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Abstract.  

 Snow density data are important for a variety of applications, yet, to our knowledge, there are no robustfew methods for 

estimating spatiotemporal varying snow density in the Arctic environment. The current understanding of snow density 

variability is largely limited to manual in situ sampling, which is not feasible across large domains like the Canadian Arctic. 

This research proposes a passive microwave retrieval algorithm for tundra snow density. A two-layer electromagnetic 5 

snowpack model, representing depth hoar underlaying a wind slab layer, was used to estimate microwave emissions for use in 

an inverse model to estimate snow density. The proposed algorithm is predicated on solving the inverse model at boundary 

conditions for the snowpack simulated layers densities to estimate snow density within a plausible range. An experiment was 

conducted to assess the algorithm’s ability to reproduce snow density estimates from snow courses at four sites in the Canadian 

high Arctic high arctic sites in the Canadian tundra. The electromagnetic snowpack model was calibrated at one site and then 10 

evaluated at the three other sites. Results from the calibration and evaluation sites were similar and the algorithm replicated 

the density estimates from snow courses well with absolute error values approaching the uncertainty of the reference data 

(±10%). The algorithm configuration appears best suited for estimating snow density conditions towards the end of the winter 

season. The electromagnetic snowpack model was calibrated to end-of-season conditions at each study site and a novel 

temporal parameterization used to expand algorithm retrievals over full winter seasons. Algorithm estimates have the potential, 15 

under ideal conditions, to provide snow density information comparable to that collected through in situ sampling. In its current 

configuration, algorithm performance was best later in the season, with mean absolute percentage error approaching 10% 

towards the end-of-season indicating snow density estimation uncertainty was similar to the in situ samples. With some 

modifications, and more extensive forcing data, (e.g. from global climate models) this algorithm could be applied across the 

pan-Arctic tundra to provide information on snow density information at scales that are not currently available. 20 

1 Introduction 

 There are numerous applications for which the quantification of snow density is important: for example, estimating snow 

water equivalent (SWE) for water resources (Venäläinen et al., 2021, 2023), modelling atmosphere-land interactions for energy 

balances (Gouttevin et al., 2012, 2018), and ecological monitoring of Arctic fauna (Martineau et al., 2022; Sivy et al., 2018); 

though, to the best of our knowledge, there is no robust effective method for estimating spatiotemporally-varying snow density 25 
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in the Arctic. There are automated instruments to estimate snow density but they are not widely implemented, instead density 

is typical estimated by weighing a known volume of snow (Kinar & Pomeroy, 2015). This manual process is labour intensive 

and, as a result, measurements are sparsely distributed making the prediction of spatially distributed density estimates 

uncertain. In a remote environment, like the Canadian Arctic, comprehensive in situ sampling is not feasible due to logistical 

constraints, so large-scale analyses involving snow density tend to rely on modelled estimates. Recent studies have shown that 30 

current snow density products, from meteorological reanalysis or detailed snow models, are not adequate for use in Arctic 

environments. The snow scheme in the ERA5-Land reanalysis model overestimates snow depth and underestimates density, 

by considerable margins, in high-latitudes (Cao et al., 2020, 2022). Similarly, detailed snow models (i.e. Crocus and 

SNOWPACK) cannot estimate the expected vertical density profile in the Arctic tundra (Barrere et al., 2017; Domine et al., 

2019). Despite its intrinsic importance in Earth systems, snow density variability is currently not well understood on large 35 

spatiotemporal scales. 

 One possible approach to estimate snow density at the regional scale (i.e. 102-104 km2; Woo, 1998) is from satellite-based 

remote sensing. Satellite passive microwave (PM) radiometry offers near-daily coverage of the Northern Hemisphere, under 

most weather conditions, with a data record spanning back to 1978. Emitted microwave energy can pass through a snowpack 

unattenuated at lower frequencies or is attenuated at higher frequencies. For attenuated emission, the primary microwave 40 

interaction within a dry snowpack is volume scattering which is controlled by the snowpack properties (i.e. snow depth, 

density, temperature, and grain size radius; Chang et al., 1982). PM snow emission retrievals using a frequency difference 

approach (ΔTb) – the subtraction of higher frequency channel Tb (volume scattering dominated) from a lower-frequency Tb 

channel (subnivean emission dominated) – have been the basis of empirical representations of PM estimates (e.g. Chang et al., 

1987) and more sophisticated assimilation-based retrieval schemes (e.g. Takala et al., 2011). Historically, snow mass has been 45 

estimated with spaceborne (PM) radiometry through retrieval algorithms focusing on snow depth (Kelly et al., 2003, 2019; 

Takala et al., 2011; Tedesco & Jeyaratnam, 2016). In theory, the principles behind those existing retrieval schemes could be 

exploited to estimate snow density rather than depth. 

In general, the parameterization of snow density in has been simplified in large-scale passive microwave SWE estimation 

models (Mortimer et al., 2022). There is a lack of snow density observations at the necessary scales to constrain density 50 

parameterization, primarily because of the difficult in acquiring spatially distributed in situ observations (Sturm et al., 2010). 

As a result, snow depth has been the focus of most analyses regarding SWE. In some cases, snow density is kept constant 

across the domain (e.g. Luojus et al., 2021; Takala et al., 2011) or conservative estimates are taken from empirical models of 

snow density evolution over time (e.g. Kelly et al., 2003). However, such a simplified representation of snow density may not 

adequately represent variability across the large domains those models are designed to cover. 55 

 Other satellite-based PM retrieval algorithms have been proposed (Champollion et al., 2019; Holmberg et al., 2024), though 

none have used a frequency difference modelling approach like is commonly used to retrieve snow depth. In this study, an 

experiment was conducted to evaluate the potential use of satellite-based PM observations and existing in situ meteorological 
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networks to estimate snow density in the high Arctic tundra using a frequency difference modelling approach.biome. Snow 

density estimates from the proposed algorithm could provide a notable benefit over existing snow density products, which do 60 

not account for the proper snow densification schemes relevant to the tundra environment (Cao et al., 2022; Domine et al., 

2016b). Instead, the algorithm would be informed by independent PM observations that provide context on snow density 

conditions and not rely on the parameterization of specific densification schemes. Thus, estimates from this approach could 

fill a gap in the understanding of snow density variability in remote areas that are unsuitable for in intensive in situ sampling 

and where current snow density models are not appropriate. 65 

2 Study Area 

 The Canadian high Arctic was chosen to develop the prototype snow density retrieval algorithm for the following reasons 

that tend to simplify the retrieval process. First, high Arctic snowpacks are traditionally classified as tundra type snow (Sturm 

et al., 1995; Sturm & Liston, 2021), though much of the Canadian Arctic Archipelago would be more accurately described as 

a polar desert (Royer et al., 2021). Tundra snow has a characteristic two layer structure of dense wind slabs overlaying depth 70 

hoar (Benson & Sturm, 1993) - polar desert snowpacks are similar but are thinner, denser, and have a smaller proportion of 

depth hoar (Royer et al., 2021) – which provided priori information for model parameterization. Second, forest cover 

attenuation effects (Li et al., 2020) are minimized in high Arctic environments which are characterized by sparse, short 

vegetation or barren landscapes (Royer et al., 2021). Third, terrain effects should be minimal compared to those found in more 

topologically complex landscapes like alpine environments (Tong et al., 2010). Last, there are relatively few lakes in the high 75 

Arctic, compared to the sub-Arctic tundra, reducing the radiometric effects of water bodies (Derksen et al., 2010).  

 Four automatic weather stations (AWS) were identified across a latitudinal range in the Canadian high Arctic for this 

experiment (Fig. 1), selected because they are collocated with manual in situ SWE sampling sites. Basic site characteristics 

are provided in Table 1; including AWS climatology, predominant vegetation types from the Raster Circumpolar Arctic 

Vegetation Map (Raynolds et al., 2019), and area of nearby water bodies calculated with the HydroLAKES database (Messager 80 

et al., 2016). Following Royer et al.’s (2021) classification, three AWS sites – Alert, Eureka, and Resolute – are situated in the 

polar desert and Cambridge Bay in the polar tundra. Sites in the polar desert are mostly barren and are exposed to harsh winter 

storms, but local topography around Eureka protects the area from storms creating a microclimate – described as a polar oasis, 

characterised by higher temperatures, lower precipitation, and more vegetation (M. K. Woo & Young, 1997). The Cambridge 

Bay site has more sub-Arctic qualities featuring graminoid shrub vegetation and many small lakes nearby.  85 

Table 1 – Characteristics of study sites (average AWS air temperature [C] and snow depth [cm] from March 15 to April 15). 

Site Latitude Vegetation Water Area Air Temp Snow Depth 

Alert 82°31’ Barren <1 % -28.3 34.9 

Eureka 79°59’ Graminoid <1 % -31.2 19.0 
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Resolute 74°43’ Barren <1 % -24.6 21.3 

Cambridge Bay 69°06’ Graminoid 17 % -25.0 31.8 

 Four automatic weather stations (AWS) were identified across a latitudinal range in the Canadian tundra for this experiment 

(Fig. 1); statistical summaries for each site are provided in Table 1. These sites were specifically selected because they are 

located in the high Arctic tundra environment and collocated with manual in situ sampling sites (described in Section 3.2). The 

tundra environment was chosen to develop this prototype snow density retrieval algorithm for the following two key reasons 90 

that tend to simplify the retrieval process. First, terrain effects should be minimal compared to those found in more 

topologically complex landscapes like alpine environments (Tong et al., 2010). Second, forest cover attenuation effects (Li et 

al., 2020) are minimized in tundra regions which are characterized by sparse, short vegetation (Marsh & Pomeroy, 1996). 

