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Abstract. Model predictions are important to assess the subsurface state distributions (such as the stress), which are essential

to, for instance, determine the location of potential nuclear waste disposal sites. Providing these predictions with quantified

uncertainties often requires a large number of simulations, which is difficult due to the high CPU time needed. One possibility

for addressing the computational burden is to use surrogate models. Purely data-driven approaches face challenges when

operating in data-sparse application fields such as geomechanical modeling or producing interpretable models. The latter5

aspect is critical for applications such as nuclear waste disposal, where it is essential to provide trustworthy predictions. To

overcome the challenge of trustworthiness, we propose the usage of a novel hybrid machine learning method, namely the

non-intrusive reduced basis method as a surrogate model. This method resolves both of the above challenges while being

orders of magnitude faster than classical finite element simulations. In the paper, we demonstrate the usage of the non-intrusive

reduced basis method for 3-D geomechanical-numerical modeling with a comprehensive sensitivity assessment. The usage of10

these surrogate geomechanical models yields a speed-up of six orders of magnitude while maintaining global errors in the

range of less than 0.01%. Because of this enormous reduction in computation time, computationally demanding methods such

as global sensitivity analyses, which provide valuable information about the contribution of the various model parameters to

stress variability, become feasible. The opportunities of these added benefits are demonstrated with a benchmark example and

a simplified study for a siting region for a potential nuclear waste repository in Nördlich Lägern (Switzerland).15

1 Introduction

Knowledge of the crustal stress field is of key importance for the safe usage of the subsurface, for example, for geothermal

exploitation or storage of energy, CO2 and nuclear waste (Blöcher et al., 2018; Henk, 2008; Hergert et al., 2015; Smart et al.,

2014). The importance is expressed in the unwanted release of stored elastic energy during anthropogenic utilization by means

of failure of boreholes (Schmitt et al., 2012; Tingay et al., 2008), caverns and tunnels (Brady and Brown, 2006), subsidence20
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or induced seismic events (Ellsworth, 2013; Segall and Fitzgerald, 1998; Ziegler et al., 2015). Thus, to develop strategies

that reduce the risks of induced hazards and prevent failure due to man-made interventions in the subsurface, it is important

to understand the undisturbed 3-D in-situ stress state (Gaucher et al., 2015). However, the in-situ stress state is challenging

to quantify. Stress data are rare, often subject to large uncertainties, and describe, in most cases, only a subset of the six

independent components of the symmetric 2nd rank tensor that formally describes the stress state at an arbitrary point in the25

subsurface (Amadei and Stephansson, 1997; Desroches et al., 2021a; Heidbach et al., 2018; Morawietz et al., 2020).

To obtain a continuous description of the 3-D stress tensor in a given rock volume, geomechanical-numerical models are

employed. These models usually use the finite element method to solve the partial differential equation that describes the

equilibrium of forces (e.g. Ahlers et al., 2021; Fischer and Henk, 2013; Lecampion and Lei, 2010; Reiter and Heidbach,

2014; Singha and Chatterjee, 2015; van Wees et al., 2018). For the model input, we have to describe the rock properties,30

the boundary conditions, and the subsurface geological structures. However, knowledge about these parameters is usually

incomplete and consequently associated with uncertainties (e.g. Hergert et al., 2015; Ziegler and Heidbach, 2020). This means

that for providing reliable model predictions the information regarding these parameter variabilities needs to be included and

assessed.

Such tasks are commonly achieved through global sensitivity analyses (SA, Degen et al., 2021b, a; Saltelli et al., 2019)35

and uncertainty quantification methods (Degen et al., 2022c, a; Saltelli et al., 2019). Both methods have the requirement of

numerous model evaluations in common, which poses major challenges when each model evaluation is computationally costly.

One way to circumvent the issue is the use of surrogate models (also referred to as meta or reduced models), i.e., low-order

representations of the original model that are significantly faster to compute. Many surrogate model construction techniques

exist, ranging from physics-based to data-driven approaches (e.g. Benner et al., 2015; Degen et al., 2023; Hesthaven et al.,40

2016; Jordan and Mitchell, 2015; Kotsiantis et al., 2007; Mahesh, 2020). Nonetheless, every surrogate model needs to be

evaluated concerning its trustworthiness and explainability. This is important for several reasons: i) if we use the surrogate

in subsequent analyses such as global sensitivity analyses we need to ensure that the surrogate represents the original model

otherwise the obtained sensitivities are not representative, ii) if the model results are used for decision-making processes, they

need to be reliable and robust.45

Different techniques exist for the construction of surrogate models, generally subdivided into three categories. In the follow-

ing we briefly present the various techniques, explaining their key advantages and disadvantages.

1. One class of techniques are data-driven machine learning approaches, which recently gained attention in the construction

of surrogate models (e.g. Bergen et al., 2019; Degen et al., 2023; Li et al., 2023; Swischuk et al., 2019; Willcox et al.,

2021). This is thanks to their capabilities of well approximating nonlinear applications, their straightforward usage50

because of their black box and non-intrusive nature (meaning that they do not need direct access to the numerical solver),

and their availability in software frameworks such as PyTorch (Paszke et al., 2019) and TensorFlow (Abadi et al., 2015).

Nonetheless, the black box nature has also the disadvantage of yielding non-explainable models that do not preserve the

governing physical equations, making their utilization challenging in terms of reliability.
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2. Physics-based methods such as the reduced basis method or the proper orthogonal decomposition have the advantage of55

preserving the physics (Benner et al., 2015; Degen et al., 2020; Hesthaven et al., 2016; Quarteroni et al., 2015; Rozza

et al., 2008). The reduced basis method has been developed in the field of applied mathematics and has been used

for various applications, such as transport and continuum mechanics (e.g. Benner et al., 2015; Hesthaven et al., 2016;

Quarteroni et al., 2015; Rozza et al., 2008) and also for large-scale geothermal applications (Degen et al., 2021b, 2022c).

However, they reach their limits in efficiently approximating highly nonlinear problems (Degen et al., 2023; Hesthaven60

and Ubbiali, 2018; Wang et al., 2019, see also Section 2).

3. To overcome the limitations of both individual approaches, physics-based machine learning methods are introduced,

which combine data-driven and physics-based techniques. Several physics-based machine learning methods are avail-

able and they have different implications concerning the question of explainable surrogate models (e.g., Degen et al.,

2023; Faroughi et al., 2022; Willard et al., 2022). In this study, we use the non-intrusive reduced basis (NI-RB) method65

(Hesthaven and Ubbiali, 2018; Swischuk et al., 2019) for the construction of the surrogate models for geomechanical

applications and demonstrate how it fulfills the criteria of explainable and reliable surrogate models, in contrast to other

physics-based machine learning techniques.

This paper focuses on two main aspects: i) the combined consideration of different sources of uncertainty such as stress mag-

nitude data records used for calibration, material properties, and subsurface geometry, and ii) the consideration of rapid changes70

in the state distribution. Especially the later part distinguishes the work significantly from previous studies in geothermal appli-

cations (e.g., Degen et al., 2022a), where only smooth state variable distributions of the pore pressure and/or temperature have

been considered so far. Depending on the permeability contrast, the pore pressure exhibits rapid changes as well. However,

these scenarios have not yet been investigated with respect to the non-intrusive reduced basis method. Following a benchmark

example the workflow is applied to a data set from northern Switzerland, where an underground repository for nuclear waste75

is planned.

2 Background and Methods

In the following, we present the governing equations for geomechanical-numerical modeling presented in this manuscript.

Afterwards, we introduce the non-intrusive reduced basis method, which is responsible for constructing the surrogate models.

Additionally, we explain the concept of global sensitivity analyses, which are used to investigate the influence of the model80

parameters.
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2.1 Subsurface stress state

The stress state in the subsurface is usually described by the symmetric 2nd rank stress tensor σij

σij =


σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

 (1)

with six independent components – the three normal stresses σxx, σyy , and σzz as well as three shear stresses σxy = σyx,85

σyz = σzy , and σzx = σxz . Commonly, instead of the full stress tensor, the stress state is referred to in its main axis system

which is a rotation of the stress tensor in a way that all shear stresses dissipate and only normal stresses remain so that

S =


S1 0 0

0 S2 0

0 0 S3

 . (2)

with the principal stress components S1, S2, and S3 that are perpendicular to each other but arbitrarily oriented in space.

A common assumption in upper crustal geomechanics is that one of the principal stress axes is vertical as a result of the90

overburden which can then be referred to as Sv (Zoback, 2007). The other two principal stress axes are then by definition

horizontal and called the maximum and minimum horizontal stress SHmax and Shmin, respectively. Then the stress state can be

fully described by four variables only: The magnitudes of Sv , SHmax, and Shmin as well as the orientation of one of the two

horizontal stress components. This is then called the reduced stress tensor (Zoback, 2007).

