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Abstract.
Snow density data are important for a variety of applications, yet, to our knowledge, there are ne-—+ebustfew methods for

estimating spatiotemporal varying snow density in the Arctic environment. FThe-current—understanding—of snow—density

o o-man "o h s notfeasiblea o main he A

This research proposes a passive microwave retrieval algorithm for tundra snow density. A two-layer electromagnetic
snowpack model, representing depth hoar underlaying a wind slab layer, was used to estimate microwave emissions for use in
an inverse model to estimate snow density. The proposed algorithm is predicated on solving the inverse model at boundary
conditions for the sreowpaek-simulated layers-densities to estimate snow density within a plausible range. An experiment was
conducted to assess the algorithm’s ability to reproduce snow density estimates from snow courses at four-sites in the Canadian

high Arctic hi ctie-sites

season—he electromagnetic snowpack model was calibrated to end-of-season conditions at each study site and a novel

temporal parameterization used to expand algorithm retrievals over full winter seasons. Algorithm estimates have the potential

under ideal conditions, to provide snow density information comparable to that collected through in situ sampling. In its current

configuration, algorithm performance was best later in the season, with mean absolute percentage error approaching 10%

towards the end-of-season indicating snow density estimation uncertainty was similar to the in situ samples. With some
modifications, and more extensive forcing data, (e-g—frem-global-climate-medels) this algorithm could be applied across the
pan-Arctic tandra to provide nfermation-en-snow density information at scales that are not currently available.

1 Introduction

There are numerous applications for which the quantification of snow density is important: for example, estimating snow
water equivalent (SWE) for water resources (Venéldinen et al., 2021, 2023), modelling atmosphere-land interactions for energy
balances (Gouttevin et al., 2012, 2018), and ecological monitoring of Arctic fauna (Martineau et al., 2022; Sivy et al., 2018);

though, to the best of our knowledge, there is no rebusteffective method for estimating spatiotemporally-varying snow density
1
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in the Arctic. There are automated instruments to estimate snow density but they are not widely implemented, instead density
is typical estimated by weighing a known volume of snow (Kinar & Pomeroy, 2015). This manual process is labour intensive
and, as a result, measurements are sparsely distributed making the prediction of spatially distributed density estimates
uncertain. In a remote environment, like the Canadian Arctic, comprehensive in situ sampling is not feasible due to logistical
constraints, so large-scale analyses involving snow density tend to rely on modelled estimates. Recent studies have shown that
current snow density products, from meteorological reanalysis or detailed snow models, are not adequate for use in Arctic
environments. The snow scheme in the ERA5-Land reanalysis model overestimates snow depth and underestimates density,
by considerable margins, in high-latitudes (Cao et al., 2020, 2022). Similarly, detailed snow models (i.e. Crocus and
SNOWPACK) cannot estimate the expected vertical density profile in the Arctic_tundra (Barrere et al., 2017, Domine et al.,

2019). Despite its intrinsic importance in Earth systems, snow density variability is currently not well understood on large
spatiotemporal scales.

One possible approach to estimate snow density at the regional scale (i.e. 10?-10* km?; Woo, 1998) is from satellite-based
remote sensing. Satellite passive microwave (PM) radiometry offers near-daily coverage of the Northern Hemisphere, under
most weather conditions, with a data record spanning back to 1978. Emitted microwave energy can pass through a snowpack
unattenuated at lower frequencies or is attenuated at higher frequencies. For attenuated emission, the primary microwave
interaction within a dry snowpack is volume scattering which is controlled by the snowpack properties (i.e. snow depth,
density, temperature, and grain size radius; Chang et al., 1982). PM snow emission retrievals using a frequency difference
approach (ATb) — the subtraction of higher frequency channel Tb (volume scattering dominated) from a lower-frequency Tb
channel (subnivean emission dominated) — have been the basis of empirical representations of PM estimates (e.g. Chang et al.,
1987) and more sophisticated assimilation-based retrieval schemes (e.g. Takala et al., 2011). Historically, snow mass has been
estimated with spaceborne (PM) radiometry through retrieval algorithms focusing on snow depth (Kelly et al., 2003, 2019;
Takala et al., 2011; Tedesco & Jeyaratnam, 2016). In theory, the principles behind those existing retrieval schemes could be
exploited to estimate snow density rather than depth.

In general, the parameterization of snow density in has been simplified in large-scale passive microwave SWE estimation
models (Mortimer et al., 2022). There is a lack of snow density observations at the necessary scales to constrain density
parameterization, primarily because of the difficult in acquiring spatially distributed in situ observations (Sturm et al., 2010).
As a result, snow depth has been the focus of most analyses regarding SWE. In some cases, snow density is kept constant
across the domain (e.g. Luojus et al., 2021; Takala et al., 2011) or conservative estimates are taken from empirical models of
snow density evolution over time (e.g. Kelly et al., 2003). However, such a simplified representation of snow density may not
adequately represent variability across the large domains those models are designed to cover.

Other satellite-based PM retrieval algorithms have been proposed (Champollion et al., 2019; Holmberg et al., 2024), though

none have used a frequency difference modelling approach like is commonly used to retrieve snow depth. In this study, an

experiment was conducted to evaluate the potential use of satellite-based PM observations and existing in situ meteorological
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networks to estimate snow density in the high Arctic tundra using a frequency difference modelling approach.biente. Snow

density estimates from the proposed algorithm could provide a notable benefit over existing snow density products, which do
not account for the proper snow densification schemes relevant to the tundra environment (Cao et al., 2022; Domine et al.,
2016b). Instead, the algorithm would be informed by independent PM observations that provide context on snow density
conditions and not rely on the parameterization of specific densification schemes. Thus, estimates from this approach could
fill a gap in the understanding of snow density variability in remote areas that are unsuitable for in intensive in situ sampling

and where current snow density models are not appropriate.

2 Study Area

The Canadian high Arctic was chosen to develop the prototype snow density retrieval algorithm for the following reasons

that tend to simplify the retrieval process. First, high Arctic snowpacks are traditionally classified as tundra type snow (Sturm

etal., 1995; Sturm & Liston, 2021), though much of the Canadian Arctic Archipelago would be more accurately described as

a polar desert (Royer et al., 2021). Tundra snow has a characteristic two layer structure of dense wind slabs overlaying depth

hoar (Benson & Sturm, 1993) - polar desert snowpacks are similar but are thinner, denser, and have a smaller proportion of

depth hoar (Royer et al., 2021) — which provided priori information for model parameterization. Second, forest cover

attenuation effects (Li et al., 2020) are minimized in high Arctic environments which are characterized by sparse, short

vegetation or barren landscapes (Royer et al., 2021). Third, terrain effects should be minimal compared to those found in more

topologically complex landscapes like alpine environments (Tong et al., 2010). Last, there are relatively few lakes in the high

Arctic, compared to the sub-Arctic tundra, reducing the radiometric effects of water bodies (Derksen et al., 2010).

Four automatic weather stations (AWS) were identified across a latitudinal range in the Canadian high Arctic for this

experiment (Fig. 1), selected because they are collocated with manual in situ SWE sampling sites. Basic site characteristics

are provided in Table 1; including AWS climatology, predominant vegetation types from the Raster Circumpolar Arctic

Vegetation Map (Raynolds et al., 2019), and area of nearby water bodies calculated with the HydroLAKES database (Messager

etal., 2016). Following Royer et al.’s (2021) classification, three AWS sites — Alert, Eureka, and Resolute — are situated in the

polar desert and Cambridge Bay in the polar tundra. Sites in the polar desert are mostly barren and are exposed to harsh winter

storms, but local topography around Eureka protects the area from storms creating a microclimate — described as a polar oasis

characterised by higher temperatures, lower precipitation, and more vegetation (M. K. Woo & Young, 1997). The Cambridge

Bay site has more sub-Arctic qualities featuring graminoid shrub vegetation and many small lakes nearby.

Site Latitude Vegetation Water Area Air Temp Snow Depth
Alert 82°31° Barren <1 % -28.3 349
Eureka 79°59° Graminoid <1% -31.2 19.0
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Resolute 74°43 Barren <1 % -24.6 1.3

Graminoid 17% -25 31.

Cambridge Bay 69°06”
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3 Data
3.1 Model Forcing Data

PM radiometry data were the main forcing for the proposed snow density retrieval algorithm. Radiometry data were
acquired from the Advanced Microwave Scanning Radiometer Earth Observing System (AMSR-E) Calibrated Enhanced-
Resolution Passive Microwave Daily Brightness Temperature Version 2 dataset (Brodzik et al., 2024), resampled to a 12.5 km
EASE-Grid 2.0.

PM observations spanneding eight winter seasons (2003-2011) while the instrument was functional (reference snow density
data were not available for the 2002-03 season). AMSR-E observations for each station were extracted from an adjacent EASE
grid cell to the AWSS to minimize water fraction in observation scene due to their proximity to the coast. Nighttime observations
from the descending orbit track (~1:30 am local time at the equator) were used so snow conditions would be more likely to be

cold and dry for optimal microwave retrievals (Derksen et al., 2005). Radiometry samples were smoothed with a five-day
4
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Gaussian weighted mean filter as described by Holloway (1985). The 18.7 and 36.5 GHz vertically-polarized radiometer

channels (hereafter 19 and 37 GHz, respectively) were used to estimate ATb in the forward model.

Meteorological measurements, acquired from the Environment and Climate Change Canada (ECCC) AWS network (ECCC
& ClimateData.ca, n.d.) were also used for model forcing. The electromagnetic snowpack model was parameterized with AWS
data, which required daily measurements of snow depth and air temperature as prior snow conditions. AWS data were the
limiting factor in this experiment because the AWS network is sparsely distributed in northern Canada limiting potential study

sites.

12.5km EASE-Grid 2.0 1:[

AWS/CanSWE Sites u

(b)

Eureka Snowpits:

coone o
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¢ ) b .
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¥
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Figure 1 — (a) AWS/CanSWE sites, distributed across the high Arctic in Nunavut, Canada, with insets showing12.5 km
EASE-Grid (highlighted cells used in analysis) for (b) Eureka (snowpit numbers correspond to Table 3), (¢c) Cambridge
Bay, (d) Resolute, and (e) Alert.
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3.2 In situ Reference Data

3.2.1 Canadian Historical Snow Water Equivalent Dataset b

The curated ECCC Canadian Historical Snow Water Equivalent dataset (CanSWE; Vionnet et al., 2021) provided in situ
snow density data for-algorithm calibration and evaluationeemparisen-with-aleerithm-estimates. CanSWE was chosen because

of its broad spatial coverage and relatively high temporal sampling frequency, although, it is recognized that snow density

information from CanSWE is limited to bulk properties meaning they were unsuitable to evaluate algorithm estimates for

individual snow layers. CanSWE included sampling locations collocated with AWS sites which allowed for direct comparisons
of estimated and sampled snow density. Snow density data in CanSWE (considered in this study) were collected with ESC-30
SWE tubes along 5-10 point snow course transects spanning 150-300m, aggregated into bulk estimates of snow density. A ten
percent uncertainty range was applied to the snow density data in the reference dataset because of uncertainties inherent to
manual snow density sampling (Conger & McClung, 2009; Lopez-Moreno et al., 2020). Specific information about sampling
procedures was not available for the individual sites in the CanSWE dataset (e.g. where the snow course is situated relative to

the AWS was unknown).

