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Abstract. Model predictions are important to assess the subsurface state distributions (such as the stress), which are essential

to, for instance, determine the location of potential nuclear waste disposal sites. Providing these predictions with quantified
uncertainties often requires a large number of simulations, which is difficult due to the high CPU time needed. One possibility

for addressing the computational burden is to use surrogate models. Purely data-driven approaches face challenges when

5 operating in data-sparse application fields such as geomechanical modeling or producing interpretable models. The latter
aspect is critical for applications such as nuclear waste disposal, where it is essential to provide trustworthy predictions. To
overcome the challenge of trustworthiness, we propose the usage of a novel hybrid machine learning method, namely the
non-intrusive reduced basis method as a surrogate model. This method resolves both of the above challenges while being
orders of magnitude faster than classical finite element simulations. In the paper, we demonstrate the usage of the non-intrusive

10 reduced basis method for 3-D geomechanical-numerical modeling with a comprehensive sensitivity assessment. The usage of
these surrogate geomechanical models yields a speed-up of six orders of magnitude while maintaining global errors in the
range of less than 0.01%. Because of this enormous reduction in computation time, computationally demanding methods such

as global sensitivity analyses, which provide valuable information about the contribution of the various model parameters to
stress variability, become feasible. The opportunities of these added benefits are demonstrated with a benchmark example and

15 a simplified study for a siting region for a potential nuclear waste repository in Nordlich Lagern (Switzerland).

1 Introduction

Knowledge of the crustal stress field is of key importance for the safe usage of the subsurface, for example, for geothermal
exploitation or storage of energy, CO, and nuclear waste (Blocher et al., 2018; Henk, 2008; Hergert et al., 2015; Smart et al.,
2014). The importance is expressed in the unwanted release of stored elastic energy during anthropogenic utilization by means

20 of failure of boreholes (Schmitt et al., 2012; Tingay et al., 2008), caverns and tunnels (Brady and Brown, 2006), subsidence
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or induced seismic events (Ellsworth, 2013; Segall and Fitzgerald, 1998; Ziegler et al., 2015). Thus, to develop strategies
that reduce the risks of induced hazards and prevent failure due to man-made interventions in the subsurface, it is important
to understand the undisturbed 3-D in-situ stress state (Gaucher et al., 2015). However, the in-situ stress state is challenging
to quantify. Stress data are rare, often subject to large uncertainties, and describe, in most cases, only a subset of the six
independent components of the symmetric 2" rank tensor that formally describes the stress state at an arbitrary point in the
subsurface (Amadei and Stephansson, 1997; Desroches et al., 2021a; Heidbach et al., 2018; Morawietz et al., 2020).

To obtain a continuous description of the 3-D stress tensor in a given rock volume, geomechanical-numerical models are
employed. These models usually use the finite element method to solve the partial differential equation that describes the
equilibrium of forces (e.g. Ahlers et al., 2021; Fischer and Henk, 2013; Lecampion and Lei, 2010; Reiter and Heidbach,
2014; Singha and Chatterjee, 2015; van Wees et al., 2018). For the model input, we have to describe the rock properties,
the boundary conditions, and the subsurface geological structures. However, knowledge about these parameters is usually
incomplete and consequently associated with uncertainties (e.g. Hergert et al., 2015; Ziegler and Heidbach, 2020). This means
that for providing reliable model predictions the information regarding these parameter variabilities needs to be included and
assessed.

Such tasks are commonly achieved through global sensitivity analyses (SA, Degen et al., 2021b, a; Saltelli et al., 2019)
and uncertainty quantification methods (Degen et al., 2022c, a; Saltelli et al., 2019). Both methods have the requirement of
numerous model evaluations in common, which poses major challenges when each model evaluation is computationally costly.
One way to circumvent the issue is the use of surrogate models (also referred to as meta or reduced models), i.e., low-order
representations of the original model that are significantly faster to compute. Many surrogate model construction techniques
exist, ranging from physics-based to data-driven approaches (e.g. Benner et al., 2015; Degen et al., 2023; Hesthaven et al.,
2016; Jordan and Mitchell, 2015; Kotsiantis et al., 2007; Mahesh, 2020). Nonetheless, every surrogate model needs to be
evaluated concerning its trustworthiness and explainability. This is important for several reasons: i) if we use the surrogate
in subsequent analyses such as global sensitivity analyses we need to ensure that the surrogate represents the original model
otherwise the obtained sensitivities are not representative, ii) if the model results are used for decision-making processes, they
need to be reliable and robust.

Different techniques exist for the construction of surrogate models, generally subdivided into three categories. In the follow-

ing we briefly present the various techniques, explaining their key advantages and disadvantages.

1. One class of techniques are data-driven machine learning approaches, which recently gained attention in the construction
of surrogate models (e.g. Bergen et al., 2019; Degen et al., 2023; Li et al., 2023; Swischuk et al., 2019; Willcox et al.,
2021). This is thanks to their capabilities of well approximating nonlinear applications, their straightforward usage
because of their black box and non-intrusive nature (meaning that they do not need direct access to the numerical solver),
and their availability in software frameworks such as PyTorch (Paszke et al., 2019) and TensorFlow (Abadi et al., 2015).
Nonetheless, the black box nature has also the disadvantage of yielding non-explainable models that do not preserve the

governing physical equations, making their utilization challenging in terms of reliability.
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2. Physics-based methods such as the reduced basis method or the proper orthogonal decomposition have the advantage of
preserving the physics (Benner et al., 2015; Degen et al., 2020; Hesthaven et al., 2016; Quarteroni et al., 2015; Rozza
et al., 2008). The reduced basis method has been developed in the field of applied mathematics and has been used
for various applications, such as transport and continuum mechanics (e.g. Benner et al., 2015; Hesthaven et al., 2016;
Quarteroni et al., 2015; Rozza et al., 2008) and also for large-scale geothermal applications (Degen et al., 2021b, 2022c).
However, they reach their limits in efficiently approximating highly nonlinear problems (Degen et al., 2023; Hesthaven
and Ubbiali, 2018; Wang et al., 2019, see also Section 2).

3. To overcome the limitations of both individual approaches, physics-based machine learning methods are introduced,
which combine data-driven and physics-based techniques. Several physics-based machine learning methods are avail-
able and they have different implications concerning the question of explainable surrogate models (e.g., Degen et al.,
2023; Faroughi et al., 2022; Willard et al., 2022). In this study, we use the non-intrusive reduced basis (NI-RB) method
(Hesthaven and Ubbiali, 2018; Swischuk et al., 2019) for the construction of the surrogate models for geomechanical
applications and demonstrate how it fulfills the criteria of explainable and reliable surrogate models, in contrast to other

physics-based machine learning techniques.

This paper focuses on two main aspects: i) the combined consideration of different sources of uncertainty such as stress mag-
nitude data records used for calibration, material properties, and subsurface geometry, and ii) the consideration of rapid changes
in the state distribution. Especially the later part distinguishes the work significantly from previous studies in geothermal appli-
cations (e.g., Degen et al., 2022a), where only smooth state variable distributions of the pore pressure and/or temperature have
been considered so far. Depending on the permeability contrast, the pore pressure exhibits rapid changes as well. However,
these scenarios have not yet been investigated with respect to the non-intrusive reduced basis method. Following a benchmark
example the workflow is applied to a data set from northern Switzerland, where an underground repository for nuclear waste

is planned.

2 Background and Methods

In the following, we present the governing equations for geomechanical-numerical modeling presented in this manuscript.
Afterwards, we introduce the non-intrusive reduced basis method, which is responsible for constructing the surrogate models.
Additionally, we explain the concept of global sensitivity analyses, which are used to investigate the influence of the model

parameters.
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2.1 Subsurface stress state

The stress state in the subsurface is usually described by the symmetric 2" rank stress tensor 0ij

Oxx Ogzy Ogxz
Oij = | Oyz  Oyy Oyz M)

Ozxz Ozy Ozz

with six independent components — the three normal stresses 0., 0yy, and o, as well as three shear stresses 0,y = 0y,
Oyz = Oy, and 0,5 = 0,,. Commonly, instead of the full stress tensor, the stress state is referred to in its main axis system

which is a rotation of the stress tensor in a way that all shear stresses dissipate and only normal stresses remain so that

S 0 0
S=[0 S, 0. 2
0 0 S

with the principal stress components S1, Sz, and S3 that are perpendicular to each other but arbitrarily oriented in space.
A common assumption in upper crustal geomechanics is that one of the principal stress axes is vertical as a result of the
overburden which can then be referred to as .S, (Zoback, 2007). The other two principal stress axes are then by definition
horizontal and called the maximum and minimum horizontal stress Symax and Shmin, respectively. Then the stress state can be
fully described by four variables only: The magnitudes of S, Sumax, and Shmin as well as the orientation of one of the two
horizontal stress components. This is then called the reduced stress tensor (Zoback, 2007).