 

  95 

3 Data 

3.1 Model Forcing Data 

 PM radiometry data were the main forcing for the proposed snow density retrieval algorithm. Radiometry data were 

acquired from the Advanced Microwave Scanning Radiometer Earth Observing System (AMSR-E) Calibrated Enhanced-

Resolution Passive Microwave Daily Brightness Temperature Version 2 dataset (Brodzik et al., 2024), resampled to a 12.5 km 100 

EASE-Grid 2.0.Level-2A product gridded to a 25x25 km Equal-Area Scalable Earth (EASE) grid (Ashcroft & Wentz, 2013), 

PM observations spanneding eight winter seasons (2003-2011) while the instrument was functional (reference snow density 

data were not available for the 2002-03 season). AMSR-E observations for each station were extracted from an adjacent EASE 

grid cell to the AWS to minimize water fraction in observation scene due to their proximity to the coast. Nighttime observations 

from the descending orbit track (~1:30 am local time at the equator) were used so snow conditions would be more likely to be 105 

cold and dry for optimal microwave retrievals (Derksen et al., 2005). Radiometry samples were smoothed with a five-day 

Table 1 – Statistical summaries of study sites: average 

AWS data (Jan-Mar) and CanSWE reference snow 

density data.  

 

 

Site 

 

 

Latitude 

AWS Data CanSWE Density Data (kg/m3) 

Avg. 

Temp (C) 

Avg. 

SD (cm) 
n Avg. Std. Min/Max 

Alert 82°31’ -30.2 31.7 64 356.5 49.9 147/440 

Eureka 79°59’ -35.2 17.4 80 329.4 55.2 143/436 

Resolute 74°43’ -29.4 19.4 56 366.1 55.2 243/485 

Cambridge 

Bay 
69°06’ -30.6 28.4 229 323.9 45.2 185/452 

Figure 1 – Study sites (AWS), distributed across the 

high Arctic tundra in Nunavut, Canada. 
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Gaussian weighted mean filter as described by Holloway (1985). The 18.7 and 36.5 GHz vertically-polarized radiometer 

channels (hereafter 19 and 37 GHz, respectively) were used to estimate ΔTb in the forward model. 

 Meteorological measurements, acquired from the Environment and Climate Change Canada (ECCC) AWS network (ECCC 

& ClimateData.ca, n.d.) were also used for model forcing. The electromagnetic snowpack model was parameterized with AWS 110 

data, which required daily measurements of snow depth and air temperature as prior snow conditions. AWS data were the 

limiting factor in this experiment because the AWS network is sparsely distributed in northern Canada limiting potential study 

sites.  

 

Figure 1 – (a) AWS/CanSWE sites, distributed across the high Arctic in Nunavut, Canada, with insets showing 12.5 km 

EASE-Grid (highlighted cells used in analysis) for (b) Eureka (snowpit numbers correspond to Table 3), (c) Cambridge 

Bay, (d) Resolute, and (e) Alert. 
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3.2 In situ Reference Data 115 

3.2.1 Canadian Historical Snow Water Equivalent Dataset 

 The curated ECCC Canadian Historical Snow Water Equivalent dataset (CanSWE; Vionnet et al., 2021) provided in situ 

snow density data for algorithm calibration and evaluationcomparison with algorithm estimates. CanSWE was chosen because 

of its broad spatial coverage and relatively high temporal sampling frequency, although, it is recognized that snow density 

information from CanSWE is limited to bulk properties meaning they were unsuitable to evaluate algorithm estimates for 120 

individual snow layers. CanSWE included sampling locations collocated with AWS sites which allowed for direct comparisons 

of estimated and sampled snow density. Snow density data in CanSWE (considered in this study) were collected with ESC-30 

SWE tubes along 5-10 point snow course transects spanning 150-300m, aggregated into bulk estimates of snow density. A ten 

percent uncertainty range was applied to the snow density data in the reference dataset because of uncertainties inherent to 

manual snow density sampling (Conger & McClung, 2009; López-Moreno et al., 2020). Specific information about sampling 125 

procedures was not available for the individual sites in the CanSWE dataset (e.g. where the snow course is situated relative to 

the AWS was unknown).  

 CanSWE snow density data from four manual sampling sites were used in the development of this algorithm. Those data 

were chosen specifically because of their location in the high Arctic tundra with relatively high temporal sampling frequency. 

The reference dataset was limited with respect to the algorithm configuration (described in Section 4.2). A number ofSome 130 

yearly AWS forcing datasets were deemed unsuitable for algorithm forcing and were removed from the analysis. One winter 

season at the Eureka site (2008-09) had insufficient snow accumulation to permit PM retrievals (i.e. <10 cm).  and three seasons 

each for Alert (2007-08, 2009-10, and 2010-11) and Resolute (2003-04, 2004-05, and 2006-07) where snow accumulation 

trajectories reported by the AWS were starkly different from the in situ snow depth samples in CanSWE. Other datasets were 

excluded where snow accumulation trajectories reported by the AWS were substantially different from snow depth samples in 135 

CanSWE: three seasons for Alert (2007-08, 2009-10 and 2010-11) and four for Resolute (2003-04, 2004-05, 2005-06, and 

2006-07) – otherwise, there was fairly good agreement AWS and CanSWE snow depths (Table 2). Individual CanSWE snow 

density samples were removed under three conditions: if they were out of the domain of algorithm estimates (i.e. 150-450 

kg/m3, described in Section 4.2), if they were sporadic and sporadic observations that did not fit temporally with the seasonal 

trajectory, or if they were taken and high densities late in the season during ablation when the snowpack would likely be in a 140 

wet state inhibiting microwave emissions.  

Table 2 – AWS and CanSWE snow depth comparison, which were included or excluded for model forcing. 

Dataset n RMSE (cm) Correlation (R) 

Included 554 5.8 0.869 (p < 0.01) 

Excluded 108 15.8 0.446 (p < 0.01) 
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3.2.2 Eureka Snow Survey Dataset 

 Due to the bulk nature of CanSWE density data, an additional dataset from Saberi et al. (2017) was used to evaluate 

algorithm estimates in greater detail. Extensive surveys of snow conditions were conducted near Eureka on the Foshiem 145 

Peninsula from April 12-20th, 2011. The survey protocol was rather unique in terms of spatial extent covering four 25 km 

EASE-Grid cells, including stratigraphic data from snowpits and bulk snow properties from ESC-30 SWE tubes. Measured 

snow properties in each 25 km EASE-Grid cell were aggregated using median values (Table 3) to force algorithm retrievals 

and evaluate the algorithm configuration calibrated to bulk density measurements. Although limited to a single season, the 

Eureka snow survey dataset provided additional context to interpret algorithm outputs. 150 

Table 3 – Median (interquartile range) snowpack properties from Saberi et al., (2017) in each 25.0 km EASE Grid-cell – grid cell 

numbers correspond to points in Figure 1b. 

Grid 

Cell 

Snowpits/ 

SWE Cores 

Snow Depth 

(cm) 

Depth Hoar 

Thickness (cm) 

Bulk Density 

(kg m-3) 

Wind Slab Density 

(kg m-3) 

Depth Hoar 

Density (kg m-3) 

1 13/39 25.0 (20.0 to 9.0) 10.0 (6.5 to 12.0) 283 (251 to 329) 346 (306 to 368) 231 (210 to 258) 

2 6/18 21.0 (20.3 to 1.8) 11.0 (9.3 to 14.3) 275 (244 to 315) 381 (313 to 407) 241 (223 to 290) 

3 10/15 21.0 (17.1 to 5.0) 8.5 (8.0 to 12.5) 287 (277 to 382) 392 (364 to 399) 219 (213 to 235) 

4 7/21 22.0 (16.8 to 2.8) 9 (8.5 to 11.0) 261 (236 to 303) 383 (357 to 398) 227 (212 to 245) 

 

4 Methods 

4.1 Electromagnetic Model 155 

 The Snow Microwave Radiative Transfer model (SMRT; Picard et al., 2018) was used as the forward model in the retrieval 

algorithm. SMRT was configured with the Improved Born Approximation (IBA) electromagnetic model (Mätzler, 1998) and 

microwave grain size microstructure model (Picard et al., 2022a), which have been demonstrated to be representative of high-

Arctic snow conditions (Meloche et al., 2024). The substrate composition was parameterized to represent cryosolic soil 

following Meloche et al. (2021) and atmospheric contributions were estimated as described by Pulliainen & Grandeil (1999).  160 

 The physically-based forward modelling approach required the snowpack to be parameterized, so the relevant 

characteristics needed to be quantified. A two-layer snowpack model was configured to account for the presence of depth hoar 

underneath a slab layer to best represent the microwave signature of tundra snow (Hall, 1987; Saberi et al., 2017). Upon initial 

deposition the snowpack would likely be in a homogenous state, with one layer, but that situation was not considered in this 

approach. The strong environmental controls present in the tundra contribute to the development of wind slab and depth hoar 165 

snow layers quickly after deposition (Benson & Sturm, 1993; Sturm & Holmgren, 1998), and algorithm retrievals were 

performed after 10 cm of snow had accumulated so the pack would be unlikely to be in the initial homogenous state.  
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 The Snow Microwave Radiative Transfer model (Picard et al., 2018), configured with the Dense Media Radiative Transfer 

(DMRT) electromagnetic model, was used in this study. The physically-based forward modelling approach required the 170 

snowpack to be parameterized, so the relevant characteristics needed to be quantified. A two-layer snowpack model was 

configured to account for the presence of depth hoar underneath a slab layer to best represent the microwave signature of 

tundra snow (Hall, 1987; Saberi et al., 2017). Upon initial deposition the snowpack would likely be in a homogenous state, 

with one layer, but that situation was not considered in this approach. The strong environmental controls present in the tundra 

contribute to the development of wind slab and depth hoar snow layers quickly after deposition (Benson & Sturm, 1993; Sturm 175 

& Holmgren, 1998), and algorithm retrievals were performed after 10 cm of snow had accumulated so the pack would be 

unlikely to be in the initial homogenous state. The snow depth forcing variable was prescribed by dividing the total snow depth 

at the AWS into the relative depths for the two layers using a fixed 1:2 ratio of depth hoar to slab layer thickness (Saberi et al., 

2017), representative of high Arctic tundra snow on a regional-scale (Derksen et al., 2014; Meloche et al., 2022). Similarly, 

the minimum daily air temperature at the AWS was used as a surrogate for snow temperature and was prescribed directly to 180 

each snow layer.  