Information on the orientation of SHmax is available from a variety of stress indicators that are e.g. compiled in the World95

Stress Map (Heidbach et al., 2018). Stress magnitude data is less frequently available, sparse, and often of little quality (Moraw-

ietz et al., 2020). However, in particular, the stress magnitudes are important for many subsurface applications. If detailed

information on the in-situ stress state is required, 3-D geomechanical-numerical modeling is applied in order to estimate the

stress state in a volume of interest based on few data records (e.g. Fischer and Henk, 2013; Lecampion and Lei, 2010; Singha

and Chatterjee, 2015; van Wees et al., 2018; Ziegler et al., 2016).100

2.2 Governing Equations

The modeling of the in-situ stress state is conducted under the assumption of a linear elastic upper crust as the governing

constitutive equation (Reiter and Heidbach, 2014; Hergert et al., 2015; Singha and Chatterjee, 2015) and no acceleration

except for gravity. The required material properties are thus the Young’s modulus (E), the Poisson’s ratio (ν), and the density

(ρ). We derive the total stress σ from the momentum balance (Cacace and Jacquey, 2017):105

∇ ·σ+ ρg = 0, (3)

where ρ is the density, and g the gravity acceleration. The numerical forward simulations are performed in GOLEM (Cacace and

Jacquey, 2017), which is an open-source high-performance finite element software based on the MOOSE framework (Lindsay
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et al., 2022). The result is the full stress tensor σij at discrete locations throughout the model volume. This information is used

to derive scalar values such as individual components from the reduced stress tensor or the slip tendency of faults (Röckel et al.,110

2022). Furthermore, we consider the following constitutive linear elastic relationships:

E =
σ

εaxial
, and ν =−εtrans

εaxial
. (4)

Here, εaxial, and εtrans, are the axial and transverses strain, respectively.

The model geometry is usually oriented in a way that the boundaries are parallel and perpendicular to the orientation of

SHmax and Shmin (Fig. 1). The stress state is introduced to the model using displacement boundary conditions (Dirichlet–type)115

on the lateral boundaries of the model. The magnitude of displacements is adapted in a way that the resulting stress magnitudes

(SHmax and Shmin) match observed data records (Reiter and Heidbach, 2014; Ziegler and Heidbach, 2020). This process is

referred to as the calibration of the model. It is of an iterative nature or aided by the software tool FAST Calibration (Ziegler

et al., 2023).

x

y
y‘

x‘

SHmax

Shmin

Figure 1. The model setup with the Cartesian model coordinate system (x and y axes) and the coordinate system used for application of

boundary conditions (x´ and y´ axes) perpendicular to the model boundaries and the orientations of SHmax and Shmin, respectively. The

boundary conditions (Dirichlect-type) are indicated by the bold arrows (prescribed displacements) and rollers that indicate a zero displace-

ment perpendicular to the model boundary.

2.3 Non-Intrusive Reduced Basis Method120

In this work, we evaluate the trustworthiness of geomechanical surrogate models for use in applications such as nuclear waste

disposal. Note that we focus on the construction of surrogate models for the Shmin, SHmax, and Sv components. For better

illustration of the general concepts, we assume that the material properties are homogeneous and isotropic within each layer.
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However, the presented concepts are not restricted to these assumptions. Further details regarding the model setup are listed

in section 3. For the purpose of the surrogate model construction, we use the non-intrusive reduced basis (NI-RB) method to125

construct the surrogate models (Hesthaven and Ubbiali, 2018; Swischuk et al., 2019; Wang et al., 2019). The NI-RB method

combines physics-based and data-driven approaches to provide reliable predictions even for complex nonlinear and hyperbolic

partial differential equations (PDEs).

The NI-RB method is most advantageous in the many-query or real-time context, so if either many and/or fast model

evaluations are required (Benner et al., 2015; Hesthaven and Ubbiali, 2018; Hesthaven et al., 2016). To ensure this, the method130

is divided into two stages: the offline and online stages, as illustrated in Fig. 2. During the offline stage, the training data is

generated and the surrogate model is constructed. This stage is computationally expensive since it requires several full-order

solutions of the model, as we explain in the next paragraph. However, it needs to be performed only once. On the other hand,

during the following online stage, the surrogate model is evaluated. This is a computationally fast procedure allowing numerous

evaluations of the surrogate model in a short amount of time (Benner et al., 2015; Hesthaven and Ubbiali, 2018).135

2.3.1 Offline Stage

The construction of the surrogate model in the offline stage is also a two-step procedure, which is preceded by step zero where

the model parameters for the full-order solutions are determined (step 0 in Fig. 2). In our case, we use a quasi-random Latin-

Hypercube sampling strategy (Loh, 1996) for the generation of the 100 to 200 training snapshots with the parameter ranges

provided in Tab. 1. These snapshots are combinations of different geometries, rock properties, and boundary conditions, as140

shown in Fig. 2.

In the first step (Fig. 2) of the offline stage, the basis functions of the surrogate model are calculated by performing a proper

orthogonal decomposition (POD). They capture the characteristic physical behaviour of the model by regarding the models

response to different properties provided by the snapshots. In order to ensure an efficient execution of both the POD and

machine learning stage, we scale the input parameters as well as the data sets. The input parameters are transformed using145

z-score normalization, resulting in a mean of zero and a standard deviation of one The training data is scaled with a min-

max scaling, taking the maximum and minimum values which yields a data set being distributed between zero and one. The

basis functions correspond to the most influential singular vectors (Hesthaven and Ubbiali, 2018). For defining this, the energy

criterion is used (Guo and Hesthaven, 2019; Swischuk et al., 2019):∑r
i=1λ

2
i∑N

i=1λ
2
i

≤ ϵ, (5)150

where r corresponds to the dimension of the reduced model, λ to the singular value, N to the total number of samples, and ϵ to

the desired accuracy of the surrogate. Since ϵ is a user-defined value, the quality of the surrogate is adjustable to the application.

In our case studies, we set the tolerance ϵ to maintain 10-4 % of the information content to ensure surrogate models that well

represent the full-order solutions. This tolerance is application-specific and based on the experience of previous studies (Degen

et al., 2023, 2022a, 2020).155
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Figure 2. Schematic representation of the offline and online procedure for the NI-RB method, including the different steps required for the

model construction in the offline phase. Note that urb denotes the reduced solution, µ the model parameters, r the reduced dimension, ψ the

basis functions, θrb the reduced coefficients, N the total number of samples, and n the number of basis functions.

The resulting surrogate model urb is a linear combination of basis function ψ determined in step 1 and reduced coefficients

θrb:

urb (µ) =

r∑
i=1

ψi θ
(i)
rb (µ) ∈ Vrb. (6)

Here, µ refers to the model parameters, and Vrb to the reduced space. The determination of these coefficients is the second

step of the offline phase, which is classically performed by a Galerkin projection (Benner et al., 2015; Hesthaven et al., 2016;160

Quarteroni et al., 2015). However, to allow also for a later extension to nonlinear applications, we use in this study machine

learning methods to determine the coefficients instead (step 2 in Fig. 2). This possible extension to the nonlinear setting is

shown in several studies (Degen et al., 2022a; Hesthaven and Ubbiali, 2018; Swischuk et al., 2019). In the present study,
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we use Gaussian Process Regression (GPR, Schulz et al., 2018) as the machine learning method, which works better than

neural networks in a linear setting since fewer hyperparameters need to be determined. We use anisotropic radial basis function165

kernels with an initial length scale of 1, which is optimized for each normalized model parameter µwithin the ranges of 10-5 and

105. The GPR computations are executed with Scikit-learn (Pedregosa et al., 2011). The input for the GPR machine learning

algorithm is the product of the basis functions and the training snapshots. The basis functions ψ provide the characteristic

behavior of the model. The training snapshots are a controlled environment with known µ. This allows the GPR to derive the

reduced coefficients θrb that complete the mapping between the input and output space since both are known for the training170

data.

2.3.2 Online Stage

Once the surrogate model is constructed, we have a flexible and fast performing replacement of the original high-dimensional

problem, which can be used in subsequent analyses. Hence, new solutions for any desired combination of model parameters

µ can be computed within the predefined parameter ranges (Fig. 2). To achieve this, we need to determine the corresponding175

reduced coefficients over the machine learning model and compute the associated solution by multiplying the coefficients

and basis functions, as shown in Eq. 6. Note that only the coefficients have to be calculated for new combinations of model

parameters. The basis functions remain the same throughout all realizations. This yields a great computational gain, allowing

for rapid evaluations in, for instance, global sensitivity analyses or uncertainty quantification methods.