The reference dataset was limited with respect to the algorithm configuration (described in Section 4.2). A-number-ofSome
yearly AWS forcing datasets were deemed unsuitable for algorithm forcing and were removed from the analysis. One winter

season at the Eureka site (2008-09) had insufficient snow accumulation to permit PM retrievals (i.e. <10 cm). and-threeseasons

excluded where snow accumulation trajectories reported by the AWS were substantially different from snow depth samples in
CanSWE: three seasons for Alert (2007-08, 2009-10 and 2010-11) and four for Resolute (2003-04, 2004-05, 2005-06, and
2006-07) — otherwise, there was fairly good agreement AWS and CanSWE snow depths (Table 2). Individual CanSWE snow

density samples were removed under three conditions: if they were out of the domain of algorithm estimates (i.e. 150-450
kg/m’, described in Section 4.2), if they were sporadic and speradie-observations-that-did not fit temporally with the seasonal
trajectory, or if they were taken and-high-densities-late in the season during ablation when the snowpack would likely be in a

wet state inhibiting microwave emissions.

Table 2 — AWS and CanSWE snow depth comparison, which were included or excluded for model forcing.

Dataset n RMSE (cm) Correlation (R)
Included 554 5.8 0.869 (p <0.01
Excluded 108 15.8 0.446 (p <0.01

[ Formatted: Heading 3
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3.2.2 Eureka Snow Survey Dataset

Due to the bulk nature of CanSWE density data, an additional dataset from Saberi et al. (2017) was used to evaluate

algorithm estimates in greater detail. Extensive surveys of snow conditions were conducted near Eureka on the Foshiem

Peninsula from April 12-20", 2011. The survey protocol was rather unique in terms of spatial extent covering four 25 km

EASE-Grid cells, including stratigraphic data from snowpits and bulk snow properties from ESC-30 SWE tubes. Measured

snow properties in each 25 km EASE-Grid cell were aggregated using median values (Table 3) to force algorithm retrievals
and evaluate the algorithm configuration calibrated to bulk density measurements. Although limited to a single season, the
Eureka snow survey dataset provided additional context to interpret algorithm outputs.

Table 3 — Median (interquartile range) snowpack properties from Saberi et al., (2017) in each 25.0 km EASE Grid-cell — grid cell
numbers correspond to points in Figure 1b.

Grid Snowpits/ Snow Depth Depth Hoar Bulk Density Wind Slab Density Depth Hoar
Cell SWE Cores (cm) Thickness (cm) (kg m*?) (kg m*?) Density (kg m™)
1 13/39 25.0(20.0t0 9.0) 10.0 (6.5 t0 12.0) 283 (251 to 329) 346 (306 to 368) 231 (210 to 258)
2 6/18 21.0(20.3t0 1.8) 11.0 (9.3 to 14.3) 275 (244 t0 315) 381 (313 t0 407) 241 (223 t0 290)
3 10/15 21.0(17.1t05.0) 8.5(8.0t012.5) 287 (277 to 382) 392 (364 t0 399) 219 (213 t0 235)
4 121 22.0(16.8102.8) 9(8.5t011.0) 261 (236 to 303) 383 (357 to 398) 227 (212 to 245)
4 Methods

4.1 Electromagnetic Model

The Snow Microwave Radiative Transfer model (SMRT; Picard et al., 2018) was used as the forward model in the retrieval

algorithm. SMRT was configured with the Improved Born Approximation (IBA) electromagnetic model (Mitzler, 1998) and

microwave grain size microstructure model (Picard et al., 2022a), which have been demonstrated to be representative of high-

Arctic snow conditions (Meloche et al., 2024). The substrate composition was parameterized to represent cryosolic soil

following Meloche et al. (2021) and atmospheric contributions were estimated as described by Pulliainen & Grandeil (1999).

The physically-based forward modelling approach required the snowpack to be parameterized, so the relevant

characteristics needed to be quantified. A two-layer snowpack model was configured to account for the presence of depth hoar

underneath a slab layer to best represent the microwave signature of tundra snow (Hall, 1987; Saberi et al., 2017). Upon initial

deposition the snowpack would likely be in a homogenous state, with one layer, but that situation was not considered in this

approach. The strong environmental controls present in the tundra contribute to the development of wind slab and depth hoar

snow layers quickly after deposition (Benson & Sturm, 1993; Sturm & Holmgren, 1998), and algorithm retrievals were

performed after 10 cm of snow had accumulated so the pack would be unlikely to be in the initial homogenous state.
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4.2 Sensitivity Test

Microwave retrieval algorithms have traditionally estimated snow depth using a vertically polarized brightness temperature

frequency difference (ATb = 19V — 37V), because of the sensitivity (insensitivity) of the 37 GHz (19 GHz) channel to snow

accumulation, though we believe the same principle could be used to estimate snow density. Generally, ATb is thought to

increase with snow depth due to increasing volume scattering until a threshold after which the signal is saturated by thermal

emission originating in the snowpack (Saberi et al., 2020). However, that is a simplified explanation of snow microwave

interactions (i.e. only considering one layer) and can be complicated by stratification of natural snowpacks. For a tundra

snowpack - with characteristic wind slab overlaying depth hoar — volume scattering is dominant for the depth hoar layer and

non-scattering emission contributions originate from the wind slab (Sturm et al., 1993). Thus, it is important to understand

how the properties of each snow layer would impact microwave emissions to design an effective snow density retrieval

algorithm.

The electromagnetic model (described in Section 4.1) was used to simulate microwave emissions from tundra snowpacks

to assess its sensitivity to various parameters. The electromagnetic model requires snowpack physical properties to be

quantified, including the thickness, density, specific surface area (SSA), polydispersity, and temperature of each layer. A series

of experiments were designed to illustrate the effects of the various model parameters (representative of Arctic snow, see

Meloche et al., 2022; Picard et al., 2022a) and Arctic snow metamorphism: detailed descriptions of each experiment are

provided in Table 4.
Table 4 — Specific model parameters for various sensitivity tests.

Parameter Experiment 1 Experiment 2 Experiment 3 Experiment 4
Density WS: 1 to 500 WS: 250 to 400
(kg m?) DH: 1 to 500 DH: 250

SSA WS: 15 to 25 WS: 20
(m* kg DH: 10to 12 DH: 11
Thickness WS: 20 WS: 10 to 30 WS: 20 WS: 20 to 40
(cm) DH: 10 DH:5t0 15 DH: 10 DH: 10
Polydispersity WS: 0.80 WS: 0.60 to 0.90 WS: 0.80
(unitless) DH: 1.33 DH: 1.10 to 1.80 DH: 1.33
Temperatures Air: -30.0  WS: -28.6
©) DH:-26.3 Soil: -25.0

Snow density is our primary variable of interest, so it is important to understand how it effects microwave emissions. In

the IBA model, scattering and absorption coefficients are in part related to snow density. The absorption coefficient increases

linearly with snow density because of a greater proportion of ice to air in the microstructure representation altering the effective
9
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permittivity (Picard et al., 2018). On the other hand, the scattering coefficient has a non-linear relationship with snow density

because of the interactions between individual scatterers in the snowpack. Volume scattering increases as more scatters are

introduced (i.e. increasing density), until the scatterers are close enough in proximity to influence each other and the overall

scattering efficiency decreases (Tsang & Kong, 2001). Thus, density of the wind slab and depth hoar layers can affect ATb in

different ways because of their properties that contribute to varying levels of volume scattering and thermal emission.

Experiments 1 to 3 were designed to simulate microwave emission from isolated wind slab and depth hoar layers

accounting for variations in specific surface area (SSA), polydispersity, and layer thickness, respectively (Figs 2 to 4). The

relationships between snow density and brightness temperatures follow skewed curves with minima at densities of 150 kg m~

and frequency dependent amplitudes. Snow volume scattering is less sensitive to 19 than 37 GHz, so the frequency difference

(ATb) is approximately the reflected 37 GHz curve and its magnitude depends on different microstructure properties (Picard

et al., 2022a). Lower (higher) SSA values produce greater (lesser) volume scattering, with minimal dependency on density,

effectively translating the ATb curves vertically (depth hoar ~9 K between 10 to 12 m? kg™ and wind slab ~3 K between 15 to

25 m? kg!). Similarly, polydispersity effectively scales SSA, translating ATb curves (depth hoar ~19 K between 1.2 to 1.8 and

wind slab ~3 K between 0.6 to 0.9). Alternatively, layer thickness amplifies the relationship between snow density and

simulated ATb, increasing sensitivity to depth hoar density (~10 K between 150 to 450 kg m~ at 5 cm vs. ~28 K at 15 cm) and

the wind slab to a lesser extent (~0.5 K between 150 to 450 kg m™ at 10 cm vs. ~3 K at 30 cm). Seasonal snow density is

typical above the 150 kg m- inflection point (ignoring fresh snow), so we can assume snow density has a negative relationship

with ATb — with all other parameters equal, greater (lesser) ATb would indicate lower (higher) snow density.
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Figure 2 — Experiment 1, simulated brightness temperatures  Figure 3 — Experiment 2, same as Figure 2 but shaded areas
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While there was minimal model sensitivity to the isolated wind slab in Experiments 1 to 3, the effect of the wind slab on<

brightness temperature should be more apparent when parameterized over depth hoar. Experiment 4 was designed to

demonstrate brightness temperature sensitivity for the two-layer snowpack representation, configured to replicate mid-season

wind slab compaction over an established depth hoar layer. Wind slab thickness was parameterized to decrease with

compaction (i.e. densification) for SWE to remain constant, and a range of initial SWE values (i.e. thicknesses) were considered

(shaded areas in Fig 4). When introduced over the established depth hoar, layer absorption and thermal emission originating

in the wind slab mask ATb by several K depending on its SWE (~2 K for 50mm vs. ~3K for 85 mm). Then, absorption

increased linearly with snow density and ATb was accordingly masked by the wind slab as it compacted (~5 K between 250

to 400 kg m™ for 50 mm vs. ~8 K for 85 mm). Thus, wind slab formation resulting from compaction or thickening should be

apparent in AMSR-e radiometry (i.e. evident from decreasing ATb), given radiometric sensitivity of +£0.6 K. Furthermore, the

magnitude of ATb masking by the wind slab is enhanced by the snowpack thermal gradient and a relatively colder wind slab

compared to the substrate will increase ATb (~2k between 0 to -10 C, not shown).

