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Abstract.

Snow density data are important for a variety of applications, yet, to our knowledge, there are few methods for estimating
spatiotemporal varying snow density in the Arctic environment. This research proposes a passive microwave retrieval
algorithm to estimate tundra snow density. A two-layer electromagnetic snowpack model, representing depth hoar underlaying
a wind slab layer, was used to estimate microwave emissions for use in an inverse model to estimate snow density. The
proposed algorithm is predicated on solving the inverse model at boundary conditions for the simulated layers to estimate snow
density within a plausible range. An experiment was conducted to assess the algorithm’s ability to reproduce snow density
estimates from snow courses at four sites in the Canadian high Arctic. The electromagnetic snowpack model was calibrated to
end-of-season conditions at each study site and a novel temporal parameterization used to expand algorithm retrievals over
full winter seasons. Algorithm estimates have the potential, under ideal conditions, to provide snow density information
comparable to that collected through in situ sampling. In its current configuration, algorithm performance was best later in the
season, with mean absolute percentage error approaching 10% towards the end-of-season indicating snow density estimation
uncertainty was similar to the in situ samples. With some modifications, and more extensive forcing data, this algorithm could

be applied across the pan-Arctic to provide snow density information at scales that are not currently available.

1 Introduction

There are numerous applications for which the quantification of snow density is important: for example, estimating snow
water equivalent (SWE) for water resources (Venildinen et al., 2021, 2023), modelling atmosphere-land interactions for energy
balances (Gouttevin et al., 2012, 2018), and ecological monitoring of Arctic fauna (Martineau et al., 2022; Sivy et al., 2018);
though, to the best of our knowledge, there is no effective method for estimating spatiotemporally-varying snow density in the
Arctic. There are automated instruments to estimate snow density but they are not widely implemented, instead density is
typical estimated by weighing a known volume of snow (Kinar and Pomeroy, 2015). This manual process is labour intensive
and, as a result, measurements are sparsely distributed making the prediction of spatially distributed density estimates
uncertain. In a remote environment, like the Canadian Arctic, comprehensive in situ sampling is not feasible due to logistical
constraints, so large-scale analyses involving snow density tend to rely on modelled estimates. Recent studies have shown that

current snow density products, from meteorological reanalysis or detailed snow models, are not adequate for use in Arctic
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environments. The snow scheme in the ERAS5-Land reanalysis model overestimates snow depth and underestimates density,
by considerable margins, in high-latitudes (Cao et al., 2020, 2022). Similarly, detailed snow models (i.e. Crocus and
SNOWPACK) cannot estimate the expected vertical density profile in the Arctic tundra (Barrere et al., 2017; Domine et al.,
2019). Despite its intrinsic importance in Earth systems, snow density variability is currently not well understood on large
spatiotemporal scales.

One possible approach to estimate snow density at the regional scale (i.e. 102-10* km?; Woo, 1998) is from satellite-based
remote sensing. Satellite passive microwave (PM) radiometry offers near-daily coverage of the Northern Hemisphere, under
most weather conditions, with a data record spanning back to 1978. Emitted microwave energy can pass through a snowpack
unattenuated at lower frequencies or is attenuated at higher frequencies. For attenuated emission, the primary microwave
interaction within a dry snowpack is volume scattering which is controlled by the snowpack properties (i.e. snow depth,
density, temperature, and grain size radius; Chang et al., 1982). PM snow emission retrievals using a frequency difference
approach (ATb) — the subtraction of higher frequency channel Tb (volume scattering dominated) from a lower-frequency Tb
channel (subnivean emission dominated) — have been the basis of empirical representations of PM estimates (e.g. Chang et al.,
1987) and more sophisticated assimilation-based retrieval schemes (e.g. Takala et al., 2011). Historically, snow mass has been
estimated with spaceborne (PM) radiometry through retrieval algorithms focusing on snow depth (Kelly et al., 2003, 2019;
Takala et al., 2011; Tedesco and Jeyaratnam, 2016). In theory, the principles behind those existing retrieval schemes could be
exploited to estimate snow density rather than depth.

In general, the parameterization of snow density in has been simplified in large-scale PM SWE estimation models
(Mortimer et al., 2022). There is a lack of snow density observations at the necessary scales to constrain density
parameterization, primarily because of the difficult in acquiring spatially distributed in situ observations (Sturm et al., 2010).
As a result, snow depth has been the focus of most analyses regarding SWE. In some cases, snow density is kept constant
across the domain (e.g. Luojus et al., 2021; Takala et al., 2011) or conservative estimates are taken from empirical models of
snow density evolution over time (e.g. Kelly et al., 2003). However, such a simplified representation of snow density may not
adequately represent variability across the large domains those models are designed to cover.

Other satellite-based PM retrieval algorithms have been proposed (Champollion et al., 2019; Holmberg et al., 2024), though
none have used a frequency difference modelling approach like is commonly used to retrieve snow depth. In this study, an
experiment was conducted to evaluate the potential use of satellite-based PM observations and existing in situ meteorological
networks to estimate snow density in the high Arctic tundra using a frequency difference modelling approach. Snow density
estimates from the proposed algorithm could provide a notable benefit over existing snow density products, which do not
account for densification processes relevant to the tundra environment (Cao et al., 2022; Domine et al., 2016b). Instead, the
algorithm would be informed by independent PM observations providing context on in situ snow density conditions. Thus,
estimates from this approach could fill a gap in the understanding of snow density variability in remote areas that are unsuitable

for in intensive in situ sampling and where current snow density models are not appropriate.
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2 Study Area

The Canadian high Arctic was chosen to develop the prototype snow density retrieval algorithm for the following reasons
that tend to simplify the retrieval process. First, high Arctic snowpacks are traditionally classified as tundra type snow (Sturm
et al., 1995; Sturm and Liston, 2021), though much of the Canadian Arctic Archipelago would be more accurately described
as a polar desert (Royer et al., 2021). Tundra snow has a characteristic two layer structure of dense wind slabs overlaying depth
hoar (Benson and Sturm, 1993) - polar desert snowpacks are similar but are thinner, denser, and have a smaller proportion of
depth hoar (Royer et al., 2021) — which provided priori information for model parameterization. Second, forest cover
attenuation effects (Li et al., 2020) are minimized in high Arctic environments which are characterized by sparse, short
vegetation or barren landscapes (Royer et al., 2021). Third, terrain effects should be minimal compared to those found in more
topologically complex landscapes like alpine environments (Tong et al., 2010). Last, there are relatively few lakes in the high
Arctic, compared to the sub-Arctic tundra, reducing the radiometric effects of water bodies (Derksen et al., 2010).

Four automatic weather stations (AWS) were identified across a latitudinal range in the Canadian high Arctic for this
experiment (Fig. 1), selected because they are collocated with manual in situ SWE sampling sites. Basic site characteristics
are provided in Table 1; including AWS climatology, predominant vegetation types from the Raster Circumpolar Arctic
Vegetation Map (Raynolds et al., 2019), and area of nearby water bodies calculated with the HydroLAKES database (Messager
etal., 2016). Following Royer et al.’s (2021) classification, three AWS sites — Alert, Eureka, and Resolute — are situated in the
polar desert and Cambridge Bay in the polar tundra. Sites in the polar desert are mostly barren and are exposed to harsh winter
storms, but local topography around Eureka protects the area from storms creating a microclimate — described as a polar oasis,
characterised by higher temperatures, lower precipitation, and more vegetation (Woo and Young, 1997). The Cambridge Bay
site has more sub-Arctic qualities featuring graminoid shrub vegetation and many small lakes nearby.

Table 1 — Characteristics of study sites (average AWS air temperature [C] and snow depth [cm] from March 15 to April 15).