Information on the orientation of Sy, is available from a variety of stress indicators that are e.g. compiled in the World
Stress Map (Heidbach et al., 2018). Stress magnitude data is less frequently available, sparse, and often of little quality (Moraw-
ietz et al., 2020). However, in particular, the stress magnitudes are important for many subsurface applications. If detailed
information on the in-situ stress state is required, 3-D geomechanical-numerical modeling is applied in order to estimate the
stress state in a volume of interest based on few data records (e.g. Fischer and Henk, 2013; Lecampion and Lei, 2010; Singha

and Chatterjee, 2015; van Wees et al., 2018; Ziegler et al., 2016).
2.2 Governing Equations

The modeling of the in-situ stress state is conducted under the assumption of a linear elastic upper crust as the governing
constitutive equation (Reiter and Heidbach, 2014; Hergert et al., 2015; Singha and Chatterjee, 2015) and no acceleration
except for gravity. The required material properties are thus the Young’s modulus (E), the Poisson’s ratio (v), and the density

(p). We derive the total stress o from the momentum balance (Cacace and Jacquey, 2017):
V-o+pg=0, 3)

where p is the density, and g the gravity acceleration. The numerical forward simulations are performed in GOLEM (Cacace and

Jacquey, 2017), which is an open-source high-performance finite element software based on the MOOSE framework (Lindsay
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etal., 2022). The result is the full stress tensor o;; at discrete locations throughout the model volume. This information is used
to derive scalar values such as individual components from the reduced stress tensor or the slip tendency of faults (Rockel et al.,
2022). Furthermore, we consider the following constitutive linear elastic relationships:

g Et
E= , and =20 4)
Eaxial Eaxial

Here, 42141, and €4yqn5, are the axial and transverses strain, respectively.

The model geometry is usually oriented in a way that the boundaries are parallel and perpendicular to the orientation of
Stmax and Spmin (Fig. 1). The stress state is introduced to the model using displacement boundary conditions (Dirichlet-type)
on the lateral boundaries of the model. The magnitude of displacements is adapted in a way that the resulting stress magnitudes
(SHmax and Spmin) match observed data records (Reiter and Heidbach, 2014; Ziegler and Heidbach, 2020). This process is
referred to as the calibration of the model. It is of an iterative nature or aided by the software tool FAST Calibration (Ziegler

etal., 2023).

X

Figure 1. The model setup with the Cartesian model coordinate system (x and y axes) and the coordinate system used for application of
boundary conditions (x~ and y~ axes) perpendicular to the model boundaries and the orientations of Skmax and Shmin, respectively. The
boundary conditions (Dirichlect-type) are indicated by the bold arrows (prescribed displacements) and rollers that indicate a zero displace-

ment perpendicular to the model boundary.

2.3 Non-Intrusive Reduced Basis Method

In this work, we evaluate the trustworthiness of geomechanical surrogate models for use in applications such as nuclear waste
disposal. Note that we focus on the construction of surrogate models for the Shmin, Sumax, and Sy components. For better

illustration of the general concepts, we assume that the material properties are homogeneous and isotropic within each layer.
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However, the presented concepts are not restricted to these assumptions. Further details regarding the model setup are listed
in section 3. For the purpose of the surrogate model construction, we use the non-intrusive reduced basis (NI-RB) method to
construct the surrogate models (Hesthaven and Ubbiali, 2018; Swischuk et al., 2019; Wang et al., 2019). The NI-RB method
combines physics-based and data-driven approaches to provide reliable predictions even for complex nonlinear and hyperbolic
partial differential equations (PDEs).

The NI-RB method is most advantageous in the many-query or real-time context, so if either many and/or fast model
evaluations are required (Benner et al., 2015; Hesthaven and Ubbiali, 2018; Hesthaven et al., 2016). To ensure this, the method
is divided into two stages: the offline and online stages, as illustrated in Fig. 2. During the offline stage, the training data is
generated and the surrogate model is constructed. This stage is computationally expensive since it requires several full-order
solutions of the model, as we explain in the next paragraph. However, it needs to be performed only once. On the other hand,
during the following online stage, the surrogate model is evaluated. This is a computationally fast procedure allowing numerous

evaluations of the surrogate model in a short amount of time (Benner et al., 2015; Hesthaven and Ubbiali, 2018).
2.3.1 Offline Stage

The construction of the surrogate model in the offline stage is also a two-step procedure, which is preceded by step zero where
the model parameters for the full-order solutions are determined (step O in Fig. 2). In our case, we use a quasi-random Latin-
Hypercube sampling strategy (Loh, 1996) for the generation of the 100 to 200 training snapshots with the parameter ranges
provided in Tab. 1. These snapshots are combinations of different geometries, rock properties, and boundary conditions, as
shown in Fig. 2.

In the first step (Fig. 2) of the offline stage, the basis functions of the surrogate model are calculated by performing a proper
orthogonal decomposition (POD). They capture the characteristic physical behaviour of the model by regarding the models
response to different properties provided by the snapshots. In order to ensure an efficient execution of both the POD and
machine learning stage, we scale the input parameters as well as the data sets. The input parameters are transformed using
z-score normalization, resulting in a mean of zero and a standard deviation of one The training data is scaled with a min-
max scaling, taking the maximum and minimum values which yields a data set being distributed between zero and one. The
basis functions correspond to the most influential singular vectors (Hesthaven and Ubbiali, 2018). For defining this, the energy

criterion is used (Guo and Hesthaven, 2019; Swischuk et al., 2019):

T 2
ik o )

IAEPY;

where r corresponds to the dimension of the reduced model, A to the singular value, N to the total number of samples, and € to
the desired accuracy of the surrogate. Since ¢ is a user-defined value, the quality of the surrogate is adjustable to the application.
In our case studies, we set the tolerance e to maintain 10 % of the information content to ensure surrogate models that well
represent the full-order solutions. This tolerance is application-specific and based on the experience of previous studies (Degen

et al., 2023, 2022a, 2020).
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Figure 2. Schematic representation of the offline and online procedure for the NI-RB method, including the different steps required for the
model construction in the offline phase. Note that uy, denotes the reduced solution, x the model parameters, r the reduced dimension, ¢ the

basis functions, 0y, the reduced coefficients, N the total number of samples, and n the number of basis functions.

The resulting surrogate model wy, is a linear combination of basis function ¢ determined in step 1 and reduced coefficients
Grb:

wo () =Y 05 (1) € Vi ©)
=1

Here, p refers to the model parameters, and Vj;, to the reduced space. The determination of these coefficients is the second
step of the offline phase, which is classically performed by a Galerkin projection (Benner et al., 2015; Hesthaven et al., 2016;
Quarteroni et al., 2015). However, to allow also for a later extension to nonlinear applications, we use in this study machine
learning methods to determine the coefficients instead (step 2 in Fig. 2). This possible extension to the nonlinear setting is

shown in several studies (Degen et al., 2022a; Hesthaven and Ubbiali, 2018; Swischuk et al., 2019). In the present study,
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we use Gaussian Process Regression (GPR, Schulz et al., 2018) as the machine learning method, which works better than
neural networks in a linear setting since fewer hyperparameters need to be determined. We use anisotropic radial basis function
kernels with an initial length scale of 1, which is optimized for each normalized model parameter . within the ranges of 10~ and
10°. The GPR computations are executed with Scikit-learn (Pedregosa et al., 2011). The input for the GPR machine learning
algorithm is the product of the basis functions and the training snapshots. The basis functions v provide the characteristic
behavior of the model. The training snapshots are a controlled environment with known p. This allows the GPR to derive the
reduced coefficients 6y, that complete the mapping between the input and output space since both are known for the training

data.
2.3.2 Online Stage

Once the surrogate model is constructed, we have a flexible and fast performing replacement of the original high-dimensional
problem, which can be used in subsequent analyses. Hence, new solutions for any desired combination of model parameters
1 can be computed within the predefined parameter ranges (Fig. 2). To achieve this, we need to determine the corresponding
reduced coefficients over the machine learning model and compute the associated solution by multiplying the coefficients
and basis functions, as shown in Eq. 6. Note that only the coefficients have to be calculated for new combinations of model
parameters. The basis functions remain the same throughout all realizations. This yields a great computational gain, allowing

for rapid evaluations in, for instance, global sensitivity analyses or uncertainty quantification methods.
2.4 Global Sensitivity Analysis

The purpose of a sensitivity analysis (SA) is to investigate to which extent the model parameters influence the model response.
This is helpful in determining which parameters to focus on in an in-depth study. In this study, the model parameters of interest
are the value of the boundary conditions, the material properties, and the depth of the layer interfaces. The model response that
we evaluate is the subsurface stress distribution.

