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Abstract. Snow density data are important for a variety of applications, yet, to our knowledge, there are few methods for esti-

mating spatiotemporal varying snow density in the Arctic environment. This research proposes a passive microwave retrieval

algorithm to estimate tundra snow density. A two-layer electromagnetic snowpack model, representing depth hoar underlaying

a wind slab layer, was used to estimate microwave emissions for use in an inverse model to estimate snow density. The pro-

posed algorithm is predicated on solving the inverse model at boundary conditions for the simulated layers to estimate snow5

density within a plausible range. An experiment was conducted to assess the algorithm’s ability to reproduce snow density

estimates from snow courses at four sites in the Canadian high Arctic. The electromagnetic snowpack model was calibrated

to end-of-season conditions at each study site and a novel temporal parameterization was used to expand algorithm retrievals

over full winter seasons. Algorithm estimates have the potential, under ideal conditions, to provide snow density information

comparable to that collected through in situ sampling. In its current configuration, algorithm performance was best later in the10

season, with mean absolute percentage error approaching 10 % towards the end-of-season indicating snow density estimation

uncertainty was similar to the in situ samples. With some modifications, and more extensive forcing data, this algorithm could

be applied across the pan-Arctic to provide snow density information at scales that are not currently available.

1 Introduction

There are numerous applications for which the quantification of snow density is important: for example, estimating snow water15

equivalent (SWE) for water resources (Venäläinen et al., 2021, 2023), modelling atmosphere-land interactions for energy

balances (Gouttevin et al., 2012, 2018), and ecological monitoring of Arctic fauna (Martineau et al., 2022; Sivy et al., 2018);

though, to the best of our knowledge, there is no effective method for estimating spatiotemporally-varying snow density in

the Arctic. There are automated instruments to estimate snow density but they are not widely implemented, instead density is

typical estimated by weighing a known volume of snow (Kinar and Pomeroy, 2015). This manual process is labour intensive20

and, as a result, measurements are sparsely distributed making the prediction of spatially distributed density estimates uncertain.

In a remote environment, like the Canadian Arctic, comprehensive in situ sampling is not feasible due to logistical constraints,

so large-scale analyses involving snow density tend to rely on modelled estimates. Recent studies have shown that current snow

density products, from meteorological reanalysis or detailed snow models, are not adequate for use in Arctic environments.

The snow scheme in the ERA5-Land reanalysis model overestimates snow depth and underestimates density, by considerable25
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margins, in high-latitudes (Cao et al., 2020, 2022). Similarly, detailed snow models (i.e. Crocus and SNOWPACK) cannot

estimate the expected vertical density profile in the Arctic tundra (Barrere et al., 2017; Domine et al., 2019). Despite its

intrinsic importance in Earth systems, snow density variability is currently not well understood on large spatiotemporal scales.

One possible approach to estimate snow density at the regional scale (i.e. 102-104 km2; Woo, 1998) is from satellite-based

remote sensing. Satellite passive microwave (PM) radiometry offers near-daily coverage of the Northern Hemisphere, under30

most weather conditions, with a data record spanning back to 1978. Emitted microwave energy can pass through a snowpack

unattenuated at lower frequencies or is attenuated at higher frequencies. For attenuated emission, the primary microwave

interaction within a dry snowpack is volume scattering which is controlled by the snowpack properties (i.e. snow depth,

density, temperature, and grain size radius; Chang et al., 1982). PM snow emission retrievals using a frequency difference

approach (∆Tb) – the subtraction of higher frequency channel Tb (volume scattering dominated) from a lower-frequency Tb35

channel (subnivean emission dominated) – have been the basis of empirical representations of PM estimates (e.g. Chang et al.,

1987) and more sophisticated assimilation-based retrieval schemes (e.g. Takala et al., 2011). Historically, snow mass has been

estimated with spaceborne (PM) radiometry through retrieval algorithms focusing on snow depth (Kelly et al., 2003, 2019;

Takala et al., 2011; Tedesco and Jeyaratnam, 2016). In theory, the principles behind those existing retrieval schemes could be

exploited to estimate snow density rather than depth.40

In general, the parameterization of snow density has been simplified in large-scale PM SWE estimation models (Mortimer et

al., 2022). There is a lack of snow density observations at the necessary scales to constrain density parameterization, primarily

because of the difficulty in acquiring spatially distributed in situ observations (Sturm et al., 2010). As a result, snow depth has

been the focus of most analyses regarding SWE. In some cases, snow density is kept constant across the domain (e.g. Luojus

et al., 2021; Takala et al., 2011) or conservative estimates are taken from empirical models of snow density evolution over time45

(e.g. Kelly et al., 2003). However, such a simplified representation of snow density may not adequately represent variability

across the large domains those models are designed to cover.

Other satellite-based PM snow density retrieval algorithms have been proposed (Champollion et al., 2019; Holmberg et al.,

2024), though none have used a frequency difference modelling approach like is commonly used to retrieve snow depth. In

this study, an experiment was conducted to evaluate the potential use of satellite-based PM observations and existing in situ50

meteorological networks to estimate snow density in the high Arctic tundra using a frequency difference modelling approach.

Snow density estimates from the proposed algorithm could provide a notable benefit over existing snow density products, which

do not account for densification processes relevant to the tundra environment (Cao et al., 2022; Domine et al. , 2016b). Instead,

the algorithm would be informed by independent PM observations providing context on in situ snow density conditions. Thus,

estimates from this approach could fill a gap in the understanding of snow density variability in remote areas that are unsuitable55

for intensive in situ sampling and where current snow density models are not appropriate.
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2 Study Area

The Canadian high Arctic was chosen to develop the prototype snow density retrieval algorithm for the following reasons that

tend to simplify the retrieval process. First, high Arctic snowpacks are traditionally classified as tundra type snow (Sturm et

al., 1995; Sturm and Liston, 2021), though much of the Canadian Arctic Archipelago would be more accurately described as60

a polar desert (Royer et al., 2021). Tundra snow has a characteristic two layer structure of dense wind slabs overlaying depth

hoar (Benson and Sturm, 1993) - polar desert snowpacks are similar but are thinner, denser, and have a smaller proportion of

depth hoar (Royer et al., 2021) – which provided priori information for model parameterization. Second, forest cover attenu-

ation effects (Li et al., 2020) are minimised in high Arctic environments which are characterised by sparse, short vegetation

or barren landscapes (Royer et al., 2021). Third, terrain effects should be minimal compared to those found in more topologi-65

cally complex landscapes like alpine environments (Tong et al., 2010). Last, there are relatively few lakes in the high Arctic,

compared to the sub-Arctic tundra, reducing the radiometric effects of water bodies (Derksen et al., 2010).

Four automatic weather stations (AWS) were identified across a latitudinal range in the Canadian high Arctic for this ex-

periment (Fig. 1), selected because they are collocated with manual in situ SWE sampling sites. Basic site characteristics are

provided in Table 1; including AWS climatology, predominant vegetation types from the Raster Circumpolar Arctic Vegetation70

Map (Raynolds et al., 2019), and area of nearby water bodies calculated with the HydroLAKES database (Messager et al.,

2016). Following Royer et al.’s (2021) classification, three AWS sites – Alert, Eureka, and Qausuittuq (hereafter Resolute Bay)

– are situated in the polar desert and Ikaluktutiak (hereafter Cambridge Bay) in the polar tundra. Sites in the polar desert are

mostly barren and are exposed to harsh winter storms, but local topography around Eureka protects the area from storms creat-

ing a microclimate – described as a polar oasis, characterised by higher temperatures, lower precipitation, and more vegetation75

(Woo and Young, 1997). The Cambridge Bay site has more sub-Arctic qualities featuring graminoid shrub vegetation and many

small lakes nearby.

Table 1. Characteristics of study sites (average AWS air temperature and snow depth from March 15 to April 15).