4.32 Snow Density Retrieval Algorithm

of snew-density—The results from the various experiments in the sensitivity test suggest there should be sufficient sensitivity

to estimate snow density conditions from space-based PM radiometry. Further, PM radiometry is more sensitive to the

thickness of depth hoar than the wind slab (and in turn overall snow depth) and, in terms of estimating Arctic snow mass

might be better suited to retrieving snow density rather than depth PM retrievals of snow density were conducted at each AWS

site, where meteorological conditions dictated when retrievals were performed. A minimum snow depth of 10 cm was imposed
for algorithm retrievals because of the transparent nature of shallow snow to microwave emissions (Hall et al., 2002). Similarly,
algorithm retrievals were not conducted when AWS air temperatures were above freezing because of the likelihood of liquid
meltwater in the snowpack attenuating microwave emissions (Foster et al., 1984). With the AWS observations prescribed to
the electromagnetic model an inverse modelling approach was applied to optimize the snow density parameters. The forward

model was inverted by minimizing the cost function (J):

J(Pstan Proar) = (ATDsism (Pstas Proar) = ATbops) (O]
representing the vertically polarized 19 and 37 GHz spectral difference in the AMSR-E observation (AT b,,,) and the simulated
SMRT signature at the same channels (AT bg;,,,), given the prescribed wind slab and depth hoar layer densities (pg;q, and ppoqr
respectively). Meorthmestiratesveeresimoathedaith dasreningerrne-tomaddressnoise-the-radiemctey-datas

The solution to the two-layer snowpack model presented was imprecise because different layer density combinations could
produce the same predicted ATb in Eq. (1), resulting in a system with no global minima. The practical impact of this equifinality

issue was that the algorithm may be confronted by seemingly equally valid but different layer density combinations, producing
11
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the same microwave signature. Without additional information there was no suitable way to identify the optimal layer density
combination, so the retrieval algorithm was designed to solve for all BMRFmicrowave-plausible layer density combinations
for a given observation scene to address equifinality in the inverse model.

To constrain the modelled layer density estimates to a plausible range, boundary conditions were established to limit the
parameter space in which the algorithm could search for solutions to the inverse model. A-lowerboundaryThe first boundary
condition was defined based on the strong environmental controls present in the tundra that result in a characteristic wind slab
snow layer overlaying less dense depth hoar (Benson & Sturm, 1993). Logically, Fthe wind slab layer should be denser than

the depth hoar layer, so all parameter combinations where pg4, < Ppoqr Were discarded, and the Jower boundary was-situated

where the- densities of the two layers were equal twe-layers-had-equal-snow-density-values. The uppersecond boundary for

the model was defined based on the behaviour of microwave interactions in_the electromagnetic model-DMRF. Ia--DMRF

ke/m” and-decreases-until-a-volume fraction-of 50%-(Ricard-et-al;2043)-Simulated ATb peaks at a snow density of 150 kg/m?
(see Section 4.2), and the apparent permittivity in IBA is applicable up to a volume fraction of 50%. or 458.5 kg/m? (Picard et

al., 2022b). Thus, the domain of each layer was limited to densities between 150-450 kg/m? to ensure consistent behaviour in

the electromagnetic snowpack model, and the gupper boundary-was situated where either layer was at the edge of that domain.

___An important aspect of the retrieval algorithm was to exploit how the various minima on the cost surface, {defined by /Eq

(1)}, were positioned throughout the parameter space to reduce computational requirements. Figure 62 shows-is an example of

how the pesitions-ef-minima formed a valley transecting the parameter space. Therefore, the PMRFmicrowave-plausible layer
density-combinations-were- density range was the set of layer density combinations situated along a straight line connecting

the solutions at the two established boundary conditions for the inverse model. The lowest contour level (+0.6 K) in Figure 6a

represents the sensitivity of the AMSR-E radiometer at 19 and 37 GHz and the grid spacing corresponds to algorithm retrieval

accuracy (10 kg/m?). The lower solution is more precise being situated in a narrower part of the valley than the upper solution.

Wind slab and depth hoar densities were mapped to bulk values in Figure 6b, where the contours of iso-density will pivot

clockwise (counterclockwise) when the proportion of depth hoar thickness increases (decreases). It should be noted that under

some instances, the “valley” intersected with the upper boundary related to the minimum depth hoar density (i.e. left axis in

Fig. 6a2), though the situation shown in Fig 6a2- (intersecting the upper axis) was more common.
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Figure 6 — (a) Algorithm solutions for Eureka on April 15, 2011, with various H values on surface defined by the square
root of Eq. (1) in Kelvin, and (b) wind slab and depth hoar densities mapped to bulk values in kg m? with Eq. (4).

The range of DPMRTmicrowave-plausible snow densities raised the question of how to evaluate the algorithm estimates
against the reference data. A heterogeneity (H) parameter was introduced into the algorithm to estimate densities for the two
snow layers and reduce the DMRT-plausible snow densities to a single estimate of bulk snow density — H=0-00-at-the-lower
beundaryselutionand H=100-the upper boundaryselution- ranging from 0 to 1 (i.e. the least and most heterogenous solutions,

respectively). There didnotappearto be any relationship betw

g

assigned—afixedvalue—determined-through—aealibration—roeutine—Wind slab (py,s) and depth hoar ( p,,) densities were

estimated with

Pws = Pws,lower + (pWS,upper - pWS,lower) *H 2)

PpH = PpH,lower — (pDH,lower - pDH,uper) *H 3)

where (s iowers Ppu iower)-a0d (P s uppersPpHupper)_are the lower and upper solutions, respectively, and bulk density

(Ppuir) estimated based on the depth hoar thickness divided by the total snow depth (depth hoar fraction, DHF)

Poute = Psiap * (1 = DHF) + progr * DHF 4
Ultimately, the bulk snow density estimated with H was treated as the final algorithm estimate with uncertainty defined by the

DBMRFmicrowave-plausible range.

4.4 Temporal Snowpack Parameterization

All existing retrieval algorithms have considered a single snow layer, so a new scheme was needed to parameterize the two

layer snowpack model over the course of a season. Arctic snowpacks have been studied in detail during field campaigns (see

Derksen et al., 2014; Meloche et al., 2022; Rutter et al., 2019), though they are mostly restricted to end of season conditions

around March to April and much less is known about Arctic snowpack composition early in the season. There have been some
13

[ Formatted: Font: (Default) Times New Roman

[ Formatted: Normal




320

325

330

335

340

studies that focused on early season conditions (Domine et al., 2016a; Domine et al., 2018), though they mainly provide

qualitative descriptions of the temporal evolutions of Arctic snowpacks. Thus, our approach started with end of season

conditions and worked backwards to parameterize the snowpack over the full season, with some parameters informed from

available literature where possible and others calibrated.
Our temporal parameterization of snowpack properties was based on identifying trends in satellite passive microwave and

AWS observations, which we assumed to indicate different stages of snowpack evolution. Generally, two different behaviours

were identified in the forcing datasets which we attributed to normal and restricted conditions for depth hoar development. In
normal cases, ATb increased rapidly over a short period in the fall immediately after the first snowfall, coinciding with an

extended early season zero-curtain period producing extreme vertical temperature gradients for rapid depth hoar

metamorphism (Domine et al., 2018). In restricted cases, ATb increased gradually over longer periods of the season, consistent

with high density layers slowly metamorphizing slowly into depth hoar (Derksen et al., 2009). Later in the season ATb would

plateau attributed to a halt in depth hoar formation, before temperatures increase at the end of the season and ATb drops rapidly.

In total 4 different stages of snowpack evolution were identified, presented in Table 5. The proposed stages are numbered

in the expected order of occurrence, but in practice their order can vary with some exceptions. Stage 0 is a special circumstance

(i.e. does not happen every season) and must occur at the beginning of the season when temperatures are still around freezing.

Then, the snowpack can alternate between Stages 1 and 2 throughout the season, owing to fluctuations in air temperature that

change the thermal regime of the snowpack and snowfall events, prior to reaching equilibrium in State 2 towards the end of

the season. Finally, the snowpack begins to warm in Stage 3 at the end of the season with increasing air temperatures inverting

the temperature gradient before ripening and final melt. The relevant state variables (i.e. layer thickness, thermal regime, and

microstructure) were estimated dynamically considering the identified stage of evolution the snowpack.

Table 5 — Identified stages of snowpack evolution.

Stage Name Description Indicators
Extended Special conditions for early snow to morph into normal depth hoar - Rapid increase in ATb after first snowfall
0
zero curtain under extreme temperature gradient (Tyround >> Tair). - Consistent snow on ground from initial deposition
Temperature | Sufficient temperature gradient for kinetic metamorphism (Tyrouna > - Gradually increasing ATb
1
gradient Tair), where wind slab slowly morphs into indurated depth hoar. - Decreasing trend in air temperature

Insufficient temperature gradient for kinetic metamorphism (Teroy

- Steady or gradually decreasing ATb

2 Isothermal Tair). Snowpack assumed to be in statis and its properties stable
- Little-to-no trend in air temperature
except wind slab compaction may occur.
- ATb begins to decrease, before dropping off
Warming air temperatures towards end of season invert temperature
3 Warming - Increasing trend in air temperature

gradient (Tyrouna < Tair), before snowpack ripens and begins to melt.

- Decreasing snow depth
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4.4.1 Depth Hoar Development

Basal depth hoar thickness is typically reported as a fraction of end of the winter snow depth (depth hoar fraction, DHF)

and measurements during the early-mid season are limited in the Arctic. However, parameterizing the snowpack model

accounting for DHF would cause issues. Forcing snow depth data should be representative of the observation scene (i.e. spatial

resolution) and localised snow depth estimates (i.e. AWS) could lead to considerable differences in algorithm estimates given

variability in Arctic snow depth distributions (Liston, 2004). Additionally, depth hoar thickness parameterized with static DHF

would likely be too thin during early-to-mid season, assuming the depth hoar layer should develop early on during shallower

snow conditions relative to later in the season. Thus, we believe depth hoar should be parameterized with explicit thicknesses

and a new approach was required for the prototype algorithm.
Our primary indicator of depth hoar development was based on seasonal trends in ATb, with prolonged increases associated

with depth hoar metamorphism (Derksen et al., 2010). Identifying periods of depth hoar development allowed rates of growth

to be estimated. Rates were estimated with a change detection method that calculated cumulative increases in ATb, similar to

the snow index proposed by Lievens et al. (2019). The new index (depth hoar index, DHI) was predicated on the assumption

any sustained increase (i.e. over multiple observations) in observed ATb was proportional to depth hoar development. We

believe depth hoar thickness should exhibit monotonic behaviour (i.e. increase, or remain constant, but not decrease), and

temporary ATb fluctuations would result from changes in the snowpack temperature gradient. The total contribution towards

depth hoar development was estimated at each time step (t) with

DHI(t) = {DHI(t — 1) +ax*[ATh(t) —ATb(t —1)], if SD > 0 5
0, otherwise
and
1, if ATb(t) = ATh(t — 1) = ATb(t — 2)
o { ' (6)
0, otherwise

where AWS snow depth (SD) was used as an indicator of snow coverage and increases in ATb must persist over multiple

observations to mitigate effects from physical temperature fluctuations.