Site Latitude Vegetation Water Area Air Temperature (C) Snow Depth (cm)
Alert 82°31° Barren <1% -28.3 349
Eureka 79°59° Graminoid <1% -31.2 19.0
Resolute 74°43° Barren <1% -24.6 213
Cambridge Bay 69°06° Graminoid 17 % -25.0 31.8
3 Data

3.1 Model Forcing Data

PM radiometry data were the main forcing for the proposed snow density retrieval algorithm. Radiometry data were
acquired from the Advanced Microwave Scanning Radiometer Earth Observing System (AMSR-E) Calibrated Enhanced-
Resolution Passive Microwave Daily Brightness Temperature Version 2 dataset (Brodzik et al., 2024), resampled to a 12.5 km

EASE-Grid 2.0. PM observations spanned eight winter seasons (2003-11) while the instrument was functional (reference snow



90

95

density data were not available for the 2002-03 season). AMSR-E observations for each station were extracted from an adjacent
EASE grid cell to the AWS (highlighted in Fig 1) to minimize water area in observation scene due to their proximity to the
coast. Nighttime observations from the descending orbit track (~1:30 am local time at the equator) were used since snow
conditions would be more likely to be cold and dry for optimal microwave retrievals (Derksen et al., 2005). Radiometry
samples were smoothed with a five-day Gaussian weighted mean filter as described by Holloway (1985). The 18.7 and 36.5
GHz vertically-polarized radiometer channels (hereafter 19 and 37 GHz, respectively) were used to estimate ATb in the forward
model.

Meteorological measurements, acquired from the Environment and Climate Change Canada (ECCC) AWS network (ECCC
& ClimateData.ca, n.d.) were also used for model forcing. The electromagnetic snowpack model was parameterized with AWS
data, which required daily measurements of snow depth and air temperature as prior snow conditions. AWS data were the

limiting factor in this experiment because the network is sparsely distributed in northern Canada limiting potential study sites.
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Figure 1 — (a) AWS/CanSWE sites, distributed across the high Arctic in Nunavut, Canada, with insets showing12.5 km
EASE-Grid (highlighted cells used in analysis) for (b) Eureka (snowpit numbers correspond to Table 3), (c) Cambridge
Bay, (d) Resolute, and (e) Alert.
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3.2 In situ Reference Data
3.2.1 Canadian Historical Snow Water Equivalent Dataset

The curated ECCC Canadian Historical Snow Water Equivalent dataset (CanSWE; Vionnet et al., 2021) provided in situ
snow density data for algorithm calibration and evaluation. CanSWE was chosen because of its broad spatial coverage and
relatively high temporal sampling frequency, although, it is recognized that snow density information from CanSWE is limited
to bulk properties meaning they were unsuitable to evaluate algorithm estimates for individual snow layers. CanSWE included
sampling locations collocated with AWS sites which allowed for direct comparisons of estimated and sampled snow density.
Snow density data in CanSWE (considered in this study) were collected with ESC-30 SWE tubes along 5-10 point snow course
transects spanning 150-300m, aggregated into bulk estimates of snow density. A ten percent uncertainty range was applied to
the snow density data in the reference dataset because of uncertainties inherent to manual snow density sampling (Conger and
McClung, 2009; Lépez-Moreno et al., 2020). Specific information about sampling procedures was not available for the
individual sites in the CanSWE dataset (e.g. where the snow course is situated relative to the AWS was unknown).

The reference dataset was limited with respect to the algorithm configuration (described in Section 4.4). Some yearly AWS
forcing datasets were deemed unsuitable for algorithm forcing and were removed from the analysis. One winter season at the
Eureka site (2008-09) had insufficient snow accumulation to permit PM retrievals (i.e. <10 cm). Other datasets were excluded
where snow accumulation trajectories reported by the AWS were substantially different from snow depth samples in CanSWE:
three seasons for Alert (2007-08, 2009-10 and 2010-11) and four for Resolute (2003-04, 2004-05, 2005-06, and 2006-07) —
otherwise, there was fairly good agreement AWS and CanSWE snow depths (Table 2). Individual CanSWE snow density
samples were removed under three conditions: if they were out of the range of algorithm estimates (i.e. 150 to 450 kg m), if
they were sporadic and did not fit temporally with the seasonal trajectory of the other samples, or if they were taken late in the
season during the ablation period when the snowpack would likely be in a wet state inhibiting microwave retrievals.

Table 2 — AWS and CanSWE snow depth comparison, which were included or excluded for model forcing.

Dataset n RMSE (cm) Correlation (R)
Included 554 5.8 0.869 (p<0.01)
Excluded 108 15.8 0.446 (p <0.01)

3.2.2 Eureka Snow Survey Dataset

Due to the bulk nature of CanSWE density data, an additional dataset from Saberi et al. (2017) was used to evaluate
algorithm estimates in greater detail. Extensive surveys of snow conditions were conducted near Eureka on the Foshiem
Peninsula from April 12-20%, 2011. The survey protocol was rather unique in terms of spatial extent covering four 25 km
EASE-Grid cells, including stratigraphic data from snowpits and bulk snow properties from ESC-30 SWE tubes. Measured
snow properties in each 25 km EASE-Grid cell were aggregated using median values (Table 3) to force algorithm retrievals
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and evaluate the algorithm configuration calibrated to bulk density measurements. Although limited to a single season, the

Eureka snow survey dataset provided additional context to interpret algorithm outputs.

Table 3 — Median (interquartile range) snowpack properties from Saberi et al., (2017) in each 25.0 km EASE Grid-cell — grid cell

numbers correspond to points in Figure 1b.

Grid Snowpits/ Snow Depth Depth Hoar Bulk Density Wind Slab Density Depth Hoar
Cell SWE Cores (cm) Thickness (cm) (kg m™) (kg m™) Density (kg m™)
1 13/39 25.0 (20.0 t0 9.0) 10.0 (6.5 to 12.0) 283 (251 to 329) 346 (306 to 368) 231 (210 to 258)
2 6/18 21.0(20.3t0 1.8) 11.0 (9.3 to 14.3) 275 (244 to 315) 381 (313 to 407) 241 (223 t0 290)
3 10/15 21.0(17.1t0 5.0) 8.5(8.0t0 12.5) 287 (277 to 382) 392 (364 t0 399) 219 (213 to 235)
4 7/21 22.0(16.8102.8) 9(8.5t011.0) 261 (236 to 303) 383 (357 to 398) 227 (212 to 245)
4 Methods

4.1 Electromagnetic Model

The Snow Microwave Radiative Transfer model (SMRT; Picard et al., 2018) was used as the forward model in the retrieval
algorithm. SMRT was configured with the Improved Born Approximation (IBA) electromagnetic model (Méatzler, 1998) and
microwave grain size microstructure model (Picard et al., 2022a), which have been demonstrated to be representative of high-
Arctic snow conditions (Meloche et al., 2024). The substrate composition was parameterized to represent cryosolic soil
following Meloche et al. (2021) and atmospheric contributions were estimated as described by Pulliainen & Grandeil (1999).

The physically-based forward modelling approach required the snowpack to be parameterized, so the relevant
characteristics needed to be quantified. A two-layer snowpack model was configured to account for the presence of depth hoar
underneath a slab layer to best represent the microwave signature of tundra snow (Hall, 1987; Saberi et al., 2017). Upon initial
deposition the snowpack would likely be in a homogenous state, with one layer, but that situation was not considered in this
approach. The strong environmental controls present in the tundra contribute to the development of wind slab and depth hoar
snow layers quickly after deposition (Benson and Sturm, 1993; Sturm and Holmgren, 1998), and algorithm retrievals were

performed after 10 cm of snow had accumulated so the pack would be unlikely to be in the initial homogenous state.