2.4 Global Sensitivity Analysis180

The purpose of a sensitivity analysis (SA) is to investigate to which extent the model parameters influence the model response.

This is helpful in determining which parameters to focus on in an in-depth study. In this study, the model parameters of interest

are the value of the boundary conditions, the material properties, and the depth of the layer interfaces. The model response that

we evaluate is the subsurface stress distribution.

In general two types of sensitivity analyses are distinguished: local and global analyses (e.g., Degen et al., 2021b; Degen and185

Wellmann, 2024; Sobol, 2001; Razavi and Gupta, 2015; Sarrazin et al., 2016; Song et al., 2015; Wainwright et al., 2014). The

local SA has the advantage of requiring only very few model evaluations but the disadvantage of not considering parameter

correlations, and investigating the influence of the model parameters only in the vicinity of a reference parameter. In contrast,

a global SA investigates the entire parameter space and can determine parameter correlations if, for instance, a variance-

based method is chosen. However, this comes at the cost of requiring numerous model evaluations, which makes the method190

computationally costly (Degen et al., 2021b; Degen and Wellmann, 2024; Saltelli et al., 2019; Sobol, 2001; Wainwright et al.,

2014). This is the reason, why we propose the use of surrogate models for global sensitivity analyses.

We use the variance-based Sobol sensitivity analysis with a Saltelli sampler (Saltelli, 2002; Saltelli et al., 2010; Sobol, 2001).

For the analyses of the benchmark example, we investigate the influence of up to 13 parameters (Young’s modulus, density,

Poisson’s ratio of all three layers, the values of the two displacement boundary conditions, and the two interface positions,195

see Figure 3). In the case of the simplified case study of Nördlich Lägern, we investigate the Young’s modulus of each layer
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yielding 15 parameters. For each of these up to 15 parameters, we generate 217 samples, which is equal to 131,072. Note that

we always need 2n samples per parameter to ensure the convergence of the sampler. n can be any positive number and is

as mentioned before for this study equal to 17. This number was determined through convergence tests. Because of the used

sampler, the total number of forward evaluations per SA is (n · (2D+2)), where D is the number of parameters. Since we200

perform 21 global SAs for up to 15 parameters, we require a total of 50,069,504 model evaluations for all analyses combined.

Further details regarding the SAs are presented in the individual result sections.

For the different global SAs, we present first-order and total-order sensitivity indices. First-order indices describe the in-

fluence arising from the model parameters themselves, which are determined by the variance of the model parameter divided

by the total variance that regards all model parameters variability. Total-order contributions contain the influence of the model205

parameters and their correlations to other parameters. For the sensitivity analysis, we need to define a threshold above which

parameters are deemed influential. There is no general way of determining this threshold. For the purpose of this study, we set

it to 10-2 since values below this threshold would be difficult to validate against typical in-situ stress measurement accuracies

(Desroches et al., 2021b; Martin, 2007; Morawietz et al., 2020). This value is also in accordance with threshold values typi-

cally employed in literature (Cosenza et al., 2013; Degen et al., 2021a, b; Degen and Wellmann, 2024; Sin et al., 2011; Tang210

et al., 2006; Vanrolleghem et al., 2015). The threshold is a dimensionless number, which is determined by the division of two

variances, for further details regarding the threshold itself and its determination, we refer to Degen and Wellmann (2024).

3 Synthetic Model

We consider a three-layer model to investigate systematically the potential of the NI-RB method to construct reliable surrogate

models for representing the subsurface stress distribution. The model has an extent of 10 km in both the x- and y-direction and215

six kilometers in z-direction (Fig. 3). For the discretization, we consider hexahedral elements. In both the x- and y-direction,

we have a model resolution of 400 m and in the z-direction a resolution of 10 m. The much higher resolution of the vertical

component is chosen to allow considering geometrical uncertainties, i.e. uncertainties in the depth of geological horizons. The

three layers are lateral homogenous and equally spaced, where the top layer consists of limestone, the middle layer of clay, and

the lowest layer is a crystalline unit. Thus, Sv, SHmax, and Shmin are indeed the principal stresses of the modeled total stress.220

Throughout the study, we allow variations for the boundary conditions, the material properties, and the interface depths. For

the displacement in the y-direction (northern boundary), we apply a Dirichlet boundary condition with values varying between

four to six meters shortening, whereas the variations for the x-direction range from 0.2 m to 0.6 m (eastern boundary). Different

boundary conditions are needed to ensure reasonable variations of the stress magnitudes as observed in data records. The top

boundary is assigned with a zero Neumann boundary condition, and all remaining boundaries are subjected to zero Dirichlet225

boundary conditions normal to the boundary (roller boundary conditions). The material properties are varied according to the

expected uncertainties for the corresponding lithology. The depth of geological horizons can be varied by ± 200m.

We consider five cases: i) changing boundary conditions, ii) changing material properties, iii) changing interface positions,

iv) simultaneously changing boundary conditions and material properties, and iv) changing all three sources of uncertainty.
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Table 1. Variation ranges of the input parameters for all five cases. Note that ∥ x and ∥ y denote the displacement for the boundary condition

in the x- and y-axis, respectively. Furthermore, “upper” denotes the interface between the limestone and clay layer, and “lower” the interface

between the clay and crystalline layer. The parameter ranges have been chosen to be representative for nuclear waste disposal applications

(Crisci et al., 2022a, b; Gonus et al., 2022a, b, 2023; Spillmann et al., 2022), the thickness data are from Crisci et al. (2022a). The Young’s

modulus of the crystalline layers was extended beyond that range to account also for other subsurface engineering applications.

Layer E [GPa] ν [-] ρ [kg/m3] ∥ x [m] ∥ y [m] upper [m] lower [m]

Case 1: Changing Boundary Conditions

Limestone 25 0.21 2600

0.2-0.6 4.0-6.0 -2000 -4000Clay 15 0.34 2400

Crystalline (Basement) 60 0.25 2800

Case 2: Changing Material Properties

Limestone 20-40 0.18-0.23 2500-2700

0.5 5.0 -2000 -4000Clay 10-25 0.30-0.38 2300-2500

Crystalline (Basement) 30-80 0.20-0.30 2700-2900

Case 3: Changing Geometry

Limestone 25 0.21 2600

0.5 5.0 -1800 to -2200 -3800 to-4200Clay 15 0.34 2400

Crystalline (Basement) 60 0.25 2800

Case 4: Changing Boundary Conditions & Material Properties

Limestone 20-40 0.18-0.23 2500-2700

0.2-0.6 4.0-6.0 -2000 -4000Clay 10-25 0.30-0.38 2300-2500

Crystalline (Basement) 30-80 0.20-0.30 2700-2900

Case 5: Changing Boundary Conditions & Material Properties & Geometry

Limestone 20-40 0.18-0.23 2500-2700

0.2-0.6 4.0-6.0 -1800 to -2200 -3800 to -4200Clay 10-25 0.30-0.38 2300-2500

Crystalline (Basement) 30-80 0.20-0.30 2700-2900

The different scenarios including their input parameters are listed in Tab. 1. The uncertainties of the parameters are chosen in a230

way comparable to those encountered in datasets or case studies (e.g. Bär et al., 2020; Bond et al., 2015; Ziegler and Heidbach,

2024).

4 Results

In the following, we present the construction of a geomechanical surrogate model. To understand the different requirements

and impacts of the different sources of uncertainties, we first vary them individually and then investigate the combined effects.235
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Figure 3. Schematic representation of synthetic model and all variations investigated in this study. The model (10×10×6 km3) consists

of three different lithological units having purely elastic material properties, which are variable. Mechanical parameters are the Young’s

modulus (E), the Poisson’s ration (ν) and the density (ρ). The horizontal stratigraphic boundaries can be varied by ± 200 m. The applied

lateral boundary conditions ranges between 4 to 6 m shortening in y-direction, driving SHmax magnitude and orientation and 0.2 to 0.6 m

shortening driving the Shmin magnitude and orientation.

In order to validate the NI-RB results, for each test case randomly chosen parameters are used in several full-order model runs

which are then compared to the NI-RB results.

4.1 Case 1: Changing Boundary Conditions

We first investigate the potential of using surrogate models to determine the influence of uncertainties in the stress magnitude

data records that are available. This is achieved by changing the displacement boundary conditions in a way that corresponds240

to uncertainties in the stress magnitude data. Therefore, we use the model displayed in Fig. 3 and construct a training set of

100 simulations, where we allow a variation of the boundary condition but keep all the material properties and the interface

positions fixed.