4.4.2 Layer Heterogeneity

The layer heterogeneity parameter (H) is abstract and was designed to represent the seasonal evolution of snowpack

stratigraphy. Intuitively, values for H should begin near zero at initial deposition when the snowpack should be mostly

homogenous and increase over time due to evolution of distinct layers. So, H was set to zero the first day snow on the ground

was reported at the AWS and grew linearly to a maximum value calibrated for end of season conditions.
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4.4.3 Snow and Substrate Temperatures

Operational SWE retrievals (e.g. Luojus et al., 2021) do not consider snow temperature gradient, though we believe it is

important when thermal emission originating from the wind slab is considered. Thus, snow and substrate temperatures were

required for the electromagnetic model but were not measured by AWS. Soil temperature from atmospheric reanalysis models

were considered but their uncertainty is highest during cold seasons (Herrington et al., 2024). Instead, a model was designed

to estimate soil temperature relative to measured air temperature and our identified stage of snowpack of evolution. In all

stages, snow temperature was parameterized with a linear temperature gradient between air and soil temperature.

AWS daily mean air temperatures were used to replicate trends in substrate temperature at Arctic sites relative to air

temperature measured by (Domine et al., 2018). First, air temperatures were averaged over the previous 21 days to represent

the gradual and lagged changes in soil temperature (general trend). Second, a five-day Gaussian weighted mean filter was

applied to air temperatures to represent the immediate effect of air temperature fluctuations (local trend). Then, the general

and local trend estimates were assimilated with a 3:1 weighting scheme, respectively, together replicating how substrate

temperatures should be insulated by snow cover being partially decoupled from the atmosphere with small blips from large

fluctuations in air temperature. Finally, the assimilated temperature trends were modified to account for the insulative

properties of snow according to the identified phase of snowpack evolution: substrate temperatures were set to 0 C during
Stage 0, increased by 5 C (2.5 C) during normal (restricted) depth hoar development and decreased by 5 C (2.5 C) during Stage

3, and the transitions between stages smoothed. The 5 C value was chosen to represent the thermal insulation of depth hoar

and is in line with mid-season tundra snowpack temperature gradients (Benson & Sturm, 1993), and an educated guess for the

lower 2.5 C value because of higher thermal conductivity for indurated depth hoar (Domine et al., 2016a). A comparison of

estimates from this model to those from Domine et al. (2018) was provided in Appendix A.

4.4.4 SSA Decay

The microstructure model in SMRT (i.e. microwave grain size) required estimates of the SSA of ice grains in the snowpack

which are not measured by operational AWS. Like depth hoar thickness, many more SSA measurements from Arctic

snowpacks are available for end of season conditions, so empirical models were used to estimate SSA decay earlier in the

season. New snow has relatively high SSA and decays logarithmically over time as it metamorphizes (Legagneux et al., 2003;

Pinzer et al., 2012; Taillandier et al., 2007). Temporally varying SSA for depth hoar and wind slab were estimated using Egs.

(9) and (13) from Taillandier et al. (2007), respectively, with the general form
B-SSAq

SSA(t)=B—A*1n(t+e z ) (6)

where ¢ is time since deposition in hours and coefficients 4 and B related to the mode of metamorphism, layer temperature

and initial SSA (SSA4). Initial SSA was set as 50 m? kg™ and average layer temperatures calculated for the first 60 days after

deposition as described in Section 4.4.3. Estimates of SSA from the empirical models were used until they reached

16



predetermined values, representative of end-of-season conditions, to reflect the non-zero asymptotic trend in the evolution of

400 depth hoar SSA (Taillandier et al., 2007) and very slow SSA decay in Arctic wind slabs observed later in the season (Domine
etal., 2002).

4.53 Calibration and Evaluation Procedure

Some algorithm parameters could not be based on observations and instead needed to be determined through a calibration

procedure. The calibration procedure consisted of two stages and ran from March 15 onwards, assuming snowpack properties

405 would be mostly stable then. Calibrating for end-of-season conditions also allowed for parameters to be compared to those

0 5 vart o A t <

maximum-radi-in-the-grain-growth-moedel (deseribed-in-Seetion4-1) were adjusted to produce the greatest overlap between

the range of PMRFmicrowave-plausible snow density estimates and the in situ reference samples, with an overlap metric:

[{Pest(®)IN{Pobs(®))]
anest, o oos o 2
[{pest (D] (2)

410 overlap = i 1
where {p.s(t)} is the set of DMRT-plausible estimated snow densities and {p,s(t)} the set of the corresponding CanSWE
density sample with a +10% uncertainty range, at time ¢. Thus, the overlap metric describesd the proportion of the
DMRFmicorwave-plausible snow density range that intersected the uncertainty range of the in situ samples, averaged over n
time steps. Second, the—valieforH (deseribed—in—Seetion—4-2)—was—determinedH was calibrated by converting the

415 DBMRFmicrowave-plausible algorithm estimates, from the first step, into discrete values to minimize the-mean absolute
percentage error (MAPE)-between-snow-densities-and-thereference—data. MAPE was chosen for this purpose, rather than

absolute or squared error, because of the heteroscedastic nature of the uncertainty in the reference dataset.

TFhe-Cambridee Bay- AWS-stte-was-chosen{fortheecalibrationprocedurebee ther ro-many-more CanSWE-data< [Formatted: Space After: 0 pt

420

each site, algorithm snow density estimates were evaluated against-with the-referenceCanSWE bulk snow density samples

using the same metrics as in the calibration stage (i.e. overlap and MAPE); bias, root mean square error (RMSE), and

correlation (r}-were also reported as indicators of algorithm performance. MAPE was treated as the primary measure of absolute

accuracy of algorithm estimates; if MAPE was within the uncertainty range of the in situ samples (+10%) then snow density
425  estimates from the algorithm could be comparable to those collected with snow courses.

Calibrating the two layer snowpack model with bulk density measurements (i.e. CanSWE) introduced some uncertainty

into the algorithm configuration parameters. As demonstrated by the sensitivity test, depth hoar SSA and thickness have

complementary effects on simulated ATb — i.e. lower (higher) SSA can compensate if the depth hoar is too thin (thick) — so

various SSA and thickness combinations could produce similar microwave emissions. At each site, SSA parameters were kept
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455

constant over all seasons because inter-season variations in SSA should be relatively low (Meloche et al., 2022; Woolley et

al., 2024), but DHF was free to account for varying environmental conditions. End of season H values were also kept constant

for each site due to the lack of stratigraphic data to conduct a meaningful calibration and in an effort to reduce the number of

free parameters in the calibration procedure. In the future, extensive stratigraphic data from multiple sites should be used for

calibration to increase confidence in specific algorithm parameters.

Stage Site n Overlap (%) MAPE(%) Bias(kg/m’%) | RMSE tkg/m*:%) Correlation
Alert 64 426 14.0 32409.1) 56.1(15.7) 0.547
Evaluation Eurcka 30 347 143 6.5 (5.0) s 0382
Resokite 56 365 135 25.6(7.0) 54414.9) 0540

5 Results
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5.1 Calibrated End of Season Algorithm Configurations

Algorithm configurations were calibrated to represent end-of-season conditions, for each site some parameters were kept

static over all seasons (Table 6) and depth hoar thicknesses varied each season [(Table 7). The sensitivity test demonstrated the

C ed [RK1]: Do you mean some sites were only static

model was most sensitive to depth hoar parameters, so depth hoar SSA varied between 10.0 to 13.0 at 0.2 m? kg™ increments

and fewer options considered for the wind slab of 15.0, 17.5, or 20.0 m* kg™'. For the polar dessert sites (Alert, Eureka, and

Resolute) the calibration routine produced configurations that were fairly similar and in line with those expected in the polar

desert, with depth hoar SSA around 10 to 11 m? kg™' and average DHF of approximately one third (Royer et al., 2021). On the

other hand, the configuration for Cambridge Bay was different, with higher than expected depth hoar SSA and DHF for the
tundra (Meloche et al., 2022).

Table 6 — Model configuration parameters calibrated for end-of-season conditions.

Table 7 — Calibrated seasonal depth hoar thicknesses (cm) and percentage of end-of-season snow depth in parentheses.

Site Wind Slab SSA (m? kg™) Depth Hoar SSA (m® kg™) Heterogeneity (unitless)
Alert 20.0 10.8 0.35
Eureka 17.5 10.4 03
Resolute 17.5 1.2 0.45
Cambridge Bay 20.0 12.8 0.35

parameterization while others had dynamic variables? Perhaps clarify
because this is important for the later sections.

Site 2003-04 2004-05 2005-06 2006-07 2007-08 2007-08 2009-10 2010-11 Avg.
Alert 15(6%) | 15.948%) | 89(24%) | 12.7(33 %) - 18.6 (45 %) - - 11.5(31 %)
Eureka 55(d2%) | 72(27%) | 34(18%) | 26(18%) | 5.0(36%) - 6.1(33%) | 67(24%) | 52(28%)
Resolute B - B B 25(12%) | 54Q7%) | 32Q24%) | 093 %) | 3.0(17%)
Cambridge Bay | 20.6 (72 %) | 11.6 (42%) | 145 (42%) | 20.7 (81 %) | 22.0 (60 %) | 183 (34 %) | 11.7(48%) | 182 (42%) | 17.2 (55 %)
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5.2 Eureka Snow Survey Data

Snow survey data from Saberi et al. (2017) were used to evaluate the calibrated model configuration for the Eureka site in
greater detail. The model was originally configured to replicate bulk density measurements (i.e. CanSWE) making it difficult
to evaluate individual parameters without stratigraphic information. For example, simulated depth hoar thickness and SSA
could compensate for one another without discernible differences in bulk density. Although SSA was not measured in the
survey protocol, calibrated SSA values were evaluated by forcing the retrieval algorithm with measured layer thicknesses and
AMSR-E L2A observations at 25 km (Ashcroft & Wentz, 2013), and the output compared to measured bulk, wind slab, and
depth hoar densities (Fig. 7). Algorithm estimates showed good agreement with the measured values, though with slight
overestimation for depth hoar and underestimation for wind slab densities. Interestingly, the valley of algorithm solutions for
three gird-cells (1,2, and 4) aligned with regions of iso-density in the parameter space (Fig 6b) so H could increase slightly to

reduce underestimation of wind slab density without affecting overall bulk density. While we cannot conclude from this limited
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Figure 7 — Simulated and measured density for EASE-Grid cells near Eureka. Vertical error bars correspond to
the microwave-plausible range of algorithm estimates and horizontal the interquartile range of measured values.
sample size that the algorithm is perfect, the similarity of the algorithm estimates and layer densities to independent snow

surveys suggest the parametrization of SSA was effective for Eureka.

