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Abstract. Fine-scale mapping of pollutants based on mobile observations facilitates deep understanding of air pollutants dis-

tribution within a city and fosters science-based decisions to improve air quality, by adding up to the existing but not optimally

distributed permanent monitoring stations. In this study, we developed high-resolution concentration maps of nitrogen dioxide

(NO2), particulate matter (PM10) and ultrafine particles (UFP) for Bucharest, Romania, to evaluate the spatial variation of

pollutants across the city during the warm and the cold seasons. Maps were generated using a mixed-effect method applied to5

a Land-use Regression (LUR) model. The approach relies on multiple land-use and traffic predictor variables, and assimilation

of data collected by mobile measurements over 30 days in the periods May–July 2022 and January–February 2023. Cross-

validation was done against in-situ data extracted from the same collection, while validation was organized by comparison

with standard measurements at fixed reference sites. Our study shows that this combined method has a good performance for

all pollutants (R2 > 0.65), the highest performance being observed for the cold season. PM10 concentration maps indicate10

multiple sources of particles during the warm season, the most important source being traffic. During the cold season PM10

concentration maps show a more uniform distribution of sources in Bucharest. The city’s principal roads, particularly the

Bucharest ring road, are also highlighted in the NO2 maps, with higher gradient during the warm period.

1 Introduction15

The atmosphere is an essential element for the environment and life forms on Earth. Therefore, any change in natural compo-

sition of the atmosphere due to the presence of one or more pollutants in the atmosphere, such as gases or aerosols released

directly into the atmosphere from natural or anthropogenic sources, can dramatically influence the Earth’s climate and bio-
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sphere, human life and health, and economic activities (Nemuc et al., 2013; Kokkalis et al., 2016; Ilie et al., 2023). One major

concern nowadays is the air quality in urban areas due to its significant health risks determined by prolonged population expo-20

sure to gaseous pollutants like nitrogen dioxide (NO2), as well as to particulate matter (PM2.5 and PM10). These compounds are

often associated with the onset of multiple health issues including cardiovascular diseases, asthma or lung cancer (Brunekreef

and Holgate, 2002; Bernstein et al., 2004; Almetwally et al., 2020; Schmitz et al., 2019). Despite its critical impact, air pol-

lution information in urban areas is not always available, or not at an appropriate spatial resolution, hindering effective air

quality management efforts. High-resolution air quality maps are pivotal for environmental stewardship and public awareness25

by filling the gaps in our understanding of urban air quality. These maps can help to identify pollution hotspots, offering new

opportunities for pollution mitigation strategies and influencing both policy and individual behavior (Apte et al., 2017).

Mapping pollutant concentrations in urban areas requires fine-scale spatial interpolation of data collected at air quality

monitoring stations, taking into account known emission sources and sinks to estimate the actual distribution of pollutants

at ambient surface level. Moreover, changes in the composition of the atmosphere caused by urban agglomeration is highly30

variable in space and time, making its spatial variation difficult to assess with air quality monitoring instruments from ground-

based networks or on-board of satellites (Hoek et al., 2015). Fixed monitoring stations are suitable for recording temporal

variation of air pollution, including long-term trends, but not proper to capture the spatial variation of air pollution at local

level (Li et al., 2019).

It has been demonstrated that gradients at urban scale can be identified by mobile monitoring. High resolution mapping35

of air quality can be done based on long-term average of a significant number of repeated measurements. However, mobile

monitoring to obtain reliable small-scale variations (for a street segment or a residential area) that are subsequently time-

averaged to provide long-term concentrations is time-consuming, involving extended resources, due to the necessity to collect

a large number of co-located data and in the same time to cover the whole relevant area. Several models have been developed

to overcome the weakness of limited availability of the observational data, either collected at fixed locations, or during mobile40

campaigns, or measured by instruments onboard of satellites. Data from ground-based mobile and fixed stations as well as

satellites data have been used in Land-Use Regression (LUR) models (e.g. Apte et al. (2017); Anand and Monks (2017);

Messier et al. (2018); Shairsingh et al. (2019); Kerckhoffs et al. (2021, 2022a)) and dispersion models (e.g. Hamer et al.

(2020); Ramacher et al. (2021); Snoun et al. (2023)). Both models have emerged as very promising and efficient tools for

fine-scale mapping of the changes in the composition of the atmosphere, as well as for quantifying the air quality by long-term45

averaging at a high spatial resolution.