Since we only vary the Dirichlet boundary conditions along the x- and y-axis, we evaluate the surrogates only for the

horizontal components of the stress tensor, which are displayed in Fig. 4a and b. We observe that both the Shmin- and SHmax-245

contributions of the stress tensor are well represented by the surrogate model. The global model errors for the scaled training

and validation data set are for the Shmin-component in the order of 10-15 (about 10-12 MPa2) and for the SHmax-component in the

order of 10-8 (about 10-4 MPa2), which means that visually no difference between the full and reduced solutions are detectable

(Fig. 4). To calculate the global model errors, we use the mean squared error (MSE).

MSE(ufe,urb) =
1

N

N−1∑
i=0

(ufe −urb)
2
, (7)250

where ufe refers to the finite element solution.
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Figure 4. Investigation of the potential of surrogate models to determine the influence of varying boundary conditions. Comparison of the

surrogate model accuracy for five randomly chosen realization of the validation data set for a) the Shmin- and b) the SHmax-component of the

stress tensor. Note that “Sensitivity” denotes the value of the sensitivity index (section 2.4), and ∥ x and ∥ y denote displacements parallel

to the x-axis and y-axis, respectively. The full-order solution are denoted by colored solid lines and the reduced solutions by colored dashed

lines. The different colors represent the stress response for different boundary condition values. The training data set consisting of 100

samples is indicated with light gray lines. Furthermore, we show the global SA results for c) non-equal x- and y-strains d) equal x- and

y-strains.
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The results for the surrogates are obtained with only a few basis functions: two and three for the SHmax- and Shmin-contribution,

respectively. This demonstrated a general low complexity induced by the changes in model parameters and serves as a good

illustration of how the NI-RB method operates. In contrast to other machine learning techniques, the method does not try to

learn the state behavior of the stress directly. Instead, it investigates the changes in the state distribution because of different255

model parameters. In this example, this change yields a simple shift in the response, where the amount of shift varies for the

different geological layers. This is also the reason why the abrupt shift in stress magnitude at interfaces is perfectly captured in

all reduced solutions since only the magnitude of the shift but not the position changes.

In general, we observe the highest variability of the stress response for the SHmax-component. This is caused by the boundary

conditions since we assigned higher displacement values parallel to the x-axis than parallel to the y-axis. The global SA,260

displayed in Figure 4c and d, confirms these findings.

In Figure 4c, we observe a significantly higher influence of the boundary condition applying a displacement parallel to

the x-axis for both stress components. In the case of the SHmax-component the boundary condition along the y-axis does not

impact the response notably. To offer a final proof, we repeated the surrogate model construction and the sensitivity analysis,

considering equal parameter ranges of four to six meters for both boundaries. This analysis with equal parameter ranges is265

referred to as “equal strains”, whereas the original setup is denoted as “non-equal strains”. The results of the corresponding

SA are seen in Figure 4d. In comparison to the previous analysis, we obtain increasing influences of the boundary conditions

along the y-axis. This yields precisely mirrored behaviors for the SHmax- and Shmin-components.

4.2 Case 2: Changing Material Properties

We now investigate the variation of material properties. In this geomechanical study, we consider the variations of the Young’s270

modulus, the Poisson’s ratio, and the density for each layer individually. This results in nine parameters that can change,

whereas for the previous example of the boundary conditions, we only had two parameters. Therefore, we increase the size of

the training data set from 100 to 200 full-order solutions to compensate for the expected increase in complexity.

Although we have an increase in the amount of parameters that we consider, we still fit the full solution very well with

the reduced order model. Note, that we investigate the stress distribution for the Shmin-, SHmax-, and Sv-component, which are275

displayed in Figure 5a to c. The Shmin- and SHmax-contributions show similar behaviors regarding the global errors, where we

obtain errors in the order of 10-9 for the scaled validation set (corresponding to 10-5 MPa2), and up to 10-17 for the scaled

training data set (corresponding to 10-14 MPa2). The global errors for the Sv-component are in the order of 10-15 (about 10-10

MPa2) for both the scaled training and validation data set. However, we observe an increase in the number of basis functions

from two or three to six for the horizontal stress responses. This increase in the number of basis functions is caused by the280

increased complexity, which shows the general scaling behavior of the NI-RB method. The dimension of the surrogate model is

scaling with the complexity induced by the variability of the parameters. But this does not mean that an increase in the amount

of variable parameters automatically yields are larger reduced dimension. Relevant for the dimension is the amount of variable

parameters that lead to a change in the model response, so in our case the stress distribution.
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Figure 5. Investigation of the potential of surrogate models to determine the influence of varying material properties. Comparison of the

surrogate model accuracy for five randomly chosen realization of the validation data set for a) the Shmin-, b) the SHmax-, and c) the Sv-

component of the stress tensor. Note that “Sensitivity” denotes the value of the sensitivity index (section 2.4). The full-order solution are

denoted by colored solid lines and the reduced solutions by colored dashed lines. The different colors represent the stress response for

different material property values. The training data set consisting of 200 samples is indicated with light gray lines. Furthermore, we show

the global SA results for d) non-equal x- and y-strains and material parameter ranges and e) equal x- and y-strains and material parameter

ranges. 14



This is nicely demonstrated by comparing the number of basis functions of the Shmin- or SHmax-contribution with the Sv-285

component. For the vertical stress response, we only obtain four basis functions, which is the first indication that fewer pa-

rameters influence the stress response. This is later also confirmed by the SA. Still, also six basis functions of the horizontal

components are a low number taking into account that we vary in total nine parameters. So, as for the vertical component,

this yields the assumption that not all parameters are influential with respect to the stress. As for the case of the changing

boundary conditions, we obtain the highest variability for the SHmax-component of the stress distribution. This is again caused290

by the higher boundary value of the displacement parallel to the x-axis. Both the results regarding the variability of the stress

distribution and the amount of basis function are confirmed by the sensitivity analysis, which we present in the following.

The results of the SA are shown in Figure 5d and e. Here, we investigate again two possible scenarios. The first scenario

chooses the variation range of the material properties depending on the typically physically plausible variation range (Fig-

ure 5d). This has the consequence that certain parameters have a wider relative variation range than others. To recover the295

underlying process behavior, we conduct the same analysis with a variation range of 3 % for all parameters and a displacement

value of 5 m for both boundaries (Figure 5e).

Focusing first on the results of the SA in Figure 5d for the SHmax-component of the stress (orange bars), we obtain the highest

influences for the Young’s modulus of the crystalline layer, as it is the stiffest unit. This is followed by the Poisson’s ratios of

the crystalline and clay layers, and then by the Young’s moduli of the limestone and clay layers. All other model parameters300

are non-influential. Consequently, we have a high impact of the Young’s modulus and the Poisson’s ratio but no influence

of the density. This low influence is the cause of the in relation much lower variation range of the density. Assuming equal

variation ranges for all model parameters, as seen in Figure 5e, we obtain the increased influence of the density especially for

the limestone and clay layers. At the same time, we retrieve decreasing importance for the Young’s modulus, such that the

density is ranked in between the Poisson’s ratio and the Young’s modulus.305

Continuing with the Shmin-component (blue bars in Figure 5d), we observe a higher influence of the Poisson’s ratios and

a significantly decreased impact of the Young’s moduli in contrast to the SHmax-component. The reason is again the different

boundary values for the displacement. The differences between the two horizontal stress responses nearly vanish for the analysis

with equal boundary conditions (Figure 5e).

For the Sv-component, we obtain in both scenarios only influences of the density, which demonstrates that the vertical stress310

component is predominantly driven by gravity, what corresponds to the definition. Furthermore, we have increasing influences

of the density with decreasing depth values. Hence, we get the highest influence for the limestone layer, followed by the clay

and crystalline layers, which is in agreement with a previous model study (Ziegler, 2022).

4.3 Case 3: Changing Geometry

For the scenario of a changing geometry, we consider two parameters, which are the interface depths between the limestone and315

clay layer (denoted as upper interface), and the interface between the clay and crystalline layer (denoted as lower interface).