5.3 Dynamic Depth Hoar Parameterization

Snow depth and DHF can be variable in the tundra (Meloche et al., 2022), so parameterizing the snowpack model with

static parameters could lead to uncertainty. Algorithm performance with calibrated thickness were compared those using
20



490 generalized representations (i.e. seasonal thickness, average thickness, and average DHF from Table 6). Parameterizing the
depth hoar layer with static thicknesses for each site improved algorithm estimates slightly compared to static DHF but the
dynamic parameterization performed considerable better than either (Table 8). Further, dynamic depth hoar thicknesses were
the only to bring algorithm estimates within the uncertainty range of the reference dataset at all sites (£10 %)

Calibrated depth hoar thicknesses were plotted against end-of-season DHI from Eq. (5). to identify a relationship to estimate

495  dynamic depth hoar thicknesses (Fig. 8). Model configurations for each site should be equivalent (specifically depth hoar SSA)
for a robust comparison of depth hoar thicknesses, so the configuration from Eureka was applied to the other sites since it
seems representative of in situ conditions (see Section 5.2). Calibrated depth hoar thicknesses had a very strong relationship
with DHI at Alert (R?=0.94, p<0.01), moderate relationships for Eureka (R?=0.68, p=0.023) and Resolute (R?=0.64, p=0.20),
and virtually no relationship for Cambridge Bay (R?>=0.01, p=0.82). There was considerable spread in plotted values for

500 Cambridge Bay and, when removed, the polar desert sites together have a very strong relationship (R?=0.93, p<0.01) fitted
with a linear model:

Teos = 0.349 * DHIy 4y 15 — 3.75 ®)

allowing end-of-season depth hoar thickness (Tg) to be estimated in cm from DHI on March 15%.
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Figure 8 — Depth Hoar Index from Eq. (5) plotted against calibrated depth hoar thicknesses and fitted linear models (lines).

505 Table 8 — MAPE (%) and overlap (%) of algorithm estimates compared to CanSWE using calibrated configurations with depth
parameterized with dynamic thicknesses, average thickness, and average DHF from Table 6.

MAPE (%) Overlap (%)
Dynamic Average Average Dynamic Average Average
Site Thickness Thickness DHF Thickness Thickness DHF
Alert 6.7 134 142 81.8 48.4 41.5
Eureka 74 174 18.8 66.0 29.5 28.5
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Resolute 8.9 20.6 22.0 57.9 27.9 16.8
Cambridge Bay 7.0 12.5 13.0 74.1 45.2 50.2

5.4 Full Season Algorithm Runs

The temporal parameterization (described in Section 4.4) was used to force algorithm retrievals over full winter seasons.

The calibrated configuration for Eureka was used for all sites and dynamic depth hoar thickness (D7) estimated in cm with
) Tros) ©

where DHI at time step ¢ was from Eq. (5) and Ty, from Eq. (8), and the maximum operator did not allow for growth after

DHI(t)
DHIMar 15

DT (t) = max (Tgps * (
March 15. Algorithm runs over all seasons at each site were aggregated to calculated performance metrics, presented in Table
9. Results for the three polar desert sites were similar with moderate MAPE (<20 %), weak-to-moderate positive correlations,
and low magnitudes of bias, whereas, Cambridge Bay had higher MAPE, larger positive bias, and a weak negative correlation.

A collection of notable algorithm simulations was included in Figure 7 - some as examples of when the algorithm performed
very well and others to demonstrate limitations — all simulations included in Appendix B. Seasonal performance at Eureka was
mixed, where three seasons had low MAPE (i.e. <10 %, e.g. Fig 7a), 3 had moderate MAPE (i.e. <20 %, e.g. Fig 7b), and one
high MAPE (i.e. > 20%, Fig 7c). The algorithm performed similarly at Alert, where three seasons had low MAPE (e.g. Fig
7d), one moderate MAPE (not shown), and one high MAPE (Fig 7e). Alternatively, algorithm performance at Resolute was
worse overall, where only one season had relatively low MAPE (not shown) and the other three had higher MAPE (not shown).
Results for Cambridge Bay were more nuanced and the relatively high overall MAPE did not tell the whole story. In all but
one algorithm run simulated density started considerably higher than reference samples in the early season but matched in situ

samples very closely from February onwards (e.g. Fig 8d).

Table 9 — Algorithm performance metrics relative to CanSWE samples (mean normalized percentage values in parentheses).

Site n Overlap (%) MAPE (%) Bias (kg m*) RMSE (kg m™) Correlation
Alert 67 55.7 14.4 23.2(6.5 %) 61.9 (17.4 %) 0.280 (p=0.02)
Eurcka 81 322 149 135 (41%) | 624(189%) | 0.393 (p<0.01)
Resolute 49 40.3 18.7 27.3 (7.7 %) 77.0 (21.6 %) 0.130 (p=0.37)
Cambridge Bay 233 34.4 21.2 35.9 (11.1 %) 82.9 (25.7 %) -0.213 (p<0.01)
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Figure 7 — Example algorithm outputs (top panel) and forcing data (lower panels), for (a) Eureka 2005-06, (b) Eureka 2010-11,
(¢) Eureka 2004-05, (d) Alert 2006-07, (e) Alert 2003-04, and (f) Cambridge Bay 2008-09.
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6.1 Assessment of End-of-Season Configurations

In the following subsections, key parameters (i.e. SSA and depth hoar thickness) of the calibrated end-of-season

configurations were compared against measured values from various field campaigns.

5.1.1 Eureka

Detail snow survey data from (Saberi et al., 2017) were used to evaluate the algorithm configuration for Eureka. Calibrated

depth hoar thicknesses for the Eureka site were fairly consistent ranging from 2.6 to 7.2 cm (o = 1.6 cm) and within the range

of expected values for the polar desert (Royer et al., 2021). Simulated depth hoar thickness for the 2010-2011 season (6.7 cm)

was comparable to measured values from the snow survey which had a median value of 9 cm (interquartile range of 6-12 cm).

We expected thicker depth hoar from the snow survey dataset because it was focused around Hot Weather Creak, where

conditions in the polar oasis should be more favourable for depth hoar formation. On the other hand, the manual snow survey

course (i.e. CanSWE) was approximately 15 km west of Hot Weather Creak (Fig 1b). so we believe conditions at the AWS

should be somewhere between those found in the polar desert and polar oases (i.e. relatively thinner depth hoar). Additionally,

the calibrated SSA values produced representative estimates for individual layer densities measured during the snow survey

Fig 7), increasing our confidence in the algorithm configuration for the Eureka site.

5.1.2 Alert

There are few snow survey data available for the Alert site (e.g. Domine et al., 2002), so those from relatively close Ward

Hunt Island (~170 km northwest) were also considered (Davesne et al., 2022). SSA values were similar to those measured by

Davesne et al. (2022) but depth hoar was considerably thicker in some cases than the typical 5 to 10 cm expected in the polar

desert (Royer etal., 2021). Further, there was considerable variability in simulated depth hoar thicknesses for Alert, with values

ranging from 1.5-19.8 cm (6 = 6 cm). Initially, we believed the large variability in depth hoar thickness to indicate an issue in

the calibration routine (specifically higher values approaching 20 cm). However, variable depth hoar conditions have been
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recorded at Ward Hunt Island, which can be essentially devoid of depth hoar some years (Domine et al., 2018) or near 20 cm

in other cases (Davesne et al., 2022). Thus, it appears the algorithm configuration for Alert was reasonable.

5.1.3 Resolute

Snow survey data were available for Resolute (Davesne et al., 2022; Royer et al., 2021), though the information was less

specific than for other sites (i.e. no explicit depth hoar thickness). Simulated SSA values for the Resolute site, like the others

in the polar dessert, were with the range of expected values, but average DHF (17%) was slightly lower than reported ~30 +£20

% (Royer et al., 2021). Simulated depth hoar thickness was fairly consistent ranging from 0.9 to 5.4 cm (¢ = 1.6 cm) and DHF

for all seasons (except 2010-2011) were within the range of measured values. Further, the area near Resolute covered by the

radiometer field-of-view was likely relatively dry, given its location inland with virtually no water bodies (Fig 1d), and

simulated DHF was comparable to values for dry arcas surveyed by Davesne et al. (2022). Therefore, the algorithm

configuration for Resolute also appeared reasonable.

5.1.4 Cambridge Bay

Comprehensive reports of snowpack properties from Cambridge Bay (Meloche et al., 2022, 2024) allowed for detailed

analysis of the calibrated algorithm configuration. Unlike the other sites, simulated depth hoar SSA and DHF were different

for Cambridge Bay than field measurements (Meloche et al., 2022, 2024). The discrepancy between simulated and measured

values could be related to water bodies around Cambridge Bay affecting radiometry (Derksen et al., 2010). However, we

believe the issue to be mainly related to the complementary nature of depth hoar SSA and thickness towards volume scattering;

with SSA values (wind slab: 20 m? kg™ and depth hoar: 11 m? kg'") from Meloche et al., (2022) calibrated average DHF (36

%) was very close to the reported value (38%), and overall MAPE is only slightly higher (by 0.4 %). The possibility for large

discrepancies between predicted and simulated parameters with little effect on simulated bulk density underscores the necessity

for stratigraphic data during model calibration and evaluation.

6.2 Assessment of Temporal Parameterization

Estimation skill over the full season (Table 9) was lower than during the calibration stage (Table 8), though that was

expected because the configuration for Eureka was used for all sites and depth hoar thickness was parameterized with Eq. (9)

(rather than calibrated values for each site). In some cases the temporal parameterization produced excellent estimates of snow

density over the whole season (e.g. Fig 7a&d) but in other cases struggled to reproduce the observed densification trajectory

(e.g. Fig 7c&e). Yet, algorithm estimation skill at each site consistently improved over the course of a winter season and most

algorithm estimates were close to the in situ references samples later on. To quantify this behaviour the reference dataset was

partitioned into three temporal sets — October-November-December (OND), January-February-March (JFM), and April-May-

June (AMI) — and overlap, MAPE, and bias calculated for each in Table 10. There were substantial improvements in all metrics
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at all sites between OND to JEM and JEM to AMJ, and AMJ MAPE for the polar desert sites were within, or approaching, 10

% indicating the snow density estimation uncertainty was similar to the in situ| samples. [Temporal results for Cambridge Bay

were slightly different than polar desert sites as there was a substantial improvement in all metrics from OND to JEM (most

notably the reduction in bias) but MAPE increased in AMJ. Possible explanations for these temporal behaviours in algorithm

estimates are discussed below.

Table 10 — Seasonal performance metrics for algorithm snow density estimates relative to CanSWE, for October-

November-December (OND), January-February-March (JFM), and April-May-June (AMJ).

. Overlap (%) MAPE (%) Bias (kg m?)
s OND | JEM | AMJ | OND | JEM | AMJ | OND | JFEM | AMJ
Alert 159 | 681 | 7206 | 325 11 8.9 67.6 6.6 10.0
Eureka 230 | 219 | 33 | 193 | 166 98 | 2384 | -l61 | 40
Resolute 26.8 419 50.3 303 15.0 139 59.2 7.2 2.3
Cambridge Bay 124 45.8 40.0 40.8 122 14.1 102.3 17.6 -8.0

[The most likely reason for improved algorithm performance towards the end-of-season during most simulations is that the

snow metamorphic state was captured effectively by model dynamics that align with our understanding of snowpack

metamorphism.| Prior knowledge from available literature increased confidence in end-of-season algorithm configuration,

though much less was ready for the early-to-mid season introducing uncertainty into the temporal parameterization.

Specifically, some properties were effectively quantified with physical models over time (e.g. SSA) while others were not

because model representation is simply not developed (e.g. depth hoar thickness).