In general two types of sensitivity analyses are distinguished: local and global analyses (e.g., Degen et al., 2021b; Degen and
Wellmann, 2024; Sobol, 2001; Razavi and Gupta, 2015; Sarrazin et al., 2016; Song et al., 2015; Wainwright et al., 2014). The
local SA has the advantage of requiring only very few model evaluations but the disadvantage of not considering parameter
correlations, and investigating the influence of the model parameters only in the vicinity of a reference parameter. In contrast,
a global SA investigates the entire parameter space and can determine parameter correlations if, for instance, a variance-
based method is chosen. However, this comes at the cost of requiring numerous model evaluations, which makes the method
computationally costly (Degen et al., 2021b; Degen and Wellmann, 2024; Saltelli et al., 2019; Sobol, 2001; Wainwright et al.,
2014). This is the reason, why we propose the use of surrogate models for global sensitivity analyses.

We use the variance-based Sobol sensitivity analysis with a Saltelli sampler (Saltelli, 2002; Saltelli et al., 2010; Sobol, 2001).
For the analyses of the benchmark example, we investigate the influence of up to 13 parameters (Young’s modulus, density,
Poisson’s ratio of all three layers, the values of the two displacement boundary conditions, and the two interface positions,

see Figure 3). In the case of the simplified case study of Nordlich Ligern, we investigate the Young’s modulus of each layer
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yielding 15 parameters. For each of these up to 15 parameters, we generate 2! samples, which is equal to 131,072. Note that
we always need 2" samples per parameter to ensure the convergence of the sampler. n can be any positive number and is
as mentioned before for this study equal to 17. This number was determined through convergence tests. Because of the used
sampler, the total number of forward evaluations per SA is (n- (2D 4+ 2)), where D is the number of parameters. Since we
perform 21 global SAs for up to 15 parameters, we require a total of 50,069,504 model evaluations for all analyses combined.
Further details regarding the SAs are presented in the individual result sections.

For the different global SAs, we present first-order and total-order sensitivity indices. First-order indices describe the in-
fluence arising from the model parameters themselves, which are determined by the variance of the model parameter divided
by the total variance that regards all model parameters variability. Total-order contributions contain the influence of the model
parameters and their correlations to other parameters. For the sensitivity analysis, we need to define a threshold above which
parameters are deemed influential. There is no general way of determining this threshold. For the purpose of this study, we set
it to 102 since values below this threshold would be difficult to validate against typical in-situ stress measurement accuracies
(Desroches et al., 2021b; Martin, 2007; Morawietz et al., 2020). This value is also in accordance with threshold values typi-
cally employed in literature (Cosenza et al., 2013; Degen et al., 2021a, b; Degen and Wellmann, 2024; Sin et al., 2011; Tang
et al., 2006; Vanrolleghem et al., 2015). The threshold is a dimensionless number, which is determined by the division of two

variances, for further details regarding the threshold itself and its determination, we refer to Degen and Wellmann (2024).

3 Synthetic Model

We consider a three-layer model to investigate systematically the potential of the NI-RB method to construct reliable surrogate
models for representing the subsurface stress distribution. The model has an extent of 10 km in both the x- and y-direction and
six kilometers in z-direction (Fig. 3). For the discretization, we consider hexahedral elements. In both the x- and y-direction,
we have a model resolution of 400 m and in the z-direction a resolution of 10 m. The much higher resolution of the vertical
component is chosen to allow considering geometrical uncertainties, i.e. uncertainties in the depth of geological horizons. The
three layers are lateral homogenous and equally spaced, where the top layer consists of limestone, the middle layer of clay, and
the lowest layer is a crystalline unit. Thus, Sy, Symax, and Simin are indeed the principal stresses of the modeled total stress.

Throughout the study, we allow variations for the boundary conditions, the material properties, and the interface depths. For
the displacement in the y-direction (northern boundary), we apply a Dirichlet boundary condition with values varying between
four to six meters shortening, whereas the variations for the z-direction range from 0.2 m to 0.6 m (eastern boundary). Different
boundary conditions are needed to ensure reasonable variations of the stress magnitudes as observed in data records. The top
boundary is assigned with a zero Neumann boundary condition, and all remaining boundaries are subjected to zero Dirichlet
boundary conditions normal to the boundary (roller boundary conditions). The material properties are varied according to the
expected uncertainties for the corresponding lithology. The depth of geological horizons can be varied by 4= 200m.

We consider five cases: i) changing boundary conditions, ii) changing material properties, iii) changing interface positions,

iv) simultaneously changing boundary conditions and material properties, and iv) changing all three sources of uncertainty.



Table 1. Variation ranges of the input parameters for all five cases. Note that || = and || y denote the displacement for the boundary condition
in the z- and y-axis, respectively. Furthermore, “upper” denotes the interface between the limestone and clay layer, and “lower” the interface
between the clay and crystalline layer. The parameter ranges have been chosen to be representative for nuclear waste disposal applications
(Crisci et al., 2022a, b; Gonus et al., 2022a, b, 2023; Spillmann et al., 2022), the thickness data are from Crisci et al. (2022a). The Young’s

modulus of the crystalline layers was extended beyond that range to account also for other subsurface engineering applications.

Layer ‘ E [GPa] ‘ v [-] ‘ p [kg/m?] ‘ || x [m] ‘ || y [m] ‘ upper [m] lower [m]
Case 1: Changing Boundary Conditions
Limestone 25 0.21 2600
Clay 15 0.34 2400 0.2-0.6 | 4.0-6.0 -2000 -4000
Crystalline (Basement) 60 0.25 2800
Case 2: Changing Material Properties
Limestone 20-40 0.18-0.23 | 2500-2700
Clay 10-25 0.30-0.38 | 2300-2500 0.5 5.0 -2000 -4000

Crystalline (Basement) 30-80 0.20-0.30 | 2700-2900

Case 3: Changing Geometry

Limestone 25 0.21 2600
Clay 15 0.34 2400 0.5 5.0 -1800 to -2200 | -3800 to-4200
Crystalline (Basement) 60 0.25 2800
Case 4: Changing Boundary Conditions & Material Properties
Limestone 20-40 0.18-0.23 | 2500-2700
Clay 10-25 0.30-0.38 | 2300-2500 | 0.2-0.6 | 4.0-6.0 -2000 -4000

Crystalline (Basement) 30-80 0.20-0.30 | 2700-2900

Case 5: Changing Boundary Conditions & Material Properties & Geometry

Limestone 20-40 0.18-0.23 | 2500-2700

Clay 10-25 0.30-0.38 | 2300-2500 | 0.2-0.6 | 4.0-6.0 | -1800 to -2200 | -3800 to -4200
Crystalline (Basement) 30-80 0.20-0.30 | 2700-2900

230 The different scenarios including their input parameters are listed in Tab. 1. The uncertainties of the parameters are chosen in a
way comparable to those encountered in datasets or case studies (e.g. Bér et al., 2020; Bond et al., 2015; Ziegler and Heidbach,

2024).

4 Results

In the following, we present the construction of a geomechanical surrogate model. To understand the different requirements

235 and impacts of the different sources of uncertainties, we first vary them individually and then investigate the combined effects.

10
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Figure 3. Schematic representation of synthetic model and all variations investigated in this study. The model (10x 10x6km?) consists
of three different lithological units having purely elastic material properties, which are variable. Mechanical parameters are the Young’s
modulus (E), the Poisson’s ration (v) and the density (p). The horizontal stratigraphic boundaries can be varied by 4+ 200 m. The applied
lateral boundary conditions ranges between 4 to 6 m shortening in y-direction, driving Sumax magnitude and orientation and 0.2 to 0.6 m

shortening driving the Shmin magnitude and orientation.

In order to validate the NI-RB results, for each test case randomly chosen parameters are used in several full-order model runs

which are then compared to the NI-RB results.
4.1 Case 1: Changing Boundary Conditions

We first investigate the potential of using surrogate models to determine the influence of uncertainties in the stress magnitude
data records that are available. This is achieved by changing the displacement boundary conditions in a way that corresponds
to uncertainties in the stress magnitude data. Therefore, we use the model displayed in Fig. 3 and construct a training set of
100 simulations, where we allow a variation of the boundary condition but keep all the material properties and the interface
positions fixed.