The upper interface is by default at a depth of two kilometers, and the lower interface is at a depth of four kilometers. For both

interfaces a variation range of ± 200 m is considered. As before, the training data set is constructed using a Latin Hypercube
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Sampling but for the geometry, we have a training data set size of again 200 full-order solutions instead of the initial 100 due

to the expected higher complexity compared to Case 1.320

In addition to a higher complexity comparable to Case 2 a change in interface depths means that the geometry of the

model is changed, which is different from the material properties or boundary condition changes. The challenges for the

surrogate modeling approach become apparent from Figure 6a. The surrogate model behaves differently in approximating the

stress tensor compared to the previous two cases. The stress components (Shmin-component visualized in Figure 6) are well

approximated within the three layers such that again no visible differences are notable. However, at the transition between325

layers, the approximation quality is significantly decreased (marked with black ellipses). So, the surrogate has major issues

resolving the position of the stress shift due to the changes in geological horizon depth. The difference to the previous examples

is that the shift is no longer stationary and the number of elements per unit changes. In the case of changing boundary conditions

and material properties only the magnitude of the shift changes. But for the geometrical parameters, the magnitude stays

roughly the same but the position of the shift can vary by ±200 m.330

To overcome this issue, the number of elements needs to remain the same for each lithology. This is achieved using GMSH

(Geuzaine and Remacle, 2009) for discretization which allows for a higher flexibility during the construction of the structured

meshes. Most importantly it allows for a fixed number of elements per lithology to, which is in our case 200. That means

that the maximum vertical length of each element is 10 m, but that also elements with smaller vertical length are produced

depending on the interface location. This results in a better quality at the interface (Figure 6b).335

These two representations of the geometry result in the same depth vs. stress relationship (Figure 6c) but for the surrogate

model construction, we provide the information about the relationship of the number of elements vs. the stress distribution

(Figure 6d). This relationship is different for the two scenarios. For scenario 1 (Figure 6a), we obtain the changing position

of the shift. However, for scenario 2 (Figure 6b), we have the shift again stationary since we have always 200 elements per

subdomain independent of the interface positions. Consequently, the challenge associated with the geometrical characterization340

can be addressed by reformulating the original problem.

The difference in behavior is also clearly visible by the amount of basis function required to approximate the solution. We

obtain 79 basis functions for the Shmin-component of the stress tensor, whereas the version with a fixed number of elements per

subdomain only requires three basis functions. This means that we obtain 25 times more basis functions for the version with a

changing number of elements per subdomain. Since the scaling behavior of the reduced model is tied to the complexity of the345

parameter space and not to the number of changing parameters, this demonstrates the change in complexity between the two

model versions.

We now move to demonstrate the physical effects of changing the geometry, as presented in Figure 7a-c. Regarding the

horizontal component, we obtain no difference within the layer, which is in accordance with our expectations since neither

the material properties nor the boundary condition values are changed throughout the simulations. Differences occur at the350

interface positions, which vary from realization to realization. Consequently, the transition in the stress values between one

unit to the other is changing dependent on the corresponding interface depth. Furthermore, we observe as in the previous

example nearly no variations in the vertical component.
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Figure 6. Challenge of accurately predicting the solution because of varying geometrical parameters. Comparison of the surrogate model

accuracy for five randomly chosen realization of the validation data set for the Shmin-component of the stress tensor for a) the GMSH model

with varying number of elements per layer, b) the GMSH model with a fixed number of elements per layer. Furthermore, we display few

realization from the validation data set over c) the depth, and d) the number of elements of the mesh.

Regarding, the sensitivity analysis (Figure 7c), we observe identical behavior for changes of both interface depths for the

horizontal stress tensor components. For the vertical contribution, we observe a slightly higher influence of the location of the355

lower interface on the stress response. This higher influence is caused by the higher density contrast of the clay and crystalline

layer with respect to the limestone and clay layers. Note that the lack of parameter correlations observable throughout all

three scenarios is induced by the linearity of the application, this image significantly changes once nonlinear problems are

considered.

17



Model Error:
Training Set: 8.13・10-16

Validation Set: 3.61・10-16

FE simulation
NI-RB simulation

FE simulation
NI-RB simulation

Model Error:
Training Set: 8.06・10-16

Validation Set: 3.03・10-16

Model Error:
Training Set: 8.57・10-16

Validation Set: 4.48・10-16

FE simulation
NI-RB simulation

a) b)

d)

Number of Basis Functions: 3

c)

Number of Basis Functions: 3

Number of Basis Functions: 3

Shmin [MPa] SHmax [MPa] 

Sv [MPa]
Shmin SHmax Sv

Figure 7. Investigation of the potential of surrogate models to determine the influence of varying interface depths. Comparison of the

surrogate model accuracy for a) the Shmin-, b) the SHmax-, and c) the Sv-component of the stress tensor. Note that “Sensitivity” denotes the

value of the sensitivity index (section 2.4). The full-order solution are denoted by colored solid lines and the reduced solutions by colored

dashed lines. The different colors represent the stress response for different interface depths. The training data set is indicated with light gray

lines. Furthermore, we show in d) the global SA results.
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4.4 Case 4: Simultaneously Changing Boundary Conditions and Material Properties360

In the previous three scenarios (case 1-3), we investigated the behavior of the surrogate model individually for the three

sources of variability considered in this manuscript. However, in a real-case application, it is unlikely that only one source

of uncertainty is present. Typically all sources of uncertainty occur and can differ in their degree of variability. To evaluate

which consequences this poses in terms of the surrogate, we consider two additional cases. In this section, we account for a

simultaneous variation of both the boundary conditions and the material properties. The case of varying all three sources of365

uncertainty at the same time is presented in the next section.

Analyzing the combined effect of varying the boundary condition and the material properties is of interest for two main

reasons: i) does it yield an increase in complexity and consequently an increase in the dimension of the surrogate, and ii) how

is the SA affected by the increase in variable parameters?

Starting with the first aspect of complexity, we obtain for all three components of the stress tensor the same number of370

basis functions (Figure 8a-c) as for the case of changing only the material properties (case 2). So considering additionally

the boundary conditions next to the material properties does not increase the complexity notable. This might seem counter-

intuitive at first glance since we consider two additional parameters yielding a total amount of 11 parameters. The reason

for this behavior is two-fold: i) the simplicity of the geological model, and ii) the threshold behavior of the POD. We use a

relatively simple benchmark with horizontal horizons to enable a better understanding of the surrogate construction method.375

However, this also means that the model has an underlying low complex behavior which is mirrored in the low number of

basis functions obtained. For more complex models at least a slight increase in the amount of basis functions is expected if

the additional parameters influence the model response. That this is the case, we see later on in the SA. The second aspect is

about the POD threshold. We defined an error tolerance of 10-4 % for the POD. This means that the POD can disregard at most

10-4 % of information content. So, it could happen that for the less complex scenario, the error decreases with the addition380

of the sixth basis function to 10-5 %, whereas it decreases only to 2·10-4 % for the more complex scenario. In that case, both

scenarios would have the same number of basis functions although the complexity impacts the accuracy of the model. Note,

that this is not occurring in our example. Both the scenario of changing material properties and the scenario of varying material

and boundary conditions have comparable accuracies. This means that here, the complexity is not increased by considering in

addition to the material properties also the boundary conditions. However, this is caused by the simplicity of the model and385

will not occur for more complex studies. The reduced solution well captures the full-order response for all three stress tensor

components and we retrieve similar global errors in the case of changing only the material properties.

Switching focus to the sensitivity analysis (Figure 8d), we see no correlations between the boundary values and the different

material properties. This is expected since we consider a linear physical process. This would in general justify a separate

consideration of the two sources of uncertainties. Still, a joint consideration has several advantages. The first benefit concerns390

generalizability. Only for linear applications, no correlations are expected, for nonlinear problems correlations are likely to

occur. So, introducing the joint approach allows for a straightforward extension to nonlinear applications. Furthermore, even
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Figure 8. Investigation of the potential of surrogate models to determine the influence of varying boundary conditions and material properties.

Comparison of the surrogate model accuracy for five randomly chosen realization of the validation data set for a) the Shmin-, b) the SHmax-,

and c) the Sv-component of the stress tensor. Note that “Sensitivity” denotes the value of the sensitivity index (section 2.4). The full-order

solution are denoted by colored solid lines and the reduced solutions by colored dashed lines. The different colors represent the stress

response for different boundary conditions and material properties. The training data set consisting out of 200 samples is indicated with light

gray lines. Furthermore, we show in d) the global SA results.
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for the linear case, the joint approach has the benefit of being able to determine which relative impact the boundary conditions

have with regard to the different material properties.

This is seen in the SA results of Figure 8d, where we obtain a very similar result to the analysis considering only material395

properties. However, we can now determine the rank of the boundary condition values with respect to the Young’s modulus, the

Poisson’s ratio, and the density. The boundary condition along the x-axis has a similar importance than the Young’s modulus of

the crystalline layer for both horizontal components of the stress tensor. The same is true of the other boundary condition in the

case of the SHmax-component of the stress. For the Shmin-component the boundary condition along the y-axis is non-influential

with regard to the stress response. This matches the previously observed behaviors of the scenarios changing only the boundary400

conditions or the material properties. The Sv-component remains entirely gravity-driven and hence no influence of changes in

the boundary conditions is detectable.