The LUR model is more widely used in air quality studies compared to dispersion modeling because: (a) it is a multivariate

linear regression model built on significant covariates that can be further used to estimate pollutant concentration elsewhere,

(b) linear regression is one of the most used fine-scale spatial interpolation methods because it is fast, easy to implement and

does not require high computing power and, (c) a LUR model does not require detailed information on atmospheric conditions50

as input data (Kerckhoffs et al., 2021, 2022b). Initially, LUR models were developed to estimate the concentration of air

pollutants linked with traffic emissions, specifically NO2 and NOx (Briggs et al., 1997; Stedman et al., 1997; Hoek et al., 2008;

Eeftens et al., 2012; Lu et al., 2020; Zhang et al., 2021). Lately, LUR models have been successfully expanded to include
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other air pollutants, such as particulate matter (PMs) (Taheri Shahraiyni and Sodoudi, 2016; Karimi and Shokrinezhad, 2021;

Zhao et al., 2021; Wallek et al., 2022), ozone (O3) (De Marco et al., 2022; Wei et al., 2022), carbon monoxide (CO) (Bi et al.,55

2022), and sulfur dioxide (SO2) (Wu et al., 2019; Mikeš et al., 2023). LUR models can now estimate a wide range of air

pollutants, including black carbon (BC) (Xu et al., 2021; Van den Bossche et al., 2015), volatile organic compounds (VOCs)

(Zapata-Marin et al., 2022; Choi et al., 2022), and ultrafine particles (UFP) (Ge et al., 2022; Kerckhoffs et al., 2021; Lloyd

et al., 2023; van Nunen et al., 2020; Jones et al., 2020; Saha et al., 2019). LUR models can be used both for specific sites, such

as highways (Lee et al., 2013; Patton et al., 2014) or neighborhoods (Lim et al., 2019), as well as in detailed studies covering60

a wide range of land-use types across large city areas (Hatzopoulou et al., 2017; Van den Hove et al., 2020). Recent studies

report on variations of pollutant levels across different times of the year, based on seasonal measurement campaigns (Xu et al.,

2021; Miri et al., 2019; Shi et al., 2020).

In general, LUR models tend to "smooth" concentration levels over a wide area, leading to under or overestimation of

observed concentrations within each pixel. Therefore, one of the most feasible and robust approaches to map air quality at high65

resolution is to use the mixed-effects modeling framework that combines the advantages of measurement-only mapping and

LUR modeling (Kerckhoffs et al., 2022a, b). Mixed-effects modeling is mostly used in scenarios where data is hierarchical or

clustered (e.g. Fokkema et al. (2018); Seibold et al. (2019)). In air pollution research, mixed-effects models are powerful tools

that can account for spatial or temporal clustering inherent in air quality data. They can accommodate factors like geographic

regions or repeated measurements over time, providing a nuanced understanding of pollutant distribution. These models can70

be computationally complex, especially when dealing with large datasets or complicated random effects structures (Kerckhoffs

et al., 2022a).

The mixed-effects model framework has been used in recent air quality studies for urban areas, like Amsterdam and Copen-

hagen (Kerckhoffs et al., 2022b), Oakland (US) (Kerckhoffs et al., 2024). Also, a similar mixed-effects approach has been used

to estimate NO2 concentrations over Hong Kong (Anand and Monks, 2017). Up to now, no fine mapping of air pollutants at75

high spatial resolution has been performed for urban areas in Romania, although many cities face serious atmospheric pollution

episodes (Marin et al., 2019; Ilie et al., 2023).

In this paper we present the development and use of the mixed modeling framework for fine-scale mapping of NO2, PM10,

PM2.5 and UFP concentrations in Bucharest, the capital of Romania. Data from two mobile measurements campaigns, rep-

resentative for warm and cold seasons, were combined with fine-scale land-use parameters to provide the spatio-temporal80

information necessary to predict seasonal surface concentrations. Results were validated against in situ measurements from

Magurele Center for Atmosphere and Radiation Studies (MARS), and eight fixed observation stations operated by the National

Air Quality Monitoring Network (NAQMN). A detailed description of the study area, measurements and data treatment are

given in Section 2, the mixed-effects modeling framework tuning for Bucharest is given in Section 3, together with model

performance evaluation and aggregated pollutants maps for warm and cold seasons in Bucharest.85
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2 Materials and methods