 The microstructure model in SMRT (sticky-hard-spheres) required estimates of the effective radius of ice grains in the 

snowpack which are not acquired by operational AWS measurements. The effective grain radius model from Kelly et al. (2003) 

was modified for use with the two layer snowpack model – Sturm & Benson’s (1997) kinetic “lower” grain growth model was 

applied to the depth hoar layer and a slow, constant growth rate was applied to the upper wind slab layer to represent 185 

equilibrium growth. The grain growth model required parameterization of the minimum and maximum grain radius which 

were determined through a calibration routine (see Section 3.5). 

 The electromagnetic model used in this study included simplified substrate and atmospheric components. Given the cold 

temperatures of the study area, the substrate was assumed to consist of frozen soil, so the effects of dielectric permittivity and 

roughness should be negligible when estimating ΔTb (Kelly et al., 2003). The substrate composition was parameterized to 190 

represent cryosolic soil, the predominant soil type found in the Canadian Arctic (Tarnocai & Bockheim, 2011). AWS 

observations of minimum daily temperature +5C were used to parameterize the substrate temperature because of the insulative 

properties of snow (Benson & Sturm, 1993). Atmospheric contributions were not considered. A full list of model parameters 

is provided in Table 2. 

Table 2 – Electromagnetic model parameterization.  195 

Snowpack Model Substrate Model 

Parameter Value Parameter Value 

Electromagnetic 

Model 

Dense Media Radiative Transfer based on Quasicrystallin 

Approximation with coherent potential (Tsang et al., 2000) 

Composition Cryosolic soil as described by Tarnocai & Bockheim (2011):  

Sand - 75%, Clay – 8%, Dry matter – 1490 kg/m3 

Snow Depth AWS snow depth portioned in 1:2 ratio of depth hoar to wind 

slab (Saberi et al., 2017) 

Temperature AWS minimum daily 2m air temperature + 5C 

Temperature AWS minimum daily 2m air temperature Permittivity Model Dobson et al. (1985) 

Grain Radius Modified growth model from Kelly et al. (2003) Roughness Flat surface (i.e. no surface roughness) 
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Stickiness Non-sticky spheres (i.e. infinite stickiness) Moisture Content <1% 

Liquid Water Content 0%  

Salinity 0% 

4.2 Sensitivity Test 

 Microwave retrieval algorithms have traditionally estimated snow depth using a vertically polarized brightness temperature 

frequency difference (ΔTb = 19V – 37V), because of the sensitivity (insensitivity) of the 37 GHz (19 GHz) channel to snow 

accumulation, though we believe the same principle could be used to estimate snow density. Generally, ΔTb is thought to 

increase with snow depth due to increasing volume scattering until a threshold after which the signal is saturated by thermal 200 

emission originating in the snowpack (Saberi et al., 2020). However, that is a simplified explanation of snow microwave 

interactions (i.e. only considering one layer) and can be complicated by stratification of natural snowpacks. For a tundra 

snowpack - with characteristic wind slab overlaying depth hoar – volume scattering is dominant for the depth hoar layer and 

non-scattering emission contributions originate from the wind slab (Sturm et al., 1993). Thus, it is important to understand 

how the properties of each snow layer would impact microwave emissions to design an effective snow density retrieval 205 

algorithm.  

 The electromagnetic model (described in Section 4.1) was used to simulate microwave emissions from tundra snowpacks 

to assess its sensitivity to various parameters. The electromagnetic model requires snowpack physical properties to be 

quantified, including the thickness, density, specific surface area (SSA), polydispersity, and temperature of each layer. A series 

of experiments were designed to illustrate the effects of the various model parameters (representative of Arctic snow, see 210 

Meloche et al., 2022; Picard et al., 2022a) and Arctic snow metamorphism; detailed descriptions of each experiment are 

provided in Table 4. 

Table 4 – Specific model parameters for various sensitivity tests. 

Parameter Experiment 1 Experiment 2 Experiment 3 Experiment 4 

Density 

(kg m-3) 

WS: 1 to 500 

DH: 1 to 500 

WS: 250 to 400 

DH: 250 

SSA 

(m2 kg-1) 

WS: 15 to 25 

DH: 10 to 12 

WS: 20 

DH: 11 

Thickness  

(cm) 

WS: 20 

DH: 10 

WS: 10 to 30 

DH: 5 to 15 

WS: 20 

DH: 10 

WS: 20 to 40 

DH: 10 

Polydispersity 

(unitless) 

WS: 0.80 

DH: 1.33 

WS: 0.60 to 0.90 

DH: 1.10 to 1.80 

WS: 0.80 

DH: 1.33 

Temperatures 

(C) 

Air: -30.0     WS: -28.6 

DH: -26.3    Soil: -25.0 

 Snow density is our primary variable of interest, so it is important to understand how it effects microwave emissions. In 

the IBA model, scattering and absorption coefficients are in part related to snow density. The absorption coefficient increases 215 

linearly with snow density because of a greater proportion of ice to air in the microstructure representation altering the effective 
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permittivity (Picard et al., 2018). On the other hand, the scattering coefficient has a non-linear relationship with snow density 

because of the interactions between individual scatterers in the snowpack. Volume scattering increases as more scatters are 

introduced (i.e. increasing density), until the scatterers are close enough in proximity to influence each other and the overall 

scattering efficiency decreases (Tsang & Kong, 2001). Thus, density of the wind slab and depth hoar layers can affect ΔTb in 220 

different ways because of their properties that contribute to varying levels of volume scattering and thermal emission.  

 Experiments 1 to 3 were designed to simulate microwave emission from isolated wind slab and depth hoar layers, 

accounting for variations in specific surface area (SSA), polydispersity, and layer thickness, respectively (Figs 2 to 4). The 

relationships between snow density and brightness temperatures follow skewed curves with minima at densities of 150 kg m-3 

 225 

and frequency dependent amplitudes. Snow volume scattering is less sensitive to 19 than 37 GHz, so the frequency difference 

(ΔTb) is approximately the reflected 37 GHz curve and its magnitude depends on different microstructure properties (Picard 

et al., 2022a). Lower (higher) SSA values produce greater (lesser) volume scattering, with minimal dependency on density, 

effectively translating the ΔTb curves vertically (depth hoar ~9 K between 10 to 12 m2 kg-1 and wind slab ~3 K between 15 to 

25 m2 kg-1). Similarly, polydispersity effectively scales SSA, translating ΔTb curves (depth hoar ~19 K between 1.2 to 1.8 and 230 

wind slab ~3 K between 0.6 to 0.9). Alternatively, layer thickness amplifies the relationship between snow density and 

simulated ΔTb, increasing sensitivity to depth hoar density (~10 K between 150 to 450 kg m-3 at 5 cm vs. ~28 K at 15 cm) and 

the wind slab to a lesser extent (~0.5 K between 150 to 450 kg m-3 at 10 cm vs. ~3 K at 30 cm). Seasonal snow density is 

typical above the 150 kg m-3 inflection point (ignoring fresh snow), so we can assume snow density has a negative relationship 

with ΔTb – with all other parameters equal, greater (lesser) ΔTb would indicate lower (higher) snow density.  235 

 

  

Figure 2 – Experiment 1, simulated brightness temperatures 

of isolated WS and DH layers with variable density, shaded 

areas correspond to range of SSA values. 

Figure 3 – Experiment 2, same as Figure 2 but shaded areas 

correspond to range of polydispersity rather than SSA. 
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 While there was minimal model sensitivity to the isolated wind slab in Experiments 1 to 3, the effect of the wind slab on 

brightness temperature should be more apparent when parameterized over depth hoar. Experiment 4 was designed to 

demonstrate brightness temperature sensitivity for the two-layer snowpack representation, configured to replicate mid-season 240 

wind slab compaction over an established depth hoar layer. Wind slab thickness was parameterized to decrease with 

compaction (i.e. densification) for SWE to remain constant, and a range of initial SWE values (i.e. thicknesses) were considered 

(shaded areas in Fig 4). When introduced over the established depth hoar, layer absorption and thermal emission originating 

in the wind slab mask ΔTb by several K depending on its SWE (~2 K for 50mm vs. ~3K for 85 mm). Then, absorption 

increased linearly with snow density and ΔTb was accordingly masked by the wind slab as it compacted (~5 K between 250 245 

to 400 kg m-3 for 50 mm vs. ~8 K for 85 mm). Thus, wind slab formation resulting from compaction or thickening should be 

apparent in AMSR-e radiometry (i.e. evident from decreasing ΔTb), given radiometric sensitivity of ±0.6 K. Furthermore, the 

magnitude of ΔTb masking by the wind slab is enhanced by the snowpack thermal gradient and a relatively colder wind slab 

compared to the substrate will increase ΔTb (~2k between 0 to -10 C, not shown). 

