boxplots, 684 

the black lines are the median values, the whiskers are the extent of the data, and the dot points are the outlier 685 

values.  686 
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 688 

Fig. 5 Global relationship between absorption coefficients at 350 nm (aCDOM350 in m-1) and DOC 689 

concentrations (in µmol L-1) along the permafrost to nearshore aquatic continuum. Note that the data is 690 

reported in Log units. 691 
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 693 

 694 

Fig. 6 Behaviour of (A) DOC and (B) aCDOM350 concentrations with excess iron and constant oxygenation 695 

in the different type of samples incubated over 48 hours. The non-colored points represent the concentrations 696 

before the addition of Fe-spike at t=0h.  697 
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 699 

Fig. 7 Distribution of PARAFAC components (A) C1, (B) C2, and (C) C3 along the salinity gradient and for 700 

the different types of collected samples (i.e., beach groundwater, massive ice, meltwater and nearshore 701 

seawater samples). Note that there is only one massive ice sample reported here.  For the boxplots, the black 702 

lines represent the median values, the whiskers represent the extent of the data, and the dot points represent 703 

the outlier values.  704 
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