4.2 Sensitivity Test

Microwave retrieval algorithms have traditionally estimated snow depth using a vertically polarized brightness temperature
frequency difference (ATb = 19V — 37V), because of the sensitivity (insensitivity) of the 37 GHz (19 GHz) channel to snow
accumulation, though we believe the same principle could be used to estimate snow density. Generally, ATb is thought to
increase with snow depth due to increasing volume scattering until a threshold after which the signal is saturated by thermal
emission originating in the snowpack (Saberi et al., 2020). However, that is a simplified explanation of snow microwave

interactions (i.e. only considering one layer) and can be complicated by stratification of natural snowpacks. For a tundra
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snowpack - with characteristic wind slab overlaying depth hoar — volume scattering is dominant for the depth hoar layer and
non-scattering emission contributions originate from the wind slab (Sturm et al., 1993). Thus, it is important to understand
how the properties of each snow layer would impact microwave emissions to design an effective snow density retrieval
algorithm.

The electromagnetic model (described in Section 4.1) was used to simulate microwave emissions from tundra snowpacks
to assess its sensitivity to various parameters. The electromagnetic model requires snowpack physical properties to be
quantified, including the thickness, density, specific surface area (SSA), polydispersity, and temperature of each layer. A series
of experiments were designed to illustrate the effects of the various model parameters (representative of tundra snow, see
Meloche et al., 2022; Picard et al., 2022a) and Arctic snow metamorphism; detailed descriptions of each experiment are
provided in Table 4.

Table 4 — Specific model parameters for wind slab (WS) and depth hoar (DH) layers in various sensitivity tests.

Parameter Experiment 1 ‘ Experiment 2 ‘ Experiment 3 Experiment 4
Density WS: 1 to 500 WS: 250 to 400
(kg m™) DH: 1 to 500 DH: 250

SSA WS: 15 to 25 WS: 20
(m? kg™) DH: 10 to 12 DH: 11
Thickness WS: 20 WS: 10 to 30 WS: 20 WS: 20 to 40
(cm) DH: 10 DH:5to 15 DH: 10 DH: 10
Polydispersity WS: 0.80 WS: 0.60 to 0.90 WS: 0.80
(unitless) DH: 1.33 DH: 1.10 to 1.80 DH: 1.33
Temperatures Air: -30.0  WS:-28.6
© DH: -26.3 Soil: -25.0

Snow density is our primary variable of interest, so it is important to understand how it effects microwave emissions. In
the IBA model, scattering and absorption coefficients are in part related to snow density. The absorption coefficient increases
linearly with snow density because of a greater proportion of ice to air in the microstructure representation altering the effective
permittivity (Picard et al., 2018). On the other hand, the scattering coefficient has a non-linear relationship with snow density
because of the interactions between individual scatterers in the snowpack. Volume scattering increases as more scatters are
introduced (i.e. increasing density), until the scatterers are close enough in proximity to influence each other and the overall
scattering efficiency decreases (Tsang & Kong, 2001). Thus, density of the wind slab and depth hoar layers can affect ATb in
different ways because of their properties that contribute to varying levels of volume scattering and thermal emission.

Experiments 1 to 3 were designed to simulate microwave emission from isolated wind slab and depth hoar layers,
accounting for variations in specific surface area (SSA), polydispersity, and layer thickness, respectively (Figs 2 to 4). The

relationships between snow density and brightness temperatures follow skewed curves with minima at densities of 150 kg m™
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and frequency dependent amplitudes. Snow volume scattering is less sensitive to 19 than 37 GHz, so the frequency difference
(ATDb) is approximately the reflected 37 GHz curve and its magnitude depends on different microstructure properties (Picard
et al., 2022a). Lower (higher) SSA values produce greater (lesser) volume scattering, with minimal dependency on density,
effectively translating the ATb curves vertically (depth hoar ~9 K between 10 to 12 m? kg™ and wind slab ~3 K between 15 to
25 m? kg'!). Similarly, polydispersity effectively scales SSA, translating ATb curves (depth hoar ~19 K between 1.2 to 1.8 and
wind slab ~3 K between 0.6 to 0.9). Alternatively, layer thickness amplifies the relationship between snow density and
simulated ATb, increasing sensitivity to depth hoar density (~10 K between 150 to 450 kg m™ at 5 cm vs. ~28 K at 15 cm) and
the wind slab to a lesser extent (~0.5 K between 150 to 450 kg m™ at 10 ¢cm vs. ~3 K at 30 cm). Seasonal snow density is
typical above the 150 kg m~ inflection point (ignoring fresh snow), so we can assume snow density has a negative relationship

with ATb — with all other parameters equal, greater (lesser) ATb would indicate lower (higher) snow density.
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While there was minimal model sensitivity to the isolated wind slab in Experiments 1 to 3, the effect of the wind slab on
brightness temperature should be more apparent when parameterized over depth hoar. Experiment 4 was designed to
demonstrate brightness temperature sensitivity for the two-layer snowpack representation, configured to replicate mid-season
wind slab compaction over an established depth hoar layer. Wind slab thickness was parameterized to decrease with
compaction (i.e. densification) for SWE to remain constant, and a range of initial SWE values (i.e. thicknesses) were considered
(shaded areas in Fig 4). When introduced over the established depth hoar layer, absorption and thermal emission originating
in the wind slab mask ATb by several K depending on its SWE (~2 K for 50mm vs. ~3K for 85 mm). Then, absorption
increased linearly with snow density and ATb was accordingly masked by the wind slab as it compacted (~5 K between 250
to 400 kg m™ for 50 mm vs. ~8 K for 85 mm). Thus, wind slab formation resulting from compaction or thickening should be
apparent in AMSR-e radiometry (i.e. evident from decreasing ATb), given radiometric sensitivity of £0.6 K. Furthermore, the
magnitude of ATb masking by the wind slab is enhanced by the snowpack thermal gradient and a relatively colder wind slab

compared to the substrate will increase ATb (~2k between 0 to -10 C, not shown).

4.3 Snow Density Retrieval Algorithm

The results from the various experiments in the sensitivity test suggest there should be sufficient sensitivity to estimate
snow density conditions from space-based PM radiometry. Further, PM radiometry is more sensitive to the thickness of depth
hoar than the wind slab (and in turn overall snow depth) and, in terms of estimating Arctic snow mass, might be better suited
to retrieving snow density rather than depth. PM retrievals of snow density were conducted at each AWS site, where
meteorological conditions dictated when retrievals were performed. A minimum snow depth of 10 cm was imposed for
algorithm retrievals because of the transparent nature of shallow snow to microwave emissions (Hall et al., 2002). Similarly,
algorithm retrievals were not conducted when AWS air temperatures were above freezing because of the likelihood of liquid
meltwater in the snowpack attenuating microwave emissions (Foster et al., 1984). With the AWS observations prescribed to
the electromagnetic model an inverse modelling approach was applied to optimize the snow density parameters. The forward

model was inverted by minimizing the cost function (J)

](pslab' phoar) = (ATbsim(pslab: phoar) — ATb,ps) 2 )

representing the vertically polarized 19 and 37 GHz spectral difference in the AMSR-E observation (4Tb,,,,) and the simulated
SMRT signature at the same channels (AT by;,, ), given the prescribed wind slab and depth hoar layer densities (0445 and Proar-
respectively).

The solution to the two-layer snowpack model presented was imprecise because different layer density combinations could
produce the same predicted ATb in Eq. (1), resulting in a system with no global minima. The practical impact of this equifinality
issue was that the algorithm may be confronted by seemingly equally valid but different layer density combinations, producing

the same microwave signature. Without additional information there was no suitable way to identify the optimal layer density
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combination, so the retrieval algorithm was designed to solve for all microwave-plausible layer density combinations for a
given observation scene to address equifinality in the inverse model.