4.32 Snow Density Retrieval Algorithm 250 

 The GlobSnow grain size estimation procedure – using snow depth measurements from AWS to optimize the effective 

snow grain size parameter in the emission model (Pulliainen, 2006; Takala et al., 2011) - was modified to produce estimates 

of snow density. The results from the various experiments in the sensitivity test suggest there should be sufficient sensitivity 

to estimate snow density conditions from space-based PM radiometry. Further, PM radiometry is more sensitive to the 

thickness of depth hoar than the wind slab (and in turn overall snow depth) and, in terms of estimating Arctic snow mass, 255 

might be better suited to retrieving snow density rather than depth  PM retrievals of snow density were conducted at each AWS 

site, where meteorological conditions dictated when retrievals were performed. A minimum snow depth of 10 cm was imposed 

for algorithm retrievals because of the transparent nature of shallow snow to microwave emissions (Hall et al., 2002). Similarly, 

algorithm retrievals were not conducted when AWS air temperatures were above freezing because of the likelihood of liquid 

meltwater in the snowpack attenuating microwave emissions (Foster et al., 1984). With the AWS observations prescribed to 260 

the electromagnetic model an inverse modelling approach was applied to optimize the snow density parameters. The forward 

model was inverted by minimizing the cost function (J): 

𝐽(𝜌𝑠𝑙𝑎𝑏 , 𝜌ℎ𝑜𝑎𝑟) = (𝛥𝑇𝑏𝑠𝑖𝑚(𝜌𝑠𝑙𝑎𝑏 , 𝜌ℎ𝑜𝑎𝑟) − 𝛥𝑇𝑏𝑜𝑏𝑠) 2  (1) 

representing the vertically polarized 19 and 37 GHz spectral difference in the AMSR-E observation (𝛥𝑇𝑏𝑜𝑏𝑠) and the simulated 

SMRT signature at the same channels (𝛥𝑇𝑏𝑠𝑖𝑚), given the prescribed wind slab and depth hoar layer densities (𝜌𝑠𝑙𝑎𝑏  and 𝜌ℎ𝑜𝑎𝑟, 265 

respectively). Algorithm estimates were smoothed with a 5-day moving average to address noise in the radiometry data. 

 The solution to the two-layer snowpack model presented was imprecise because different layer density combinations could 

produce the same predicted ΔTb in Eq. (1), resulting in a system with no global minima. The practical impact of this equifinality 

issue was that the algorithm may be confronted by seemingly equally valid but different layer density combinations, producing 
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the same microwave signature. Without additional information there was no suitable way to identify the optimal layer density 270 

combination, so the retrieval algorithm was designed to solve for all DMRTmicrowave-plausible layer density combinations 

for a given observation scene to address equifinality in the inverse model. 

 To constrain the modelled layer density estimates to a plausible range, boundary conditions were established to limit the 

parameter space in which the algorithm could search for solutions to the inverse model. A lower boundaryThe first boundary 

condition was defined based on the strong environmental controls present in the tundra that result in a characteristic wind slab 275 

snow layer overlaying less dense depth hoar (Benson & Sturm, 1993). Logically, Tthe wind slab layer should be denser than 

the depth hoar layer, so all parameter combinations where 𝜌𝑠𝑙𝑎𝑏 <  𝜌ℎ𝑜𝑎𝑟 were discarded, and the lower boundary was situated 

where the  densities of the two layers were equal two layers had equal snow density values. The upper second boundary for 

the model was defined based on the behaviour of microwave interactions in the electromagnetic model DMRT. In DMRT 

theory (in a non-sticky configuration, as applied here) the scattering coefficient for 37 GHz peaks at snow density  of 150 280 

kg/m3 and decreases until a volume fraction of 50% (Picard et al., 2013). Simulated ΔTb peaks at a snow density of 150 kg/m3 

(see Section 4.2), and the apparent permittivity in IBA is applicable up to a volume fraction of 50%, or 458.5 kg/m3 (Picard et 

al., 2022b). Thus, the domain of each layer was limited to densities between 150-450 kg/m3 to ensure consistent behaviour in 

the electromagnetic snowpack model, and the upper boundary was situated where either layer was at the edge of that domain.  

 An important aspect of the retrieval algorithm was to exploit how the various minima on the cost surface, (defined by JEq 285 

(1)), were positioned throughout the parameter space to reduce computational requirements. Figure 62 shows is an example of 

how the positions of minima formed a valley transecting the parameter space. Therefore, the DMRTmicrowave-plausible layer 

density combinations were  density range was the set of layer density combinations situated along a straight line connecting 

the solutions at the two established boundary conditions for the inverse model. The lowest contour level (±0.6 K) in Figure 6a 

represents the sensitivity of the AMSR-E radiometer at 19 and 37 GHz and the grid spacing corresponds to algorithm retrieval 290 

accuracy (10 kg/m3).  The lower solution is more precise being situated in a narrower part of the valley than the upper solution. 

Wind slab and depth hoar densities were mapped to bulk values in Figure 6b, where the contours of iso-density will pivot 

clockwise (counterclockwise) when the proportion of depth hoar thickness increases (decreases). It should be noted that under 

some instances, the "valley” intersected with the upper boundary related to the minimum depth hoar density (i.e. left axis in 

Fig. 6a2), though the situation shown in Fig 6a2. (intersecting the upper axis) was more common. 295 

Figure 2 – Example parameter space (i.e. depth hoar and wind slab layer density combinations), showing upper and lower 

boundary conditions for snowpack model densities, inverse solutions at the boundaries, and DMRT-plausible range between them. 

The surface is defined by cost function (J in Eq. 1) where darker (lighter) shades of blue represent lower (higher) cost.  
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 The range of DMRTmicrowave-plausible snow densities raised the question of how to evaluate the algorithm estimates 300 

against the reference data. A heterogeneity (H) parameter was introduced into the algorithm to estimate densities for the two 

snow layers and reduce the DMRT-plausible snow densities to a single estimate of bulk snow density – H=0.00 at the lower 

boundary solution and H=1.00 the upper boundary solution  ranging from 0 to 1 (i.e. the least and most heterogenous solutions, 

respectively). There did not appear to be any relationship between forcing variables and where the in situ snow density samples 

were situated within the DMRT-plausible range (and stratigraphic data were not available in the reference dataset), so H was 305 

assigned a fixed value determined through a calibration routine. Wind slab (𝜌𝑊𝑆) and depth hoar ( 𝜌𝐷𝐻) densities were 

estimated with 

𝜌𝑊𝑆 =  𝜌𝑊𝑆,𝑙𝑜𝑤𝑒𝑟 + (𝜌𝑊𝑆,𝑢𝑝𝑝𝑒𝑟 −  𝜌𝑊𝑆,𝑙𝑜𝑤𝑒𝑟) ∗ 𝐻  (2) 

𝜌𝐷𝐻 =  𝜌𝐷𝐻,𝑙𝑜𝑤𝑒𝑟 −  (𝜌𝐷𝐻,𝑙𝑜𝑤𝑒𝑟 −  𝜌𝐷𝐻,𝑢𝑝𝑒𝑟) ∗ 𝐻   (3) 

where (𝜌𝑊𝑆,𝑙𝑜𝑤𝑒𝑟 , 𝜌𝐷𝐻,𝑙𝑜𝑤𝑒𝑟) and (𝜌𝑊𝑆,𝑢𝑝𝑝𝑒𝑟 , 𝜌𝐷𝐻,𝑢𝑝𝑝𝑒𝑟) are the lower and upper solutions, respectively, and bulk density 310 

(𝜌𝑏𝑢𝑙𝑘) estimated based on the depth hoar thickness divided by the total snow depth (depth hoar fraction, DHF) 

𝜌𝑏𝑢𝑙𝑘 =  𝜌𝑠𝑙𝑎𝑏 ∗ (1 − 𝐷𝐻𝐹) +  𝜌ℎ𝑜𝑎𝑟 ∗ 𝐷𝐻𝐹  (4) 

Ultimately, the bulk snow density estimated with H was treated as the final algorithm estimate with uncertainty defined by the 

DMRTmicrowave-plausible range.  

4.4 Temporal Snowpack Parameterization 315 

 All existing retrieval algorithms have considered a single snow layer, so a new scheme was needed to parameterize the two 

layer snowpack model over the course of a season.  Arctic snowpacks have been studied in detail during field campaigns (see 

Derksen et al., 2014; Meloche et al., 2022; Rutter et al., 2019), though they are mostly restricted to end of season conditions 

around March to April and much less is known about Arctic snowpack composition early in the season. There have been some 

Figure 6 – (a) Algorithm solutions for Eureka on April 15, 2011, with various H values on surface defined by the square 

root of Eq. (1) in Kelvin, and (b) wind slab and depth hoar densities mapped to bulk values in kg m-3 with Eq. (4). 
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studies that focused on early season conditions (Domine et al., 2016a; Domine et al., 2018), though they mainly provide 320 

qualitative descriptions of the temporal evolutions of Arctic snowpacks. Thus, our approach started with end of season 

conditions and worked backwards to parameterize the snowpack over the full season, with some parameters informed from 

available literature where possible and others calibrated. 

 Our temporal parameterization of snowpack properties was based on identifying trends in satellite passive microwave and 

AWS observations, which we assumed to indicate different stages of snowpack evolution. Generally, two different behaviours 325 

were identified in the forcing datasets which we attributed to normal and restricted conditions for depth hoar development. In 

normal cases, ΔTb increased rapidly over a short period in the fall immediately after the first snowfall, coinciding with an 

extended early season zero-curtain period producing extreme vertical temperature gradients for rapid depth hoar 

metamorphism (Domine et al., 2018). In restricted cases, ΔTb increased gradually over longer periods of the season, consistent 

with high density layers slowly metamorphizing slowly into depth hoar (Derksen et al., 2009). Later in the season ΔTb would 330 

plateau attributed to a halt in depth hoar formation, before temperatures increase at the end of the season and ΔTb drops rapidly.  

 In total 4 different stages of snowpack evolution were identified, presented in Table 5. The proposed stages are numbered 

in the expected order of occurrence, but in practice their order can vary with some exceptions. Stage 0 is a special circumstance 

(i.e. does not happen every season) and must occur at the beginning of the season when temperatures are still around freezing. 

Then, the snowpack can alternate between Stages 1 and 2 throughout the season, owing to fluctuations in air temperature that 335 

change the thermal regime of the snowpack and snowfall events, prior to reaching equilibrium in State 2 towards the end of 

the season. Finally, the snowpack begins to warm in Stage 3 at the end of the season with increasing air temperatures inverting 

the temperature gradient before ripening and final melt. The relevant state variables (i.e. layer thickness, thermal regime, and 

microstructure) were estimated dynamically considering the identified stage of evolution the snowpack. 

Table 5 – Identified stages of snowpack evolution. 340 

Stage Name Description Indicators 

0 
Extended 

zero curtain 

Special conditions for early snow to morph into normal depth hoar 

under extreme temperature gradient (Tground >> Tair). 