From the point of view of algorithm development, the most difficult element to parameterize over time was depth hoar

thickness. The depth hoar model was generalized to not overfit to any specific forcing data, but edge cases were identified

where there were issues. In some cases identified as standard development, and with thicker initial snow depth, Eq. (9) appeared

to underestimate early-season depth hoar thickness causing simulated bulk density to pin at the bottom of the range to maximize

volume scattering (e.g. Fig 7¢). That early-season underestimation could be related to how depth hoar was parameterized to
grow vertically in thickness, which would be logical for indurated development (growing at the expense of wind slab thickness)
but normal depth hoar should form from early layers morphing simultaneously. On the other hand, under the most restrictive
conditions identified for depth hoar metamorphism Eq. (9) overestimated depth hoar thickness throughout the whole season

casing algorithm estimates to pin at the upper limit of the density range (e.g. Fig 8a), despite very similar simulated (2.0 cm)

and calibrated (0.8 cm) end-of-season thicknesses. Thus, our depth hoar model could be improved to consider specific

situations — for example, initiating thickness with early-season snow depth measurements during Stage 0 (assuming the entire

layer would shortly become depth hoar) and using a fixed thickness (~1 cm) when very restrictive conditions are identified.

Even with the help of existing models there were challenges with the parameterization of SSA. Most notably, there is

practically no distinction in the literature between standard and indurate depth hoar microstructure in terms of SSA and
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polydispersity, so we did not distinguish between their prescribed microstructure properties. While physical grain size of

standard and indurated depth hoar are similar (Derksen et al., 2009), non-metamorphized wind slab grains can be present in

indurated depth hoar (Domine et al., 2016b); possibly leading to higher SSA or lower polydispersity compared to standard

depth hoar, necessitating thicker simulated indurated layers. Further, our snowpack representation did not account for deposits

of fresh snow, which have low density and high SSA, and, therefore, should be radiometrically negligible (Saberi et al., 2017).

However, new snow was immediately incorporated into the simulated wind slab layer affecting simulated, but not observed.

brightness temperatures — for example, mid-season snowfall events at Eureka in January 2011 (Fig 7b) caused measured bulk

density to decrease but simulated bulk density increased. Identifying depth hoar type with the proposed stages of snowpack

evolution would not only aid in parameterizing algorithm retrievals (should their microstructure properties prove to be

sufficiently different) but could also support applications where snow hardness and thermal conductivity are relevant — for

example, permafrost thermal regimes and conditions for subnivean life (Domine et al., 2016b).

Algorithm estimates generally followed expected densification trajectories (i.e. increasing density over time) in the polar

desert (e.g. Fig 7b) but exhibited different behaviour at Cambridge Bay. Early season density estimates were too high in all

but one, simulations at Cambridge Bay and decreased over time to move closer to in situ measurements (e.g. Fig 7f). Early

season overestimation could be explained by penetration depth at 19 GHz exceeding lake ice thickness (Derksen et al., 2009)

which reduced observed ATb and caused simulated density to pin at the upper limit to minimize volume scattering. Then

estimates improve over the mid-season when lake ice thickness should exceed the penetration depth at 19 GHz, before thinning

ice thickness reintroducing uncertainty in observed brightness temperatures at the end-of-season (Derksen et al., 2009).

Additionally, the radiometric influence of water bodies made it more difficult to interpret the stages of snowpack evolution at

Cambridge Bay — Stage 0 was only identified during a couple seasons, despite tundra conditions being generally favourable

for depth hoar development (Royer et al., 2021). Furthermore, unfrozen water bodies around Cambridge Bay caused pre-snow

ATb to be very low (i.e. negative ~10 K) artificially modifying DHI values, likely contributing to the spread of points in Figure

8. After February, when ice thickness should exceed penetration depth (Derksen et al., 2009), algorithm performance for

Cambridge Bay was comparable to the polar dessert sites (MAPE = 13.2 % and overlap = 43.6 %).

6.3 Scalability Across the Pan-Arctic

The ultimate goal of this research is to develop a pan-Arctic snow density retrieval algorithm, though the algorithm would

need to be modified for that purpose. The current retrieval design is predicated on two-layer snowpack with distinct properties

(i.e. found in the tundra/polar desert) and would need to be modified to consider other Arctic snow types (e.g. taiga). Traditional

ecological knowledge of snow conditions (e.g. Riseth et al., 2011) could help to identify important snowpack parameters across

various environments to be generalized for the electromagnetic model. Additionally, water bodies could impede retrievals

using a ATb approach (as described for Cambridge Bay) and a single channel retrieval using only 37 GHz might be more

appropriate across the pan-Arctic (Derksen et al., 2010). Also, the dynamic depth hoar parameterization required PM
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observations from snow-on to March 15% limiting it to retrospective analyses, though the relatively long PM observation record

allows for climatological analysis.

After required modifications, additional datasets would be required to expand the spatial extent of algorithm retrievals.

Snow depth data are the most important to force the algorithm (after radiometry) and the sparse distribution of AWS across

the pan-Arctic render them unsuitable for extensive model forcing. Spatially continuous snow depth estimates could be derived

from reanalysis models, even as a first order effect, despite their uncertainty in high latitude arecas where data are sparse (Cao

et al., 2020). Assimilation of reanalysis snow depth estimates with AWS data for bias correction might be a promising way

forward. Similarly, bias corrected ground temperature estimates from reanalysis products (Herrington et al., 2024) could

replace our simple model based on AWS air temperature. Additionally, auxiliary wind speed and soil moisture data could aid

with parameterizing the depth hoar layer (i.e. quantifying the potential for development) as they restrict and promote

development, respectively (Davesne et al., 2022). Finally, a pan-Arctic snow density product would require extensive reference

data to support algorithm calibration and evaluation which will need to be curated, specifically regarding extensive datasets of

snow stratigraphy.

7 Conclusions and Future Work

A prototype algorithm was developed to estimate snow density in the tundra environment using PM remote sensing, given
the-challenges in estimating spatiotemporally varying snow density in that- the Arctic environment. An experiment was
conducted to assess the algorithm’s ability to estimate snow density at sites distributed in the Canadian tundrahigh Arctic.
Results from those sites demonstrate algorithm estimates efsnow-density-have the potential to provided information on snow

density comparable to those collected with snow courses. ¢

in-the-season—In its current configuration, the algorithm performed best at estimating snow density conditions later in the

season, with end-of-secason MAPE within (i.e. Alert and Eureka), or approaching (i.e. Resolute and Cambridge Bay), the 10

% uncertainty range of manual snow density sampling. With some modifications, and more extensive forcing data, (e-g—snow

depth-estimates-from-global-elimate-medels)-theis proposed algorithm could be applied ever-the-tundra-biemeacross the pan-
Arctic to provide snow density estimates at spatiotemporal scales that were not previously available.

The experimental design for this study was opportunistic due to the limited snow density data available for algorithm
development-calibration and evaluation. CanSWE was the only readily available dataset which covered the required spatial
and temporal domain for algorithm development but was limited to bulk estimates and, as result, the algorithm estimates for
the two distinct snow layers could not be sufficiently parameterized—calibrated nor evaluated. Specifically, algorithm

calibration with bulk density measurements introduced uncertainty in the parameterization of depth hoar thickness and SSA

because of their complementary effects on volume scattering. Future algorithm development will focus on datasets from sites
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with distributed stratigraphic measurements that will improve snow density parameterization at the PM scale. Further, Fundra

Arctic_snow conditions are known to be driven by terrain types (Rees et al., 2014; Woo, 1998)(Wee,—1998), and-future

PM-seale-By-characterizing terrain-variability-at the regional seale:- and we hypothesise the PMRFmicrowave-plausible range
of snow densities for the PM scene could be disaggregated using high resolution active microwave data to provide information

on stratigraphic heterogeneity and-better-estimate-density—values—for-the-two-distinet snewlayers(te—(replacinge the static

abstract H parameter).
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Appendix A: Comparison of measured and modelled substrate temperatures.
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Figure Al — Air and substrate temperatures measured at (a) Bylot 2016-17 and (b) Ward Hunt Island 2015-16 (original images
from Domine et al. (2018)), and from our model (described in Section 4.4.3) under (c) normal depth hoar conditions at Eureka
2010-2011 and (d) restricted depth hoar conditions at Alert 2003-04.
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Appendix B: Algorithm Outputs
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Figure B1 — All algorithm simulations (top panel) and forcing data (lower panels) for Alert and Eureka sites.
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Figure B2 — All algorithm simulations (top panel) and forcing data (lower panels) for Resolute and Cambridge Bay sites.

34



|760

765

770

775

780

785

Code and data availability. The retrieval algorithm and snow density estimates are still in the prototype phase and are not

ready for distribution. Any inquiries can be submitted to the corresponding author.

Author contributions. JIW developed the algorithm with-guidanee-fromRkand RK supervised the project. JW performed the

analysis, produced the figures, and wrote the original manuscript draftwhieh. The final manuscript was thes edited by both

authors.

Competing interests. The authors declare that they have no conflict of interest.

Acknowledgements. We acknowledge the support of the Natural Sciences and Engineering Research Council of Canada
(NSERC), [funding reference number RGPIN-2023-04431].

References

Ashcroft, P. and Wentz, F. J.: AMSR-E/Aqua L2A Global Swath Spatially-Resampled Brightness Temperatures, Version 3
[data set], Boulder, Colorado USA, https://doi.org/10.5067/AMSR-E/AE_1.2A.003, 2013.

Barrere, M., Domine, F., Decharme, B., Morin, S., Vionnet, V., and Lafaysse, M.: Evaluating the performance of coupled
snow-soil models in SURFEXv8 to simulate the permafrost thermal regime at a high Arctic site, Geosci Model Dev, 10,
3461-3479, https://doi.org/10.5194/gmd-10-3461-2017, 2017.

Benson, C. S. and Sturm, M.: Structure and wind transport of seasonal snow on the Arctic slope of Alaska, Ann Glaciol, 18,
261-267, https://doi.org/10.3189/50260305500011629, 1993.

Brodzik, M. J., Long, D. G., and Hardman, M. A.: Calibrated Passive Microwave Daily EASE-Grid 2.0 Brightness

Temperature ESDR (CETB) Algorithm Theoretical Basis Document Version 2.1
https://doi.org/10.5281/zenodo.11626219, 2024.,

Cao, B., Gruber, S., Zheng, D., and Li, X.: The ERA5-Land soil temperature bias in permafrost regions, Cryosphere, 14, 2581—
2595, https://doi.org/10.5194/tc-14-2581-2020, 2020.

Cao, B., Arduini, G., and Zsoter, E.: Brief communication: Improving ERA5-Land soil temperature in permafrost regions
using an optimized multi-layer snow scheme, Cryosphere, 16, 2701-2708, https://doi.org/10.5194/tc-16-2701-2022, 2022.