To constrain the modelled layer density estimates to a plausible range, boundary conditions were established to limit the
parameter space in which the algorithm could search for solutions to the inverse model. The first boundary condition was
defined based on the strong environmental controls present in the tundra that result in a characteristic wind slab snow layer
overlaying less dense depth hoar (Benson and Sturm, 1993). Logically, the wind slab layer should be denser than the depth
hoar layer, so all parameter combinations where pg ., < Proar Were discarded, and the lower boundary situated where the
densities of the two layers were equal. The second boundary for the model was defined based on the behaviour of microwave
interactions in the electromagnetic model. Simulated ATb peaks at a snow density of 150 kg m™ (see Section 4.2), and the
apparent permittivity in IBA is applicable up to a volume fraction of 50%, or 458.5 kg m3(Picard et al., 2022b). Thus, the
domain of each layer was limited to densities between 150 to 450 kg m™ to ensure consistent behaviour in the electromagnetic

snowpack model, and the upper boundary situated where either layer was at the edge of that domain.
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Figure 6 — (a) Algorithm solutions for Eureka on April 15, 2011, with various H values on surface defined by the square
root of Eq. (1) in Kelvin, and (b) wind slab and depth hoar densities mapped to bulk values in kg m? with Eq. (4).

An important aspect of the retrieval algorithm was to exploit how the various minima on the cost surface, defined by Eq.
(1), were positioned throughout the parameter space to reduce computational requirements. Figure 6 is an example of how the
minima formed a valley transecting the parameter space. Therefore, the microwave-plausible density range was the set of layer
density combinations situated along a straight line connecting the solutions at the two established boundary conditions for the
inverse model. The lowest contour level (0.6 K) in Figure 6a represents the sensitivity of the AMSR-E radiometer at 19 and
37 GHz and the grid spacing corresponds to algorithm retrieval accuracy (10 kg m). The lower solution is more precise being
situated in a narrower part of the valley than the upper solution. Wind slab and depth hoar densities were mapped to bulk
values in Figure 6b, where the contours of iso-density will pivot clockwise (counterclockwise) when the proportion of depth

hoar thickness increases (decreases). It should be noted that under some instances, the valley intersected with the upper
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boundary related to the minimum depth hoar density (i.e. left axis in Fig. 6a), though the situation shown in Fig 6a (intersecting
the upper axis) was more common.

The range of microwave-plausible snow densities raised the question of how to evaluate the algorithm estimates against
the reference data. A heterogeneity (H) parameter was introduced into the algorithm to estimate densities for the two snow
layers and reduce the microwave-plausible snow densities to a single estimate of bulk snow density — ranging from 0 to 1 (i.e.
the least and most heterogenous solutions, respectively). Wind slab (p,s) and depth hoar ( ppy) densities were estimated with
Pws = Pwsiower T (Pwsupper = Pws,ower) ¥ H ()

Por = PpH,iower — (PpHiower = PpHuper) ¥ H 3)
where (Pws 1ower> Pomtower) a0d (Owsuppers PoHupper) are the lower and upper solutions, respectively, and bulk density
(Ppuir) estimated based on the depth hoar thickness divided by the total snow depth (depth hoar fraction, DHF)

Poui = Pws * (1 —DHF) + ppy * DHF “4)
Ultimately, the bulk snow density estimated with H was treated as the final algorithm estimate with uncertainty defined by the

microwave-plausible range.

4.4 Temporal Snowpack Parameterization

All existing retrieval algorithms have considered a single snow layer, so a new scheme was needed to parameterize the two
layer snowpack model over the course of a season. Arctic snowpacks have been studied in detail during field campaigns (see
Derksen et al., 2014; Meloche et al., 2022; Rutter et al., 2019), though they are mostly restricted to end of season conditions
around March to April and much less is known about Arctic snowpack composition early in the season. There have been some
studies that focused on early season conditions (Domine et al., 2016a; Domine et al., 2018), though they mainly provide
qualitative descriptions of the temporal evolutions of Arctic snowpacks. Thus, our approach started with end of season
conditions and worked backwards to parameterize the snowpack over the full season, with some parameters informed from
available literature where possible and others calibrated.

Our temporal parameterization of snowpack properties was based on identifying trends in satellite PM and AWS
observations, which we assumed to indicate different stages of snowpack evolution. Generally, two different behaviours were
identified in the forcing datasets which we attributed to normal and restricted conditions for depth hoar development. In normal
cases, ATD increased rapidly over a short period in the fall immediately after the first snowfall, coinciding with an extended
early season zero-curtain period producing extreme vertical temperature gradients for rapid depth hoar metamorphism (Domine
et al., 2018). In restricted cases, ATb increased gradually over longer periods of the season, consistent with high density layers
slowly metamorphizing slowly into depth hoar (Derksen et al., 2009). Later in the season ATb would plateau attributed to a
halt in depth hoar formation, before temperatures increase at the end of the season and ATb drops rapidly.

In total 4 different stages of snowpack evolution were identified, presented in Table 5. The proposed stages are numbered

in the expected order of occurrence, but in practice their order can vary with some exceptions. Stage 0 is a special circumstance
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(i.e. does not happen every season) and must occur at the beginning of the season when temperatures are still around freezing.
Then, the snowpack can alternate between Stages 1 and 2 throughout the season, owing to fluctuations in air temperature that
change the thermal regime of the snowpack and snowfall events, prior to reaching equilibrium in State 2 towards the end of
the season. Finally, the snowpack begins to warm in Stage 3 at the end of the season with increasing air temperatures inverting
the temperature gradient before ripening and final melt. The relevant state variables (i.e. layer thickness, thermal regime, and
microstructure) were estimated dynamically considering the identified stage of snowpack evolution.

Table S — Identified stages of snowpack evolution.

Stage Name Description Indicators
Extended Special conditions for early snow to morph into normal depth hoar - Rapid increase in ATb after first snowfall
0 zero curtain under extreme temperature gradient (Tgrouna>> Tair). - Consistent snow on ground from initial deposition
Temperature | Sufficient temperature gradient for kinetic metamorphism (T grouna> - Gradually increasing ATb
: gradient Tair), where wind slab slowly morphs into indurated depth hoar. - Decreasing trend in air temperature

Insufficient temperature gradient for kinetic metamorphism (Tground =
- Steady or gradually decreasing ATb
2 Isothermal Tair). Snowpack assumed to be in statis and its properties stable, . .
) - Little-to-no trend in air temperature
except wind slab compaction may occur.

) - ATb begins to decrease, before dropping off
Warming air temperatures towards end of season invert temperature
3 Warming - Increasing trend in air temperature
gradient (Tgrouna < Tair), before snowpack ripens and begins to melt.

- Decreasing snow depth

4.4.1 Depth Hoar Development

Basal depth hoar thickness is typically reported as a fraction of end of the winter snow depth (depth hoar fraction, DHF)
and measurements during the early-mid season are limited in the Arctic. However, parameterizing the snowpack model
accounting for DHF would cause issues. Forcing snow depth data should be representative of the observation scene (i.e. spatial
resolution) and localised snow depth estimates (i.e. AWS) could lead to considerable differences in algorithm estimates given
variability in Arctic snow depth distributions (Liston, 2004). Additionally, depth hoar thickness parameterized with static DHF
would likely be too thin during early-to-mid season, assuming the depth hoar layer should develop early on during shallower
snow conditions relative to later in the season. Thus, we believe depth hoar should be parameterized with explicit thicknesses
and a new approach was required for the prototype algorithm.