Since we only vary the Dirichlet boundary conditions along the z- and y-axis, we evaluate the surrogates only for the
horizontal components of the stress tensor, which are displayed in Fig. 4a and b. We observe that both the Shmin- and Symax-
contributions of the stress tensor are well represented by the surrogate model. The global model errors for the scaled training
and validation data set are for the Shy;,-component in the order of 10" (about 10712 MPa?) and for the SHmax-component in the
order of 10 (about 10* MPa?), which means that visually no difference between the full and reduced solutions are detectable

(Fig. 4). To calculate the global model errors, we use the mean squared error (MSE).

N—
MSE(ufe,up) = Z Upe = trp)?, (7)
=0

where u s refers to the finite element solution.

11



a) b)

0+ 'L— FE simulation 2 01 'L— FE simulation }

— = NI-RB simulation — = NI-RB simulation

- ( |
—1000 1 [ Number Basis Functions: 3 ] 1000 l Number Basis Functions: 2 ]
—2000 A 1 . { 1 —2000
E N\ E
£ —3000 LN £ —3000
& @
o o
—4000 —4000
~5000 1 Model Error: \ _5000 4 |Model Error: w
Training Set: 1.32 - 10%® Training Set: 2.38 * 10
Validation Set: 9.78 - 1016 \Validation Set: 2.36 - 108
— ] —-6000 ]
6000 T I I ‘ ‘ . l .
0 10 20 30 40 50 60 10 20 30 40 50 60 70 80 90
Shmin [MPa] SHmax [MPa]
c) d)
10° 10°

._.
2
L

107t

,_.
o
4

1072

Sensitivity [-]
=
o
&
Sensitivity [-]
=
<

-
S)
L

._|
1)
&

,_.
1S)
&

lly lly lIx

Model Parameters [-] Model Parameters [-]

(s, =,

Figure 4. Investigation of the potential of surrogate models to determine the influence of varying boundary conditions. Comparison of the
surrogate model accuracy for five randomly chosen realization of the validation data set for a) the Shmin- and b) the Sumax-component of the
stress tensor. Note that “Sensitivity” denotes the value of the sensitivity index (section 2.4), and || « and || y denote displacements parallel
to the z-axis and y-axis, respectively. The full-order solution are denoted by colored solid lines and the reduced solutions by colored dashed
lines. The different colors represent the stress response for different boundary condition values. The training data set consisting of 100

samples is indicated with light gray lines. Furthermore, we show the global SA results for ¢) non-equal z- and y-strains d) equal z- and

y-strains.
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The results for the surrogates are obtained with only a few basis functions: two and three for the Sgmax- and Symin-contribution,
respectively. This demonstrated a general low complexity induced by the changes in model parameters and serves as a good
illustration of how the NI-RB method operates. In contrast to other machine learning techniques, the method does not try to
learn the state behavior of the stress directly. Instead, it investigates the changes in the state distribution because of different
model parameters. In this example, this change yields a simple shift in the response, where the amount of shift varies for the
different geological layers. This is also the reason why the abrupt shift in stress magnitude at interfaces is perfectly captured in
all reduced solutions since only the magnitude of the shift but not the position changes.

In general, we observe the highest variability of the stress response for the Symax-component. This is caused by the boundary
conditions since we assigned higher displacement values parallel to the x-axis than parallel to the y-axis. The global SA,
displayed in Figure 4c and d, confirms these findings.

In Figure 4c, we observe a significantly higher influence of the boundary condition applying a displacement parallel to
the x-axis for both stress components. In the case of the Symax-component the boundary condition along the y-axis does not
impact the response notably. To offer a final proof, we repeated the surrogate model construction and the sensitivity analysis,
considering equal parameter ranges of four to six meters for both boundaries. This analysis with equal parameter ranges is
referred to as “equal strains”, whereas the original setup is denoted as “non-equal strains”. The results of the corresponding
SA are seen in Figure 4d. In comparison to the previous analysis, we obtain increasing influences of the boundary conditions

along the y-axis. This yields precisely mirrored behaviors for the Symax- and Shmin-components.
4.2 Case 2: Changing Material Properties

We now investigate the variation of material properties. In this geomechanical study, we consider the variations of the Young’s
modulus, the Poisson’s ratio, and the density for each layer individually. This results in nine parameters that can change,
whereas for the previous example of the boundary conditions, we only had two parameters. Therefore, we increase the size of
the training data set from 100 to 200 full-order solutions to compensate for the expected increase in complexity.

Although we have an increase in the amount of parameters that we consider, we still fit the full solution very well with
the reduced order model. Note, that we investigate the stress distribution for the Spyin-, SHmax-> and S,-component, which are
displayed in Figure 5a to ¢. The Symin- and Symax-contributions show similar behaviors regarding the global errors, where we
obtain errors in the order of 10 for the scaled validation set (corresponding to 10> MPa?), and up to 10"!7 for the scaled
training data set (corresponding to 1074 MPa?). The global errors for the S,-component are in the order of 10> (about 10-1°
MPa?) for both the scaled training and validation data set. However, we observe an increase in the number of basis functions
from two or three to six for the horizontal stress responses. This increase in the number of basis functions is caused by the
increased complexity, which shows the general scaling behavior of the NI-RB method. The dimension of the surrogate model is
scaling with the complexity induced by the variability of the parameters. But this does not mean that an increase in the amount
of variable parameters automatically yields are larger reduced dimension. Relevant for the dimension is the amount of variable

parameters that lead to a change in the model response, so in our case the stress distribution.
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This is nicely demonstrated by comparing the number of basis functions of the Sppi- Or Sgmax-contribution with the S,,-
component. For the vertical stress response, we only obtain four basis functions, which is the first indication that fewer pa-
rameters influence the stress response. This is later also confirmed by the SA. Still, also six basis functions of the horizontal
components are a low number taking into account that we vary in total nine parameters. So, as for the vertical component,
this yields the assumption that not all parameters are influential with respect to the stress. As for the case of the changing
boundary conditions, we obtain the highest variability for the Syma.x-component of the stress distribution. This is again caused
by the higher boundary value of the displacement parallel to the x-axis. Both the results regarding the variability of the stress
distribution and the amount of basis function are confirmed by the sensitivity analysis, which we present in the following.

The results of the SA are shown in Figure 5d and e. Here, we investigate again two possible scenarios. The first scenario
chooses the variation range of the material properties depending on the typically physically plausible variation range (Fig-
ure 5d). This has the consequence that certain parameters have a wider relative variation range than others. To recover the
underlying process behavior, we conduct the same analysis with a variation range of 3 % for all parameters and a displacement
value of 5 m for both boundaries (Figure 5e).

Focusing first on the results of the SA in Figure 5d for the Symax-component of the stress (orange bars), we obtain the highest
influences for the Young’s modulus of the crystalline layer, as it is the stiffest unit. This is followed by the Poisson’s ratios of
the crystalline and clay layers, and then by the Young’s moduli of the limestone and clay layers. All other model parameters
are non-influential. Consequently, we have a high impact of the Young’s modulus and the Poisson’s ratio but no influence
of the density. This low influence is the cause of the in relation much lower variation range of the density. Assuming equal
variation ranges for all model parameters, as seen in Figure 5e, we obtain the increased influence of the density especially for
the limestone and clay layers. At the same time, we retrieve decreasing importance for the Young’s modulus, such that the
density is ranked in between the Poisson’s ratio and the Young’s modulus.

Continuing with the Spnin-component (blue bars in Figure 5d), we observe a higher influence of the Poisson’s ratios and
a significantly decreased impact of the Young’s moduli in contrast to the Symax-component. The reason is again the different
boundary values for the displacement. The differences between the two horizontal stress responses nearly vanish for the analysis
with equal boundary conditions (Figure 5e).

For the S,,-component, we obtain in both scenarios only influences of the density, which demonstrates that the vertical stress
component is predominantly driven by gravity, what corresponds to the definition. Furthermore, we have increasing influences
of the density with decreasing depth values. Hence, we get the highest influence for the limestone layer, followed by the clay

and crystalline layers, which is in agreement with a previous model study (Ziegler, 2022).
4.3 Case 3: Changing Geometry

For the scenario of a changing geometry, we consider two parameters, which are the interface depths between the limestone and
clay layer (denoted as upper interface), and the interface between the clay and crystalline layer (denoted as lower interface).
The upper interface is by default at a depth of two kilometers, and the lower interface is at a depth of four kilometers. For both

interfaces a variation range of + 200 m is considered. As before, the training data set is constructed using a Latin Hypercube
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Sampling but for the geometry, we have a training data set size of again 200 full-order solutions instead of the initial 100 due
to the expected higher complexity compared to Case 1.