4.5 Case 5: Simultaneously Changing Boundary Conditions, Material Properties, and Geometry

Considering the case of simultaneously changing the boundary conditions (using the setup presented in Fig. 6b), material

properties, and the depth of the interfaces, we first observe a slight increase in the number of basis functions compared to the405

case of only changing the geometry (case 3) and the same number of basis function as for the case of changing both the material

properties and boundary conditions (case 4). Also, the global errors are with about 10-18 for the training data set and 10-7 for

the validation data set for the horizontal components of the stress tensor of similar order of magnitude than the previous case

(Figure 9a-c). Only the global error of the validation data set for the vertical stress component is with 10-12 slightly increased

because of the higher complexity of the response. This higher complexity arises from the combined influence of the density410

and interface position as shown in the SA (Figure 9d).

Furthermore, the SA demonstrates that for Shmin, we obtain only minor influences of the interface positions, and for SHmax

we obtain negligible impacts. So for the given variation ranges and model geometry the material properties and boundary

conditions have a higher impact than the geometrical parameters.

4.6 Case Study – Nördlich Lägern415

So far, we focused on a benchmark problem to better illustrate the concepts of surrogate modeling for geomechanical appli-

cations. To demonstrate that the methodology is also applicable to a more realistic setting, we extend our considerations to

a model based on the lithological variability of a potential siting region for radioactive waste Nördlich Lägern in northern

Switzerland. The model is a simplified version of the model of Hergert et al. (2015) with the stratigraphy and their depth

inspired by the well Stadel-3-1 (Crisci et al., 2022a). The model does not have any lateral variation of the topography or layer420

thickness, nor does the units have an inclination, as observed in that region. Therefore, we construct a model (Fig. 10) with an

extend of 2500×2500×1400 m3 with five elements in each horizontal direction (x- and y-direction) and 140 elements in the

vertical direction for each of the 15 layers to ensure a vertical resolution of minimum 3 m. We on purpose use the same number

of elements for each layer to avoid a bias in the sensitivity analysis caused by the layer thickness. To elaborate, consider a

model consisting of two layers, where the top layer has a thickness of 500 m and the base layer has a thickness of 200 m. If we425
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Figure 9. Investigation of the potential of surrogate models to determine the influence of varying boundary conditions, material properties

and the interface depths. The figure shows comparison of the surrogate model accuracy for five randomly chosen realization of the validation

data set for a) the Shmin-component, b) the SHmax-component, and c) the Sv-component of the stress tensor. Note that “Sensitivity” denotes

the value of the sensitivity index (section 2.4). The full-order solution are denoted by colored solid lines and the colored reduced solutions by

dashed lines. The different colors represent the stress response for different boundary conditions, material properties, and interface depths.

The training data set consisting of 200 samples for is indicated with light gray lines. Furthermore, we show in d) the results of the global SA.
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discretize the model with a vertical resolution of 100 m, we require five elements for the first layer and two elements for the

second layer. Calculating the sensitivity indices takes the variation of the stress distribution in each element into consideration.

Consequently, the top layer will have more elements contributing and, because of that, likely a higher impact. By discretizing

the model with an equal number of elements per layer (e.g., five elements for both the top and base layer), we can avoid this

effect. For further information regarding potential biases, we refer to Degen and Wellmann (2024). For this model, we consider430

only variations of the Young’s modulus. We do not consider the variability of the other elastic material properties since the

density is well-known from density logs of boreholes, and both the density and the Poisson’s ratio demonstrated little impact

in previous studies (e.g. Gölke and Coblentz, 1996; Reiter, 2021; Ziegler, 2022). All linear elastic input parameters are listed

in Tab. 2. Regarding the boundary conditions, we follow a similar approach to the previous models. The eastern boundary has

a Dirichlet boundary condition of 0.14 m extension, and the southern boundary has a Dirichlet boundary condition of 1.8 m435

shortening. The top boundary is associated with a zero Neumann boundary condition, and all other boundaries are subjected to

zero Dirichlet boundary conditions normal to the boundary.
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Figure 10. Schematic representation of simplified model based on the well Stadel-3-1, representing the case study of Nördlich Lägern

in Switzerland. The geomechnaical units are the Cenozoic Sediments (CS), Felsenkalke (FK), Schwarzbach Fm. (SB), Villigen Fm (V),

Wildegg Fm. (WD), Herrenwis Fm. (H), Wedelsandstein Fm. (WS), Opalinus clay (O), Staffelegg Fm. (SE), Klettgau Fm. (KG), Bänkerjoch

Fm. (BJ), Schinznach Fm. (SN), Zeglingen Fm. (Z), Kaiseraugust Fm. (K), and the Basement incl. Buntsandstein and Rotliegend (B). The

lateral boundary conditions of the model are a shortening of 1.6 m from the south and an extension of 0.14 m in eastern direction.

The stratigraphic column is inspired by the well Stadel-3-1 and the material properties are based on data from the four bore-

holes Bachs-1-1, Bülach-1-1, Stadel-2-1, and Stadel-3-1 that are presented in Dossiers VI and IX which can be downloaded

from the NAGRA (download at https://nagra.ch/downloads). These are in particular the NAGRA Working Reports NAB 22-04440

(Gonus et al., 2023, Bachs-1), NAB 22-26 (Spillmann et al., 2022, Bülach-1), NAB 22-02 (Crisci et al., 2022b; Gonus et al.,

2022b, Stadel-2) and NAB 22-01 (Crisci et al., 2022a; Gonus et al., 2022a, Stadel-3). Consequently, also the geometrical rep-
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Table 2. Variation ranges of the Young’s modulus (E) and values for the other elastic material properties, as well as the layer thicknesses, for

the case study of Nördlich Lägern. The parameter ranges have been obtained through personal communication and are publicly available in

the technical report NAGRA (2024) by the 15th of May 2025. Note that Fm. denotes Formation. The data on the Young’s moduls is based

on information jointly inferred from four boreholes: Bachs-1-1, Bülach-1-1, Stadel-2-1, and Stadel-3-1 (Crisci et al., 2021, 2022a, b), the

thickness data are derived from well Stadel-3-1 Crisci et al. (2022a).

Layer E [GPa] Emean [GPa] Varability of E [GPa] ν [-] ρ [kg/m3] Layer Thickness [m]

Cenozoic Sediments (CS) 10-20 15 10 0.30 2500 406

Felsenkalke (FK) 19-40 35 21 0.19 2686 127

Schwarzbach Fm. (SB) 15-36 24 21 0.25 2656 25

Villigen Fm. (V) 27-51 39 24 0.21 2685 67

Wildegg Fm. (WD) 14-31 20 17 0.25 2625 71

Herrenwis Fm. (H) 10-23 19 13 0.26 2676 46

Wedelsandstein Fm. (WS) 6-20 10 14 0.29 2306 23

Opalinus clay (O) 10-23 12 13 0.35 2544 123

Staffelegg Fm. (SE) 11-41 23 30 0.24 2573 34

Klettgau Fm. (KG) 11-39 17 28 0.23 2544 30

Bänkerjoch Fm. (BJ) 13-57 23 44 0.20 2625 75

Schinznach Fm. (SN) 18-38 27 20 0.23 2683 73

Zeglingen Fm. (Z) 15-46 26 31 0.20 2800 79

Kaiseraugst Fm. (K) 13-55 19 42 0.27 2664 37

Basement (B) 15-35 25 20 0.23 2479 184

resentation is subjected to low uncertainties, meaning that we do not vary the interface positions for this case study. Lastly, the

boundary conditions are derived from a previous study by Hergert et al. (2015) and remain the same throughout all realizations.

As for the previous section, we first present the approximation quality and other characteristics of the surrogate models445

themselves. For both the surrogate model of the Shmin- (Fig. 11a) and SHmax-component (Fig. 11b), we observe overall a

similar approximation quality as for the benchmark study demonstrating the ability of the approach to be extended to more

complex settings. The highest inaccuracies in the predictions are observed for realizations yielding maximum stress values.

Another interesting aspect is the number of basis functions, indicating the complexity of the parameter space. For both

contributions of the stress tensor, we require 15 basis functions to achieve a POD tolerance of 10-4 %. Taking into account that450

we vary in total 15 Young’s modulus values, this demonstrates generally a low complexity of the models and holds promises

for the extension to higher dimensional parameter spaces. Note that we did not construct a surrogate model for the vertical

stress component since we do not vary the density and hence we obtain no variations of the vertical stress for all realizations.