- Rapid increase in ΔTb after first snowfall 

- Consistent snow on ground from initial deposition 

1 
Temperature 

gradient 

Sufficient temperature gradient for kinetic metamorphism (Tground > 

Tair), where wind slab slowly morphs into indurated depth hoar. 

- Gradually increasing  ΔTb 

- Decreasing trend in air temperature  

2 Isothermal 

Insufficient temperature gradient for kinetic metamorphism (Tground ≈ 

Tair). Snowpack assumed to be in statis and its properties stable, 

except wind slab compaction may occur. 

- Steady or gradually decreasing ΔTb  

- Little-to-no trend in air temperature 

3 Warming 
Warming air temperatures towards end of season invert temperature 

gradient (Tground < Tair), before snowpack ripens and begins to melt. 

- ΔTb begins to decrease, before dropping off 

- Increasing trend in air temperature 

- Decreasing snow depth 
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4.4.1 Depth Hoar Development  

 Basal depth hoar thickness is typically reported as a fraction of end of the winter snow depth (depth hoar fraction, DHF) 

and measurements during the early-mid season are limited in the Arctic. However, parameterizing the snowpack model 

accounting for DHF would cause issues. Forcing snow depth data should be representative of the observation scene (i.e. spatial 

resolution) and localised snow depth estimates (i.e. AWS) could lead to considerable differences in algorithm estimates given 345 

variability in Arctic snow depth distributions (Liston, 2004). Additionally, depth hoar thickness parameterized with static DHF 

would likely be too thin during early-to-mid season, assuming the depth hoar layer should develop early on during shallower 

snow conditions relative to later in the season. Thus, we believe depth hoar should be parameterized with explicit thicknesses 

and a new approach was required for the prototype algorithm. 

 Our primary indicator of depth hoar development was based on seasonal trends in ΔTb, with prolonged increases associated 350 

with depth hoar metamorphism (Derksen et al., 2010). Identifying periods of depth hoar development allowed rates of growth 

to be estimated. Rates were estimated with a change detection method that calculated cumulative increases in ΔTb, similar to 

the snow index proposed by Lievens et al. (2019). The new index (depth hoar index, DHI) was predicated on the assumption 

any sustained increase (i.e. over multiple observations) in observed ΔTb was proportional to depth hoar development. We 

believe depth hoar thickness should exhibit monotonic behaviour (i.e. increase, or remain constant, but not decrease), and 355 

temporary ΔTb fluctuations would result from changes in the snowpack temperature gradient. The total contribution towards 

depth hoar development was estimated at each time step (t) with 

𝐷𝐻𝐼(𝑡) = {
𝐷𝐻𝐼(𝑡 − 1) + 𝑎 ∗ [𝛥𝑇𝑏(𝑡) − 𝛥𝑇𝑏(𝑡 − 1)],       𝑖𝑓 𝑆𝐷 > 0  

0,                                                                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  (5) 

and 

𝑎 = {
1,         𝑖𝑓 𝛥𝑇𝑏(𝑡) ≥ 𝛥𝑇𝑏(𝑡 − 1) ≥ 𝛥𝑇𝑏(𝑡 − 2)  
0,         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                        

  (6) 360 

where AWS snow depth (SD) was used as an indicator of snow coverage and increases in ΔTb must persist over multiple 

observations to mitigate effects from physical temperature fluctuations. 

4.4.2 Layer Heterogeneity 

 The layer heterogeneity parameter (H) is abstract and was designed to represent the seasonal evolution of snowpack 

stratigraphy. Intuitively, values for H should begin near zero at initial deposition when the snowpack should be mostly 365 

homogenous and increase over time due to evolution of distinct layers. So, H was set to zero the first day snow on the ground 

was reported at the AWS and grew linearly to a maximum value calibrated for end of season conditions. 
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4.4.3 Snow and Substrate Temperatures 

 Operational SWE retrievals (e.g. Luojus et al., 2021) do not consider snow temperature gradient, though we believe it is 

important when thermal emission originating from the wind slab is considered. Thus, snow and substrate temperatures were 370 

required for the electromagnetic model but were not measured by AWS. Soil temperature from atmospheric reanalysis models 

were considered but their uncertainty is highest during cold seasons (Herrington et al., 2024). Instead, a model was designed 

to estimate soil temperature relative to measured air temperature and our identified stage of snowpack of evolution. In all 

stages, snow temperature was parameterized with a linear temperature gradient between air and soil temperature. 

 AWS daily mean air temperatures were used to replicate trends in substrate temperature at Arctic sites relative to air 375 

temperature measured by (Domine et al., 2018). First, air temperatures were averaged over the previous 21 days to represent 

the gradual and lagged changes in soil temperature (general trend). Second, a five-day Gaussian weighted mean filter was 

applied to air temperatures to represent the immediate effect of air temperature fluctuations (local trend). Then, the general 

and local trend estimates were assimilated with a 3:1 weighting scheme, respectively, together replicating how substrate 

temperatures should be insulated by snow cover being partially decoupled from the atmosphere with small blips from large 380 

fluctuations in air temperature. Finally, the assimilated temperature trends were modified to account for the insulative 

properties of snow according to the identified phase of snowpack evolution: substrate temperatures were set to 0 C during 

Stage 0, increased by 5 C (2.5 C) during normal (restricted) depth hoar development and decreased by 5 C (2.5 C) during Stage 

3, and the transitions between stages smoothed. The 5 C value was chosen to represent the thermal insulation of depth hoar 

and is in line with mid-season tundra snowpack temperature gradients (Benson & Sturm, 1993), and an educated guess for the 385 

lower 2.5 C value because of higher thermal conductivity for indurated depth hoar (Domine et al., 2016a). A comparison of 

estimates from this model to those from Domine et al. (2018) was provided in Appendix A. 

4.4.4 SSA Decay 

 The microstructure model in SMRT (i.e. microwave grain size) required estimates of the SSA of ice grains in the snowpack 

which are not measured by operational AWS. Like depth hoar thickness, many more SSA measurements from Arctic 390 

snowpacks are available for end of season conditions, so empirical models were used to estimate SSA decay earlier in the 

season. New snow has relatively high SSA and decays logarithmically over time as it metamorphizes (Legagneux et al., 2003; 

Pinzer et al., 2012; Taillandier et al., 2007). Temporally varying SSA for depth hoar and wind slab were estimated using Eqs. 

(9) and (13) from Taillandier et al. (2007), respectively, with the general form 

𝑆𝑆𝐴(𝑡) = 𝐵 − 𝐴 ∗ ln (𝑡 + 𝑒
𝐵−𝑆𝑆𝐴0

𝐴 ) (6) 395 

where t is time since deposition in hours and coefficients A and B related to the mode of metamorphism, layer temperature, 

and initial SSA (SSA0). Initial SSA was set as 50 m2 kg-1 and average layer temperatures calculated for the first 60 days after 

deposition as described in Section 4.4.3. Estimates of SSA from the empirical models were used until they reached 
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predetermined values, representative of end-of-season conditions, to reflect the non-zero asymptotic trend in the evolution of 

depth hoar SSA (Taillandier et al., 2007) and very slow SSA decay in Arctic wind slabs observed later in the season (Domine 400 

et al., 2002).  

4.53 Calibration and Evaluation Procedure 

 Some algorithm parameters could not be based on observations and instead needed to be determined through a calibration 

procedure. The calibration procedure consisted of two stages and ran from March 15 onwards, assuming snowpack properties 

would be mostly stable then. Calibrating for end-of-season conditions also allowed for parameters to be compared to those 405 

measured during field campaigns. First, wind slab SSA, depth hoar SSA, and depth hoar thicknessto identify the optimal 

algorithm configuration to be applied to all sites over the study period (i.e. 2003-11). First, the values for the minimum and 

maximum radii in the grain growth model (described in Section 4.1) were adjusted to produce the greatest overlap between 

the range of DMRTmicrowave-plausible snow density estimates and the in situ reference samples, with an overlap metric: 

𝑜𝑣𝑒𝑟𝑙𝑎𝑝 =
1

𝑛
∙ ∑

|{𝜌𝑒𝑠𝑡(𝑡)}∩{𝜌𝑜𝑏𝑠(𝑡)}|

|{𝜌𝑒𝑠𝑡(𝑡)}|

𝑛
𝑡=1   (2) 410 

where {𝜌𝑒𝑠𝑡(𝑡)} is the set of DMRT-plausible estimated snow densities and {𝜌𝑜𝑏𝑠(𝑡)} the set of the corresponding CanSWE 

density sample with a ±10% uncertainty range, at time t. Thus, the overlap metric describesd the proportion of the 

DMRTmicorwave-plausible snow density range that intersected the uncertainty range of the in situ samples, averaged over n 

time steps. Second, the value for H (described in Section 4.2) was determinedH was calibrated by converting the 

DMRTmicrowave-plausible algorithm estimates, from the first step, into discrete values to minimize the mean absolute 415 

percentage error (MAPE) between snow densities and the reference data. MAPE was chosen for this purpose, rather than 

absolute or squared error, because of the heteroscedastic nature of the uncertainty in the reference dataset.  

 The Cambridge Bay AWS site was chosen for the calibration procedure because there were many more CanSWE data 

available compared to the other AWS sites (Table 1), as it had a shorter sampling interval and forcing data for all winter 

seasons in the study period. The other three AWS sites were then used to evaluate the calibrated algorithm configuration. At 420 

each site, algorithm snow density estimates were evaluated against with the referenceCanSWE bulk snow density samples 

using the same metrics as in the calibration stage (i.e. overlap and MAPE); bias, root mean square error (RMSE), and 

correlation (r) were also reported as indicators of algorithm performance. MAPE was treated as the primary measure of absolute 

accuracy of algorithm estimates; if MAPE was within the uncertainty range of the in situ samples (±10%) then snow density 

estimates from the algorithm could be comparable to those collected with snow courses.  425 

 Calibrating the two layer snowpack model with bulk density measurements (i.e. CanSWE) introduced some uncertainty 

into the algorithm configuration parameters. As demonstrated by the sensitivity test, depth hoar SSA and thickness have 

complementary effects on simulated ΔTb – i.e. lower (higher) SSA can compensate if the depth hoar is too thin (thick) – so 

various SSA and thickness combinations could produce similar microwave emissions. At each site, SSA parameters were kept 
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constant over all seasons because inter-season variations in SSA should be relatively low (Meloche et al., 2022; Woolley et 430 

al., 2024), but DHF was free to account for varying environmental conditions. End of season H values were also kept constant 

for each site due to the lack of stratigraphic data to conduct a meaningful calibration and in an effort to reduce the number of 

free parameters in the calibration procedure. In the future, extensive stratigraphic data from multiple sites should be used for 

calibration to increase confidence in specific algorithm parameters. 