In addition to a higher complexity comparable to Case 2 a change in interface depths means that the geometry of the
model is changed, which is different from the material properties or boundary condition changes. The challenges for the
surrogate modeling approach become apparent from Figure 6a. The surrogate model behaves differently in approximating the
stress tensor compared to the previous two cases. The stress components (Spmin-component visualized in Figure 6) are well
approximated within the three layers such that again no visible differences are notable. However, at the transition between
layers, the approximation quality is significantly decreased (marked with black ellipses). So, the surrogate has major issues
resolving the position of the stress shift due to the changes in geological horizon depth. The difference to the previous examples
is that the shift is no longer stationary and the number of elements per unit changes. In the case of changing boundary conditions
and material properties only the magnitude of the shift changes. But for the geometrical parameters, the magnitude stays
roughly the same but the position of the shift can vary by +200 m.

To overcome this issue, the number of elements needs to remain the same for each lithology. This is achieved using GMSH
(Geuzaine and Remacle, 2009) for discretization which allows for a higher flexibility during the construction of the structured
meshes. Most importantly it allows for a fixed number of elements per lithology to, which is in our case 200. That means
that the maximum vertical length of each element is 10 m, but that also elements with smaller vertical length are produced
depending on the interface location. This results in a better quality at the interface (Figure 6b).

These two representations of the geometry result in the same depth vs. stress relationship (Figure 6¢) but for the surrogate
model construction, we provide the information about the relationship of the number of elements vs. the stress distribution
(Figure 6d). This relationship is different for the two scenarios. For scenario 1 (Figure 6a), we obtain the changing position
of the shift. However, for scenario 2 (Figure 6b), we have the shift again stationary since we have always 200 elements per
subdomain independent of the interface positions. Consequently, the challenge associated with the geometrical characterization
can be addressed by reformulating the original problem.

The difference in behavior is also clearly visible by the amount of basis function required to approximate the solution. We
obtain 79 basis functions for the Shmin-component of the stress tensor, whereas the version with a fixed number of elements per
subdomain only requires three basis functions. This means that we obtain 25 times more basis functions for the version with a
changing number of elements per subdomain. Since the scaling behavior of the reduced model is tied to the complexity of the
parameter space and not to the number of changing parameters, this demonstrates the change in complexity between the two
model versions.

We now move to demonstrate the physical effects of changing the geometry, as presented in Figure 7a-c. Regarding the
horizontal component, we obtain no difference within the layer, which is in accordance with our expectations since neither
the material properties nor the boundary condition values are changed throughout the simulations. Differences occur at the
interface positions, which vary from realization to realization. Consequently, the transition in the stress values between one
unit to the other is changing dependent on the corresponding interface depth. Furthermore, we observe as in the previous

example nearly no variations in the vertical component.
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Figure 6. Challenge of accurately predicting the solution because of varying geometrical parameters. Comparison of the surrogate model

accuracy for five randomly chosen realization of the validation data set for the Shmin-component of the stress tensor for a) the GMSH model

with varying number of elements per layer, b) the GMSH model with a fixed number of elements per layer. Furthermore, we display few

realization from the validation data set over c¢) the depth, and d) the number of elements of the mesh.

Regarding, the sensitivity analysis (Figure 7c), we observe identical behavior for changes of both interface depths for the

horizontal stress tensor components. For the vertical contribution, we observe a slightly higher influence of the location of the

lower interface on the stress response. This higher influence is caused by the higher density contrast of the clay and crystalline

layer with respect to the limestone and clay layers. Note that the lack of parameter correlations observable throughout all

three scenarios is induced by the linearity of the application, this image significantly changes once nonlinear problems are

considered.
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lines. Furthermore, we show in d) the global SA results.

18




360

365

370

375

380

385

390

4.4 Case 4: Simultaneously Changing Boundary Conditions and Material Properties

In the previous three scenarios (case 1-3), we investigated the behavior of the surrogate model individually for the three
sources of variability considered in this manuscript. However, in a real-case application, it is unlikely that only one source
of uncertainty is present. Typically all sources of uncertainty occur and can differ in their degree of variability. To evaluate
which consequences this poses in terms of the surrogate, we consider two additional cases. In this section, we account for a
simultaneous variation of both the boundary conditions and the material properties. The case of varying all three sources of
uncertainty at the same time is presented in the next section.

Analyzing the combined effect of varying the boundary condition and the material properties is of interest for two main
reasons: i) does it yield an increase in complexity and consequently an increase in the dimension of the surrogate, and ii) how
is the SA affected by the increase in variable parameters?

Starting with the first aspect of complexity, we obtain for all three components of the stress tensor the same number of
basis functions (Figure 8a-c) as for the case of changing only the material properties (case 2). So considering additionally
the boundary conditions next to the material properties does not increase the complexity notable. This might seem counter-
intuitive at first glance since we consider two additional parameters yielding a total amount of 11 parameters. The reason
for this behavior is two-fold: i) the simplicity of the geological model, and ii) the threshold behavior of the POD. We use a
relatively simple benchmark with horizontal horizons to enable a better understanding of the surrogate construction method.
However, this also means that the model has an underlying low complex behavior which is mirrored in the low number of
basis functions obtained. For more complex models at least a slight increase in the amount of basis functions is expected if
the additional parameters influence the model response. That this is the case, we see later on in the SA. The second aspect is
about the POD threshold. We defined an error tolerance of 10 % for the POD. This means that the POD can disregard at most
10* % of information content. So, it could happen that for the less complex scenario, the error decreases with the addition
of the sixth basis function to 107 %, whereas it decreases only to 2- 10* % for the more complex scenario. In that case, both
scenarios would have the same number of basis functions although the complexity impacts the accuracy of the model. Note,
that this is not occurring in our example. Both the scenario of changing material properties and the scenario of varying material
and boundary conditions have comparable accuracies. This means that here, the complexity is not increased by considering in
addition to the material properties also the boundary conditions. However, this is caused by the simplicity of the model and
will not occur for more complex studies. The reduced solution well captures the full-order response for all three stress tensor
components and we retrieve similar global errors in the case of changing only the material properties.

Switching focus to the sensitivity analysis (Figure 8d), we see no correlations between the boundary values and the different
material properties. This is expected since we consider a linear physical process. This would in general justify a separate
consideration of the two sources of uncertainties. Still, a joint consideration has several advantages. The first benefit concerns
generalizability. Only for linear applications, no correlations are expected, for nonlinear problems correlations are likely to

occur. So, introducing the joint approach allows for a straightforward extension to nonlinear applications. Furthermore, even
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Figure 8. Investigation of the potential of surrogate models to determine the influence of varying boundary conditions and material properties.
Comparison of the surrogate model accuracy for five randomly chosen realization of the validation data set for a) the Shmin-, b) the Stmax-,
and c) the S,-component of the stress tensor. Note that “Sensitivity” denotes the value of the sensitivity index (section 2.4). The full-order
solution are denoted by colored solid lines and the reduced solutions by colored dashed lines. The different colors represent the stress
response for different boundary conditions and material properties. The training data set consisting out of 200 samples is indicated with light

gray lines. Furthermore, we show in d) the global SA results.
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for the linear case, the joint approach has the benefit of being able to determine which relative impact the boundary conditions
have with regard to the different material properties.

This is seen in the SA results of Figure 8d, where we obtain a very similar result to the analysis considering only material
properties. However, we can now determine the rank of the boundary condition values with respect to the Young’s modulus, the
Poisson’s ratio, and the density. The boundary condition along the z-axis has a similar importance than the Young’s modulus of
the crystalline layer for both horizontal components of the stress tensor. The same is true of the other boundary condition in the
case of the Symax-component of the stress. For the Symin-component the boundary condition along the y-axis is non-influential
with regard to the stress response. This matches the previously observed behaviors of the scenarios changing only the boundary
conditions or the material properties. The S, -component remains entirely gravity-driven and hence no influence of changes in

the boundary conditions is detectable.
4.5 Case 5: Simultaneously Changing Boundary Conditions, Material Properties, and Geometry

Considering the case of simultaneously changing the boundary conditions (using the setup presented in Fig. 6b), material
properties, and the depth of the interfaces, we first observe a slight increase in the number of basis functions compared to the
case of only changing the geometry (case 3) and the same number of basis function as for the case of changing both the material
properties and boundary conditions (case 4). Also, the global errors are with about 107'® for the training data set and 107 for
the validation data set for the horizontal components of the stress tensor of similar order of magnitude than the previous case
(Figure 9a-c). Only the global error of the validation data set for the vertical stress component is with 10!? slightly increased
because of the higher complexity of the response. This higher complexity arises from the combined influence of the density
and interface position as shown in the SA (Figure 9d).