2.1 Study area

Bucharest is the most populated urban area, and the most important industrial and commercial center of Romania. According

to the latest census, the population of Bucharest is approximately 2.1 million residents (INS, 2024), making it the sixth-

largest city in the European Union by population. The city covers an area of about 240 square kilometers and has a dense90

urban structure. The land use of Bucharest is diverse, the central and northern parts of the city are predominantly residential

areas, characterized by a mix of old and new housing developments. The southern and western parts of Bucharest are more

industrialized, hosting a variety of manufacturing plants, such as machinery, textiles, chemicals, electronics, and business parks

that contribute significantly to its economic base (Ilie et al., 2023; Balaceanu et al., 2018). The surroundings of Bucharest are

mostly agricultural areas and rural/pre-urban residential areas.95

Located in the southeastern part of Romania, in the Romanian Plain, Bucharest belongs to the mid-latitude climate zone

with a humid continental climate with four seasons, characterized by hot summers and cold winters. Due to atmospheric

circulation patterns specific to the north mid-latitude zone, episodes of long-range transport of aerosols from desert regions

(Sahara, Arabian Peninsula and Persia) and from wildfires can affect Bucharest’s air quality. However, the major pollution

sources are local, influenced by the topography, the different local-scale wind regimes and anthropocentric activities (Fenger,100

1999; Grønskei, 1998; Marmureanu et al., 2017; Balaceanu et al., 2018; Marin et al., 2019; Ilie et al., 2023).

2.2 Observational data

Data was collected during two intensive mobile measurement campaigns carried out in Bucharest during May - July 2022 and

January - February 2023. For each campaign, at least 15 measurement routes of approximately 100 km long and around 8

hours were carried out, under various meteorological conditions. Measurements were performed from Monday to Friday, from105

early morning to the afternoon, being therefore representative for daytime working times. The route comprised high-traffic

streets, residential, industrial, and commercial districts, as well as suburban neighborhoods. Portable equipment measuring

UFP, particle matter fractions (PM1, PM2.5, PM10), and NO2 were employed in both campaigns, with a measurements rate of

one second. An additional GPS system has been used to independently save the precise location. A Nafion dryer was also used

during warm period to reach a humidity below 40% for UFP measurements.110

The mobile data has been filtered before being ingested into the model. A pass-band filter based on the moving average

model with a window on 3 data points was used to remove data-points with values higher and lower than 1.5 times the window

mean.

2.3 Fine-mapping model

We used the land-use regression and mixed-effects modeling framework to develop high-resolution air quality maps for115

Bucharest. In a LUR model, the concentration of a pollutant is expressed as a linear combination of variables that approx-
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imates the influence of different emission sources and sinks. Usually LUR models are fixed-effect models because: (a) they use

predictor variables that are temporally invariant (e.g. classes from the land cover inventories, statistical values of population

density or traffic intensity, street networks) and, (b) they are applied to the average atmospheric state over the entire observation

period. Therefore, LUR models based on fixed variables are not sensitive to unobserved heterogeneity arising from temporal120

variability in emissions or/and other environmental conditions.

The mixed-effects LUR model considered in this work is similar to the one developed in Kerckhoffs et al. (2022a). The daily

mean concentration at a reference point i on day j (Yij) is assumed to be a linear function of the random effect (Aij) and the

predictor variables (Xijk) computed at the same reference point:

Yij = α0 + α1 ·Aij +
∑

k⩾0

βk ·Xijk+ ∈ij (1)125

In Eq. (1), α0 is the random intercept, while α1 is the random slopes of Aij , respectively. The βk are the regression coeffi-

cients of predictor variables Xijk at reference point i and day j. The regression coefficients are the same for all measurements

days. The error term of the model is represented by ∈ij . Mixed model results were averaged per point, similar to the aver-

age of the data-only approach. Mean NO2, PM10, PM2.5 and UFP concentrations from each reference point were used as the

dependent variables Yij in Eq. (1).130

The route taken during campaigns was divided into road segments with a length of approximately 250 m, equivalent to

space traveled by a car with the average speed of 30 km/h in a time interval of 60 s. The reference points were considered at

the midpoint of each road segment.

A temporal correction was applied on the data to synchronize the measurements. The correction factor is calculated for

each point as the difference between the daily average values corresponding to the point and the whole-campaign average135

value corresponding to the same point. Values measured within a 250 m street segments were averaged for each day. Similar

correction and averaging methods were reported in previous studies (e.g (Kerckhoffs et al., 2021, 2022a)).