Our primary indicator of depth hoar development was based on seasonal trends in ATb, with prolonged increases associated
with depth hoar metamorphism (Derksen et al., 2010). Identifying periods of depth hoar development allowed rates of growth
to be estimated. Rates were estimated with a change detection method that calculated cumulative increases in ATD, similar to
the snow index proposed by Lievens et al. (2019). The new index (depth hoar index, DHI) was predicated on the assumption
any sustained increase (i.e. over multiple observations) in observed ATb was proportional to depth hoar development. We

believe depth hoar thickness should exhibit monotonic behaviour (i.e. increase, or remain constant, but not decrease), and
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temporary ATb fluctuations would result from changes in the snowpack temperature gradient. The total contribution towards

depth hoar development was estimated at each time step (t) with

DHI(t) = {DHI (t=1) +ax[ATh(t) - 4Tb(t — 1)}, if SD>0 5
0, otherwise
and
_ (1,  if ATb(t) = ATh(t — 1) = ATh(t — 2)
T ' (6)
0, otherwise

where AWS snow depth (SD) was used as an indicator of snow coverage and increases in ATb must persist over multiple

observations to mitigate effects from physical temperature fluctuations.

4.4.2 Layer Heterogeneity

The layer heterogeneity parameter (H) is abstract and was designed to represent the seasonal evolution of snowpack
stratigraphy. Intuitively, values for H should begin near zero at initial deposition when the snowpack should be mostly
homogenous and increase over time due to evolution of distinct layers. So, H was set to zero the first day snow on the ground

was reported at the AWS and grew linearly to a maximum value calibrated for end of season conditions.

4.4.3 Snow and Substrate Temperatures

Operational SWE retrievals (e.g. Luojus et al., 2021) do not consider snow temperature gradient, though we believe it is
important when thermal emission originating from the wind slab is considered. Thus, snow and substrate temperatures were
required for the electromagnetic model but were not measured by AWS. Soil temperature from atmospheric reanalysis models
were considered but their uncertainty is highest during cold seasons (Herrington et al., 2024). Instead, a model was designed
to estimate soil temperature relative to measured air temperature and our identified stage of snowpack of evolution. In all
stages, snow temperature was parameterized with a linear temperature gradient between air and soil temperature.

AWS daily mean air temperatures were used to replicate trends in substrate temperature at Arctic sites relative to air
temperature measured by (Domine et al., 2018). First, air temperatures were averaged over the previous 21 days to represent
the gradual and lagged changes in soil temperature (general trend). Second, a five-day Gaussian weighted mean filter was
applied to air temperatures to represent the immediate effect of air temperature fluctuations (local trend). Then, the general
and local trend estimates were assimilated with a 3:1 weighting scheme, respectively, together replicating how substrate
temperatures should be insulated by snow cover being partially decoupled from the atmosphere with small blips from large
fluctuations in air temperature. Finally, the assimilated temperature trends were modified to account for the insulative
properties of snow according to the identified phase of snowpack evolution: substrate temperatures were set to 0 C during
Stage 0, increased by 5 C (2.5 C) during normal (restricted) depth hoar development and decreased by 5 C (2.5 C) during Stage
3, and the transitions between stages smoothed. The 5 C value was chosen to represent the thermal insulation of depth hoar

and is in line with mid-season tundra snowpack temperature gradients (Benson and Sturm, 1993), and an educated guess for
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the lower 2.5 C value because of higher thermal conductivity for indurated depth hoar (Domine et al., 2016a). A comparison

of estimates from this model to those from Domine et al. (2018) was provided in Appendix A.

4.4.4 SSA Decay

The microstructure model in SMRT (i.e. microwave grain size) required estimates of the SSA of ice grains in the snowpack
which are not measured by operational AWS. Like depth hoar thickness, many more SSA measurements from Arctic
snowpacks are available for end of season conditions, so empirical models were used to estimate SSA decay earlier in the
season. New snow has relatively high SSA and decays logarithmically over time as it metamorphizes (Legagneux et al., 2003;
Pinzer et al., 2012; Taillandier et al., 2007). Temporally varying SSA for depth hoar and wind slab were estimated using Egs.
(9) and (13) from Taillandier et al. (2007), respectively, with the general form

B—SSAO)

SSA()=B—-AxIn (t+e 4 (6)

where ¢ is time since deposition in hours and coefficients 4 and B related to the mode of metamorphism, layer temperature,
and initial SSA (SSA4y). Initial SSA was set as 50 m? kg™ and average layer temperatures calculated for the first 60 days after
deposition as described in Section 4.4.3. Estimates of SSA from the empirical models were used until they reached
predetermined values, representative of end-of-season conditions, to reflect the non-zero asymptotic trend in the evolution of

depth hoar SSA (Taillandier et al., 2007) and very slow SSA decay in Arctic wind slabs observed later in the season (Domine
et al., 2002).

4.5 Calibration and Evaluation Procedure

Some algorithm parameters could not be based on observations and instead needed to be determined through a calibration
procedure. The calibration procedure consisted of two stages and ran from March 15 onwards, assuming snowpack properties
would be mostly stable then. Calibrating for end-of-season conditions also allowed for parameters to be compared to those
measured during field campaigns. First, wind slab SSA, depth hoar SSA, and depth hoar thickness were adjusted to produce
the greatest overlap between the range of microwave-plausible snow density estimates and the in situ reference samples, with

an overlap metric:

[{pest(£)3N{Pobs(O)}
Aresth gl Vrobs Al 2
[{pest(} ( )

overlap = % (o)
where {p,s: (t)} is the set of microwave-plausible estimated snow densities and {p,,;(t)} the set of the corresponding
CanSWE density sample with a +10% uncertainty range, at time ¢. Thus, the overlap metric described the proportion of the
microwave-plausible snow density range that intersected the uncertainty range of the in situ samples, averaged over n time
steps. Second, H was calibrated by converting the microwave-plausible algorithm estimates, from the first step, into discrete
values to minimize mean absolute percentage error (MAPE). MAPE was chosen for this purpose, rather than absolute or

squared error, because of the heteroscedastic nature of the uncertainty in the reference dataset.
14



355

360

365

370

375

At each site, algorithm snow density estimates were evaluated with CanSWE bulk density samples using the same metrics
as in the calibration stage (i.e. overlap and MAPE); bias, root mean square error (RMSE), and correlation were also reported
as indicators of algorithm performance. MAPE was treated as the primary measure of absolute accuracy of algorithm estimates;
if MAPE was within the uncertainty range of the in situ samples (+10%) then snow density estimates from the algorithm could
be comparable to those collected with snow courses.

Calibrating the two layer snowpack model with bulk density measurements (i.e. CanSWE) introduced some uncertainty
into the algorithm configuration parameters. As demonstrated by the sensitivity test, depth hoar SSA and thickness have
complementary effects on simulated ATb — i.e. lower (higher) SSA can compensate if the depth hoar is too thin (thick) — so
various SSA and thickness combinations could produce similar microwave emissions. At each site, SSA parameters were kept
constant over all seasons because inter-season variations in SSA should be relatively low (Meloche et al., 2022; Woolley et
al., 2024), but DHF was free to account for varying environmental conditions. End of season H values were also kept constant
for each site due to the lack of stratigraphic data to conduct a meaningful calibration and in an effort to reduce the number of
free parameters in the calibration procedure. In the future, extensive stratigraphic data from multiple sites should be used for

calibration to increase confidence in specific algorithm parameters.

5 Results
5.1 Calibrated End of Season Algorithm Configurations

Algorithm configurations were calibrated to represent end-of-season conditions, for each site some parameters were kept
static over all seasons (Table 6) and depth hoar thicknesses varied each season (Table 7). The sensitivity test demonstrated the
model was most sensitive to depth hoar parameters, so depth hoar SSA varied between 10.0 to 13.0 at 0.2 m? kg™ increments
and fewer options considered for the wind slab of 15.0, 17.5, or 20.0 m? kg™'. For the polar dessert sites (Alert, Eureka, and
Resolute) the calibration routine produced configurations that were fairly similar and in line with those expected in the polar
desert, with depth hoar SSA around 10 to 11 m? kg™' and average DHF of approximately one third (Royer et al., 2021). On the
other hand, the configuration for Cambridge Bay was different, with higher than expected depth hoar SSA and DHF for the
tundra (Meloche et al., 2022).