Furthermore, the SA demonstrates that for Sp;,, we obtain only minor influences of the interface positions, and for Sypax
we obtain negligible impacts. So for the given variation ranges and model geometry the material properties and boundary

conditions have a higher impact than the geometrical parameters.
4.6 Case Study — Nordlich Ligern

So far, we focused on a benchmark problem to better illustrate the concepts of surrogate modeling for geomechanical appli-
cations. To demonstrate that the methodology is also applicable to a more realistic setting, we extend our considerations to
a model based on the lithological variability of a potential siting region for radioactive waste Nordlich Lagern in northern
Switzerland. The model is a simplified version of the model of Hergert et al. (2015) with the stratigraphy and their depth
inspired by the well Stadel-3-1 (Crisci et al., 2022a). The model does not have any lateral variation of the topography or layer
thickness, nor does the units have an inclination, as observed in that region. Therefore, we construct a model (Fig. 10) with an
extend of 2500x2500x 1400 m? with five elements in each horizontal direction (z- and y-direction) and 140 elements in the
vertical direction for each of the 15 layers to ensure a vertical resolution of minimum 3 m. We on purpose use the same number
of elements for each layer to avoid a bias in the sensitivity analysis caused by the layer thickness. To elaborate, consider a

model consisting of two layers, where the top layer has a thickness of 500 m and the base layer has a thickness of 200 m. If we
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Figure 9. Investigation of the potential of surrogate models to determine the influence of varying boundary conditions, material properties
and the interface depths. The figure shows comparison of the surrogate model accuracy for five randomly chosen realization of the validation
data set for a) the Shmin-component, b) the Sumax-component, and c) the S, -component of the stress tensor. Note that “Sensitivity” denotes
the value of the sensitivity index (section 2.4). The full-order solution are denoted by colored solid lines and the colored reduced solutions by
dashed lines. The different colors represent the stress response for different boundary conditions, material properties, and interface depths.

The training data set consisting of 200 samples for is indicated with light gray lines. Furthermore, we show in d) the results of the global SA.
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discretize the model with a vertical resolution of 100 m, we require five elements for the first layer and two elements for the
second layer. Calculating the sensitivity indices takes the variation of the stress distribution in each element into consideration.
Consequently, the top layer will have more elements contributing and, because of that, likely a higher impact. By discretizing
the model with an equal number of elements per layer (e.g., five elements for both the top and base layer), we can avoid this
effect. For further information regarding potential biases, we refer to Degen and Wellmann (2024). For this model, we consider
only variations of the Young’s modulus. We do not consider the variability of the other elastic material properties since the
density is well-known from density logs of boreholes, and both the density and the Poisson’s ratio demonstrated little impact
in previous studies (e.g. Golke and Coblentz, 1996; Reiter, 2021; Ziegler, 2022). All linear elastic input parameters are listed
in Tab. 2. Regarding the boundary conditions, we follow a similar approach to the previous models. The eastern boundary has
a Dirichlet boundary condition of 0.14 m extension, and the southern boundary has a Dirichlet boundary condition of 1.8 m
shortening. The top boundary is associated with a zero Neumann boundary condition, and all other boundaries are subjected to

zero Dirichlet boundary conditions normal to the boundary.
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Figure 10. Schematic representation of simplified model based on the well Stadel-3-1, representing the case study of Nordlich Lagern
in Switzerland. The geomechnaical units are the Cenozoic Sediments (CS), Felsenkalke (FK), Schwarzbach Fm. (SB), Villigen Fm (V),
Wildegg Fm. (WD), Herrenwis Fm. (H), Wedelsandstein Fm. (WS), Opalinus clay (O), Staffelegg Fm. (SE), Klettgau Fm. (KG), Bénkerjoch
Fm. (BJ), Schinznach Fm. (SN), Zeglingen Fm. (Z), Kaiseraugust Fm. (K), and the Basement incl. Buntsandstein and Rotliegend (B). The

lateral boundary conditions of the model are a shortening of 1.6 m from the south and an extension of 0.14 m in eastern direction.

The stratigraphic column is inspired by the well Stadel-3-1 and the material properties are based on data from the four bore-
holes Bachs-1-1, Biilach-1-1, Stadel-2-1, and Stadel-3-1 that are presented in Dossiers VI and IX which can be downloaded
from the NAGRA (download at https://nagra.ch/downloads). These are in particular the NAGRA Working Reports NAB 22-04
(Gonus et al., 2023, Bachs-1), NAB 22-26 (Spillmann et al., 2022, Biilach-1), NAB 22-02 (Crisci et al., 2022b; Gonus et al.,
2022b, Stadel-2) and NAB 22-01 (Crisci et al., 2022a; Gonus et al., 2022a, Stadel-3). Consequently, also the geometrical rep-
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Table 2. Variation ranges of the Young’s modulus (E) and values for the other elastic material properties, as well as the layer thicknesses, for
the case study of Nordlich Légern. The parameter ranges have been obtained through personal communication and are publicly available in
the technical report NAGRA (2024) by the 15th of May 2025. Note that Fm. denotes Formation. The data on the Young’s moduls is based
on information jointly inferred from four boreholes: Bachs-1-1, Biilach-1-1, Stadel-2-1, and Stadel-3-1 (Crisci et al., 2021, 2022a, b), the
thickness data are derived from well Stadel-3-1 Crisci et al. (2022a).

Layer E [GPa] | Emean [GPa] | Varability of E [GPa] | v [-] | p [kg/ms] Layer Thickness [m]
Cenozoic Sediments (CS) 10-20 15 10 0.30 2500 406
Felsenkalke (FK) 19-40 35 21 0.19 2686 127
Schwarzbach Fm. (SB) 15-36 24 21 0.25 2656 25
Villigen Fm. (V) 27-51 39 24 0.21 2685 67
Wildegg Fm. (WD) 14-31 20 17 0.25 2625 71
Herrenwis Fm. (H) 10-23 19 13 0.26 2676 46
Wedelsandstein Fm. (WS) 6-20 10 14 0.29 2306 23
Opalinus clay (O) 10-23 12 13 0.35 2544 123
Staffelegg Fm. (SE) 11-41 23 30 0.24 2573 34
Klettgau Fm. (KG) 11-39 17 28 0.23 2544 30
Binkerjoch Fm. (BJ) 13-57 23 44 0.20 2625 75
Schinznach Fm. (SN) 18-38 27 20 0.23 2683 73
Zeglingen Fm. (Z) 15-46 26 31 0.20 2800 79
Kaiseraugst Fm. (K) 13-55 19 42 0.27 2664 37
Basement (B) 15-35 25 20 0.23 2479 184

resentation is subjected to low uncertainties, meaning that we do not vary the interface positions for this case study. Lastly, the
boundary conditions are derived from a previous study by Hergert et al. (2015) and remain the same throughout all realizations.
As for the previous section, we first present the approximation quality and other characteristics of the surrogate models
themselves. For both the surrogate model of the Spmin- (Fig. 11a) and Syma-component (Fig. 11b), we observe overall a
similar approximation quality as for the benchmark study demonstrating the ability of the approach to be extended to more
complex settings. The highest inaccuracies in the predictions are observed for realizations yielding maximum stress values.
Another interesting aspect is the number of basis functions, indicating the complexity of the parameter space. For both
contributions of the stress tensor, we require 15 basis functions to achieve a POD tolerance of 10 %. Taking into account that
we vary in total 15 Young’s modulus values, this demonstrates generally a low complexity of the models and holds promises
for the extension to higher dimensional parameter spaces. Note that we did not construct a surrogate model for the vertical
stress component since we do not vary the density and hence we obtain no variations of the vertical stress for all realizations.
Shifting to the results of the global SA, presented in Fig. 11c, we note that the Young’s modulus values of all 15 layers

impact the responses of both horizontal stress components.
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Figure 11. Investigation of the potential of surrogate models for the case study of Nordlich Liagern in Switzerland. Comparison of the
surrogate model accuracy for five randomly chosen realization of the validation data set for a) the Shmin- and b) the Sumax-component of the
stress tensor. Note that “Sensitivity” denotes the value of the sensitivity index (section 2.4). The full-order solution are denoted by colored
solid lines and the reduced solutions by colored dashed lines. The different colors represent the stress response for different Young’s modulus
values. The training data set consisting of 200 samples is indicated with light gray lines. Furthermore, we show the global SA results in ¢)

non-equal, and d) for equal parameter ranges.
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Consequently, for all following analyses, we would need to take all parameters into account. Although all parameters are
deemed influential, we still observe differences in the amount of influence they have on the model response. For the Spmin-
component, the Young’s modulus of the Bénkerjoch Fm. has the highest impact, followed by the Young’s modulus of the
Kaiseraugst Fm. Also, for the Spmax-component these two formations yield the highest impact on the stress distribution,
although their influences are reversed with respect to the Spmin-component. The main reason for the high influence of these
two layers is the large variation range in the Young’s module value. Another minor reason is the possible high contrast in the
Young’s module to the adjacent layers partly because of this variation range. To better illustrate the impact of the variations
range, the variability is shown in Tab. 2.