Site Latitude Vegetation Water Area (%) Air Temperature (°C) Snow Depth (cm)

Alert 82°31’ barren <1 -28.3 34.9

Eureka 79°59’ graminoid <1 -31.2 19.0

Resolute Bay 74°43’ barren <1 -24.6 21.3

Cambridge Bay 69°06’ graminoid 17 -25.0 31.8

3 Data

3.1 Model Forcing Data

PM radiometry data were the main forcing for the proposed snow density retrieval algorithm. Radiometry data were acquired80

from the Advanced Microwave Scanning Radiometer Earth Observing System (AMSR-E) Calibrated Enhanced-Resolution
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Passive Microwave Daily Brightness Temperature Version 2 dataset (Brodzik et al., 2024), resampled to a 12.5 km EASE-Grid

2.0. PM observations spanned eight winter seasons (2003-11) while the instrument was functional (reference snow density data

were not available for the 2002-03 season). AMSR-E observations for each station were extracted from an adjacent EASE grid

cell to the AWS (highlighted in Fig. 1) to minimise water area in observation scene due to their proximity to the coast. Nighttime85

observations from the descending orbit track (∼1:30 am local time at the equator) were used since snow conditions would be

more likely to be cold and dry for optimal microwave retrievals (Derksen et al., 2005). Radiometry samples were smoothed

with a five-day Gaussian weighted mean filter as described by Holloway (1958). The 18.7 and 36.5 GHz vertically-polarised

radiometer channels (hereafter 19 and 37 GHz, respectively) were used to estimate ∆Tb in the forward model.

Meteorological measurements, acquired from the Environment and Climate Change Canada (ECCC) AWS network (ECCC90

and CliamteData.ca, n.d.). were also used for model forcing. The electromagnetic snowpack model was parameterised with

AWS data, which required daily measurements of snow depth and air temperature as prior snow conditions. AWS data were

the limiting factor in this experiment because the network is sparsely distributed in northern Canada limiting potential sites.

Figure 1. (a) AWS/CanSWE sites, distributed across the high Arctic in Nunavut, Canada, with insets showing 12.5 km EASE-Grid (high-

lighted cells used in analysis) for (b) Eureka (snowpit numbers correspond to Table 3), (c) Cambridge Bay, (d) Resolute Bay, and (e) Alert.
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3.2 In situ Reference Data

3.2.1 Canadian Historical Snow Water Equivalent Dataset95

The curated ECCC Canadian Historical Snow Water Equivalent dataset (CanSWE: Vionnet et al., 2021) provided in situ

snow density data for algorithm calibration and evaluation. CanSWE was chosen because of its broad spatial coverage and

relatively high temporal sampling frequency, although, it is recognised that snow density information from CanSWE is limited

to bulk properties meaning they were unsuitable to evaluate algorithm estimates for individual snow layers. CanSWE included

sampling locations collocated with AWS sites which allowed for direct comparisons of estimated and sampled snow density.100

Snow density data in CanSWE (considered in this study) were collected with ESC-30 SWE tubes along 5 to 10 point snow

course transects spanning 150 to 300 m, aggregated into bulk estimates of snow density. A ten percent uncertainty range was

applied to the snow density data in the reference dataset because of uncertainties inherent to manual snow density sampling

(Conger and McClung, 2009; López-Moreno et al., 2020). Specific information about sampling procedures was not available

for the individual sites in the CanSWE dataset (e.g. where the snow course is situated relative to the AWS was unknown).105

The reference dataset was limited with respect to the algorithm configuration (described in Section 4.4). Some yearly AWS

forcing datasets were deemed unsuitable for algorithm forcing and were removed from the analysis. One winter season at the

Eureka site (2008-09) had insufficient snow accumulation to permit PM retrievals (i.e. <10 cm). Other datasets were excluded

where snow accumulation trajectories reported by the AWS were substantially different from snow depth samples in CanSWE:

three seasons for Alert (2007-08, 2009-10 and 2010-11) and four for Resolute Bay (2003-04, 2004-05, 2005-06, and 2006-07)110

– otherwise, there was fairly good agreement AWS and CanSWE snow depths (Table 2). Individual CanSWE snow density

samples were removed under three conditions: if they were out of the range of algorithm estimates (i.e. 150 to 450 kg m3), if

they were sporadic and did not fit temporally with the seasonal trajectory of the other samples, or if they were taken late in the

season during the ablation period when the snowpack would likely be in a wet state inhibiting microwave retrievals.

Table 2. AWS and CanSWE snow depth comparison, which were included or excluded for model forcing.

Dataset n RMSE (cm) Correlation (r)

included 554 5.8 0.869 (p<0.01)

excluded 108 15.8 0.446 (p<0.01)

3.2.2 Eureka Snow Survey Dataset115

Due to the bulk nature of CanSWE density data, an additional dataset from Saberi et al. (2017) was used to evaluate algorithm

estimates in greater detail. Extensive surveys of snow conditions were conducted near Eureka on the Fosheim Peninsula from

April 12-20, 2011. The survey protocol was rather unique in terms of spatial extent covering four 25 km EASE-Grid cells,

including stratigraphic data from snowpits and bulk snow properties from ESC-30 SWE tubes. Measured snow properties in

each 25 km EASE-Grid cell were aggregated using median values (Table 3) to force algorithm retrievals and evaluate the120
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algorithm configuration calibrated to bulk density measurements. Although limited to a single season, the Eureka snow survey

dataset provided additional context to interpret algorithm outputs.

Table 3. Median (interquartile range) snowpack properties from Saberi et al. (2017) in each 25.0 km EASE Grid-cell – grid cell numbers

correspond to points in Fig. 1b.

Grid

Cell

Snowpits/SWE

Cores (n)
Snow Depth (cm)

Depth Hoar

Thickness (cm)

Bulk Density

(kg m−3)

Wind Slab Density

(kg m−3)

Depth Hoar

Density (kg m−3)

1 13/39 25.0 (9.0 to 20.0) 10.0 (6.5 to 12.0) 283 (251 to 329) 346 (306 to 368) 231 (210 to 258)

2 6/18 21.0 (1.8 to 20.3) 11.0 (9.3 to 14.3) 275 (244 to 315) 81 (313 to 407) 241 (223 to 290)

3 10/15 21.0 (5.0 to 17.1) 8.5 (8.0 to 12.5) 287 (277 to 382) 392 (364 to 399) 219 (213 to 235)

4 7/21 22.0 (2.8 to 16.8) 9.0 (8.5 to 11.0) 261 (236 to 303) 383 (357 to 398) 227 (212 to 245)

4 Methods

4.1 Electromagnetic Model

The Snow Microwave Radiative Transfer model (SMRT: Picard et al., 2018) was used as the forward model in the retrieval125

algorithm. SMRT was configured with the Improved Born Approximation (IBA) electromagnetic model (Mätzler, 1998) and

microwave grain size microstructure model (Picard et al., 2022a), which have been demonstrated to be representative of high-

Arctic snow conditions (Meloche et al., 2024). The substrate composition was parameterised to represent cryosolic soil fol-

lowing Meloche et al. (2021) and atmospheric contributions were estimated as described by Pulliainen et al. (1993).

The physically-based forward modelling approach required the snowpack to be parameterised, so the relevant characteristics130

needed to be quantified. A two-layer snowpack model was configured to account for the presence of depth hoar underneath

a wind slab layer to best represent the microwave signature of tundra snow (Hall, 1987; Saberi et al., 2017). Upon initial

deposition the snowpack would likely be in a homogenous state, with one layer, but that situation was not considered in this

approach. The strong environmental controls present in the tundra contribute to the development of wind slab and depth hoar

snow layers quickly after deposition (Benson and Sturm, 1993; Sturm and Holmgren, 1998), and algorithm retrievals were135

performed after 10 cm of snow had accumulated so the pack would be unlikely to be in the initial homogenous state.

4.2 Sensitivity Test

Microwave retrieval algorithms have traditionally estimated snow depth using a vertically polarised brightness temperature

frequency difference (∆Tb = 19V – 37V), because of the sensitivity (insensitivity) of the 37 GHz (19 GHz) channel to snow

accumulation, though we believe the same principle could be used to estimate snow density. Generally, ∆Tb is thought to140

increase with snow depth due to increasing volume scattering until a threshold after which the signal is saturated by thermal

emission originating in the snowpack (Saberi et al., 2020). However, that is a simplified explanation of snow microwave
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interactions (i.e. only considering one layer) and can be complicated by stratification of natural snowpacks. For a tundra

snowpack - with characteristic wind slab overlaying depth hoar – volume scattering is dominant for the depth hoar layer and

non-scattering emission contributions originate from the wind slab (Sturm et al., 1993). Thus, it is important to understand how145

the properties of each snow layer would impact microwave emissions to design an effective snow density retrieval algorithm.