The performance of the model has been evaluated in three steps. First, a subset of data collected through mobile measure-

ments (and not used to tune the model) was used for cross-validation. Second, an independent set of data collected at fixed

sites was used for validation. In addition to the MARS site, eight monitoring stations operated by NAQMN in Bucharest were140

selected for validation, based on data availability, representing all types of environments: two urban-type stations located in the

east and northeast of the city, one suburban station located 4 km to the south of the capital city, three industrial-type stations

situated in the southern half of the city, and two traffic-type stations located in the center of the Bucharest. The evaluation

involved direct comparison of statistical metrics (correlation, root mean square error, relative differences) between model out-

puts and pollutant direct measurements. The last step was the evaluation of the model performance to resolve different types145

of environment (traffic, urban, industrial). Details and results are provided in Section 3.2.
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3 Results and discussions

3.1 Tuning the mixed-effects Land-Use Regression model for Bucharest

Based on the specificity of the climate in the region of Bucharest, we decided to use the residential areas (predictor variable) as

time-dependent variables with major differences between the warm season and the cold season (Ilie et al., 2023). Residential150

areas are considered sources of pollution due to household activities, heating being responsible for the major difference between

the cold and the warm seasons. However, the time dependence of this variable is not sufficient to describe the day-to-day

variability because the residential heating is generally switched on in late autumn and off in late spring, with no real daily

variability. To model NO2, PM10, PM2.5 and UFP concentrations over the Bucharest area, an additional variable was needed

in the LUR models to cover the fast time-dependencies (the so-called "random" effects). In this mixed-effects framework, the155

pollutant concentration can be expressed as a linear relationship between fixed variables and time-dependent variables, where

the random effect is modeled by including a discrete “dummy” variable.

In our work, for each reference point, the “random effect” was modeled as the difference between the standard devia-

tion calculated for the entire period of mobile measurements and the standard deviation calculated for each day of mobile

measurements. Therefore, the magnitude and/or sign of the “random” effect were not the same over all reference points of160

measurements. The mixed-effects models were fitted to the observational dataset using the Python modules scipy, sklearn and

statsmodels.

Other predictor variables used for the LUR models include vehicle traffic intensity (calculated separately for the warm and

for the cold seasons) as well as aggregated values of the spatial predictor variables calculated in circular buffers with radii

between 25 m and 2 km.165

The mixed-effects LUR models (one model for each pollutant considered in this study) were adjusted and trained for

Bucharest to obtain consistent datasets. For the training process, 85% subsets of mobile measurements were randomly selected.

The remaining 15% of the mobile measurements were used to cross-validate the LUR models. The regression coefficients ob-

tained as an output of the training were further used to generate high-resolution maps of seasonal concentrations of NO2, PM10,

PM2.5 and UFP with a resolution of 100 m, over an area of approximately 240 km2 (the entire area of the city of Bucharest).170

3.1.1 Spatial predictor variables

To define the optimal configurations of LUR architectures for Bucharest, for each 250 m street segment, spatial predictor

variables were extracted using the following data sources: (i) CORINE for land cover (European Environment Agency, 2018),

(ii) Open Street Maps (OSM) (OpenStreetMap, 2021) for road network and (iii) National Institute of Statistics (INS) for

population density.175

There is no recent source quantifying the traffic intensity on road segments in Bucharest, therefore the value for this predictor

was estimated for each direction of the street segment i using the following relationship:
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Countsi =
N

L
· fci · vi (2)

where N represents the total number of vehicles per day obtained from INS, L represents the total length of street segments

(km), vi represents the speed on the street segment (km/h), fci represents cost function for the street segment (h) retrieved180

from geofabrik.de database (Geofabrik, 2024).

In order to tune and train the mixed-effects models for the specifics of Bucharest, the spatial predictor variables were selected

from a number of proxies that describe the possible sources and sinks of NO2, PM10, PM2.5, PM1 and UFP emissions. These

variables are presented in Table 1. The column “direction of effect” represents the effect that the predictor variables have on

the concentration of the pollutant in the atmosphere. Variables associated with emission sources have a positive effect, while185

variables associated with sinks, such as vegetation cover, have a negative effect. The circle radii most commonly used for

buffering the variables describing the sources and sinks at a given location are given in column “Buffer sizes”.

3.1.2 Predictor variable selection

For the selection of variables we first removed proxies with a percentage of null values greater than 90%. After applying this

filter, proxies that describe the possible sources and sinks for LUR models tuned for Bucharest were associated with:190

– traffic, with predictors "Counts" (number of vehicles per day) and road length variables in buffer of 50 to 1000 m

– land-use, with predictors: industry, green, residential lower density (individual residential), residential higher density

(collective residential), construction and water in buffers of 100 to 2000 m

– population density in buffers of 100 to 2000 m

To determine the optimal combination of predictor variables, the supervised forward stepwise regression approach proposed195

within the European Study of Cohorts for Air Pollution Effects (ESCAPE) project (ESCAPE, 2024) was used. ESCAPE model

starts from a constant value and after that the predictor variables are added based on the goodness of fit given by the adjusted

cross-correlation (R2) value. The direction of effect for all variables was kept as in Table 1. The variable with the highest

adjusted R2 was included in Eq. (1) as Xk. The process of building the model stops when the new variables do not contribute

significantly (more than 1%) to the improvement of the adjusted R2 value. The LUR model configurations were generated200

using all possible combinations of generated predictor values. From the total of the models obtained, only the LUR models for

which the adjusted R2 value was higher than 0.5 were selected.