The high influences of the Binkerjoch and Kaiseraugst formations are followed by the high influences of the Staffelegg,
Klettgau, and Zeglingen formations. All three formations are characterized by variation ranges of about 30 GPa. So, slightly
lower variation ranges than the previously mentioned formations but higher variation ranges than for the units. This pattern is
also observable for the remaining parameters within the global SA. So, within this global SA, the level of impact is mainly
determined by the variation ranges of the Young’s modulus values. Consequently, the SA results are highly impacted by our
prior knowledge since the different variation ranges are a result of heterogeneities or uncertainties within the layers. However,
naturally, a wrong estimate of these parameter ranges yields a bias in the global SA. To investigate the potential differences
in the SA, assuming similar heterogeneities and levels of knowledge for the individual layers, we repeated the SA with equal
variation ranges for the Young’s moduli. Therefore, we used the mean values provided in Tab. 2 and applied variation of £10%.
This yields a shift in the relevance of the different layers for the stress distributions. For both horizontal stress components,
the Villigen Fm. has the highest impact, followed by the Felsenkalke and Schwarzbach formation. The lowest influences arise
from the Wedelsandstein formation. Furthermore, low influences of the Opalinus clay are observed for the Spyi,-component.
Overall the influence of the individual layers in this configuration is mainly determined by the contrast in the Young’s modulus

of the current layer and its adjacent layers.

5 Discussion

Within this study, we present how physics-based machine learning can be used to construct reliable surrogate models to predict
the full stress tensor for a geomechanical model, e.g. for a nuclear waste disposal application. We start the discussion with
general implications and challenges of surrogate modeling. Afterwards, we provide a comparison of physics-based vs. data-
driven machine learning methods to emphasize the importance of appropriately choosing a surrogate model technique. Finally,

we present application-specific aspects.
5.1 General Implications and Challenges for Surrogate Modeling

An important aspect is the explainability of the generated surrogate models. In the case of the NI-RB method, we perform first
the POD which produces a number of basis functions. These basis functions are singular vectors characterizing the dominant

physical behavior of the system. The machine learning part is only responsible for determining the weights of these basis
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functions. This has several implications. First, the non-provable part of the model and consequently the non-provable part of
the error is solely restricted to the calculation of the reduced coefficients and is captured by a combination of scalar values.
In addition, the errors that occur are explainable by considering both the physical relationship and the model geometry. As
an example, in Figure 11b, we observe very small visible deviations between the reduced and full-order models (e.g., for the
orange lines at a depth 1,200 m). Still, these deviations occur in the form of shifts and yield smooth error distributions and
are not very pronounced. On the other hand, the errors of the NN models (as we present in the next section) do not appear in
the entirety of the model and introduce a noisy behavior in the error distribution. This means, they do not follow any physical
relationship, which has been discussed in further detail in Degen et al. (2023).

In literature (e.g., Degen et al., 2023; Faroughi et al., 2022; Raissi et al., 2019; Willard et al., 2022) physics-based machine
learning is often used to reduce the amount of training data. The idea is that through introducing physical knowledge the amount
of admissible solutions can be decreased and hence less data is required to train the surrogate models. Due to the simplicity
of the presented example, this is a phenomenon that we do not observe. But note that this will become important for real-case
studies.

In this manuscript, we investigate three sources of variability: i) the boundary conditions, ii) the material properties, and iii)
the geometry. As demonstrated the NI-RB method performs very well in constructing physically consistent surrogate models
for considering variations of boundary conditions and material properties. The variability in the layer depth proves to be
more challenging. This is especially pronounced for the presented linear elastic models since the high contrast in the material
properties yields shifts in the stress distribution. However, this phenomenon occurs also for other applications, for instance, for
hydrological studies, where the permeability contrast is large. So, this demonstrates the importance to reformulate the problem
as presented in Section 4.3.

Reduced basis methods using Proper Orthogonal Decomposition and Support Vector Machines (Zhao, 2021), Recurrent
Neural Networks (Kumar et al., 2021), or the Empirical Cubature method (Guo et al., 2024) as the projection method have
already been used for mechanical applications, even considering the stress distribution. However, in the example presented
in this manuscript, the high contrast in the linear elastic material properties (mainly Young’s modulus, but also Poission’s
ratio and density) yields non-smooth distributions which result in consequences not discussed before. Furthermore, we also
consider the variation of the geometrical parameters, which with the exception of Guo et al. (2024) have not been taken into
account before. Note that Guo et al. (2024) consider geometrical variations for the context of two-scale simulations yielding
very different requirements in terms of the stress conditions.

Another aspect we want to highlight is the global error. As seen for the case of changing geometrical parameters with
changing number of elements per layer (Figure 6a), the global errors are still low with 107 for the scaled training and 10™* for
the validation data set of the Spy;,-component despite the inaccuracies at the interface location. This demonstrated the general
problem of global error estimators. If there is a small region that has large deviations and the rest of the model regions are well
fitted, this does not become apparent in the global error since this error considers an average over all realizations and the entire

model domain. The other question is why the problem is more pronounced at the upper than the lower interface. Looking at the
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stress distributions, we see larger gaps between the different stress realizations at the upper than the lower interface. Hence, in
the case of the lower interface, better distributed information is available to determine the reduced solutions.

A major advantage of the RB method is the computational gain by using surrogate models instead of full-order model eval-
uations. Therefore, we briefly want to discuss the aspect of computational costs. The computational cost for all five scenarios
is comparable with an execution time of about 3 min for a single finite element solution, in contrast, an evaluation of the sur-
rogate required 0.1 ms yielding a speed-up of six orders of magnitude. The speed-up does not consider the computational time
during the offline stage. So, we want to extend the discussion by providing the computational cost for the construction of the
surrogate. In this work, we used between 100 to 200 realizations for the training data set, and up to 20 realizations for the val-
idation data set. Hence, the most expensive surrogate model construction requires 220 realizations, with 3 min per realization
this yields of cost of about 11 h. In addition to this cost comes the cost of performing the POD and the GPR, which are in the
order of seconds. Since this is negligible with respect to the computational cost of constructing the data sets, we will discard
this cost in the following. Consequently, the total construction cost of the surrogate model is equal to the cost of about 220
model evaluations. Comparing this to the over 50 million model evaluations required for the sensitivity analyses combined, the
surrogate quickly pays off. It is also worth noting that the construction of the data sets is “embarrassingly” parallel, meaning
that all model runs are completely independent. Therefore, parallel computing can be used to reduce the time. This is important
because methods such as Markov chain Monte Carlo, used to quantify uncertainties, are not fully parallelizable. So, we not
only save computation time but also shift the expensive computation to a stage where we can fully exploit parallel hardware
infrastructures. This aspect, as well as how we can exploit graphics processing units is already discussed in detail (Degen et al.,
2023). Another advantage is the non-intrusive nature of the algorithm, which allows for straightforward inclusion of varying
forward solvers.

The geometry considered in this study is simple, to focus on the surrogate model construction itself and its implications
for geomechanical modeling. Both the non-intrusive and intrusive versions of the reduced basis method have been applied
to geothermal real-case studies with a complex geometrical setup, demonstrating a similar performance as presented in this
study (Degen and Cacace, 2021; Degen et al., 2021a, b, 2022a, b, c). This implies, that especially for fixed geometries, no
degradation in the surrogate model quality or performance is expected. Also, considering variations for complex geometries
is possible. However, one should keep in mind that the base assumption for the method is the existence of a low-dimensional
parameter space. Hence, if too many geometrical parameters are varied at once, this assumption breaks down, and the approach
will become inefficient. As mentioned before, the non-intrusive reduced basis method has been developed in order to provide
an efficient extension of the RB method for nonlinear applications (Hesthaven and Ubbiali, 2018). In contrast to this study,
Degen et al. (2022a) consider fully coupled thermo-hydro-mechanical simulations, demonstrating that the current approach
is also extendable to nonlinear and coupled relationships. The implications for nonlinear applications are further detailed in
Degen et al. (2023) for different subsurface applications, including the highly nonlinear Richard’s equations. The results of
these studies demonstrate great promise also for nonlinear geomechanical applications, which is especially important when

considering potential extensions to elasto-plasticity.
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5.2 Physics-based vs. Data-Driven Machine Learning Techniques

To illustrate the differences between the data-driven and the presented physics-based machine learning method, we constructed
another surrogate model for the case of simultaneously changing boundary conditions and material properties (case 4) using
a neural network (NN). The results are shown in Figure 12 and yield several observations. First, the global errors of both
approaches differ by orders of magnitude for both the training and the validation data set. For the training data set, we achieve
an error in the order of 107 for the non-intrusive RB method and 10 for the NN. We set for the POD a tolerance of 10
%. Since we use the root mean square error for the evaluation of the surrogate that means the NN approach is two orders of
magnitude less accurate than originally desired. This behavior is — albeit not as extreme — also observable for the validation
data set, where we have errors in the order of 10”7 for the NI-RB method and 107 for the NN.