The electromagnetic model (described in Section 4.1) was used to simulate microwave emissions from tundra snowpacks to

assess its sensitivity to various parameters. The electromagnetic model requires snowpack physical properties to be quantified,

including thickness, density, specific surface area (SSA), polydispersity, and temperature of each layer. A series of experiments

were designed to illustrate the effects of the various model parameters (representative of tundra snow, see Meloche et al., 2022;150

Picard et al., 2022a) and Arctic snow metamorphism; detailed descriptions of each experiment are provided in Table 4.

Table 4. Specific model parameters for wind slab (WS) and depth hoar (DH) layers in various sensitivity tests.

Parameter Experiment 1 Experiment 2 Experiment 3 Experiment 4

Density

(kg m−3)

WS: 1 to 500

DH: 1 to 500
WS: 250 to 400

DH: 250

SSA

(m2 kg−1)

WS: 15 to 25

DH: 10 to 12

WS: 20

DH: 11

Polydispersity

(unitless)

WS: 0.80

DH: 1.33
WS: 0.60 to 0.90

DH: 1.10 to 1.80

WS: 0.80

DH: 1.33

Thickness

(cm)

WS: 20

DH: 10

WS: 10 to 30

DH: 5 to 15

WS: 20

DH: 10

WS: 20 to 40

DH: 10

Temperature

(°C)

Air: -30.0 WS: -28.6

DH: -26.3 Soil: -25.0

Snow density is our primary variable of interest, so it is important to understand how it effects microwave emissions. In

the IBA model, scattering and absorption coefficients are in part related to snow density. The absorption coefficient increases

linearly with snow density because of a greater proportion of ice-to-air in the microstructure representation altering the effective

permittivity (Picard et al., 2018). On the other hand, the scattering coefficient has a non-linear relationship with snow density155

because of the interactions between individual scatterers in the snowpack. Volume scattering increases as more scatters are

introduced (i.e. increasing density), until the scatterers are close enough in proximity to influence each other and the overall

scattering efficiency decreases (Tsang and Kong, 2001). Thus, density of the wind slab and depth hoar layers can affect ∆Tb

in different ways because of their properties that contribute to varying levels of volume scattering and thermal emission.

Experiments 1 to 3 were designed to simulate microwave emission from isolated wind slab and depth hoar layers, accounting160

for variations in specific surface area (SSA), polydispersity, and layer thickness, respectively (Figs 2 to 4). The relationships

between snow density and brightness temperatures follow skewed curves with minima at densities of 150 kg m−3 and frequency

dependent amplitudes. Snow volume scattering is less sensitive to 19 than 37 GHz, so the frequency difference (∆Tb) is
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Figure 2. Experiment 1, simulated brightness temperatures of iso-

lated WS and DH layers with variable density, shaded areas corre-

spond to range of SSA values.

Figure 3. Experiment 2, same as Figure 2 but shaded areas corre-

spond to range of polydispersity rather than SSA.

Figure 4. Experiment 3, same as Figure 2 but shaded areas corre-

spond to range of thickness rather than SSA.

Figure 5. Experiment 4, simulated brightness temperatures of two-

layer snowpack with variable wind slab density, mapped to bulk

density (thin slab/thick slab), shaded areas correspond to range of

wind slab SWE.

approximately the reflected 37 GHz curve and its magnitude depends on different microstructure properties (Picard et al.,

2022a). Lower (higher) SSA values produce greater (lesser) volume scattering, with minimal dependency on density, effectively165

translating the ∆Tb curves vertically (depth hoar ∼9 K between 10 to 12 m2 kg−1 and wind slab ∼3 K between 15 to 25 m2

kg−1). Similarly, polydispersity effectively scales SSA, also translating ∆Tb curves (depth hoar ∼19 K between 1.2 to 1.8

and wind slab ∼3 K between 0.6 to 0.9). Alternatively, layer thickness amplifies the relationship between snow density and

simulated ∆Tb, increasing sensitivity to depth hoar density (∼10 K between 150 to 450 kg m−3 at 5 cm vs. ∼28 K at 15
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cm) and the wind slab to a lesser extent (∼0.5 K between 150 to 450 kg m−3 at 10 cm vs. ∼3 K at 30 cm). Seasonal snow170

density is typical above the 150 kg m−3 inflection point (ignoring fresh snow), so we can assume snow density has a negative

relationship with ∆Tb – with all other parameters equal, greater (lesser) ∆Tb would indicate lower (higher) snow density.

While there was minimal model sensitivity to the isolated wind slab in Experiments 1 to 3, the effect of the wind slab on

brightness temperature should be more apparent when parameterised over depth hoar. Experiment 4 was designed to demon-

strate brightness temperature sensitivity for the two-layer snowpack representation, configured to replicate mid-season wind175

slab compaction over an established depth hoar layer. Wind slab thickness was parameterised to decrease with compaction

(i.e. densification) for SWE to remain constant, and a range of initial SWE values (i.e. thicknesses) were considered (shaded

areas in Fig 4). When introduced over the established depth hoar layer, absorption and thermal emission originating in the

wind slab mask ∆Tb by several K depending on its SWE (∼2 K for 50 mm vs. ∼3 K for 85 mm). Then, absorption increased

linearly with snow density and ∆Tb was accordingly masked by the wind slab as it compacted (∼5 K between 250 to 400180

kg m−3 for 50 mm vs. ∼8 K for 85 mm). Thus, wind slab formation resulting from compaction or thickening should be

apparent in AMSR-E radiometry (i.e. evident from decreasing ∆Tb), given its radiometric sensitivity of ±0.6 K. Furthermore,

the magnitude of ∆Tb masking by the wind slab is enhanced by the snowpack thermal gradient and a relatively colder wind

slab compared to the substrate will increase ∆Tb (∼2 K between 0 to -10 °C, not shown).

4.3 Snow Density Retrieval Algorithm185

The results from the various experiments in the sensitivity test suggest there should be sufficient sensitivity to estimate snow

density conditions from space-based PM radiometry. Further, PM radiometry was shown to be more sensitive to the thickness

of depth hoar than the wind slab (and in turn overall snow depth) and, in terms of estimating Arctic snow mass, might be

better suited to retrieving snow density rather than depth. PM retrievals of snow density were conducted at each AWS site,

where meteorological conditions dictated when retrievals were performed. A minimum snow depth of 10 cm was imposed for190

algorithm retrievals because of the transparent nature of shallow snow to microwave emissions (Hall et al., 2002). Similarly,

algorithm retrievals were not conducted when AWS air temperatures were above freezing because of the likelihood of liquid

meltwater in the snowpack attenuating microwave emissions (Foster et al., 1984). With the AWS observations prescribed to

the electromagnetic model an inverse modelling approach was applied to optimise the snow density parameters. The forward

model was inverted by minimizing the cost function (J)195

J(ρWS ,ρDH) = (∆Tbsim(ρWS ,ρDH)−∆Tbobs)
2 (1)

representing the vertically polarised 19 and 37 GHz spectral difference in the AMSR-E observation (∆Tbobs) and the simulated

SMRT signature at the same channels (∆Tbsim), given the prescribed wind slab and depth hoar layer densities (ρWS and ρDH ,

respectively).