Table 3 – Algorithm performance metrics relative to CanSWE reference samples (mean normalized values shown in parentheses). 435 
Stage Site n Overlap (%) MAPE (%)  Bias (kg/m3;%) RMSE (kg/m3;%) Correlation 

Calibration Cambridge Bay 229 39.6 13.3 9.0 (2.8) 49.6 (15.3) 0.426 

Evaluation 

Alert 64 42.6 14.0 32.4 (9.1) 56.1 (15.7) 0.547 

Eureka 80 34.7 14.3 -16.5 (-5.0) 63.8 (19.4) 0.382 

Resolute 56 36.5 13.5 25.6 (7.0) 54.4 (14.9) 0.510 

5 Results 

5.1 Calibration Results – Cambridge Bay 

 The calibration procedure was applied at the Cambridge Bay site where the algorithm was run for each winter season and 

the results aggregated to identify the optimal parameter configuration. Performance metrics for the calibrated algorithm are 

reported in Table 3. During the first stage of the calibration procedure, the optimal values for the minimum and maximum radii 440 

in the grain growth model were 0.30 and 0.90 mm, respectively, and the DMRT-plausible range of estimates overlapped 39.6% 

with the reference data. In the second calibration stage the optimal value for H was 0.465 and the final estimates of bulk snow 

density had a MAPE of 13.3%. Over the study period, the algorithm overestimated snow density at Cambridge Bay by a 

relatively small amount (9.0 kg/m3; 2.8%) and demonstrated a moderate positive correlation (0.426) with the reference data. 

Although, performance over the study period was not consistent and the algorithm configuration performed better during some 445 

years than others (Fig. 3). In some cases there was considerable overlap between the algorithm estimated DMRT-plausible 

snow densities and the reference data and MAPE within reference uncertainty (Fig. 3a). In other cases, algorithm estimates 

were less skilful earlier in the season then estimates converged closer to the reference samples later on (Fig 3b&c). Overall, 

calibration results appeared to replicate density estimates from snow courses well with MAPE of final snow density estimates 

(converted with H) approaching the level of reference uncertainty and similar magnitudes of algorithm (DMRT-plausible 450 

range) and reference uncertainty. 

 5.2 Evaluation Results – All Other Sites 

Performance metrics for the evaluation sites were comparable to those achieved at Cambridge Bay during the calibration 

procedure (Table 3). Overlaps of DMRT-plausible snow density ranges with the reference data at evaluation sites were similar 

to Cambridge Bay, with slightly higher overlap at Alert and lower values for the other two sites. Similarly, the MAPEs of final 455 

snow density estimates, converted with H, at evaluation sites had slightly higher values than Cambridge Bay. Like Cambridge 
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Bay, all sites displayed moderate positive correlations with the reference data, and biases had similar magnitude to Cambridge 

Bay (i.e. <10%). Like during calibration, estimation skill was not consistent over the study domain/period and the algorithm 

displayed varying levels of performance during different winter seasons throughout the study period. At Eureka, for example, 

there were algorithm runs where estimates were very skilful (Fig 3d), and others where estimates did not agree with the 460 

reference data for parts of the winter season (Fig 3e&f). 

5.1 Calibrated End of Season Algorithm Configurations 

 Algorithm configurations were calibrated to represent end-of-season conditions, for each site some parameters were kept 

static over all seasons (Table 6) and depth hoar thicknesses varied each season (Table 7). The sensitivity test demonstrated the 

model was most sensitive to depth hoar parameters, so depth hoar SSA varied between 10.0 to 13.0 at 0.2 m2 kg-1 increments 465 

and fewer options considered for the wind slab of 15.0, 17.5, or 20.0 m2 kg-1. For the polar dessert sites (Alert, Eureka, and 

Resolute) the calibration routine produced configurations that were fairly similar and in line with those expected in the polar 

desert, with depth hoar SSA around 10 to 11 m2 kg-1 and average DHF of approximately one third (Royer et al., 2021). On the 

other hand, the configuration for Cambridge Bay was different, with higher than expected depth hoar SSA and DHF for the 

tundra (Meloche et al., 2022). 470 

Table 6 – Model configuration parameters calibrated for end-of-season conditions. 

Site Wind Slab SSA (m2 kg-1) Depth Hoar SSA (m2 kg-1) Heterogeneity (unitless) 

Alert 20.0 10.8 0.35 

Eureka 17.5 10.4 0.3 

Resolute 17.5 11.2 0.45 

Cambridge Bay 20.0 12.8 0.35 

Table 7 – Calibrated seasonal depth hoar thicknesses (cm) and percentage of end-of-season snow depth in parentheses. 

Site 2003-04 2004-05 2005-06 2006-07 2007-08 2007-08 2009-10 2010-11 Avg. 

Alert 1.5 (6 %) 15.9 (48 %) 8.9 (24 %) 12.7 (33 %) - 18.6 (45 %) - - 11.5 (31 %) 

Eureka 5.5 (42 %) 7.2 (27 %) 3.4 (18 %) 2.6 (18 %) 5.0 (36 %) - 6.1 (33 %) 6.7 (24 %) 5.2 (28 %) 

Resolute - - - - 2.5 (12 %) 5.4 (27 %) 3.2 (24 %) 0.9 (3 %) 3.0 (17 %) 

Cambridge Bay 20.6 (72 %) 11.6 (42 %) 14.5 (42 %) 20.7 (81 %) 22.0 (60 %) 18.3 (54 %) 11.7 (48 %) 18.2 (42 %) 17.2 (55 %) 

Commented [RK1]: Do you mean some sites were only static 

parameterization while others had dynamic variables? Perhaps clarify 

because this is important for the later sections.  
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5.2 Eureka Snow Survey Data 

Snow survey data from Saberi et al. (2017) were used to evaluate the calibrated model configuration for the Eureka site in 

greater detail. The model was originally configured to replicate bulk density measurements (i.e. CanSWE) making it difficult 475 

to evaluate individual parameters without stratigraphic information. For example, simulated depth hoar thickness and SSA 

could compensate for one another without discernible differences in bulk density. Although SSA was not measured in the 

survey protocol, calibrated SSA values were evaluated by forcing the retrieval algorithm with measured layer thicknesses and 

AMSR-E L2A observations at 25 km (Ashcroft & Wentz, 2013), and the output compared to measured bulk, wind slab, and 

depth hoar densities (Fig. 7). Algorithm estimates showed good agreement with the measured values, though with slight 480 

overestimation for depth hoar and underestimation for wind slab densities. Interestingly, the valley of algorithm solutions for 

three gird-cells (1,2, and 4) aligned with regions of iso-density in the parameter space (Fig 6b) so H could increase slightly to 

reduce underestimation of wind slab density without affecting overall bulk density. While we cannot conclude from this limited 

sample size that the algorithm is perfect, the similarity of the algorithm estimates and layer densities to independent snow 

surveys suggest the parametrization of SSA was effective for Eureka. 485 

 

5.3 Dynamic Depth Hoar Parameterization 

 Snow depth and DHF can be variable in the tundra (Meloche et al., 2022), so parameterizing the snowpack model with 

static parameters could lead to uncertainty. Algorithm performance with calibrated thickness were compared those using 

Figure 7 – Simulated and measured density for EASE-Grid cells near Eureka. Vertical error bars correspond to 

the microwave-plausible range of algorithm estimates and horizontal the interquartile range of measured values.  
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generalized representations (i.e. seasonal thickness, average thickness, and average DHF from Table 6). Parameterizing the 490 

depth hoar layer with static thicknesses for each site improved algorithm estimates slightly compared to static DHF but the 

dynamic parameterization performed considerable better than either (Table 8). Further, dynamic depth hoar thicknesses were 

the only to bring algorithm estimates within the uncertainty range of the reference dataset at all sites (±10 %) 

 Calibrated depth hoar thicknesses were plotted against end-of-season DHI from Eq. (5). to identify a relationship to estimate 

dynamic depth hoar thicknesses (Fig. 8). Model configurations for each site should be equivalent (specifically depth hoar SSA) 495 

for a robust comparison of depth hoar thicknesses, so the configuration from Eureka was applied to the other sites since it 

seems representative of in situ conditions (see Section 5.2). Calibrated depth hoar thicknesses had a very strong relationship 

with DHI at Alert (R2=0.94, p<0.01), moderate relationships for Eureka (R2=0.68, p=0.023) and Resolute (R2=0.64, p=0.20), 

and virtually no relationship for Cambridge Bay (R2=0.01, p=0.82). There was considerable spread in plotted values for 

Cambridge Bay and, when removed, the polar desert sites together have a very strong relationship (R2=0.93, p<0.01) fitted 500 

with a linear model: 

𝑇𝐸𝑂𝑆 = 0.349 ∗ 𝐷𝐻𝐼𝑀𝑎𝑟 15 − 3.75 (8)  

allowing end-of-season depth hoar thickness (𝑇𝐸𝑂𝑆) to be estimated in cm from DHI on March 15th. 

 

Table 8 – MAPE (%) and overlap (%) of algorithm estimates compared to CanSWE using calibrated configurations with depth 505 
parameterized with dynamic thicknesses, average thickness, and average DHF from Table 6. 