Shifting to the results of the global SA, presented in Fig. 11c, we note that the Young’s modulus values of all 15 layers

impact the responses of both horizontal stress components.455
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Figure 11. Investigation of the potential of surrogate models for the case study of Nördlich Lägern in Switzerland. Comparison of the

surrogate model accuracy for five randomly chosen realization of the validation data set for a) the Shmin- and b) the SHmax-component of the

stress tensor. Note that “Sensitivity” denotes the value of the sensitivity index (section 2.4). The full-order solution are denoted by colored

solid lines and the reduced solutions by colored dashed lines. The different colors represent the stress response for different Young’s modulus

values. The training data set consisting of 200 samples is indicated with light gray lines. Furthermore, we show the global SA results in c)

non-equal, and d) for equal parameter ranges.
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Consequently, for all following analyses, we would need to take all parameters into account. Although all parameters are

deemed influential, we still observe differences in the amount of influence they have on the model response. For the Shmin-

component, the Young’s modulus of the Bänkerjoch Fm. has the highest impact, followed by the Young’s modulus of the

Kaiseraugst Fm. Also, for the SHmax-component these two formations yield the highest impact on the stress distribution,

although their influences are reversed with respect to the Shmin-component. The main reason for the high influence of these460

two layers is the large variation range in the Young’s module value. Another minor reason is the possible high contrast in the

Young’s module to the adjacent layers partly because of this variation range. To better illustrate the impact of the variations

range, the variability is shown in Tab. 2.

The high influences of the Bänkerjoch and Kaiseraugst formations are followed by the high influences of the Staffelegg,

Klettgau, and Zeglingen formations. All three formations are characterized by variation ranges of about 30 GPa. So, slightly465

lower variation ranges than the previously mentioned formations but higher variation ranges than for the units. This pattern is

also observable for the remaining parameters within the global SA. So, within this global SA, the level of impact is mainly

determined by the variation ranges of the Young’s modulus values. Consequently, the SA results are highly impacted by our

prior knowledge since the different variation ranges are a result of heterogeneities or uncertainties within the layers. However,

naturally, a wrong estimate of these parameter ranges yields a bias in the global SA. To investigate the potential differences470

in the SA, assuming similar heterogeneities and levels of knowledge for the individual layers, we repeated the SA with equal

variation ranges for the Young’s moduli. Therefore, we used the mean values provided in Tab. 2 and applied variation of ±10%.

This yields a shift in the relevance of the different layers for the stress distributions. For both horizontal stress components,

the Villigen Fm. has the highest impact, followed by the Felsenkalke and Schwarzbach formation. The lowest influences arise

from the Wedelsandstein formation. Furthermore, low influences of the Opalinus clay are observed for the Shmin-component.475

Overall the influence of the individual layers in this configuration is mainly determined by the contrast in the Young’s modulus

of the current layer and its adjacent layers.

5 Discussion

Within this study, we present how physics-based machine learning can be used to construct reliable surrogate models to predict

the full stress tensor for a geomechanical model, e.g. for a nuclear waste disposal application. We start the discussion with480

general implications and challenges of surrogate modeling. Afterwards, we provide a comparison of physics-based vs. data-

driven machine learning methods to emphasize the importance of appropriately choosing a surrogate model technique. Finally,

we present application-specific aspects.

5.1 General Implications and Challenges for Surrogate Modeling

An important aspect is the explainability of the generated surrogate models. In the case of the NI-RB method, we perform first485

the POD which produces a number of basis functions. These basis functions are singular vectors characterizing the dominant

physical behavior of the system. The machine learning part is only responsible for determining the weights of these basis
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functions. This has several implications. First, the non-provable part of the model and consequently the non-provable part of

the error is solely restricted to the calculation of the reduced coefficients and is captured by a combination of scalar values.

In addition, the errors that occur are explainable by considering both the physical relationship and the model geometry. As490

an example, in Figure 11b, we observe very small visible deviations between the reduced and full-order models (e.g., for the

orange lines at a depth 1,200 m). Still, these deviations occur in the form of shifts and yield smooth error distributions and

are not very pronounced. On the other hand, the errors of the NN models (as we present in the next section) do not appear in

the entirety of the model and introduce a noisy behavior in the error distribution. This means, they do not follow any physical

relationship, which has been discussed in further detail in Degen et al. (2023).495

In literature (e.g., Degen et al., 2023; Faroughi et al., 2022; Raissi et al., 2019; Willard et al., 2022) physics-based machine

learning is often used to reduce the amount of training data. The idea is that through introducing physical knowledge the amount

of admissible solutions can be decreased and hence less data is required to train the surrogate models. Due to the simplicity

of the presented example, this is a phenomenon that we do not observe. But note that this will become important for real-case

studies.500

In this manuscript, we investigate three sources of variability: i) the boundary conditions, ii) the material properties, and iii)

the geometry. As demonstrated the NI-RB method performs very well in constructing physically consistent surrogate models

for considering variations of boundary conditions and material properties. The variability in the layer depth proves to be

more challenging. This is especially pronounced for the presented linear elastic models since the high contrast in the material

properties yields shifts in the stress distribution. However, this phenomenon occurs also for other applications, for instance, for505

hydrological studies, where the permeability contrast is large. So, this demonstrates the importance to reformulate the problem

as presented in Section 4.3.

Reduced basis methods using Proper Orthogonal Decomposition and Support Vector Machines (Zhao, 2021), Recurrent

Neural Networks (Kumar et al., 2021), or the Empirical Cubature method (Guo et al., 2024) as the projection method have

already been used for mechanical applications, even considering the stress distribution. However, in the example presented510

in this manuscript, the high contrast in the linear elastic material properties (mainly Young’s modulus, but also Poission’s

ratio and density) yields non-smooth distributions which result in consequences not discussed before. Furthermore, we also

consider the variation of the geometrical parameters, which with the exception of Guo et al. (2024) have not been taken into

account before. Note that Guo et al. (2024) consider geometrical variations for the context of two-scale simulations yielding

very different requirements in terms of the stress conditions.515

Another aspect we want to highlight is the global error. As seen for the case of changing geometrical parameters with

changing number of elements per layer (Figure 6a), the global errors are still low with 10-7 for the scaled training and 10-4 for

the validation data set of the Shmin-component despite the inaccuracies at the interface location. This demonstrated the general

problem of global error estimators. If there is a small region that has large deviations and the rest of the model regions are well

fitted, this does not become apparent in the global error since this error considers an average over all realizations and the entire520

model domain. The other question is why the problem is more pronounced at the upper than the lower interface. Looking at the
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stress distributions, we see larger gaps between the different stress realizations at the upper than the lower interface. Hence, in

the case of the lower interface, better distributed information is available to determine the reduced solutions.

A major advantage of the RB method is the computational gain by using surrogate models instead of full-order model eval-

uations. Therefore, we briefly want to discuss the aspect of computational costs. The computational cost for all five scenarios525

is comparable with an execution time of about 3 min for a single finite element solution, in contrast, an evaluation of the sur-

rogate required 0.1 ms yielding a speed-up of six orders of magnitude. The speed-up does not consider the computational time

during the offline stage. So, we want to extend the discussion by providing the computational cost for the construction of the

surrogate. In this work, we used between 100 to 200 realizations for the training data set, and up to 20 realizations for the val-

idation data set. Hence, the most expensive surrogate model construction requires 220 realizations, with 3 min per realization530

this yields of cost of about 11 h. In addition to this cost comes the cost of performing the POD and the GPR, which are in the

order of seconds. Since this is negligible with respect to the computational cost of constructing the data sets, we will discard

this cost in the following. Consequently, the total construction cost of the surrogate model is equal to the cost of about 220

model evaluations. Comparing this to the over 50 million model evaluations required for the sensitivity analyses combined, the

surrogate quickly pays off. It is also worth noting that the construction of the data sets is “embarrassingly” parallel, meaning535

that all model runs are completely independent. Therefore, parallel computing can be used to reduce the time. This is important

because methods such as Markov chain Monte Carlo, used to quantify uncertainties, are not fully parallelizable. So, we not

only save computation time but also shift the expensive computation to a stage where we can fully exploit parallel hardware

infrastructures. This aspect, as well as how we can exploit graphics processing units is already discussed in detail (Degen et al.,

2023). Another advantage is the non-intrusive nature of the algorithm, which allows for straightforward inclusion of varying540

forward solvers.