The difference in the error behavior is especially prominent when focusing not on the global errors but on the local dis-
tributions. Therefore, we plot in Figure 12b the reduced solutions of the data-driven surrogate and the full solutions. At first
glance, the approximation quality seems to be similar between the two surrogate models. However, by having a closer look
major differences are observable. For the NI-RB surrogates the solutions are exactly on top of the full-order solutions making
them non-distinguishable by eye. In contrast, for the NN surrogate differences are directly visible. This can be best observed
in the base layer for the red and blue lines. For the blue line, we obtain an underestimation of the stress response in the base
layer, whereas for the red case the stress response is overestimated. This becomes more prominent by observing the differences
between the full-order realizations and the NN solutions in Fig. 12d. But more interesting are the different overall responses
of both surrogate models. The NI-RB reduced solutions are straight lines corresponding to the physical response. For the NN
surrogate, we obtain mostly straight lines but with superimposed oscillations. To better highlight the differences, we plot in
addition the differences between the non-intrusive RB and the full-order solutions in Fig. 12¢, and the differences between the
NN and full-order solutions in Fig. 12d. The oscillations caused by the NN are not explainable from a physical perspective
and are a result of treating the solutions in a purely data-driven manner within a statistical method. This demonstrates the
fundamental difference between both approaches even without considering aspects such as the amount of available data. The
NI-RB method produces solutions that follow the physical behavior whereas the NN model produces results that statistically
vary around this general physical response. In a presented trivial case, this does not matter. However, in more complex cases,
these differences can be significant and crucial.

A comparison between the different physics-based machine learning methods, for instance, between the non-intrusive re-
duced basis method and physics-informed neural networks (PINNSs), is also interesting. In their original formulation, PINNs
are designed for state estimation problems (Raissi et al., 2019). This makes a direct comparison of both approaches challenging
since our study focuses on parameter estimation applications. Nonetheless, the error behavior of the PINN is expected to be
similar to the one of the NN because of the architectural design of PINNs, as discussed in detail in Degen et al. (2023). A
detailed comparison of the NI-RB method with other surrogate modeling approaches is detailed in previous studies (Degen

et al., 2023; Santoso et al., 2022), and since no conceptual changes are expected not repeated in this study.
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Figure 12. Comparison of the surrogate models constructed with a) the non-intrusive RB method, b) a neural network, c) the difference
between the non-intrusive RB solutions and the full-order solutions, and d) the difference between the NN solutions and the full-order
solutions for five randomly chosen realization of the validation data set for the case of changing simultaneously the boundary conditions
and material properties. The full-order solution are denoted by colored solid lines and the reduced solutions by colored dashed lines. The

different colors represent the stress response for different boundary conditions and material properties.
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5.3 Implications for Nuclear Waste Disposal Applications

The subsurface stress distribution is of major importance in applications such as nuclear waste disposal, geothermal energy
production, or subsurface (interim) storage of Ho or CO,. For these applications not only the cost of the numerical simulations
but also their trustworthiness is essential since predictions have to be made over long periods of time and — in particular in
the case of nuclear waste storage — false predictions can have major environmental impacts. The sparsity and uncertainty of
available stress magnitude data, geological structures, and rock properties is a major challenge for the in-situ stress prediction
(e.g., Hergert et al., 2015; Morawietz et al., 2020; Ziegler and Heidbach, 2020). The uncertainties in the in-situ stress state will
then be transmitted to the results of forward models that predict the evolution of the stress state during e.g., the excavation
stage of the repository. In particular, long-term subsurface usage such as nuclear waste storage has to account for a broad range
of different future scenarios which in turn drive the uncertainties. Therefore, the uncertainties of the initial stress prediction
should be as small as possible.

We demonstrated the possibility to extend the methodology to more complex settings through the case study of Nordlich
Ligern. An interesting aspect of the global SAs for this case study is the relative low impact of the Opalinus clay for the
Sumax-component, which is the target horizon for the future nuclear waste disposal site. This low impact means, that within the
tested variations ranges, changes in the Young’s modulus of the Opalinus clay do impact the maximum stress contribution less
than most other layers. The largest impact arises from the stiff units. This is an important finding since it provides information
about the impact of uncertainties on the planning phase of the nuclear waste disposal site. In the current study, we focus on
the conceptual analyses of dominant physical processes and parameters in the form of sensitivity analyses. We do not consider
real data on the stress magnitudes originating, for instance, from downhole measurements. This presents an interesting exten-
sion for future studies, where these measurements can be incorporated in the form of probabilistic uncertainty quantification
methods, such as Markov chain Monte Carlo. This is interesting because many current studies consider best-case and worst-
case scenarios only. A probabilistic uncertainty quantification approach allows to provide not only the most likely scenario
but also the associated range of uncertainties and their probability to be encountered. This is important for the planning of
nuclear waste disposal sites since best and worst-case analyses tend to estimate extreme values that have a low probability to
be encountered. With a revised estimate of the uncertainties, the planning and construction might be improved, for instance,
in terms of resource usage. Other potential future extensions include the incorporation of both global sensitivity analyses and
uncertainty quantification into decision-making processes.

The last aspect, we want to discuss concerns the sensitivity analysis. We investigate two scenarios, sensitivity analysis using
i) non-equal parameter ranges and ii) equal parameter ranges. To understand why these different analyses were conducted it is
important to note that as with every model, sensitivity analyses are designed with a specific purpose in mind. This purpose is
defined in the quantity of interest and means that an SA is not easily reusable if the scientific question changes. In a typical
application, we are interested in which model parameters impact the responses the most. So, in our case, whether the Young’s
modulus, the Poisson’s ratio, or the density has the highest impact on the stress distribution. In a realistic case study, the relative

variations ranges of these various material properties may differ. That is the case because some properties can be determined
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with greater accuracy than others and properties such as the density have lower physically plausible variation ranges than,
for instance, the Young’s modulus. This is a naturally occurring phenomenon and we want to incorporate these into the SA.
Therefore, typically the possible variation ranges are determined with respect to this prior knowledge yielding an SA with
unequal parameter ranges.

Still, we are not always aiming to perform a SA to explain the behavior of a specific test site. In some cases, we are interested
in what physical processes are driving the system. In this case, we would like to change the setup of the SA. To understand the
driving forces independent of a specific site it might be beneficial to consider equal parameter ranges. This removes the bias
that is introduced by the unequal parameter distributions. However, note that in most cases this bias is desired since it reflects

the effects encountered in nature.

6 Conclusion

To conclude, we presented a physics-based machine learning model that can efficiently construct trustworthy surrogate models.
The non-intrusive RB method enables evaluations that take less than a millisecond, whereas the full-order solves are in the range
of minutes. This yields a speed-up of six orders of magnitude demonstrating the use of these surrogate models for probabilistic
uncertainty quantification, global sensitivity analysis, and parameter estimation studies in general.

In contrast to data-driven surrogates, the model follows the physical relationship and is physically explainable. This is of
great importance for predictions and decision-making processes, as demonstrated in the highly sensitive case of nuclear waste
disposal.

The surrogate models allow a simultaneous evaluation of both the boundary conditions and the material properties without
losing relevant precision with respect to the full-order solutions. In addition, the incorporation of geometrical variations is
possible without degrading the quality of the surrogate model. Therefore, this work lays the foundation for a joint consideration

of all three sources of uncertainty for robust stress predictions.

Code and data availability. The training and validation datasets, their associated model parameters, and the non-intrusive RB and neural
network code for the construction of all surrogate models are published in the following Zenodo repository: https://doi.org/10.5281/zenodo.
13767010. For the construction of the datasets the software package GOLEM (https://doi.org/10.5281/zen0d0.999401; Jacquey and Cacace,
2017; Cacace and Jacquey, 2017) has been used. This software is based on the finite-element solver MOOSE (Permann et al., 2020), which
is freely available on Zenodo (https://doi.org/10.5281/zenodo.4074777).
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