Site 

MAPE (%) Overlap (%) 

Dynamic 

Thickness 

Average 

Thickness 

Average 

DHF 

Dynamic 

Thickness 

Average 

Thickness 

Average 

DHF 

Alert 6.7 13.4 14.2 81.8 48.4 41.5 

Eureka 7.4 17.4 18.8 66.0 29.5 28.5 

Figure 8 – Depth Hoar Index from Eq. (5) plotted against calibrated depth hoar thicknesses and fitted linear models (lines). 
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Resolute 8.9 20.6 22.0 57.9 27.9 16.8 

Cambridge Bay 7.0 12.5 13.0 74.1 45.2 50.2 

5.4 Full Season Algorithm Runs 

 The temporal parameterization (described in Section 4.4) was used to force algorithm retrievals over full winter seasons. 

The calibrated configuration for Eureka was used for all sites and dynamic depth hoar thickness (DT) estimated in cm with 

𝐷𝑇(𝑡) = max (𝑇𝐸𝑂𝑆 ∗ (
𝐷𝐻𝐼(𝑡)

𝐷𝐻𝐼𝑀𝑎𝑟 15
) , 𝑇𝐸𝑂𝑆) (9)  510 

where DHI at time step t was from Eq. (5) and 𝑇𝐸𝑂𝑆 from Eq. (8), and the maximum operator did not allow for growth after 

March 15. Algorithm runs over all seasons at each site were aggregated to calculated performance metrics, presented in Table 

9. Results for the three polar desert sites were similar with moderate MAPE (<20 %), weak-to-moderate positive correlations, 

and low magnitudes of bias, whereas, Cambridge Bay had higher MAPE, larger positive bias, and a weak negative correlation.  

 A collection of notable algorithm simulations was included in Figure 7 - some as examples of when the algorithm performed 515 

very well and others to demonstrate limitations – all simulations included in Appendix B. Seasonal performance at Eureka was 

mixed, where three seasons had low MAPE (i.e. <10 %, e.g. Fig 7a), 3 had moderate MAPE (i.e. <20 %, e.g. Fig 7b), and one 

high MAPE (i.e. > 20%, Fig 7c). The algorithm performed similarly at Alert, where three seasons had low MAPE (e.g. Fig 

7d), one moderate MAPE (not shown), and one high MAPE (Fig 7e). Alternatively, algorithm performance at Resolute was 

worse overall, where only one season had relatively low MAPE (not shown) and the other three had higher MAPE (not shown). 520 

Results for Cambridge Bay were more nuanced and the relatively high overall MAPE did not tell the whole story. In all but 

one algorithm run simulated density started considerably higher than reference samples in the early season but matched in situ 

samples very closely from February onwards (e.g. Fig 8d). 

 

Table 9 – Algorithm performance metrics relative to CanSWE samples (mean normalized percentage values in parentheses). 525 

Site n Overlap (%) MAPE (%)  Bias (kg m-3) RMSE (kg m-3) Correlation 

Alert 67 55.7 14.4 23.2 (6.5 %) 61.9 (17.4 %) 0.280 (p=0.02) 

Eureka 81 32.2 14.9 -13.5 (-4.1 %) 62.4 (18.9 %) 0.393 (p<0.01) 

Resolute 49 40.3 18.7 27.3 (7.7 %) 77.0 (21.6 %) 0.130 (p=0.37) 

Cambridge Bay 233 34.4 21.2 35.9 (11.1 %) 82.9 (25.7 %) -0.213 (p<0.01) 
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Figure 7 – Example algorithm outputs (top panel) and forcing data (lower panels), for (a) Eureka 2005-06, (b) Eureka 2010-11, 

(c) Eureka 2004-05, (d) Alert 2006-07, (e) Alert 2003-04, and (f) Cambridge Bay 2008-09. 
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6 Discussion  

6.1 Seasonal Trends in Algorithm Performance 530 

 From the algorithm performance metrics in Figure 3 and Table 4, specifically those from the Eureka site, the estimation 

skill improved over the course of a given winter season. In some winter seasons at Eureka the algorithm underestimated snow 

density early in the season or did not reflect early season variations in snow density (e.g. Fig 3b&c). However, algorithm 

estimates consistently improved over time and most algorithm estimates were close to the in situ references samples by the 

end of the algorithm run at the end of the season (i.e. within ±10%). To quantify this behaviour the reference dataset was 535 

partitioned into three seasonal sets – October-November-December (OND), January-February-March (JFM), and April-May-

June (AMJ) – and overlap, MAPE, and bias calculated for each set shown in Table 4. Algorithm estimates at Eureka in OND 

had low overlap with the in situ samples (17.2%) and were low biased (-51.2 kg/m3; -18.2%) with relatively high MAPE 

(19.4%). Performance metrics improved in JFM for Eureka where overlap was more than double that of OND and MAPE and 

bias reduced. Performance metrics further improved in AMJ with >50% overlap and MAPE was within the uncertainty range 540 

of the reference samples. These results from Eureka suggest the algorithm configuration is less sensitive to early season snow 

conditions and it could instead be better suited for retrievals later in the winter season. The behaviour of increasing algorithm 

estimation skill over the course of the winter season was apparent at the other sites but was less pronounced than at Eureka 

(Table 4). 

Table 4 – Seasonal performance metrics for algorithm snow density estimates relative to CanSWE, for October-545 

November-December (OND), January-February-March (JFM), and April-May-June (AMJ).  

Site 
Overlap (%) MAPE (%) Bias (kg/m3 [%]) 

OND JFM AMJ OND JFM AMJ OND JFM AMJ 

Alert 19.8 54.5 51.8 25.1 9.0 11.3 35.8 (11.9) 24.4 (6.6) 39.6 (10.4) 

Eureka 17.2 35.8 52.4 19.4 15.6 9.2 -51.2 (-18.2) -20.1 (-6.0) 8.8 (2.6) 

Resolute 33.2 43.1 30.4 15.2 13.3 12.4 26.7 (7.7) 29.1 (8.0) 19.1 (4.9) 

Cambridge Bay 22.6 49.2 48.2 19.0 10.9 11.0 7.8 (2.6) 3.0 (0.9) 19.9 (5.8) 

 The tendency of improved seasonal algorithm estimation skill did not appear to be related to seasonal differences in forcing 

data (i.e. situations with shallow snow depth or near freezing air temperature) and instead could be better explained by the 

algorithm configuration. The information available about tundra snow composition from field campaigns is biased towards the 

end of the winter season, typically occurring in March or April  (e.g. Derksen et al., 2014; Meloche et al., 2022; Rees et al., 550 

2014). Thus, it follows the configuration of the snowpack model would be most appropriate for the conditions towards the end 

of the season, and the snowpack properties could be different early in the season (specifically the layer thickness ratio). 

Additionally, the estimates from the proposed algorithm are synoptic, representing general patterns over regional scales 

(25x25km2), whereas the reference data from CanSWE covered more localized areas (snow courses along 150-300m transects). 

Snow distribution patterns in the high Arctic are terrain dependent and there can be considerable variability within a PM 555 
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satellite footprint (Woo, 1998), so it was difficult to interpret the reference data in detail without specific information about 

where they were collected within the satellite observation scene. 

6.2 Evaluation of Algorithm Configuration 

  Performance metrics for all sites (calibration and evaluation) were very similar suggesting the configuration of the 

electromagnetic snowpack model was appropriate for the high Arctic tundra environment, and the model calibration was not 560 

over fit to the Cambridge Bay site. The algorithm configuration appeared most appropriate towards the end of the season with 

considerable improvements at each site over the course of the winter season. However, there were winter seasons where 

algorithm estimates matched the reference data much better than others (Fig. 3&4). The radius of snow grains has a large effect 

on microwave emissions (Chang et al., 1982; Rango et al., 1979) and some of the year-to-year variability in algorithm 

agreement could be explained by the generalized calibration procedure for the snow grain growth model. The grain growth 565 

model parameters were the same for the whole study period, when there were likely different conditions between winter 

seasons and sites. For example, algorithm estimates for Cambridge Bay 2006-07 (Fig. 3c) displayed relative high correlation 

with the reference data (0.693) but with a large bias (53.9 kg/m3; 17.5%) and high MAPE (23.6%); in this case, the grain radius 

estimates may have been too large and smaller values could bring snow density estimates closer to the reference samples. 

Overall, the algorithm configuration seemed suitable, given the similar results at the calibration and evaluation sites, but 570 

improvements could be made in how the microstructure was parameterized to better represent varying conditions and make 

algorithm performance more consistent. 

 There was one winter season at the Cambridge Bay site where the trajectory of algorithm estimates in the early winter 

season did not match the expected densification pattern. Intuitively snow should densify over time, yet during the 2005-06 run 

the algorithm estimated denser snow at the beginning of the winter season, with estimates decreasing over the early season 575 

rather than increasing (Fig 3b). That behaviour could be explained by the presence of water bodies around Cambridge Bay 

which are known to influence PM observations in the tundra environment when using the ΔTb modelling approach (Derksen 

et al., 2010). The generalized substrate representation in the electromagnetic model did not consider water bodies in the 

observation scene and could be modified to include water/lake ice to improve algorithm performance. However, the similar 

overall performance of the algorithm at Cambridge Bay (with many water bodies in the scene) and the evaluation sites (with 580 

virtually no water bodies in the scene) suggested the ΔTb approach was suitable. 