The solution to the two-layer snowpack model presented was imprecise because different layer density combinations could200

produce the same predicted ∆Tb in Eq. (1), resulting in a system with no global minima. The practical impact of this equifinality

issue was that the algorithm may be confronted by seemingly equally valid but different layer density combinations, producing
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the same microwave signature. Without additional information there was no suitable way to identify the optimal layer density

combination, so the retrieval algorithm was designed to solve for all microwave-plausible layer density combinations for a

given observation scene to address equifinality in the inverse model.205

To constrain the modelled layer density estimates to a plausible range, boundary conditions were established to limit the

parameter space in which the algorithm could search for solutions to the inverse model. The first boundary condition was

defined based on the strong environmental controls present in the tundra that result in a characteristic wind slab snow layer

overlaying less dense depth hoar (Benson and Sturm, 1993). Logically, the wind slab layer should be denser than the depth hoar

layer, so all parameter combinations where ρWS < ρDH were discarded, and the lower boundary situated where the densities of210

the two layers were equal. The second boundary for the model was defined based on the behaviour of microwave interactions

in the electromagnetic model. Simulated ∆Tb peaks at a snow density of 150 kg m−3 (see Section 4.2), and the apparent

permittivity in IBA is applicable up to a volume fraction of 50 %, or 458.5 kg m−3 (Picard et al., 2022b). Thus, the domain of

each layer was limited to densities between 150 to 450 kg m−3 to ensure consistent behaviour in the electromagnetic snowpack

model, and the upper boundary situated where either layer was at the edge of that domain.215

Figure 6. (a) Algorithm solutions for Eureka on April 15, 2011, with various H values, on surface defined by the square root of Eq. (1) in

Kelvin, and (b) wind slab and depth hoar densities mapped to bulk values in kg m2 with Eq. (4).

An important aspect of the retrieval algorithm was to exploit how the various minima on the cost surface, defined by Eq.

(1), were positioned throughout the parameter space to reduce computational requirements. Figure 6 is an example of how the

minima formed a valley transecting the parameter space. The microwave-plausible density range is shown in Fig. 6a as the set

of layer density combinations situated along a straight line connecting the solutions at the two established boundary conditions

for the inverse model. Wind slab and depth hoar density combinations were mapped to bulk values in Fig. 6b, where the220

contours of iso-density will pivot clockwise (counterclockwise) around the lower solution when the proportion of depth hoar

thickness increases (decreases). It should be noted that under some instances, the valley could intersect the upper boundary
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related to the minimum depth hoar density (i.e. left axis in Fig. 6a), though the situation shown (intersecting the upper axis)

was more common.

The lowest contour level (±0.6 K) in Fig. 6a represents the sensitivity of the AMSR-E radiometer at 19 and 37 GHz and the225

grid spacing corresponds to algorithm retrieval accuracy (10 kg m−3). In theory, the lower boundary can produce a solution

with similar magnitudes of measurement uncertainty and retrieval accuracy (the upper solution is less precise being situated in

a broader part of the valley). However, the stated radiometric sensitivity of the AMSR-E instrument is related to measurements

of surface emission and additional uncertainty in the retrievals could be introduced because of atmospheric contributions. The

atmosphere was configured to represent typical sub-arctic conditions (Pulliainen et al., 1993) but the frequency dependent230

relationship with water vapour content could change observed ∆Tb by ∼2-3 K from typical conditions. Thus, trends in snow

density conditions should be apparent from spaceborne radiometry, with fluctuations from varying atmospheric water vapour

content (partially mitigated with temporal filtering of PM radiometry); higher (lower) water vapour concentrations will cause

the solution to shift towards the bottom-left (top-right) in Fig. 6a.

The range of microwave-plausible snow densities raised the question of how to evaluate the algorithm estimates against the235

reference data. A heterogeneity (H) parameter was introduced into the algorithm to estimate densities for the two snow layers

and reduce the microwave-plausible snow densities to a single estimate of bulk snow density – ranging from 0 to 1 (i.e. the

least and most heterogenous solutions, respectively). Wind slab (ρWS) and depth hoar (ρDH ) densities were estimated related

to H with

ρWS =ρWS,lower +H ∗ (ρWS,upper − ρWS,lower) (2)240

ρDH =ρDH,lower −H ∗ (ρDH,lower − ρDH,upper) (3)

where (ρWS,lower, ρDH,lower) and (ρWS,upper, ρDH,upper) are the lower and upper solutions, respectively, and bulk density

(ρbulk) estimated based on the depth hoar thickness divided by the total snow depth (depth hoar fraction, DHF)

ρbulk = ρWS ∗ (1−DHF )+ ρDH ∗DHF (4)

Ultimately, the bulk snow density estimated with H was treated as the final algorithm estimate with uncertainty defined by the245

microwave-plausible range.

4.4 Temporal Snowpack Parameterization

All existing retrieval algorithms have considered a single snow layer, so a new scheme was needed to parameterise the two layer

snowpack model over the course of a season. Arctic snowpacks have been studied in detail during field campaigns (see Derksen

et al., 2014; Meloche et al., 2022; Rutter et al., 2019), though they are mostly restricted to end-of-season conditions around250

March-to-April and much less is known about Arctic snowpack composition early in the season. There have been some studies

that focused on early season conditions (Domine et al., 2016a, 2018), though they mainly provide qualitative descriptions of

the temporal evolutions of Arctic snowpacks. Thus, our approach started with end-of-season conditions and worked backwards

11



to parameterise the snowpack over the full season, with some parameters informed from available literature where possible and

others calibrated.255

Our temporal parameterization of snowpack properties was based on identifying trends in satellite PM and AWS observa-

tions, which we assumed to indicate different stages of snowpack evolution. Generally, two different behaviours were identified

in the forcing datasets which we attributed to normal and restricted conditions for depth hoar development. In normal cases,

∆Tb increased rapidly over a short period in the fall immediately after the first snowfall, coinciding with an extended early

season zero-curtain period producing extreme vertical temperature gradients for rapid depth hoar metamorphism (Domine et260

al., 2018). In restricted cases, ∆Tb increased gradually over longer periods of the season, consistent with high density layers

slowly metamorphizing slowly into depth hoar (Derksen et al., 2009). Later in the season ∆Tb would plateau, attributed to a

halt in depth hoar formation, before temperatures increase at end-of-season and ∆Tb drops rapidly.

In total 4 different stages of snowpack evolution were identified, presented in Table 5. The proposed stages are numbered in

the expected order of occurrence, but in practice their order can vary with some exceptions. Stage 0 is a special circumstance265

(i.e. does not happen every season) and must occur at the beginning of the season when temperatures are still around freezing.

Then, the snowpack can alternate between Stages 1 and 2 throughout the season, owing to fluctuations in air temperature that

change the thermal regime of the snowpack and snowfall events, prior to reaching equilibrium in State 2 towards end-of-season.

Finally, the snowpack begins to warm in Stage 3 at the end-of-season with increasing air temperatures inverting the temperature

gradient before ripening and final melt. The relevant state variables (i.e. layer thickness, thermal regime, and microstructure)270

were estimated dynamically considering the identified stage of snowpack evolution.

Table 5. Identified stages of snowpack evolution.

Stage Name Description Indicators

0 Extended

zero curtain

Special conditions for early snow to morph into normal depth

hoar under extreme temperature gradient (Tground » Tair).

- Rapid increase in ∆Tb after first snowfall

- Consistent snow on ground from deposition

1 Temperature

gradient

Sufficient temperature gradient for kinetic metamorphism

(Tground > Tair), where wind slab slowly morphs into

indurated depth hoar.

- Gradually increasing ∆Tb

- Decreasing trend in air temperature

2 Isothermal Insufficient temperature gradient for kinetic metamorphism

(Tground ≈ Tair). Snowpack assumed to be in statis and its

properties stable (except wind slab compaction may occur).

- Steady or gradually decreasing ∆Tb

- Little-to-no trend in air temperature

3 Warming Warming air temperatures towards end-of-season invert

temperature gradient (Tground < Tair), before snowpack

ripens and begins to melt.