Table 6 — Model configuration parameters calibrated for end-of-season conditions.

. Wind Slab Depth Hoar Heterogeneity
Site SSA (m?> kg") | SSA (m*kg™) (unitless)
Alert 20.0 10.8 0.35
Eureka 17.5 10.4 0.3
Resolute 17.5 11.2 0.45
Cambridge Bay 20.0 12.8 0.35
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Table 7 — Calibrated seasonal depth hoar thicknesses (cm) and percentage of end-of-season snow depth in parentheses.

Site 2003-04 2004-05 2005-06 2006-07 2007-08 2007-08 2009-10 2010-11 Avg.
Alert 15(6%) | 159(48%) | 8.9(24%) | 12.7 (33 %) - 18.6 (45 %) - - 115 31 %)
Eurcka 55@2%) | 72Q7%) | 34(18%) | 26(18%) | 5.0(36%) - 6.1(33%) | 6.7(24%) | 52(28%)
Resolute - - - - 25(12%) | 54Q7%) | 32Q4%) | 09G%) | 3.0(17%)
Cambridge Bay | 20.6 (72%) | 11.6 (42%) | 145 (42%) | 20.7 (81 %) | 22.0 (60 %) | 183 (54%) | 11.7 (48 %) | 182(42%) | 17.2 (55 %)

5.2 Eureka Snow Survey Data

380 Snow survey data from Saberi et al. (2017) were used to evaluate the calibrated model configuration for the Eureka site in
greater detail. The model was originally configured to replicate bulk density measurements (i.c. CanSWE) making it difficult
to evaluate individual parameters without stratigraphic information. For example, simulated depth hoar thickness and SSA
could compensate for one another without discernible differences in bulk density. Although SSA was not measured in the
survey protocol, calibrated SSA values were evaluated by forcing the retrieval algorithm with measured layer thicknesses and
385 AMSR-E L2A observations at 25 km (Ashcroft and Wentz, 2013), and the output compared to measured bulk, wind slab, and
depth hoar densities (Fig. 7). Algorithm estimates showed good agreement with the measured values, though with slight
overestimation for depth hoar and underestimation for wind slab densities. Interestingly, the valley of algorithm solutions for
three gird-cells (1,2, and 4) aligned with regions of iso-density in the parameter space (Fig 6b) so H could increase slightly to

reduce underestimation of wind slab density without affecting overall bulk density. While we cannot conclude from this limited
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Figure 7 — Simulated and measured density for EASE-Grid cells near Eureka. Vertical error bars correspond to

the microwave-plausible range of algorithm estimates and horizontal the interquartile range of measured values.
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sample size that the algorithm is perfect, the similarity of the algorithm estimates and layer densities to independent snow

surveys suggest the parametrization of SSA was effective for Eureka.

5.3 Dynamic Depth Hoar Parameterization

Snow depth and DHF can be variable in the tundra (Meloche et al., 2022), so parameterizing the snowpack model with
static parameters could lead to uncertainty. Algorithm performance with calibrated thickness were compared those using
generalized representations (i.e. seasonal thickness, average thickness, and average DHF from Table 6). Parameterizing the
depth hoar layer with static thicknesses for each site improved algorithm estimates slightly compared to static DHF but the
dynamic parameterization performed considerable better than either (Table 8). Further, dynamic depth hoar thicknesses were
the only to bring algorithm estimates within the uncertainty range of the reference dataset at all sites (£10 %)

Calibrated depth hoar thicknesses were plotted against end-of-season DHI from Eq. (5). to identify a relationship to estimate
dynamic depth hoar thicknesses (Fig. 8). Model configurations for each site should be equivalent (specifically depth hoar SSA)
for a robust comparison of depth hoar thicknesses, so the configuration from Eureka was applied to the other sites since it
seems representative of in situ conditions (see Section 5.2). Calibrated depth hoar thicknesses had a very strong relationship
with DHI at Alert (R?=0.94, p<0.01), moderate relationships for Eureka (R>=0.68, p=0.023) and Resolute (R?=0.64, p=0.20),
and virtually no relationship for Cambridge Bay (R>=0.01, p=0.82). There was considerable spread in plotted values for
Cambridge Bay and, when removed, the polar desert sites together have a very strong relationship (R?>=0.93, p<0.01) fitted

with a linear model:

TEOS = 0.349 * DH[MQT 15 — 3.75 (8)
allowing end-of-season depth hoar thickness (Tg,s) to be estimated in cm from DHI on March 15%.
20.0
Alert
1754 * Eureka .
' Resolute
e Cambridge Bay
~15.0
E
S
8125
£
o
£ 10.01
T
(=}
I 7.54
=
jJ]
[m] 5.0
2.5
>
0.0 : ; ; | |
10 20 30 40 50 60 70

Depth Hoar Index (K)

Figure 8 — Depth Hoar Index from Eq. (5) plotted against calibrated depth hoar thicknesses and fitted linear models (lines).
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Table 8 — MAPE (%) and overlap (%) of algorithm estimates compared to CanSWE using calibrated configurations with depth
parameterized with dynamic thicknesses, average thickness, and average DHF from Table 6.

MAPE (%) Overlap (%)
Dynamic Average Average Dynamic Average Average
Site Thickness Thickness DHF Thickness Thickness DHF
Alert 6.7 13.4 14.2 81.8 48.4 41.5
Eureka 7.4 17.4 18.8 66.0 29.5 28.5
Resolute 8.9 20.6 22.0 579 279 16.8
Cambridge Bay 7.0 12.5 13.0 74.1 452 50.2

5.4 Full Season Algorithm Runs

The temporal parameterization (described in Section 4.4) was used to force algorithm retrievals over full winter seasons.

The calibrated configuration for Eureka was used for all sites and dynamic depth hoar thickness (D7) estimated in cm with
) Tros) ©

where DHI at time step ¢ was from Eq. (5) and Ty from Eq. (8), and the maximum operator did not allow for growth after

DT(t) = max (Tyos * (5o

DHIpmar 15

March 15. Algorithm runs over all seasons at each site were aggregated to calculated performance metrics, presented in Table
9. Results for the three polar desert sites were similar with moderate MAPE (<20 %), weak-to-moderate positive correlations,
and low magnitudes of bias, whereas, Cambridge Bay had higher MAPE, larger positive bias, and a weak negative correlation.

A collection of notable algorithm simulations was included in Figure 7 - some as examples of when the algorithm performed
very well and others to demonstrate limitations — all simulations included in Appendix B. Seasonal performance at Eureka was
mixed, where three seasons had low MAPE (i.e. <10 %, e.g. Fig 7a), 3 had moderate MAPE (i.e. <20 %, e.g. Fig 7b), and one
high MAPE (i.e. > 20%, Fig 7c). The algorithm performed similarly at Alert, where three seasons had low MAPE (e.g. Fig
7d), one moderate MAPE (not shown), and one high MAPE (Fig 7e). Alternatively, algorithm performance at Resolute was
worse overall, where only one season had relatively low MAPE (not shown) and the other three had higher MAPE (not shown).
Results for Cambridge Bay were more nuanced and the relatively high overall MAPE did not tell the whole story. In all but
one algorithm run simulated density started considerably higher than reference samples in the early season but matched in situ

samples very closely from February onwards (e.g. Fig 8d).

Table 9 — Algorithm performance metrics relative to CanSWE samples (mean normalized percentage values in parentheses).