In a second step we calculated the confidence level (p-value) and variance inflation factor (VIF) to identify that predictor’s

contribution to a collinearity problem. The statistically insignificant variables (p > 0.05) and predictor variables where VIF >

5 sequentially were not used in the model.205

The predictor variables and the size of the buffers used in this work are shown in Table 1. The predictors passing the above

conditions are shown in bold.
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Table 1: Description of spatial predictor variables

Source Variable Description Unit Effect Buffer

data name sizes (m)

INS POPDENS_X Population den-

sity

#/m2 + 100, 150, 200,

250, 300, 500,

1000, 2000

CORINE

2018

LDRES_X Low-density resi-

dential

m2 + 100, 150, 200,

250, 300, 500,

1000, 2000

HDRES_X High-density res-

idential

m2 + 100, 150, 200,

250, 300, 500,

1000, 2000

AIRPORT_X Airport area m2 + 100, 150, 200,

250, 300, 500,

1000, 2000

INDUSTRY_X Industrial areas m2 + 100, 150, 200,

250, 300, 500,

1000, 2000

AGRI_X Agricultural

areas

m2 +/- 100, 150, 200,

250, 300, 500,

1000, 2000

FOREST_X Forest areas m2 - 100, 150, 200,

250, 300, 500,

1000, 2000

GREEN_X Urban green ar-

eas

m2 - 100, 150, 200,

250, 300, 500,

1000, 2000

CONSTR_X Construction

sites

m2 + 100, 150, 200,

250, 300, 500,

1000, 2000

WATER_X Water bodies m2 +/- 100, 150, 200,

250, 300, 500,

1000, 2000
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Road

network

LENGTH_X Length of road

segments

m + 25, 50, 75, 100,

150, 200, 250, 300,

500, 1000, 2000

TRAFFIC_X Total traffic load (veh /

day) *

m

+ 25, 50, 75, 100,

150, 200, 250, 300,

500, 1000

COUNTS Traffic intensity veh /

day

+ NA

3.2 Evaluation of the model performances

For each individual pollutant, four configurations of LUR models were defined, out of those showing the adjusted R2 greater

than 0.5. Further, only the results and performances of the LUR models for which the highest adjusted R2 value was obtained210

are discussed.

The mixed-effects model tuned for Bucharest city has been evaluated using mobile measurements and fixed-site measure-

ments. The performance assessment involved not only the averages in some points, but also the overall agreement on specific

types of urban areas covering the entire pollutants concentration intervals. The performance of each model (one for each type

of pollutant) was tested in three steps. First, the outputs of the model have been cross-validated against mobile measurements215

on the route (the 15% randomly selected mobile datasets not used for training). Second, the average concentrations calculated

by the model at the location of the fixed observation sites have been validated by comparison with the seasonal-average con-

centrations measured at those sites. Also, model data clustered based on the type of the environment (traffic, industrial, urban)

has been compared to similarly clustered data collected at the fixed observation sites.

3.2.1 Cross-validation against mobile measurements220

Cross-validation is performed for each model by comparing the model predicted dataset against the observed data collected

by mobile measurements. Agreement between the two datasets is quantified by calculating the adjusted R2 and root mean

square error (RMSE). The RMSE of each model was calculated as the square root of the mean of the squared errors. We also

present the relative differences between modeled and measured data as a general indicator of the model accuracy. Results show

very good correlations (R2 > 0.91) for each model as a follow-up of the training process. The cross-validation shows higher225

correlations for the cold season (R2 = 0.81 for NO2 and R2 = 0.88 for PM10) than for the warm season (R2 = 0.59 for NO2 and

R2 = 0.72 for PM10). The weaker performance of the models during the warm season can be explained by the large variability

of NO2 and PM10 concentrations in the warm season compared to the cold season (Ilie et al., 2023), which is not completely

captured by our method. Moreover, this strong variability is also suggested by the RMSE values which for the NO2 are higher

in the warm season (8.62 ppb) than in the cold season (6.99 ppb). In contrast, the RMSE values for PM10 are lower in the warm230

season (4.74 µg/m3) than in the cold season (9.38 µg/m3).
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The relative differences between mobile measurements and model retrievals, computed as (Model-Observed)/Observed,

show the ability of the models to estimate PM10 and NO2 concentrations (Fig. 1). It can be seen that the model for NO2 tends

to overestimate the predicted concentrations in the warm season, especially in urban agglomeration areas (upper left panel),

while the model for PM10 tends to underestimate the predicted concentrations(lower left panel). However, such differences are235

acceptable considering the assumptions made, the uncertainty of the data used for training the models, as well as the general

performances reported in the literature (Ma et al., 2024).