- Steady or gradually decreasing ∆Tb

- Little-to-no trend in air temperature
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4.4.1 Depth Hoar Development

Basal depth hoar thickness is typically reported as a fraction of end-of-season snow depth (depth hoar fraction, DHF) and

measurements during the early-mid season are limited in the Arctic. However, parameterizing the snowpack model accounting

for DHF would cause issues. Forcing snow depth data should be representative of the observation scene (i.e. spatial resolution)275

and localised snow depth estimates (i.e. AWS) could lead to considerable differences in algorithm estimates given intrinsic

variability in Arctic snow depth distributions (Liston, 2004). Additionally, depth hoar thickness parameterised with static DHF

would likely be too thin during early-to-mid season, assuming the depth hoar layer should develop early on during shallower

snow conditions relative to later in the season. Thus, we believe depth hoar should be parameterised with explicit thicknesses

and a new approach was required for the prototype algorithm.280

Our primary indicator of depth hoar development was based on seasonal trends in ∆Tb, with prolonged increases associated

with depth hoar metamorphism (Derksen et al., 2010). Identifying periods of depth hoar development allowed rates of growth to

be estimated. Rates were estimated with a change detection method that calculated cumulative increases in ∆Tb, similar to the

Snow Index proposed by Lievens et al. (2019). The new index (depth hoar index, DHI) was predicated on the assumption any

sustained increase (i.e. over multiple observations) in observed ∆Tb was proportional to depth hoar development. We believe285

depth hoar thickness should exhibit monotonic behaviour (i.e. increase, or remain constant, but not decrease), and temporary

∆Tb fluctuations would result from changes in the snowpack temperature gradient. The total contribution towards depth hoar

development was estimated at each time step (t) with

DHI(t) =

DHI(t− 1)+ a ∗ [∆Tb(t)−∆Tb(t− 1)] if SD > 0,

0 otherwise
(5)

a=

1 if ∆Tb(t)≥∆Tb(t− 1)≥∆Tb(t− 2),

0 otherwise
(6)290

where AWS snow depth (SD) was used as an indicator of snow coverage and increases in ∆Tb must persist over multiple

observations to mitigate effects from physical temperature fluctuations (handled with a from Eq. (6)).

4.4.2 Layer Heterogeneity

The layer heterogeneity parameter (H) is abstract and was designed to represent the seasonal evolution of snowpack stratig-

raphy. Intuitively, values for H should begin near zero at initial deposition when the snowpack should be mostly homogenous295

and increase over time due to evolution of distinct layers. So, H was set to zero the first day snow on the ground was reported

at the AWS and grew linearly to a maximum value calibrated for end-of-season conditions.
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4.4.3 Snow and Substrate Temperatures

Operational SWE retrievals (e.g. Luojus et al., 2021) do not consider snow temperature gradient, though we believe it is

important when thermal emission originating from the wind slab is considered. Thus, snow and substrate temperatures were300

required for the electromagnetic model but were not measured by AWS. Soil temperature from atmospheric reanalysis models

were considered but their uncertainty is highest during cold seasons (Herrington et al., 2024). Instead, a model was designed to

estimate soil temperature relative to measured air temperature and our identified stage of snowpack of evolution. In all stages,

snow temperature was parameterised with a linear temperature gradient between air and soil temperature.

AWS daily mean air temperatures were used to replicate trends in substrate temperature at Arctic sites relative to air tem-305

perature measured by (Domine et al., 2018). First, air temperatures were averaged over the previous 21 days to represent the

gradual and lagged changes in soil temperature (general trend). Second, a five-day Gaussian weighted mean filter was applied

to air temperatures to represent the immediate effect of air temperature fluctuations (local trend). Then, the general and local

trend estimates were assimilated with a 3:1 weighting scheme, respectively, together replicating how substrate temperatures

should be partially decoupled from the atmosphere (insulated by snow cover) with small blips from large fluctuations in air310

temperature. Finally, the assimilated temperature trends were modified to account for the insulative properties of snow accord-

ing to the identified phase of snowpack evolution: substrate temperatures were set to 0 °C during Stage 0, increased by 5 °C

(2.5 °C) during normal (restricted) depth hoar development, and decreased by 5 °C (2.5 °C) during Stage 3, and the transitions

between stages smoothed. The 5 °C value was chosen to represent the thermal insulation of normal depth hoar in line with

mid-season tundra snowpack temperature gradients (Benson and Sturm, 1993), and an educated guess for the lower 2.5 °C315

value because of higher thermal conductivity for indurated depth hoar (Domine et al., 2016a). A comparison of estimates from

this model to those from Domine et al. (2018) was provided in Appendix A.

4.4.4 SSA Decay

The microstructure model in SMRT (i.e. microwave grain size) required estimates of the SSA of ice grains in the snowpack

which are not measured by operational AWS. Like depth hoar thickness, many more SSA measurements from Arctic snowpacks320

are available for end-of-season conditions, so empirical models were used to estimate SSA decay earlier in the season. New

snow has relatively high SSA and decays logarithmically over time as it metamorphoses (Legagneux et al., 2003; Pinzer et al.,

2012; Taillandier et al., 2007). Temporally varying SSA for depth hoar and wind slab were estimated using Eqs. (9) and (13)

from Taillandier et al. (2007), respectively, with the general form

SSA(t) =B−A ∗ ln(t+ e
B−SSA0

A ) (7)325

where t is time since deposition in hours and coefficients A and B related to the mode of metamorphism, layer temperature,

and initial SSA (SSA0). Initial SSA was set as 50 m2 kg−1 and average layer temperatures calculated for the first 60 days

after deposition as described in Section 4.4.3. Estimates of SSA from the empirical models were used until they reached

predetermined values, representative of end-of-season conditions, to reflect the non-zero asymptotic trend in the evolution of
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depth hoar SSA (Taillandier et al., 2007) and very slow SSA decay in Arctic wind slabs observed later in the season (Domine330

et al., 2002).

4.5 Calibration and Evaluation Procedure

Some algorithm parameters could not be based on observations and instead needed to be determined through a calibration

procedure. The calibration procedure consisted of two stages and ran each year from March 15 onwards, assuming snowpack

properties would be mostly stable then. Calibrating for end-of-season conditions also allowed for parameters to be compared335

to those measured during field campaigns. First, wind slab SSA, depth hoar SSA, and depth hoar thickness were adjusted

to produce the greatest overlap between the range of microwave-plausible snow density estimates and the in situ reference

samples, with an overlap metric:

overlap=
1

n

n∑
t=1

|{ρest(t)}∩ {ρobs(t)}|
|{ρest(t)}|

(8)

where {ρest(t)} is the set of microwave-plausible estimated snow densities and {ρobs(t)} the corresponding CanSWE density340

sample with a ±10 % uncertainty range, at time t. Thus, the overlap metric described the proportion of the microwave-plausible

snow density range that intersected the uncertainty range of the in situ samples, averaged over n time steps. Second, H was

calibrated by converting the microwave-plausible algorithm estimates, from the first step, into discrete values to minimise mean

absolute percentage error (MAPE). MAPE was chosen for this purpose, rather than absolute or squared error, because of the

heteroscedastic nature of the uncertainty in the reference dataset.345

At each site, algorithm snow density estimates were evaluated with CanSWE bulk density samples using the same metrics

as in the calibration stage (i.e. overlap and MAPE); bias, root mean square error (RMSE), and correlation were also reported as

indicators of algorithm performance. MAPE was treated as the primary measure of absolute accuracy of algorithm estimates

— if MAPE was within the uncertainty range of the in situ samples (±10 %) then snow density estimates from the algorithm

could be comparable to those collected with snow courses.350

Calibrating the two layer snowpack model with bulk density measurements (i.e. CanSWE) introduced some uncertainty into

the algorithm configuration parameters. As demonstrated by the sensitivity test, depth hoar SSA and thickness have comple-

mentary effects on simulated ∆Tb – i.e. lower (higher) SSA can compensate if the depth hoar is too thin (thick) – so various

SSA and thickness combinations could produce similar microwave emissions. At each site, SSA parameters were kept con-

stant over all seasons because inter-season variations in SSA should be relatively low (Meloche et al., 2022; Woolley et al.,355

2024), but DHF was free to account for varying environmental conditions. End-of-season H values were also kept constant

for each site due to the lack of stratigraphic data to conduct a meaningful calibration and in an effort to reduce the number of

free parameters in the calibration procedure. In the future, extensive stratigraphic data from multiple sites should be used for

calibration to increase confidence in specific algorithm parameters.
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5 Results360

5.1 Calibrated End-of-Season Algorithm Configurations

Algorithm configurations were calibrated to represent end-of-season conditions, for each site some parameters were kept static

over all seasons (Table 6) and depth hoar thicknesses varied each season (Table 7). The sensitivity test demonstrated the model

was most sensitive to depth hoar parameters, so depth hoar SSA varied between 10.0 to 13.0 at increments of 0.2 m2 kg−1,

and fewer options considered for the wind slab of 15.0, 17.5, or 20.0 m2 kg−1. For the polar desert sites (Alert, Eureka, and365

Resolute Bay) the calibration routine produced configurations that were fairly similar and in line with those expected in the

polar desert, with depth hoar SSA around 10 to 11 m2 kg−1 and average DHF of approximately one third (Royer et al., 2021).