Site n Overlap (%) MAPE (%) Bias (kg m™) RMSE (kg m™) Correlation
Alert 67 55.7 14.4 232 (6.5 %) 619 (174 %) | 0.280 (p-0.02)
Eurcka 81 322 149 135 (41%) | 624(189%) | 0393 (p<0.01)
Resolute 49 403 18.7 273 (1.7 %) 770216 %) | 0.130 (p=0.37)
Cambridge Bay 233 344 21.2 359 (11.1 %) 82.9 (25.7 %) -0.213 (p<0.01)
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Figure 7 — Example algorithm outputs (top panel) and forcing data (lower panels), for (a) Eureka 2005-06, (b) Eureka 2010-11,
(c) Eureka 2004-05, (d) Alert 2006-07, (e) Alert 2003-04, and (f) Cambridge Bay 2008-09.

6 Discussion

435 6.1 Assessment of End-of-Season Configurations

In the following subsections, key parameters (i.e. SSA and depth hoar thickness) of the calibrated end-of-season

configurations were compared against measured values from various field campaigns.
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5.1.1 Eureka

Detail snow survey data from (Saberi et al., 2017) were used to evaluate the algorithm configuration for Eureka. Calibrated
depth hoar thicknesses for the Eureka site were fairly consistent ranging from 2.6 to 7.2 cm (6 = 1.6 cm) and within the range
of expected values for the polar desert (Royer et al., 2021). Simulated depth hoar thickness for the 2010-2011 season (6.7 cm)
was comparable to measured values from the snow survey which had a median value of 9 cm (interquartile range of 6-12 cm).
We expected thicker depth hoar from the snow survey dataset because it was focused around Hot Weather Creak, where
conditions in the polar oasis should be more favourable for depth hoar formation. On the other hand, the manual snow survey
course (i.e. CanSWE) was approximately 15 km west of Hot Weather Creak (Fig 1b), so we believe conditions at the AWS
should be somewhere between those found in the polar desert and polar oases (i.e. relatively thinner depth hoar). Additionally,
the calibrated SSA values produced representative estimates for individual layer densities measured during the snow survey

(Fig 7), increasing our confidence in the algorithm configuration for the Eureka site.

5.1.2 Alert

There are few snow survey data available for the Alert site (e.g. Domine et al., 2002), so those from relatively close Ward
Hunt Island (~170 km northwest) were also considered (Davesne et al., 2022). SSA values were similar to those measured by
Davesne et al. (2022) but depth hoar was considerably thicker in some cases than the typical 5 to 10 cm expected in the polar
desert (Royer et al., 2021). Further, there was considerable variability in simulated depth hoar thicknesses for Alert, with values
ranging from 1.5-19.8 cm (o = 6 cm). Initially, we believed the large variability in depth hoar thickness to indicate an issue in
the calibration routine (specifically higher values approaching 20 cm). However, variable depth hoar conditions have been
recorded at Ward Hunt Island, which can be essentially devoid of depth hoar some years (Domine et al., 2018) or near 20 cm

in other cases (Davesne et al., 2022). Thus, it appears the algorithm configuration for Alert was reasonable.

5.1.3 Resolute

Snow survey data were available for Resolute (Davesne et al., 2022; Royer et al., 2021), though the information was less
specific than for other sites (i.e. no explicit depth hoar thickness). Simulated SSA values for the Resolute site, like the others
in the polar dessert, were with the range of expected values, but average DHF (17%) was slightly lower than reported ~30£20
% (Royer et al., 2021). Simulated depth hoar thickness was fairly consistent ranging from 0.9 to 5.4 cm (¢ = 1.6 cm) and DHF
for all seasons (except 2010-2011) were within the range of measured values. Further, the area near Resolute covered by the
radiometer field-of-view was likely relatively dry, given its location inland with virtually no water bodies (Fig 1d), and
simulated DHF was comparable to values for dry areas surveyed by Davesne et al. (2022). Therefore, the algorithm

configuration for Resolute also appeared reasonable.
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5.1.4 Cambridge Bay

Comprehensive reports of snowpack properties from Cambridge Bay (Meloche et al., 2022, 2024) allowed for detailed
analysis of the calibrated algorithm configuration. Unlike the other sites, simulated depth hoar SSA and DHF were different
for Cambridge Bay than field measurements (Meloche et al., 2022, 2024). The discrepancy between simulated and measured
values could be related to water bodies around Cambridge Bay affecting radiometry (Derksen et al., 2010). However, we
believe the issue to be mainly related to the complementary nature of depth hoar SSA and thickness towards volume scattering;
with SSA values (wind slab: 20 m? kg' and depth hoar: 11 m? kg'!) from Meloche et al., (2022) calibrated average DHF (36
%) was very close to the reported value (38%), and overall MAPE is only slightly higher (by 0.4 %). The possibility for large
discrepancies between predicted and simulated parameters with little effect on simulated bulk density underscores the necessity

for stratigraphic data during model calibration and evaluation.

6.2 Assessment of Temporal Parameterization

Estimation skill over the full season (Table 9) was lower than during the calibration stage (Table 8), though that was
expected because the configuration for Eureka was used for all sites and depth hoar thickness was parameterized with Eq. (9)
(rather than calibrated values for each site). In some cases the temporal parameterization produced excellent estimates of snow
density over the whole season (e.g. Fig 7a&d) but in other cases struggled to reproduce the observed densification trajectory
(e.g. Fig 7c&e). Yet, algorithm estimation skill at each site consistently improved over the course of a winter season and most
algorithm estimates were close to the in situ references samples later on. To quantify this behaviour the reference dataset was
partitioned into three temporal sets — October-November-December (OND), January-February-March (JFM), and April-May-
June (AMJ) — and overlap, MAPE, and bias calculated for each in Table 10. There were substantial improvements in all metrics
at all sites between OND to JFM and JFM to AMJ, and AMJ MAPE for the polar desert sites were within, or approaching, 10
% indicating the snow density estimation uncertainty was similar to the in situ samples. Temporal results for Cambridge Bay
were slightly different than polar desert sites as there was a substantial improvement in all metrics from OND to JFM (most
notably the reduction in bias) but MAPE increased in AMJ. Possible explanations for these temporal behaviours in algorithm

estimates are discussed below.

Table 10 — Seasonal performance metrics for algorithm snow density estimates relative to CanSWE, for October-

November-December (OND), January-February-March (JFM), and April-May-June (AMJ).

. Overlap (%) MAPE (%) Bias (kg m™)
Site OND JFM AMJ OND JFM AMJ OND JFM AMJ
Alert 15.9 68.1 70.6 325 7.7 8.9 67.6 6.6 10.1
Eureka 23.0 21.9 533 19.3 16.6 9.8 -38.4 -16.1 4.0
Resolute 26.8 41.9 50.3 30.3 15.0 13.9 59.2 27.2 2.3
Cambridge Bay 12.4 45.8 40.0 40.8 12.2 14.1 102.3 17.6 -8.0
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The most likely reason for improved algorithm performance towards the end-of-season during most simulations is that the
snow metamorphic state was captured effectively by model dynamics that align with our understanding of snowpack
metamorphism. Prior knowledge from available literature increased confidence in end-of-season algorithm configuration,
though much less was ready for the early-to-mid season introducing uncertainty into the temporal parameterization.
Specifically, some properties were effectively quantified with physical models over time (e.g. SSA) while others were not
because model representation is simply not developed (e.g. depth hoar thickness).