Champollion, N., Picard, G., Arnaud, L., Lefebvre, E.. MacElloni, G., Rémy, F.. and Fily, M.: Marked decrease in the near-

surface snow density retrieved by AMSR-E satellite at Dome C, Antarctica, between 2002 and 2011, Cryosphere, 13
12151232, https://doi.org/10.5194/tc-13-1215-2019, 2019,

35

[ Formatted: Font color: Black

[ Formatted: Font color: Black




790

795

800

805

815

820

Chang, A. T. C., Foster, J. L., Hall, D. K., Rango, A., and Hartline, B. K.: Snow Water Equivalent Estimation by Microwave
Radiometry, Cold Reg Sci Technol, 5, 259-267, https://doi.org/10.1016/0165-232X(82)90019-2, 1982.

Chang, A. T. C., Foster, J. L., and Hall, D. K.: Nimbus-7 SMMR Derived Global Snow Cover Parameters, Ann Glaciol, 9, 39—
44, https://doi.org/10.3189/S0260305500200736, 1987.

Conger, S. M. and McClung, D. M.: Comparison of density cutters for snow profile observations, Journal of Glaciology, 55,
16-196, https://doi.org/https://doi.org/10.3189/002214309788609038, 2009.

Davesne, G.. Domine, F., and Fortier, D.: Effects of meteorology and soil moisture on the spatio-temporal evolution of the

depth hoar layer in the polar desert snowpack, Journal of Glaciology, 68, 457472, https://doi.org/10.1017/j0g.2021.105
2022,

Derksen, C., Walker, A. E., Goodison, B. E., and Strapp, J. W.: Integrating in situ and multiscale passive microwave data for
estimation of subgrid scale snow water equivalent distribution and variability, IEEE Transactions on Geoscience and
Remote Sensing, 43, 960-972, https://doi.org/10.1109/TGRS.2004.839591, 2005.

Derksen, C., Sturm, M., Liston, G. E., Holmgren, J., Huntington, H., Silis, A., and Solie, D.: Northwest Territories and Nunavut

snow characteristics from a subarctic traverse: Implications for passive microwave remote sensing, J Hydrometeorol, 10.

448-463, https://doi.org/10.1175/2008JHM1074.1, 2009.,

Derksen, C., Toose, P., Rees, A., Wang, L., English, M., Walker, A., and Sturm, M.: Development of a tundra-specific snow
water equivalent retrieval algorithm for satellite passive microwave data, Remote Sens Environ, 114, 1699-1709,
https://doi.org/10.1016/j.rse.2010.02.019, 2010.

Derksen, C., Lemmetyinen, J., Toose, P., Silis, A., Pulliainen, J., and Sturm, M.: Physical properties of arctic versus subarctic

snow: Implications for high latitude passive microwave snow water equivalent retrievals, J Geophys Res, 119, 7254-7270,

Domine, F., Cabanes, A., and Legagneux, L.: Structure, microphysics, and surface area of the Arctic snowpack near Alert

during the ALERT 2000 campaign, Atmospheric Environment, 36, 2753-2765, https://doi.org/10.1016/S1352-
2310(02)00108-5, 2002.

Domine, F., Barrere, M., and Sarrazin, D.: Seasonal evolution of the effective thermal conductivity of the snow and the soil in
high Arctic herb tundra at Bylot Island, Canada, Cryosphere, 10, 2573-2588, https://doi.org/10.5194/tc-10-2573-2016,
2016a.

Domine, F., Barrere, M., and Morin, S.: The growth of shrubs on high Arctic tundra at Bylot Island: Impact on snow physical

properties and permafrost thermal regime, Biogeosciences, 13, 6471-6486, https://doi.org/10.5194/bg-13-6471-2016.
2016b.

36

[ Formatted: Font color: Black

[ Formatted: Font color: Black




825

830

835

840

845

850

Domine, F., Belke-Brea, M., Sarrazin, D., Arnaud, L., Barrere, M., and Poirier, M.: Soil moisture, wind speed and depth hoar

formation in the Arctic snowpack, Journal of Glaciology, 64, 990—1002, https://doi.org/10.1017/jog.2018.89, 2018,

Domine, F., Picard, G., Morin, S., Barrere, M., Madore, J. B., and Langlois, A.: Major Issues in Simulating Some Arctic
Snowpack Properties Using Current Detailed Snow Physics Models: Consequences for the Thermal Regime and Water
Budget of Permafrost, ] Adv Model Earth Syst, 11, 34—44, https://doi.org/10.1029/2018MS001445, 2019.

Environment and Climate Change Canada and ClimateData.ca: Historic Station Data [data set],
https://climate.weather.gc.ca/historical _data/search_historic_data e.html, last access: 15 June 2024.

Foster, J. L., Hall, D. K., Chang, A. T. C., and Rango, A.: An overview of passive microwave snow research and results,
Reviews of Geophysics, 22, 195-208, https://doi.org/10.1029/RG022i002p00195, 1984.

Gouttevin, 1., Menegoz, M., Dominé, F., Krinner, G., Koven, C., Ciais, P., Tarnocai, C., and Boike, J.: How the insulating
properties of snow affect soil carbon distribution in the continental pan-Arctic area, J] Geophys Res Biogeosci, 117,
https://doi.org/10.1029/2011JG001916, 2012.

Gouttevin, 1., Langer, M., Lowe, H., Boike, J., Proksch, M., and Schneebeli, M.: Observation and modelling of snow at a
polygonal tundra permafrost site: Spatial variability and thermal implications, Cryosphere, 12, 3693-3717,
https://doi.org/10.5194/tc-12-3693-2018, 2018.

Hall, D. K.: Influence Of Depth Hoar on Microwave Emission from Snow in Northern Alaska, Cold Reg Sci Technol, 13,
225-231, https://doi.org/https://doi.org/10.1016/0165-232X(87)90003-6, 1987.

Hall, D. K., Kelly, R. E. J., Riggs, G. A., Chang, A. T. C., and Foster, J. L.: Assessment of the relative accuracy of hemispheric-
scale snow-cover maps, Ann Glaciol, 34, 24-30, https://doi.org/10.3189/172756402781817770, 2002.

Herrington, T. C., Fletcher, C. G., and Kropp, H.: Validation of pan-Arctic soil temperatures in modern reanalysis and data

assimilation systems, Cryosphere, 18, 1835-1861, https://doi.org/10.5194/tc-18-1835-2024, 2024.

Holloway J. L., Smoothing and filtering of time series and space fields, in: Advances in Geophysics, edited by Lansberg H. E.

and Mieghem, J. V. Academic Press, New York, United States of America, 351-389, ISSN 0065-2687, 1958.

Holmberg, M., Lemmetyinen, J., Schwank, M., Kontu, A., Rautiainen, K., Merkouriadi, 1., and Tamminen, J.: Retrieval of

ground, snow, and forest parameters from space borne passive L band observations. A case study over Sodankyld, Finland

Remote Sens Environ, 306, https://doi.org/10.1016/j.rse.2024.114143, 2024.

Kelly, R., Chang, A. T., Tsang, L., and Foster, J. L.: A prototype AMSR-E global snow area and snow depth algorithm, [EEE
Transactions on Geoscience and Remote Sensing, 41, 230242, https://doi.org/10.1109/TGRS.2003.809118, 2003.

Kelly, R., Li, Q., and Saberi, N.: The AMSR2 Satellite-based Microwave Snow Algorithm (SMSA): A New Algorithm for
Estimating Global Snow Accumulation, in: 2019 IEEE International Geoscience & Remote Sensing Symposium, 5606—
5609, https://doi.org/https://doi.org/10.1109/IGARSS.2019.8898525, 2019.

Kinar, N. J. and Pomeroy, J. W.: Measurement of the physical properties of the snowpack, Reviews of Geophysics, 53, 481—
544, https://doi.org/10.1002/2015RG000481, 2015.

37

[ Formatted: Font color: Black

[ Formatted: Font color: Black




855

860

865

870

875

880

885

Legagneux, L., Lauzier, T., Dominé, F., Kuhs, W. F., Heinrichs, T., and Techmer, K.: Rate of decay of specific surface area

of snow during isothermal experiments and morphological changes studied by scanning electron microscopy, Can J Phys.

81, 459468, https://doi.org/10.1139/p03-025, 2003,

Li, Q., Kelly, R., Lemmetyinen, J., and Pan, J.: Simulating the Influence of Temperature on Microwave Transmissivity of
Trees during Winter Observed by Spaceborne Microwave Radiometery, IEEE J Sel Top Appl Earth Obs Remote Sens, 13,
4816-4824, https://doi.org/10.1109/JSTARS.2020.3017618, 2020.

Lievens, H., Demuzere, M., Marshall, H. P., Reichle, R. H., Brucker, L., Brangers, 1., de Rosnay. P., Dumont, M., Girotto, M.,
Immerzeel, W. W., Jonas, T., Kim, E. J., Koch, 1., Marty, C., Saloranta, T., Schober, J., and De Lannoy, G. J. M.: Snow

depth variability in the Northern Hemisphere mountains observed from space, Nat Commun, 10

https://doi.org/10.1038/s41467-019-12566-y, 2019.

Liston, G. E.: Representing Subgrid Snow Cover Heterogeneities in Regional and Global Models, Journal of Climate, 17

1381-1397, https://doi.org/10.1175/1520-0442(2004)017<1381:RSSCHI>2.0.CO:2, 2004,

Lopez-Moreno, J. L., Leppénen, L., Luks, B., Holko, L., Picard, G., Sanmiguel-Vallelado, A., Alonso-Gonzélez, E., Finger, D.
C., Arslan, A. N, Gillemot, K., Sensoy, A., Sorman, A., Ertas, M. C., Fassnacht, S. R., Fierz, C., and Marty, C.:
Intercomparison of measurements of bulk snow density and water equivalent of snow cover with snow core samplers:
Instrumental bias and variability induced by observers, Hydrol Process, 34, 3120-3133, https://doi.org/10.1002/hyp. 13785,
2020.

Luojus, K., Pulliainen, J., Takala, M., Lemmetyinen, J., Mortimer, C., Derksen, C., Mudryk, L., Moisander, M., Hiltunen, M.,

Smolander, T., Ikonen, J., Cohen, J., Salminen, M., Norberg, J., Veijola, K., and Venéldinen, P.: GlobSnow v3.0 Northern
Hemisphere snow water equivalent dataset, Sci Data, 8, https://doi.org/10.1038/s41597-021-00939-2, 2021.

Martineau, C., Langlois, A., Gouttevin, 1., Neave, E., and Johnson, C. A.: Improving Peary Caribou Presence Predictions in
MaxEnt Using Spatialized Snow Simulations, Arctic, 75, 55-71, https://doi.org/10.14430/arctic74868, 2022.
Mitzler, C.: Improved Born approximation for scattering of radiation in a granular medium, J Appl Phys, 83, 6111-6117

https://doi.org/10.1063/1.367496, 1998.

Meloche, J., Royer, A., Langlois, A., Rutter, N., and Sasseville, V.: Improvement of microwave emissivity parameterization

of frozen Arctic soils using roughness measurements derived from photogrammetry, Int J Digit Earth, 14, 1380-1396.
https://doi.org/10.1080/17538947.2020.1836049, 2021.,

Meloche, J., Langlois, A., Rutter, N., Royer, A., King, J., Walker, B., Marsh, P., and Wilcox, E. J.: Characterizing tundra snow
sub-pixel variability to improve brightness temperature estimation in satellitt SWE retrievals, Cryosphere, 16, 87-101,
https://doi.org/10.5194/tc-16-87-2022, 2022.