On the other hand, the configuration for Cambridge Bay was different, with higher than expected depth hoar SSA and DHF for

tundra type snow (Meloche et al., 2022).

Table 6. Model configuration parameters calibrated for end-of-season conditions.

Site Wind Slab SSA (m2 kg−1) Depth Hoar SSA (m2 kg−1) Heterogeneity (unitless)

Alert 20.0 10.8 0.35

Eureka 17.5 10.4 0.30

Resolute Bay 17.5 11.2 0.45

Cambridge Bay 20.0 12.8 0.35

Table 7. Calibrated seasonal depth hoar thicknesses (cm) and percentage of end-of-season snow depth in parentheses.

Site 2003-04 2004-05 2005-06 2006-07 2007-08 2007-08 2009-10 2010-11 Avg.

Alert 1.5 (6 %) 15.9 (48 %) 8.9 (24 %) 12.7 (33 %) - 18.6 (45 %) - - 11.5 (31 %)

Eureka 5.5 (42 %) 7.2 (27 %) 3.4 (18 %) 2.6 (18 %) 5.0 (36 %) - 6.1 (33 %) 6.7 (24 %) 5.2 (28 %)

Resolute Bay - - - - 2.5 (12 %) 5.4 (27 %) 3.2 (24 %) 0.9 (3 %) 3.0 (17 %)

Cambridge Bay 20.6 (72 %) 11.6 (42 %) 14.5 (42 %) 20.7 (81 %) 22.0 (60 %) 18.3 (54 %) 11.7 (48 %) 18.2 (42 %) 17.2 (55 %)

5.2 Eureka Snow Survey Data370

Snow survey data from Saberi et al. (2017) were used to evaluate the calibrated model configuration for the Eureka site in

greater detail. The model was originally configured to replicate bulk density measurements (i.e. CanSWE) making it difficult

to evaluate individual parameters without stratigraphic information. For example, simulated depth hoar thickness and SSA

could compensate for one another without discernible differences in bulk density. Although SSA was not measured in the

survey protocol, calibrated SSA values were evaluated by forcing the retrieval algorithm with measured layer thicknesses and375

AMSR-E L2A observations at 25 km (Ashcroft and Wentz, 2013), and the output compared to measured bulk, wind slab,

and depth hoar densities (Fig. 7). Algorithm estimates showed good agreement with the measured values, though with slight
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overestimation for depth hoar and underestimation for wind slab densities. Interestingly, the valley of algorithm solutions for

three gird-cells (1, 2, and 4) aligned with regions of iso-density in the parameter space (Fig. 6b) so H could increase slightly

to reduce underestimation of wind slab density without affecting overall bulk density. While we cannot conclude from this380

limited sample size that the algorithm is perfect, the similarity of the algorithm estimates and layer densities to independent

snow surveys suggest the parametrization of SSA was effective for Eureka.

Figure 7. Simulated and measured density for EASE-Grid cells near Eureka. Vertical error bars correspond to the microwave-plausible range

of algorithm estimates and horizontal the interquartile range of measured values.

5.3 Dynamic Depth Hoar Parameterization

Snow depth and DHF can be variable in the tundra (Meloche et al., 2022), so parameterizing the snowpack model with static

parameters could lead to uncertainty. Algorithm performance with calibrated depth hoar thicknesses were compared to those385

using generalised representations (i.e. seasonal thicknesses, average thickness, and average DHF from Table 6). Parameterizing

the depth hoar layer with average thicknesses for each site improved algorithm estimates slightly compared to average DHF

but the seasonal parameterization performed considerable better than either (Table 8). Further, seasonal depth hoar thicknesses

were the only to bring algorithm estimates within the uncertainty range of the reference dataset at all sites (±10 %).

Calibrated seasonal depth hoar thicknesses were plotted against end-of-season DHI from Eq. (5). to identify a relationship390

to estimate dynamic depth hoar thicknesses (Fig. 8). Model configurations for each site should be equivalent (specifically

depth hoar SSA) for a robust comparison of depth hoar thicknesses, so the configuration from Eureka was applied to the other

sites since it seems representative of in situ conditions (see Section 5.2). Calibrated depth hoar thicknesses had a very strong
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relationship with DHI at Alert (R2=0.94, p<0.01), moderate relationships for Eureka (R2=0.68, p=0.023) and Resolute Bay

(R2=0.64, p=0.20), and virtually no relationship for Cambridge Bay (R2=0.01, p=0.82). There was considerable spread in395

plotted values for Cambridge Bay and, when removed, the polar desert sites together have a very strong relationship (R2=0.93,

p<0.01) fitted with a linear model

TEOS = 0.349 ∗DHIMar15 − 3.75 (9)

allowing end-of-season depth hoar thickness (TEOS) to be estimated in cm from DHI on March 15th (DHIMar15).

Table 8. Algorithm performance metrics compared to CanSWE using calibrated configurations with depth hoar parameterised with seasonal

thicknesses (seasonal), average thickness (avg. thickness), and average DHF (avg. DHF) from Table 6.

Site
MAPE (%) Overlap (%)

seasonal avg. thickness avg. DHF dynamic avg. thickness avg. DHF

Alert 6.7 13.4 14.2 81.8 48.4 41.5

Eureka 7.4 17.4 18.8 66.0 29.5 28.5

Resolute Bay 8.9 20.6 22.0 57.9 27.9 16.8

Cambridge Bay 7.0 12.5 13.0 74.1 45.2 50.2

Figure 8. Depth Hoar Index from Eq. (5) plotted against calibrated depth hoar thicknesses and fitted linear models (lines).
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5.4 Full Season Algorithm Runs400

The temporal parameterization (described in Section 4.4) was used to force algorithm retrievals over full winter seasons. The

calibrated configuration for Eureka was used for all sites and dynamic depth hoar thickness (DT) estimated in cm with

DT (t) =max(TEOS ∗ ( DHI(t)

DHIMar15
),TEOS) (10)

where DHI at time step t was from Eq. (5) and TEOS from Eq. (9), and the maximum operator did not allow for growth after

March 15. Algorithm runs over all seasons at each site were aggregated to calculated performance metrics, presented in Table405

9. Results for the three polar desert sites were similar with moderate MAPE (<20 %), weak-to-moderate positive correlations,

and low magnitudes of bias, whereas, Cambridge Bay had higher MAPE, larger positive bias, and a weak negative correlation.

A collection of notable algorithm simulations was included in Figure 9 - some as examples of when the algorithm performed

very well and others to demonstrate limitations – all simulations are included in Appendix B. Seasonal performance at Eureka

was mixed, where three seasons had low MAPE (i.e. <10 %, e.g. Fig. 9a), 3 had moderate MAPE (i.e. <20 %, e.g. Fig. 9b), and410

one high MAPE (i.e. >20 %, Fig. 9c). The algorithm performed similarly at Alert, where three seasons had low MAPE (e.g.

Fig. 9d), one moderate MAPE (not shown), and one high MAPE (Fig. 9e). Alternatively, algorithm performance at Resolute

Bay was worse overall, where only one season had relatively low MAPE (not shown) and the other three had higher MAPE (not

shown). Results for Cambridge Bay were more nuanced and the relatively high overall MAPE did not tell the whole story. In

all but one algorithm run simulated density started considerably higher than reference samples in the early season but matched415

in situ samples very closely from February onwards (e.g. Fig. 9f).

Table 9. Algorithm performance metrics for full season runs relative to CanSWE samples (mean normalised percentage values in parenthe-

ses).