The geometry considered in this study is simple, to focus on the surrogate model construction itself and its implications

for geomechanical modeling. Both the non-intrusive and intrusive versions of the reduced basis method have been applied

to geothermal real-case studies with a complex geometrical setup, demonstrating a similar performance as presented in this

study (Degen and Cacace, 2021; Degen et al., 2021a, b, 2022a, b, c). This implies, that especially for fixed geometries, no545

degradation in the surrogate model quality or performance is expected. Also, considering variations for complex geometries

is possible. However, one should keep in mind that the base assumption for the method is the existence of a low-dimensional

parameter space. Hence, if too many geometrical parameters are varied at once, this assumption breaks down, and the approach

will become inefficient. As mentioned before, the non-intrusive reduced basis method has been developed in order to provide

an efficient extension of the RB method for nonlinear applications (Hesthaven and Ubbiali, 2018). In contrast to this study,550

Degen et al. (2022a) consider fully coupled thermo-hydro-mechanical simulations, demonstrating that the current approach

is also extendable to nonlinear and coupled relationships. The implications for nonlinear applications are further detailed in

Degen et al. (2023) for different subsurface applications, including the highly nonlinear Richard’s equations. The results of

these studies demonstrate great promise also for nonlinear geomechanical applications, which is especially important when

considering potential extensions to elasto-plasticity.555
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5.2 Physics-based vs. Data-Driven Machine Learning Techniques

To illustrate the differences between the data-driven and the presented physics-based machine learning method, we constructed

another surrogate model for the case of simultaneously changing boundary conditions and material properties (case 4) using

a neural network (NN). The results are shown in Figure 12 and yield several observations. First, the global errors of both

approaches differ by orders of magnitude for both the training and the validation data set. For the training data set, we achieve560

an error in the order of 10-18 for the non-intrusive RB method and 10-6 for the NN. We set for the POD a tolerance of 10-4

%. Since we use the root mean square error for the evaluation of the surrogate that means the NN approach is two orders of

magnitude less accurate than originally desired. This behavior is – albeit not as extreme – also observable for the validation

data set, where we have errors in the order of 10-7 for the NI-RB method and 10-6 for the NN.

The difference in the error behavior is especially prominent when focusing not on the global errors but on the local dis-565

tributions. Therefore, we plot in Figure 12b the reduced solutions of the data-driven surrogate and the full solutions. At first

glance, the approximation quality seems to be similar between the two surrogate models. However, by having a closer look

major differences are observable. For the NI-RB surrogates the solutions are exactly on top of the full-order solutions making

them non-distinguishable by eye. In contrast, for the NN surrogate differences are directly visible. This can be best observed

in the base layer for the red and blue lines. For the blue line, we obtain an underestimation of the stress response in the base570

layer, whereas for the red case the stress response is overestimated. This becomes more prominent by observing the differences

between the full-order realizations and the NN solutions in Fig. 12d. But more interesting are the different overall responses

of both surrogate models. The NI-RB reduced solutions are straight lines corresponding to the physical response. For the NN

surrogate, we obtain mostly straight lines but with superimposed oscillations. To better highlight the differences, we plot in

addition the differences between the non-intrusive RB and the full-order solutions in Fig. 12c, and the differences between the575

NN and full-order solutions in Fig. 12d. The oscillations caused by the NN are not explainable from a physical perspective

and are a result of treating the solutions in a purely data-driven manner within a statistical method. This demonstrates the

fundamental difference between both approaches even without considering aspects such as the amount of available data. The

NI-RB method produces solutions that follow the physical behavior whereas the NN model produces results that statistically

vary around this general physical response. In a presented trivial case, this does not matter. However, in more complex cases,580

these differences can be significant and crucial.

A comparison between the different physics-based machine learning methods, for instance, between the non-intrusive re-

duced basis method and physics-informed neural networks (PINNs), is also interesting. In their original formulation, PINNs

are designed for state estimation problems (Raissi et al., 2019). This makes a direct comparison of both approaches challenging

since our study focuses on parameter estimation applications. Nonetheless, the error behavior of the PINN is expected to be585

similar to the one of the NN because of the architectural design of PINNs, as discussed in detail in Degen et al. (2023). A

detailed comparison of the NI-RB method with other surrogate modeling approaches is detailed in previous studies (Degen

et al., 2023; Santoso et al., 2022), and since no conceptual changes are expected not repeated in this study.
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Figure 12. Comparison of the surrogate models constructed with a) the non-intrusive RB method, b) a neural network, c) the difference

between the non-intrusive RB solutions and the full-order solutions, and d) the difference between the NN solutions and the full-order

solutions for five randomly chosen realization of the validation data set for the case of changing simultaneously the boundary conditions

and material properties. The full-order solution are denoted by colored solid lines and the reduced solutions by colored dashed lines. The

different colors represent the stress response for different boundary conditions and material properties.
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5.3 Implications for Nuclear Waste Disposal Applications

The subsurface stress distribution is of major importance in applications such as nuclear waste disposal, geothermal energy590

production, or subsurface (interim) storage of H2 or CO2. For these applications not only the cost of the numerical simulations

but also their trustworthiness is essential since predictions have to be made over long periods of time and – in particular in

the case of nuclear waste storage – false predictions can have major environmental impacts. The sparsity and uncertainty of

available stress magnitude data, geological structures, and rock properties is a major challenge for the in-situ stress prediction

(e.g., Hergert et al., 2015; Morawietz et al., 2020; Ziegler and Heidbach, 2020). The uncertainties in the in-situ stress state will595

then be transmitted to the results of forward models that predict the evolution of the stress state during e.g., the excavation

stage of the repository. In particular, long-term subsurface usage such as nuclear waste storage has to account for a broad range

of different future scenarios which in turn drive the uncertainties. Therefore, the uncertainties of the initial stress prediction

should be as small as possible.

We demonstrated the possibility to extend the methodology to more complex settings through the case study of Nördlich600

Lägern. An interesting aspect of the global SAs for this case study is the relative low impact of the Opalinus clay for the

SHmax-component, which is the target horizon for the future nuclear waste disposal site. This low impact means, that within the

tested variations ranges, changes in the Young’s modulus of the Opalinus clay do impact the maximum stress contribution less

than most other layers. The largest impact arises from the stiff units. This is an important finding since it provides information

about the impact of uncertainties on the planning phase of the nuclear waste disposal site. In the current study, we focus on605

the conceptual analyses of dominant physical processes and parameters in the form of sensitivity analyses. We do not consider

real data on the stress magnitudes originating, for instance, from downhole measurements. This presents an interesting exten-

sion for future studies, where these measurements can be incorporated in the form of probabilistic uncertainty quantification

methods, such as Markov chain Monte Carlo. This is interesting because many current studies consider best-case and worst-

case scenarios only. A probabilistic uncertainty quantification approach allows to provide not only the most likely scenario610

but also the associated range of uncertainties and their probability to be encountered. This is important for the planning of

nuclear waste disposal sites since best and worst-case analyses tend to estimate extreme values that have a low probability to

be encountered. With a revised estimate of the uncertainties, the planning and construction might be improved, for instance,

in terms of resource usage. Other potential future extensions include the incorporation of both global sensitivity analyses and

uncertainty quantification into decision-making processes.615

The last aspect, we want to discuss concerns the sensitivity analysis. We investigate two scenarios, sensitivity analysis using

i) non-equal parameter ranges and ii) equal parameter ranges. To understand why these different analyses were conducted it is

important to note that as with every model, sensitivity analyses are designed with a specific purpose in mind. This purpose is

defined in the quantity of interest and means that an SA is not easily reusable if the scientific question changes. In a typical

application, we are interested in which model parameters impact the responses the most. So, in our case, whether the Young’s620

modulus, the Poisson’s ratio, or the density has the highest impact on the stress distribution. In a realistic case study, the relative

variations ranges of these various material properties may differ. That is the case because some properties can be determined
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with greater accuracy than others and properties such as the density have lower physically plausible variation ranges than,

for instance, the Young’s modulus. This is a naturally occurring phenomenon and we want to incorporate these into the SA.

Therefore, typically the possible variation ranges are determined with respect to this prior knowledge yielding an SA with625

unequal parameter ranges.

Still, we are not always aiming to perform a SA to explain the behavior of a specific test site. In some cases, we are interested

in what physical processes are driving the system. In this case, we would like to change the setup of the SA. To understand the

driving forces independent of a specific site it might be beneficial to consider equal parameter ranges. This removes the bias

that is introduced by the unequal parameter distributions. However, note that in most cases this bias is desired since it reflects630

the effects encountered in nature.

6 Conclusion

To conclude, we presented a physics-based machine learning model that can efficiently construct trustworthy surrogate models.

The non-intrusive RB method enables evaluations that take less than a millisecond, whereas the full-order solves are in the range

of minutes. This yields a speed-up of six orders of magnitude demonstrating the use of these surrogate models for probabilistic635

uncertainty quantification, global sensitivity analysis, and parameter estimation studies in general.

In contrast to data-driven surrogates, the model follows the physical relationship and is physically explainable. This is of

great importance for predictions and decision-making processes, as demonstrated in the highly sensitive case of nuclear waste

disposal.

The surrogate models allow a simultaneous evaluation of both the boundary conditions and the material properties without640

losing relevant precision with respect to the full-order solutions. In addition, the incorporation of geometrical variations is

possible without degrading the quality of the surrogate model. Therefore, this work lays the foundation for a joint consideration

of all three sources of uncertainty for robust stress predictions.

Code and data availability. The training and validation datasets, their associated model parameters, and the non-intrusive RB and neural
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