38

[ Formatted: Font color: Black

[ Formatted: Font color: Black

[ Formatted: Font color: Black




890

895

900

905

915

Meloche, J., Royer, A., Roy, A., Langlois, A., and Picard, G.: Improvement of Polar Snow Microwave Brightness Temperature

Simulations for Dense Wind Slab and Large Grain, IEEE Transactions on Geoscience and Remote Sensing, 62
https://doi.org/10.1109/TGRS.2024.3428394, 2024.

Messager, M. L., Lehner, B., Grill, G., Nedeva, L., and Schmitt, O.: Estimating the volume and age of water stored in global

lakes using a geo-statistical approach, Nat Commun, 7, https://doi.org/10.1038/ncomms13603, 2016.,

Mortimer, C., Mudryk, L., Derksen, C., Brady, M., Luojus, K., Venéldinen, P., Moisander, M., Lemmetyinen, J., Takala, M.,
Tanis, C., and Pulliainen, J.: Benchmarking algorithm changes to the Snow CCI+ snow water equivalent product, Remote
Sens Environ, 274, https://doi.org/10.1016/j.rse.2022.112988, 2022.

Bruecke Rov-—A—DPu M—RoverA

Picard, G., Sandells, M., and Lowe, H.: SMRT: An active-passive microwave radiative transfer model for snow with multiple
microstructure and scattering formulations (v1.0), Geosci Model Dev, 11, 2763-2788, https://doi.org/10.5194/gmd-11-
2763-2018, 2018.

Picard, G., Lowe, H., and Mitzler, C.: Brief communication: A continuous formulation of microwave scattering from fresh
snow to bubbly ice from first principles, Cryosphere, 16, 38613866, https://doi.org/10.5194/tc-16-3861-2022, 2022a.

Picard, G., Lowe, H., Domine, F., Amaud, L., Larue, F., Favier, V., Le Meur, E., Lefebvre, E., Savarino, J., and Royer, A.:

The Microwave Snow Grain Size: A New Concept to Predict Satellite Observations Over Snow-Covered Regions, AGU
Advances, 3. https:/doi.org/10.1029/2021AV000630, 2022b.

Pinzer, B. R., Schneebeli, M., and Kaempfer, T. U.: Vapor flux and recrystallization during dry snow metamorphism under a

steady temperature gradient as observed by time-lapse micro-tomography, Cryosphere, 6, 1141-1155

https://doi.org/10.5194/tc-6-1141-2012, 2012,

Pulliainen, J. and Grandeil, J.: HUT snow emission model and its applicability to snow water equivalent retrieval, IEEE
Transactions on Geoscience and Remote Sensing, 37, 1378—1390, https://doi.org/10.1109/36.763302, 1999.

nco_A hano A ad Eoste - The ization-of Snaceborne Microwave RadiometersforMonito

op I YErO10L8Y a 15 o5 PSHEeHorg Y- S 0 g 3

Raynolds, M. K., Walker, D. A., Balser, A., Bay, C.. Campbell, M., Cherosov, M. M., Daniéls, F. J. A., Eidesen, P. B.
Ermokhina, K. A., Frost, G. V., Jedrzejek, B., Jorgenson, M. T., Kennedy, B. E., Kholod, S. S., Lavrinenko, I. A.,

Lavrinenko, O. V., Magnusson, B., Matveyeva, N. V., Mettsalemsson, S., Nilsen, L., Olthof, I., Pospelov, I. N., Pospelova.

E. B.. Pouliot, D., Razzhivin, V., Schaepman-Strub, G., Sibik, J., Telyatnikov, M. Y., and Troeva, E.: A raster version of

39

= [Fon'natted: Font color: Black

[ Formatted: Font color: Black




920

925

930

935

940

945

950

the Circumpolar Arctic Vegetation Map (CAVM), Remote Sens Environ, 232, https://doi.org/10.1016/j.rse.2019.111297
2019,

Rees, A., English, M., Derksen, C., Toose, P., and Silis, A.: Observations of late winter Canadian tundra snow cover properties,
Hydrol Process, 28, 3962-3977, https://doi.org/10.1002/hyp.9931, 2014.
Riseth, J. A., Tommervik, H., Helander-Renvall, E., Labba, N., Johansson, C., Malnes, E., Bjerke, J. W., Jonsson, C., Pohjola.

V., Sarri, L. E., Schanche, A., and Callaghan, T. V.: Sami traditional ecological knowledge as a guide to science: Snow.

ice and reindeer pasture facing climate change, Polar Record, 47, 202-217, https://doi.org/10.1017/S0032247410000434,
2011.

Royer, A., Domine, F., Roy, A., Langlois, A., Marchand, N., and Davesne, G.: New Northern Snowpack Classification Linked

to Vegetation Cover on a Latitudinal Mega-Transect Across Northeastern Canada, Ecoscience, 28, 225-242
https://doi.org/10.1080/11956860.2021.1898775, 2021.
Rutter, N., J. Sandells, M., Derksen, C., King, J., Toose, P., Wake, L., Watts, T., Essery, R., Roy, A., Royer, A., Marsh, P.

Larsen, C., and Sturm, M.: Effect of snow microstructure variability on Ku-band radar snow water equivalent retrievals

Cryosphere, 13, 3045-3059, https://doi.org/10.5194/tc-13-3045-2019, 2019,

Saberi, N., Kelly, R., Toose, P., Roy, A., and Derksen, C.: Modeling the observed microwave emission from shallow multi-

layer Tundra Snow using DMRT-ML, Remote Sens (Basel), 9, https://doi.org/10.3390/rs9121327, 2017.

Saberi, N., Kelly, R., Flemming, M., and Li, Q.: Review of snow water equivalent retrieval methods using spaceborne passive

microwave radiometry, Int ] Remote Sens, 41, 9961018, https://doi.org/10.1080/01431161.2019.1654144, 2020.,

Sivy, K. J., Nolin, A. W., Cosgrove, C. L., and Prugh, L. R.: Critical snow density threshold for Dall’s sheep (Ovis dalli dalli),
Can J Zool, 96, 1170-1177, https://doi.org/10.1139/cjz-2017-0259, 2018.

rm—M-—and-Benson - Vapor-transport—srain-srowth-and-depth-ho

Sturm, M. and Holmgren, J.: Differences in compaction behavior of three climate classes of snow, Ann Glaciol, 26, 125-130,
https://doi.org/10.3189/1998a0g26-1-125-130, 1998.

Sturm, M. and Liston, G. E.: Revisiting the Global Seasonal Snow Classification: An Updated Dataset for Earth System
Applications, ] Hydrometeorol, 22, 2917-2938, https://doi.org/10.1175/JHM-D-21-0070.1, 2021.

Sturm, M., Holmgren, J., and Liston, G. E.: A Season Snow Cover Classification System for Local to Global Applications, J
Clim, 8, 12611283, https://doi.org/10.1175/1520-0442(1995)008<1261:ASSCCS>2.0.CO;2, 1995,

Sturm, M., Taras, B., Liston, G. E., Derksen, C., Jonas, T., and Lea, J.: Estimating snow water equivalent using snow depth
data and climate classes, J Hydrometeorol, 11, 1380-1394, https://doi.org/10.1175/2010JHM1202.1, 2010.

Taillandier, A. S., Domine, F., Simpson, W. R., Sturm, M., and Douglas, T. A.: Rate of decrease of the specific surface area

of dry snow: Isothermal and temperature gradient conditions, J Geophys Res Earth Surf, 112
https://doi.org/10.1029/2006JF000514, 2007,

40

[ Formatted: Font color: Black

[ Formatted: Font color: Black

[ Formatted: Font color: Black

[ Formatted: Font color: Black

[ Formatted: Font color: Black




Takala, M., Luojus, K., Pulliainen, J., Derksen, C., Lemmetyinen, J., Kdrnd, J. P., Koskinen, J., and Bojkov, B.: Estimating
northern hemisphere snow water equivalent for climate research through assimilation of space-borne radiometer data and
ground-based measurements, Remote Sens Environ, 115, 3517-3529, https://doi.org/10.1016/j.rse.2011.08.014, 2011.
955 . . L e . . .

Tedesco, M. and Jeyaratnam, J.: A new operational snow retrieval algorithm applied to historical AMSR-E brightness
temperatures, Remote Sens (Basel), 8, https://doi.org/10.3390/rs8121037, 2016.

Tong, J., Déry, S. J., Jackson, P. L., and Derksen, C.: Testing snow water equivalent retrieval algorithms for passive microwave

960 remote sensing in an alpine watershed of western Canada, Canadian Journal of Remote Sensing, 36, 74-86,

https://doi.org/10.5589/m10-009, 2010.

965 Tsang, L., & Kong, J. A.: Scattering of Electromagnetic Waves: Advanced topics. Wiley. ISBN 0471388017, 2001, i [Formatted: Font: (Default) +Headings (Times New Roman) ]

Venildinen, P., Luojus, K., Lemmetyinen, J., Pulliainen, J., Moisander, M., and Takala, M.: Impact of dynamic snow density [ Formatted: Indent: Left: 0 cm, First line: 0 cm

on GlobSnow snow water equivalent retrieval accuracy, Cryosphere, 15, 2969-2981, https://doi.org/10.5194/tc-15-2969-
2021, 2021.
Venilidinen, P., Luojus, K., Mortimer, C., Lemmetyinen, J., Pulliainen, J., Takala, M., Moisander, M., and Zschenderlein, L.:
970 Implementing spatially and temporally varying snow densities into the GlobSnow snow water equivalent retrieval,
Cryosphere, 17, 719-736, https://doi.org/10.5194/tc-17-719-2023, 2023.
Vionnet, V., Mortimer, C., Brady, M., Arnal, L., and Brown, R.: Canadian historical Snow Water Equivalent dataset (CanSWE,
1928-2020), Earth Syst Sci Data, 13, 4603—4619, https://doi.org/10.5194/essd-13-4603-2021, 2021.
Woo, M.-K.: Arctic Snow Cover Information for Hydrological Investigations at Various Scales, Nordic Hydrology, 29, 245—
975 266, https://doi.org/https://doi.org/10.2166/nh.1998.0014, 1998.

Woo, M.-K. and Young, K. L.: Hydrology of a small drainage basin with polar oasis environment, Fosheim Peninsula

Ellesmere Island, Canada, Permafr Periglac Process, 8, 257-277, https://doi.org/10.1002/(SICI)1099-
1530(199709)8:3<257::AID-PPP258>3.0.CO;2-T, 1997.
Woolley, G. J., Rutter, N., Wake, L., Vionnet, V., Derksen, C., Essery, R., Marsh, P., Tutton, R., Walker, B., Lafaysse, M.

980 and Pritchard, D.: Multi-physics ensemble modelling of Arctic tundra snowpack properties, Cryosphere, 18, 5685-5711
https://doi.org/10.5194/tc-18-5685-2024, 2024.

41