Site n Overlap (%) MAPE (%) Bias (kg m3) RMSE (kg m3) Correlation (r)

Alert 67 55.7 14.4 23.2 (6.5 %) 61.9 (17.4 %) 0.280 (p=0.02)

Eureka 81 32.2 14.9 -13.5 (-4.1 %) 62.4 (18.9 %) 0.393 (p<0.01)

Resolute Bay 49 40.3 18.7 27.3 (7.7 %) 77.0 (21.6 %) 0.130 (p=0.37)

Cambridge Bay 233 34.4 21.2 35.9 (11.1 %) 82.9 (25.7 %) -0.213 (p<0.01)

6 Discussion

6.1 Assessment of End-of-Season Configurations

In the following subsections, key parameters (i.e. SSA and depth hoar thickness) of the calibrated end-of-season configurations

were compared against measured values from various field campaigns.420
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Figure 9. Example algorithm outputs (top panel) and forcing data (lower panels), for (a) Eureka 2005-06, (b) Eureka 2010-11, (c) Eureka

2004-05, (d) Alert 2006-07, (e) Alert 2003-04, and (f) Cambridge Bay 2008-09.

6.1.1 Eureka

Detail snow surveys from Saberi et al. (2017) were used to evaluate the algorithm configuration for Eureka. Calibrated depth

hoar thicknesses for the Eureka site were fairly consistent ranging from 2.6 to 7.2 cm (σ = 1.6 cm) and within the range of
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expected values for the polar desert (Royer et al., 2021). Simulated depth hoar thickness for the 2010-2011 season (6.7 cm)

was comparable to measured values from the snow survey which had a median value of 9 cm (interquartile range of 6-12425

cm). We expected thicker depth hoar from the snow survey dataset because it was focused around Hot Weather Creak, where

conditions in the polar oasis should be more favourable for depth hoar formation. On the other hand, the manual snow survey

course (i.e. CanSWE) was approximately 15 km west of Hot Weather Creak (Fig. 1b), so we believe conditions at the AWS

should be somewhere between those found in the polar desert and polar oasis (i.e. relatively thinner depth hoar). Additionally,

the calibrated SSA values produced representative estimates for individual layer densities measured during the snow survey430

(Fig. 7), increasing our confidence in the algorithm configuration for the Eureka site.

6.1.2 Alert

There were few snow survey data available for the Alert site (e.g. Domine et al., 2002), so those from relatively close Ward

Hunt Island (∼170 km northwest) were also considered (Davesne et al., 2022). SSA values were similar to those measured by

Davesne et al. (2022) but depth hoar was considerably thicker in some cases than the typical 5 to 10 cm expected in the polar435

desert (Royer et al., 2021). Further, there was considerable variability in simulated depth hoar thicknesses for Alert, with values

ranging from 1.5 to 19.8 cm (σ = 6.0 cm). Initially, we believed the large variability in depth hoar thickness to indicate an issue

in the calibration routine (specifically higher values approaching 20 cm). However, variable depth hoar conditions have been

recorded at Ward Hunt Island, which can be essentially devoid of depth hoar some years (Domine et al., 2018) or near 20 cm

in other cases (Davesne et al., 2022). Thus, it appears the algorithm configuration for Alert was reasonable.440

6.1.3 Resolute Bay

Snow survey data were available for Resolute Bay (Davesne et al., 2022; Royer et al., 2021), though the information was less

specific than for other sites (i.e. no explicit depth hoar thickness). Simulated SSA values for the Resolute Bay site, like the

others in the polar dessert, were with the range of expected values, but average DHF (17 %) was slightly lower than reported

∼30 ±20 % (Royer et al., 2021). Simulated depth hoar thickness was fairly consistent ranging from 0.9 to 5.4 cm (σ = 1.6 cm)445

and DHF for all seasons (except 2010-2011) were within the range of measured values. Further, the area near Resolute Bay

covered by the radiometer field-of-view was likely relatively dry, given its location inland with virtually no water bodies (Fig.

1d), and simulated DHF was comparable to values for dry areas surveyed by Davesne et al. (2022). Therefore, the algorithm

configuration for Resolute Bay also appeared reasonable.

6.1.4 Cambridge Bay450

Comprehensive reports of snowpack properties from Cambridge Bay (Meloche et al., 2022, 2024) allowed for detailed analysis

of the calibrated algorithm configuration. Unlike the other sites, simulated depth hoar SSA and DHF were different for Cam-

bridge Bay than field measurements (Meloche et al., 2022, 2024). The discrepancy between simulated and measured values

could be related to water bodies around Cambridge Bay affecting radiometry (Derksen et al., 2010). However, we believe the
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issue to be mainly related to the complementary nature of depth hoar SSA and thickness towards volume scattering; with SSA455

values (wind slab: 20 m2 kg−1 and depth hoar: 11 m2 kg−1) from Meloche et al. (2022) calibrated average DHF (36 %) was

very close to the reported value (38 %), and overall MAPE is only slightly higher (by 0.4 %). The possibility for large discrep-

ancies between predicted and simulated parameters with little effect on simulated bulk density underscores the necessity for

stratigraphic data during model calibration and evaluation.

6.2 Assessment of Temporal Parameterization460

Estimation skill over the full season (Table 9) was lower than during the calibration stage (Table 8), though that was expected

because the configuration for Eureka was used for all sites and depth hoar thickness was parameterised with Eq. (10) (rather

than calibrated values for each site). In some cases the temporal parameterization produced excellent estimates of snow density

over the whole season (e.g. Fig. 9a&d) but in other cases struggled to reproduce the observed densification trajectory (e.g. Fig.

9c&e). Yet, algorithm estimation skill at each site consistently improved over the course of a winter season and most algorithm465

estimates were close to the in situ references samples later on. To quantify this behaviour the reference dataset was partitioned

into three temporal sets – October-November-December (OND), January-February-March (JFM), and April-May-June (AMJ)

– and overlap, MAPE, and bias calculated for each in Table 10. There were substantial improvements in all metrics at all

sites between OND to JFM and JFM to AMJ, and AMJ MAPE for the polar desert sites were within, or approaching, 10 %

indicating the snow density estimation uncertainty was similar to the in situ samples. Temporal results for Cambridge Bay were470

slightly different than polar desert sites as there was a substantial improvement in all metrics from OND to JFM (most notably

the reduction in bias) but MAPE increased in AMJ. Possible explanations for these temporal behaviours in algorithm estimates

are discussed below.

Table 10. Seasonal performance metrics for algorithm snow density estimates relative to CanSWE, for October-November-December (OND),

January-February-March (JFM), and April-May-June (AMJ).

Site
Overlap (%) MAPE (%) Bias (kg m3)

OND JFM AMJ OND JFM AMJ OND JFM AMJ

Alert 15.9 68.1 70.6 32.5 7.7 8.9 67.6 6.6 10.1

Eureka 23.0 21.9 53.3 19.3 16.6 9.8 -38.4 -16.1 4.0

Resolute Bay 26.8 41.9 50.3 30.3 15.0 13.9 59.2 27.2 -2.3

Cambridge Bay 12.4 45.8 40.0 40.8 12.2 14.1 102.3 17.6 -8.0

The most likely reason for improved algorithm performance towards the end-of-season during most simulations is that the

snow metamorphic state was captured effectively by model dynamics that align with our understanding of snowpack metamor-475

phism. Prior knowledge from available literature increased confidence in end-of-season algorithm configuration, though much

less was ready for the early-to-mid season introducing uncertainty into the temporal parameterization. Specifically, some prop-

erties were effectively quantified with physical models over time (e.g. SSA) while others were not because model representation

is simply not developed (e.g. depth hoar thickness).
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From the point of view of algorithm development, the most difficult element to parameterise over time was depth hoar480

thickness. The depth hoar model was generalised to not overfit to any specific forcing data, but edge cases were identified where

there were issues. In some cases identified as standard development, and with thicker initial snow depth, Eq. (10) appeared to

underestimate early-season depth hoar thickness causing simulated bulk density to pin at the bottom of the range to maximise

volume scattering (e.g. Fig. 9c). That early-season underestimation could be related to how depth hoar was parameterised to

grow vertically in thickness, which would be logical for indurated development (growing at the expense of wind slab thickness)485

but normal depth hoar should form from early layers morphing simultaneously. On the other hand, under the most restrictive

conditions identified for depth hoar metamorphism Eq. (10) overestimated depth hoar thickness throughout the whole season

casing algorithm estimates to pin at the upper limit of the density range to minimise volume scattering (e.g. Fig. 9e), despite

very similar simulated (2.0 cm) and calibrated (0.8 cm) end-of-season thicknesses. Thus, our depth hoar model could be

improved to consider specific situations – for example, initiating thickness with early-season snow depth measurements during490

Stage 0 (assuming the entire layer would shortly become depth hoar) and using a fixed thickness (∼1 cm) when very restrictive

conditions are identified.