Figure 1. Relative difference between model predicted values and mobile measurements of NO2 (upper panel) and PM10 (lower panel)

during warm (left panel) and cold (right panel) season
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3.2.2 Validation against independent measurements at fixed observation sites

The model output was evaluated against the seasonal average of the hourly values of NO2 and PM10 measured at nine long-term

operated in situ stations, out of which eight stations operated by NAQMN. These sites are considered representative for urban,240

industrial and suburban areas as pictured in Fig. 2. The model could not be evaluated in the case of UFP, due to unavailability

of the data at all fixed stations. Statistical metrics, like R2, RMSE and relative differences were calculated similarly as for the

cross-validation. Statistical parameters are summarized in Table 2.

In Fig. 2, the mean mass concentrations measured at the fixed observation sites are represented by the diameter of the circle,

and the type of the environment is represented by the color of the circle. It can be seen that the variation of the concentrations245

across the city is relatively low, especially for particulate matter during the cold season. PM10 concentrations range from 21

to 32 µg/m3 in both seasons. The highest PM10 concentrations are observed at the urban, sub-urban and the traffic stations,

while the lowest PM10 concentration is measured at the industrial stations. The western part of the city shows highest PM10

values. NO2 concentrations range from 8 to 20 ppb in the warm season and from 9 to 24 ppb in the cold season. The highest

NO2 concentrations correspond to the areas with intense traffic and industrial activities, while the lowest concentrations are250

observed in the sub-urban areas, which are less impacted by traffic.
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Figure 2. Average concentration of NO2 (upper panel, units ppb) and PM10 (lower panel, units µg/m3) during warm (left panel) and cold

(right panel) season at fixed sites: the diameter of the circle represents the mean mass concentrations measured at the site; the color of the

circle represents the type of the environment at the site

.

The comparison between model predicted values and the observed values at the nine fixed sites is presented in Table 2.

Overall, the model performed well, even if the NO2 values tend to be slightly overestimated, and PM10 tend to be slightly

underestimated when compared with measured mean concentrations. Mean values of modeled NO2 are within the range of

the observed values, as indicated by the standard deviation. The differences can be explained by the local topography and the255

specifics of the land use. The road system in Bucharest is very dense, so the distance from a street to residential or industrial

sectors is often very short, sometimes less than few meters, therefore the NO2 100 x 100 m grid resolution cannot always

resolve the variations. This "smoothing" effect caused by insufficient spatial resolution of the model is pin pointed by the lower

values of the standard deviations returned by the model by comparison with those returned by observations.

The trends and seasonal differences of both NO2 and PM10 are well resolved by the model, as shown by the comparison260

with observations. The R2 correlation between observed mean concentrations and modeled mean concentration is above 0.65

for all pollutants for warm season, and 0.75 for cold season. These values can be attributed to the good performance of the

model, in accordance with the values reported for other cities (Yuan et al., 2023). The lowest correlation value is noted for

particulate matter during warm season. This result can be explained by the fact that, during the warm season, photo-chemical

processes are intensified at the street level, and the model cannot capture the effects properly.265

The RMSE is another important parameter for assessing the performance of the model, accounting for the level of absolute

error. As in the case of R2, we noticed a better model performance for the cold season. The difficulties of the model to capture
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the small variations during the warm period for both NO2 and PM10 are depicted by higher RMSE values. High values of RMSE

correspond to low R2 values, demonstrating that the model cannot fully capture the variations of NO2 or PM10 concentrations.

Table 2. Comparison between model output and measured values at fixed sites for NO2 and PM10 in Bucharest (Romania) during warm

period 2022 and cold period 2023, and statistical metrics

Pollutant Season Observed mean concentration Modelled mean concentration R2 RMSE

NO2

warm 12.58 ± 7.71 ppb 16.38 ± 2.47 ppb 0.66 4.97 ppb

cold 15.98 ± 9.52 ppb 17.25 ± 1.17 ppb 0.75 2.27 ppb

PM10

warm 24.64 ± 13.18 µg/m3 24.29 ± 4.38 µg/m3 0.65 2.02 µg/m3

cold 26.33 ± 18.50 µg/m3 25.64 ± 4.43 µg/m3 0.76 1.69 µg/m3

3.2.3 Evaluation of the model performance to resolve different types of environment270

The model was tested for its robustness in capturing differences between various types of environment such as urban (including

pre-urban), industrial, traffic. Long-term datasets collected at the nine fixed observation sites were used for this purpose. Figure

3 shows mean concentrations of NO2 and PM10 as retrieved by the model and measured at the stations, clustered by the type

of environment and separated for the warm and cold seasons. The relative differences between values modeled and measured

in different environments are also highlighted.275

NO2 is the most variable species, with high differences between seasons and between environment types. Lower NO2

concentrations are depicted for the urban group, whereas the highest NO2 concentration is associated to traffic, as anticipated.