From the point of view of algorithm development, the most difficult element to parameterize over time was depth hoar
thickness. The depth hoar model was generalized to not overfit to any specific forcing data, but edge cases were identified
where there were issues. In some cases identified as standard development, and with thicker initial snow depth, Eq. (9) appeared
to underestimate early-season depth hoar thickness causing simulated bulk density to pin at the bottom of the range to maximize
volume scattering (e.g. Fig 7c). That early-season underestimation could be related to how depth hoar was parameterized to
grow vertically in thickness, which would be logical for indurated development (growing at the expense of wind slab thickness)
but normal depth hoar should form from early layers morphing simultaneously. On the other hand, under the most restrictive
conditions identified for depth hoar metamorphism Eq. (9) overestimated depth hoar thickness throughout the whole season
casing algorithm estimates to pin at the upper limit of the density range (e.g. Fig 8a), despite very similar simulated (2.0 cm)
and calibrated (0.8 cm) end-of-season thicknesses. Thus, our depth hoar model could be improved to consider specific
situations — for example, initiating thickness with early-season snow depth measurements during Stage 0 (assuming the entire
layer would shortly become depth hoar) and using a fixed thickness (~1 cm) when very restrictive conditions are identified.

Even with the help of existing models there were challenges with the parameterization of SSA. Most notably, there is
practically no distinction in the literature between standard and indurate depth hoar microstructure in terms of SSA and
polydispersity, so we did not distinguish between their prescribed microstructure properties. While physical grain size of
standard and indurated depth hoar are similar (Derksen et al., 2009), non-metamorphized wind slab grains can be present in
indurated depth hoar (Domine et al., 2016b); possibly leading to higher SSA or lower polydispersity compared to standard
depth hoar, necessitating thicker simulated indurated layers. Further, our snowpack representation did not account for deposits
of fresh snow, which have low density and high SSA, and, therefore, should be radiometrically negligible (Saberi et al., 2017).
However, new snow was immediately incorporated into the simulated wind slab layer affecting simulated, but not observed,
brightness temperatures — for example, mid-season snowfall events at Eureka in January 2011 (Fig 7b) caused measured bulk
density to decrease but simulated bulk density increased. Identifying depth hoar type with the proposed stages of snowpack
evolution would not only aid in parameterizing algorithm retrievals (should their microstructure properties prove to be
sufficiently different) but could also support applications where snow hardness and thermal conductivity are relevant — for
example, permafrost thermal regimes and conditions for subnivean life (Domine et al., 2016b).

Algorithm estimates generally followed expected densification trajectories (i.e. increasing density over time) in the polar

desert (e.g. Fig 7b) but exhibited different behaviour at Cambridge Bay. Early season density estimates were too high in all,
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but one, simulations at Cambridge Bay and decreased over time to move closer to in situ measurements (e.g. Fig 7f). Early
season overestimation could be explained by penetration depth at 19 GHz exceeding lake ice thickness (Derksen et al., 2009),
which reduced observed ATb and caused simulated density to pin at the upper limit to minimize volume scattering. Then,
estimates improve over the mid-season when lake ice thickness should exceed the penetration depth at 19 GHz, before thinning
ice thickness reintroducing uncertainty in observed brightness temperatures at the end-of-season (Derksen et al., 2009).
Additionally, the radiometric influence of water bodies made it more difficult to interpret the stages of snowpack evolution at
Cambridge Bay — Stage 0 was only identified during a couple seasons, despite tundra conditions being generally favourable
for depth hoar development (Royer et al., 2021). Furthermore, unfrozen water bodies around Cambridge Bay caused pre-snow
ATDb to be very low (i.e. negative ~10 K) artificially modifying DHI values, likely contributing to the spread of points in Figure
8. After February, when ice thickness should exceed penetration depth (Derksen et al., 2009), algorithm performance for
Cambridge Bay was comparable to the polar dessert sites (MAPE = 13.2 % and overlap = 43.6 %).

6.3 Scalability Across the Pan-Arctic

The ultimate goal of this research is to develop a pan-Arctic snow density retrieval algorithm, though the algorithm would
need to be modified for that purpose. The current retrieval design is predicated on two-layer snowpack with distinct properties
(i.e. found in the tundra/polar desert) and would need to be modified to consider other Arctic snow types (e.g. taiga). Traditional
ecological knowledge of snow conditions (e.g. Riseth et al., 2011) could help to identify important snowpack parameters across
various environments to be generalized for the electromagnetic model. Additionally, water bodies could impede retrievals
using a ATb approach (as described for Cambridge Bay) and a single channel retrieval using only 37 GHz might be more
appropriate across the pan-Arctic (Derksen et al., 2010). Also, the dynamic depth hoar parameterization required PM
observations from snow-on to March 15" limiting it to retrospective analyses, though the relatively long PM observation record
allows for climatological analysis.

After required modifications, additional datasets would be required to expand the spatial extent of algorithm retrievals.
Snow depth data are the most important to force the algorithm (after radiometry) and the sparse distribution of AWS across
the pan-Arctic render them unsuitable for extensive model forcing. Spatially continuous snow depth estimates could be derived
from reanalysis models, even as a first order effect, despite their uncertainty in high latitude areas where data are sparse (Cao
et al., 2020). Assimilation of reanalysis snow depth estimates with AWS data for bias correction might be a promising way
forward. Similarly, bias corrected ground temperature estimates from reanalysis products (Herrington et al., 2024) could
replace our simple model based on AWS air temperature. Additionally, auxiliary wind speed and soil moisture data could aid
with parameterizing the depth hoar layer (i.e. quantifying the potential for development) as they restrict and promote
development, respectively (Davesne et al., 2022). Finally, a pan-Arctic snow density product would require extensive reference
data to support algorithm calibration and evaluation which will need to be curated, specifically regarding extensive datasets of

snow stratigraphy.
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7 Conclusions and Future Work

A prototype algorithm was developed to estimate snow density in the tundra environment using PM remote sensing, given
challenges in estimating spatiotemporally varying snow density in the Arctic environment. An experiment was conducted to
assess the proposed algorithm’s ability to estimate snow density at sites distributed in the Canadian high Arctic. Results from
those sites demonstrate algorithm estimates have the potential to provided information on snow density comparable to those
collected with in situ sampling. In its current configuration, the algorithm performed best at estimating snow density conditions
later in the season, with end-of-season MAPE within (i.e. Alert and Eureka), or approaching (i.e. Resolute and Cambridge
Bay), the £10 % uncertainty range of manual snow density sampling. With some modifications, and more extensive forcing
data, the proposed algorithm could be applied across the pan-Arctic to provide snow density estimates at spatiotemporal scales
that were not previously available.

The experimental design for this study was opportunistic due to the limited snow density data available for algorithm
calibration and evaluation. CanSWE was the only readily available dataset which covered the required spatial and temporal
domain for algorithm development but was limited to bulk estimates and, as result, estimates for the two distinct snow layers
could not be sufficiently calibrated nor evaluated. Specifically, algorithm calibration with bulk density measurements
introduced uncertainty in the parameterization of depth hoar thickness and SSA, because of their complementary effects on
volume scattering. Future algorithm development will focus on datasets from sites with distributed stratigraphic measurements
that will improve snow density parameterization at the PM scale. Further, Arctic snow conditions are known to be driven by
terrain types (Rees et al., 2014; Woo, 1998) and we hypothesise the microwave-plausible snow density range for the PM scene
could be disaggregated using high-resolution active microwave data to provide information on stratigraphic heterogeneity

(replacing the abstract H parameter).
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Appendix A: Comparison of measured and modelled substrate temperatures.
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Figure Al — Air and substrate temperatures measured at (a) Bylot 2016-17 and (b) Ward Hunt Island 2015-16 (original images
from Domine et al. (2018) - Creative Commons Attribution-NonCommercial-ShareAlike licence
(http://creativecommons.org/licenses/by-nc-sa/4.0/)), and from our model (described in Section 4.4.3) under (c) normal depth
hoar conditions at Eureka 2010-2011 and (d) restricted depth hoar conditions at Alert 2003-04.
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Appendix B: Algorithm Outputs
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Figure Bl — All algorithm simulations (top panel) and forcing data (lower panels) for Alert and Eureka sites.
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Figure B2 — All algorithm simulations (top panel) and forcing data (lower panels) for Resolute and Cambridge Bay sites.
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