Even with the help of existing models there were challenges with the parameterization of SSA. Most notably, there is prac-

tically no distinction in the literature between standard and indurate depth hoar microstructure in terms of SSA and polydis-

persity, so we did not distinguish between their prescribed microstructure properties. While physical grain size of standard and495

indurated depth hoar are similar (Derksen et al., 2009), non-metamorphosed wind slab grains can be present in indurated depth

hoar (Domine et al. , 2016b); possibly leading to higher SSA or lower polydispersity compared to standard depth hoar, neces-

sitating thicker simulated indurated layers. Further, our snowpack representation did not account for deposits of fresh snow,

which have low density and high SSA, and, therefore, should be radiometrically negligible (Saberi et al., 2017). However,

new snow was immediately incorporated into the simulated wind slab layer affecting simulated, but not observed, brightness500

temperatures – for example, mid-season snowfall events at Eureka in January 2011 (Fig. 9b) caused measured bulk density

to decrease but simulated bulk density increased. Identifying depth hoar type with the proposed stages of snowpack evolution

would not only aid in parameterizing algorithm retrievals (should their microstructure properties prove to be sufficiently differ-

ent) but could also support applications where snow hardness and thermal conductivity are relevant – for example, permafrost

thermal regimes and conditions for subnivean life (Domine et al. , 2016b).505

Algorithm estimates generally followed expected densification trajectories (i.e. increasing density over time) in the polar

desert (e.g. Fig 9b) but exhibited different behaviour at Cambridge Bay. Early season density estimates were too high in

all, but one, simulations at Cambridge Bay and decreased over time to move closer to in situ measurements (e.g. Fig. 9f).

Early season overestimation could be explained by penetration depth at 19 GHz exceeding lake ice thickness (Derksen et

al., 2009), which reduced observed ∆Tb causing simulated density to pin at the upper limit to minimise volume scattering.510

Then, estimates improved over the mid-season when lake ice thickness should exceed the penetration depth at 19 GHz, before

thinning ice thickness reintroduced uncertainty in observed brightness temperatures at the end-of-season (Derksen et al., 2009).

Additionally, the radiometric influence of water bodies made it more difficult to interpret the stages of snowpack evolution at

Cambridge Bay – Stage 0 was only identified during a couple seasons, despite tundra conditions being generally favourable
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for depth hoar development (Royer et al., 2021). Furthermore, unfrozen water bodies around Cambridge Bay caused pre-snow515

∆Tb to be very low (i.e. negative ∼10 K) artificially modifying DHI values, likely contributing to the spread of points in

Figure 8. After February, when ice thickness should exceed penetration depth (Derksen et al., 2009), algorithm performance

for Cambridge Bay was comparable to the polar dessert sites (MAPE = 13.2 % and overlap = 43.6 %).

6.3 Scalability Across the Pan-Arctic

The ultimate goal of this research is to develop a pan-Arctic snow density retrieval algorithm, though the algorithm would need520

to be modified for that purpose. The current retrieval design is predicated on two-layer snowpack with distinct properties (i.e.

found in the tundra/polar desert) and would need to be modified to consider other Arctic snow types (e.g. taiga). Traditional

ecological knowledge of snow conditions (e.g. Riseth et al., 2011) could help to identify important snowpack parameters across

various environments to be generalised for the electromagnetic model. Additionally, water bodies could impede retrievals using

a ∆Tb approach (as described for Cambridge Bay) and a single channel retrieval using only 37 GHz might be more appropriate525

across the pan-Arctic (Derksen et al., 2010). Also, the dynamic depth hoar parameterization required PM observations from

snow-on to March 15 limiting its use to retrospective analyses, though the relatively long PM observation record would allow

for climatological analysis.

After necessary modifications, additional datasets would be required to expand the spatial extent of algorithm retrievals.

Snow depth data are the most important to force the algorithm (after radiometry) and the sparse distribution of AWS across the530

pan-Arctic render them unsuitable for extensive model forcing. Spatially continuous snow depth estimates could be derived

from reanalysis models, even as a first order effect, despite their uncertainty in high latitude areas where data are sparse

(Cao et al., 2020). Assimilation of reanalysis snow depth estimates with AWS data for bias correction might be a promising

way forward. Similarly, bias corrected ground temperature estimates from reanalysis products (Herrington et al., 2024) could

replace our simple model based on AWS air temperature. Additionally, auxiliary wind speed and soil moisture data could535

aid with parameterizing the depth hoar layer (i.e. quantifying the potential for development) as they restrict and promote

development, respectively (Davesne et al., 2022). Finally, a pan-Arctic snow density product would require extensive reference

data to support algorithm calibration and evaluation which will need to be curated, specifically regarding extensive datasets of

snow stratigraphy.

7 Conclusions and Future Work540

A prototype algorithm was developed to estimate snow density in the tundra environment using PM remote sensing, given

challenges in estimating spatiotemporally varying snow density in the Arctic environment. An experiment was conducted to

assess the proposed algorithm’s ability to estimate snow density at sites distributed in the Canadian high Arctic. Results from

those sites demonstrate algorithm estimates have the potential to provided information on snow density comparable to those

collected with in situ sampling. In its current configuration, the algorithm performed best at estimating snow density conditions545

later in the season, with end-of-season MAPE within (i.e. Alert and Eureka), or approaching (i.e. Resolute Bay and Cambridge
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Bay), the ±10 % uncertainty range of manual snow density sampling. With some modifications and more extensive forcing

data the proposed algorithm could be applied across the pan-Arctic to provide snow density estimates at spatiotemporal scales

that were not previously available.

The experimental design for this study was opportunistic due to the limited snow density data available for algorithm calibra-550

tion and evaluation. CanSWE was the only readily available dataset which covered the required spatial and temporal domain for

algorithm development but was limited to bulk estimates and, as result, estimates for the two distinct snow layers could not be

sufficiently calibrated nor evaluated. Specifically, algorithm calibration with bulk density measurements introduced uncertainty

in the parameterization of depth hoar thickness and SSA, because of their complementary effects on volume scattering. Future

algorithm development will focus on datasets from sites with distributed stratigraphic measurements that will improve snow555

density parameterization at the PM scale. Further, Arctic snow conditions are known to be driven by terrain types (Rees et al.,

2014; Woo, 1998) and we hypothesise the microwave-plausible snow density range for the PM scene could be disaggregated

using high-resolution active microwave data to provide information on stratigraphic heterogeneity (replacing the abstract H

parameter).
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Appendix A: Comparison of measured and modelled substrate temperatures.560

Figure A1. Air and substrate temperatures measured (adapted from Domine et al., 2018) at (a) Bylot Island 2016-17 (normal depth hoar

conditions) and (b) Ward Hunt Island 2015-16 (restricted depth hoar conditions), and from our model (described in Section 4.4.3) under (c)

normal depth hoar conditions at Eureka 2010-2011 and (d) restricted depth hoar conditions at Alert 2003-04.
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Appendix B: Algorithm Outputs

Figure B1. All algorithm simulations (top panel) and forcing data (lower panels) for Alert and Eureka sites (performance metrics same as

those listed in Table 9).
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Figure B2. All algorithm simulations (top panel) and forcing data (lower panels) for Resolute Bay and Cambridge Bay sites (performance

metrics same as those listed in Table 9).
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