The traffic group has the lowest variability among seasons and is also better captured by the model. The model shows increased

NO2 concentrations during the warm season for urban and industrial categories, while in the case of traffic areas the model

underestimate a bit the measurements averages. The overall relative differences between cold and warm seasons for both280

model and observational data inside each defined environment is less than 35%. Higher relative differences between modeled

and measured data are observed for warm season for all areas, with lowest difference in the case of traffic areas, around 10%.

Overall lower relative differences between modeled and measured data are observed during cold season in comparison with

warm period, with NO2 average concentration in industrial and traffic areas underestimated by the model, highlighted by

relative differences up to -20%.285

PM10 concentrations show an overall lower seasonal variability, and also lower differences between model and observed

data, with relative differences less than 20%. Particulate matter concentrations for urban, industrial, and traffic areas varied

slightly among seasons. Modeled PM10 concentrations shows higher values for industrial environment in comparison with

observational data for both seasons. Moreover, industrial areas present the lowest PM10 concentration during cold season, as

shown by both modeled and measured data. Urban and traffic environment PM10 concentrations are slightly underestimated290
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by the model. The overall relative differences of PM10 concentration between cold and warm seasons for both model and

observational data inside each defined environment is less than 15%. Small relative differences between modeled and measured

data are observed for PM10 concentrations, during both seasons. PM10 average concentration in urban and traffic areas are

slightly underestimated by the model, highlighted by relative differences up to -10%.

Figure 3. Model (light color) versus measurements (dark color) mean concentrations of NO2 (left panel) and PM10 (right panel) during

warm (red) and cold (blue) seasons, along with the relative difference between cold and warm season from model (grey diamond mark) or

measurements (black diamond mark); relative difference between model and measurements for warm (purple circle mark) and cold (dark

purple circle mark) seasons

3.3 Mapping atmospheric pollution in Bucharest295

The validated model was further used to produce NO2, PM10 and UFP concentrations maps for Bucharest, representative for

the warm and cold seasons (Fig. 4). The results are valid for daytime and working days of the week. In analyzing these results,

it must be noted that the near-surface concentrations of atmospheric pollutants are influenced not only by the emissions, but

also by the height of the planetary boundary layer, transport from other regions, dry and wet deposition and chemical processes,

all in relation to relatively fast changing meteorological conditions (e.g. air temperature, wind field). Model results show that,300

overall and regardless the season, NO2, PM10 and UFP concentrations are higher on the main road sections, with higher values

on Bucharest’s western area.

NO2 concentration maps show that this pollutant is highly related to traffic, the road network of Bucharest being clearly

visible both during the warm and during the cold season. The main roadways, especially the Bucharest ring road, are depicted

as the primary NO2 source. Also, featured are the city central routes, where traffic remains heavy throughout the day and305

seasons. The highest NO2 concentrations is noted around busy highways due to the presence of a large number of NO-emitting

automobiles. Sinks related to the green areas and water bodies regions are identified in green colors. Overall, NO2 concentration

is higher during the warm period, when concentrations are higher on key roadways (35.79 ± 8.38 ppb) and other sources in
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the city add up. The conversion of NO to NO2 in the presence of sunlight and ozone is significant. During cold months,

the NO2 concentration is lower in absolute values across the city, however the main roads are still depicted as major sources,310

followed by several industrial areas such as power plants serving the centralized heating of the city. The distribution of the NO2

concentration on all street segments is almost uniform during cold season, with a slight increase on the main street segments,

including the Bucharest ring road (20.67 ± 3.44 ppb). At the level of the city of Bucharest, the average value of the NO2

concentration as estimated by the model for the warm season is 16.66 ± 4.04 ppb, while for the cold season it is 18.75 ± 1.98

ppb.315

The spatial variation of PMs in the city area is substantial, with an abundance of small particles and a high mass concentration

of larger particles in densely populated residential areas. Significant concentrations of particles have been identified, mostly

in industrial areas and anthropocentric agglomerations, but also along certain major transportation routes. During the cold

periods, the PMs (all sizes) have larger loading and lower gradients, as reported also for other cities (Ndiaye et al., 2024). This

is related to increased emissions from residential heating. A gradient of PM10 concentrations is evidenced within the city, with320

higher loading in the western and southern areas. Average PM10 concentration in Bucharest during cold season is 1.2 times

higher than in the warm season. During the warm periods, the PM10 clusters are localized around source areas, while during

cold periods, the sources are more homogeneous.

The average UFP number concentration throughout the mobile route exhibits an important spatial gradient, particularly

during the warm season, with variations up to a factor of two in the mean, highlighting extensive human exposure to ultra-325

fine particles. The UFP number concentrations are elevated on the main roads, as well as on some areas related to industrial

activities in southern, northern and western city regions, mostly during the warm season. A more uniform distribution of UFP

mean number concentration is observed during the cold season, when the house heating emissions add up to the traffic. Traffic

sources are less effective during the cold season, when the chemical processes are reduced under reduced sunlight. House

heating sources, more evenly distributed at spatial scale than the roads, generate more homogeneous distribution but also larger330

absolute values of UFP. Average seasonal concentration on Bucharest city during the cold season (29132± 4362 particles/cm3)

is 1.4 times higher than in the case of warm season (21469 ± 3528 particles/cm3).
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Figure 4. Near-surface concentration maps for Bucharest, as resulted from the model for NO2, PM10 and UFP during warm (left panel) and

cold (right panel) seasons

The fine particle fraction (PM2.5/PM10) is larger during cold than during warm periods, as expected, with fine particles

accounting for up to 90% of the PM10 concentration. This is explained by the fact that house heating generates predominantly

small particles. By comparison, during warm periods fine particle fraction is approximately 70%, still showing a significant335

share (Fig. 5). The main rivers and lakes within Bucharest’s perimeter are clearly sinks for small particles, producing lower

fine mode fractions.
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Figure 5. Model maps of PM2.5/PM10 ratio during warm and cold seasons

4 Conclusions

The regression-based methods fed by mobile data can predict NO2, PM10 and UFP concentrations for regions which are not

properly covered by observations. In order to do this, the right combination of data sampling frequency, duration and route, and340

the correct number and type of predictor factors (corresponding to the surrounding environment) must be considered. Mobile

monitoring together with modeling tools can therefore compensate for spatial and temporal data gaps which are collected by

the monitoring stations, and can assist individuals and policymakers in identifying regions and causes of poor air quality. In

this study we demonstrate the effectiveness of combining mobile measurements with mixed-effects LUR models to derive

seasonal maps of near-surface PM10, NO2 and UFP. The study shows first-time validated results for Bucharest, the capital city345

of Romania, which is characterized by a large, densely populated surface with a very dense and heavily used street network.

Despite the limited number of fixed stations available for this work (8 + MARS), the tuned mixed-effects LUR model proved

to be robust and accurate in producing high-resolution mapping of NO2, PM10 and UFP for the warm and the cold seasons.

Overall, good model performance was observed for both seasons and all concentrations, similar to other studies. The slightly

higher mean squared error values correlated with smaller cross-validation R2 values obtained for the warm season suggest that350

the mobile campaign data collected for this study did not capture all the important NO2 and PM10 concentration variations.

Even if the route selected for the two mobile measurement campaigns included all urban structures, the limitation of car access

remains a source of error, which can lead to underestimation the concentration of pollutants. The performance of this model

can be greatly improved by the involvement of citizens (pedestrian or by bicycle) to collect data from areas where cars are

not allowed. Further improvements could also be made by the inclusion of spatio-temporal emission data with a high spatial355

resolution, such as traffic volumes or emission inventories.

The results provided by the model show that high concentrations of particulate matter during the cold season are representa-

tive for Bucharest city, due to the added effect of house heating (either dispersed in residential areas, or localized at the city’s

power plants). Fine particles dominate during the cold season, although remaining at high levels during the warm season also.

NO2 is less challenging but still an important factor, especially during the warm season and along the main roads. The sea-360
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sonal high-resolution air quality maps for Bucharest based on mixed-effects modeling pin pointed pollutant variability mostly

during warm season and higher concentrations and fine particles ratio during the cold season. Water and vegetation areas are

evidenced as effective sinks for NO2 and fine particles, while traffic and residential heating are evidenced as effective sources

in Bucharest.

The approach presented in this paper can be adjusted for resolving high resolution mapping of NO2, PMs and UFP in other365

cities as well, as long as the urban structures are well-characterized and there is as a fairly dense and diverse network of in situ

monitoring stations of which observational data can be used for model calibration and validation.
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