 The bulk snow density reference samples available in CanSWE did not allow for the densities of the individual snow layers 

to be calibrated, nor a thorough examination of the individual density values defined by the H parameter. Instead, density 

measurements from Derksen et al.’s (2014) field campaign in April 2011 were used to provide some context about algorithm 

estimates for the two snow layers. Derksen et al. performed intensive snow surveys near Eureka (~50x50 km area) during that 585 

month and found the average wind slab layer and depth hoar layer densities to be 400 and 250 kg/m3, respectively (combined 

for a bulk density of 341 kg/m3, very close to the CanSWE Eureka April snow density of 344 kg/m3). Algorithm density 
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estimates for the two snow layers derived with H [DMRT-plausible range] over the same period at Eureka (Fig 4b) were found 

to be comparable to those measured by Derksen et al. with wind slab and depth hoar densities of 380 kg/m3 [320, 450] and 

295 kg/m3 [266, 320], respectively (combined for a bulk density of 352 kg/m3 [320, 389]). So, the algorithm estimated bulk 590 

density is very close to that measured in the field at the regional-scale and the estimated wind slab layer density is also quite 

similar (~5% lower) but the depth hoar density is overestimated by larger amount (~18% higher). While we cannot conclude 

from this limited sample size that the algorithm is perfect, the similarity of the algorithm estimates and layer densities to 

independent snow surveys suggest the parametrization of H was effective and that this approach could be expanded to estimate 

snow density across the tundra. 595 

6.1 Assessment of End-of-Season Configurations 

 In the following subsections, key parameters (i.e. SSA and depth hoar thickness) of the calibrated end-of-season 

configurations were compared against measured values from various field campaigns. 

5.1.1 Eureka 

 Detail snow survey data from (Saberi et al., 2017) were used to evaluate the algorithm configuration for Eureka. Calibrated 600 

depth hoar thicknesses for the Eureka site were fairly consistent ranging from 2.6 to 7.2 cm (σ = 1.6 cm) and within the range 

of expected values for the polar desert (Royer et al., 2021). Simulated depth hoar thickness for the 2010-2011 season (6.7 cm) 

was comparable to measured values from the snow survey which had a median value of 9 cm (interquartile range of 6-12 cm). 

We expected thicker depth hoar from the snow survey dataset because it was focused around Hot Weather Creak, where 

conditions in the polar oasis should be more favourable for depth hoar formation. On the other hand, the manual snow survey 605 

course (i.e. CanSWE) was approximately 15 km west of Hot Weather Creak (Fig 1b), so we believe conditions at the AWS 

should be somewhere between those found in the polar desert and polar oases (i.e. relatively thinner depth hoar). Additionally, 

the calibrated SSA values produced representative estimates for individual layer densities measured during the snow survey 

(Fig 7), increasing our confidence in the algorithm configuration for the Eureka site. 

5.1.2 Alert 610 

There are few snow survey data available for the Alert site (e.g. Domine et al., 2002), so those from relatively close Ward 

Hunt Island (~170 km northwest) were also considered (Davesne et al., 2022). SSA values were similar to those measured by 

Davesne et al. (2022) but depth hoar was considerably thicker in some cases than the typical 5 to 10 cm expected in the polar 

desert (Royer et al., 2021). Further, there was considerable variability in simulated depth hoar thicknesses for Alert, with values 

ranging from 1.5-19.8 cm (σ = 6 cm). Initially, we believed the large variability in depth hoar thickness to indicate an issue in 615 

the calibration routine (specifically higher values approaching 20 cm). However, variable depth hoar conditions have been 
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recorded at Ward Hunt Island, which can be essentially devoid of depth hoar some years (Domine et al., 2018) or near 20 cm 

in other cases (Davesne et al., 2022). Thus, it appears the algorithm configuration for Alert was reasonable. 

5.1.3 Resolute 

 Snow survey data were available for Resolute (Davesne et al., 2022; Royer et al., 2021), though the information was less 620 

specific than for other sites (i.e. no explicit depth hoar thickness). Simulated SSA values for the Resolute site, like the others 

in the polar dessert, were with the range of expected values, but average DHF (17%) was slightly lower than reported ~30 ±20 

% (Royer et al., 2021). Simulated depth hoar thickness was fairly consistent ranging from 0.9 to 5.4 cm (σ = 1.6 cm) and DHF 

for all seasons (except 2010-2011) were within the range of measured values. Further, the area near Resolute covered by the 

radiometer field-of-view was likely relatively dry, given its location inland with virtually no water bodies (Fig 1d), and 625 

simulated DHF was comparable to values for dry areas surveyed by Davesne et al. (2022). Therefore, the algorithm 

configuration for Resolute also appeared reasonable. 

5.1.4 Cambridge Bay 

 Comprehensive reports of snowpack properties from Cambridge Bay (Meloche et al., 2022, 2024) allowed for detailed 

analysis of the calibrated algorithm configuration. Unlike the other sites, simulated depth hoar SSA and DHF were different 630 

for Cambridge Bay than field measurements (Meloche et al., 2022, 2024). The discrepancy between simulated and measured 

values could be related to water bodies around Cambridge Bay affecting radiometry (Derksen et al., 2010). However, we 

believe the issue to be mainly related to the complementary nature of depth hoar SSA and thickness towards volume scattering; 

with SSA values (wind slab: 20 m2 kg-1 and depth hoar: 11 m2 kg-1) from Meloche et al., (2022) calibrated average DHF (36 

%) was very close to the reported value (38%), and overall MAPE is only slightly higher (by 0.4 %). The possibility for large 635 

discrepancies between predicted and simulated parameters with little effect on simulated bulk density underscores the necessity 

for stratigraphic data during model calibration and evaluation. 

6.2 Assessment of Temporal Parameterization 

 Estimation skill over the full season (Table 9) was lower than during the calibration stage (Table 8), though that was 

expected because the configuration for Eureka was used for all sites and depth hoar thickness was parameterized with Eq. (9) 640 

(rather than calibrated values for each site). In some cases the temporal parameterization produced excellent estimates of snow 

density over the whole season (e.g. Fig 7a&d) but in other cases struggled to reproduce the observed densification trajectory 

(e.g. Fig 7c&e). Yet, algorithm estimation skill at each site consistently improved over the course of a winter season and most 

algorithm estimates were close to the in situ references samples later on. To quantify this behaviour the reference dataset was 

partitioned into three temporal sets – October-November-December (OND), January-February-March (JFM), and April-May-645 

June (AMJ) – and overlap, MAPE, and bias calculated for each in Table 10. There were substantial improvements in all metrics 



28 

 

 

at all sites between OND to JFM and JFM to AMJ, and AMJ MAPE for the polar desert sites were within, or approaching, 10 

% indicating the snow density estimation uncertainty was similar to the in situ samples. Temporal results for Cambridge Bay 

were slightly different than polar desert sites as there was a substantial improvement in all metrics from OND to JFM (most 

notably the reduction in bias) but MAPE increased in AMJ. Possible explanations for these temporal behaviours in algorithm 650 

estimates are discussed below. 

Table 10 – Seasonal performance metrics for algorithm snow density estimates relative to CanSWE, for October-

November-December (OND), January-February-March (JFM), and April-May-June (AMJ).  

Site 
Overlap (%) MAPE (%) Bias (kg m-3) 

OND JFM AMJ OND JFM AMJ OND JFM AMJ 

Alert 15.9 68.1 70.6 32.5 7.7 8.9 67.6 6.6 10.1 

Eureka 23.0 21.9 53.3 19.3 16.6 9.8 -38.4 -16.1 4.0 

Resolute 26.8 41.9 50.3 30.3 15.0 13.9 59.2 27.2 -2.3 

Cambridge Bay 12.4 45.8 40.0 40.8 12.2 14.1 102.3 17.6 -8.0 

 The most likely reason for improved algorithm performance towards the end-of-season during most simulations is that the 

snow metamorphic state was captured effectively by model dynamics that align with our understanding of snowpack 655 

metamorphism. Prior knowledge from available literature increased confidence in end-of-season algorithm configuration, 

though much less was ready for the early-to-mid season introducing uncertainty into the temporal parameterization. 

Specifically, some properties were effectively quantified with physical models over time (e.g. SSA) while others were not 

because model representation is simply not developed (e.g. depth hoar thickness). 

 From the point of view of algorithm development, the most difficult element to parameterize over time was depth hoar 660 

thickness. The depth hoar model was generalized to not overfit to any specific forcing data, but edge cases were identified 

where there were issues. In some cases identified as standard development, and with thicker initial snow depth, Eq. (9) appeared 

to underestimate early-season depth hoar thickness causing simulated bulk density to pin at the bottom of the range to maximize 

volume scattering (e.g. Fig 7c). That early-season underestimation could be related to how depth hoar was parameterized to 

grow vertically in thickness, which would be logical for indurated development (growing at the expense of wind slab thickness) 665 

but normal depth hoar should form from early layers morphing simultaneously. On the other hand, under the most restrictive 

conditions identified for depth hoar metamorphism Eq. (9) overestimated depth hoar thickness throughout the whole season 

casing algorithm estimates to pin at the upper limit of the density range (e.g. Fig 8a), despite very similar simulated (2.0 cm) 

and calibrated (0.8 cm) end-of-season thicknesses. Thus, our depth hoar model could be improved to consider specific 

situations – for example, initiating thickness with early-season snow depth measurements during Stage 0 (assuming the entire 670 

layer would shortly become depth hoar) and using a fixed thickness (~1 cm) when very restrictive conditions are identified. 

 Even with the help of existing models there were challenges with the parameterization of SSA. Most notably, there is 

practically no distinction in the literature between standard and indurate depth hoar microstructure in terms of SSA and 
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you think the indutae/standard depth hoar is the issue - and b) that 

there is no formal representation of indurated DH in the SMRT 

toolkit. Are we sure that this is the case? What do you think? 
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polydispersity, so we did not distinguish between their prescribed microstructure properties. While physical grain size of 

standard and indurated depth hoar are similar (Derksen et al., 2009), non-metamorphized wind slab grains can be present in 675 

indurated depth hoar (Domine et al., 2016b); possibly leading to higher SSA or lower polydispersity compared to standard 

depth hoar, necessitating thicker simulated indurated layers. Further, our snowpack representation did not account for deposits 

of fresh snow, which have low density and high SSA, and, therefore, should be radiometrically negligible (Saberi et al., 2017). 

However, new snow was immediately incorporated into the simulated wind slab layer affecting simulated, but not observed, 

brightness temperatures – for example, mid-season snowfall events at Eureka in January 2011 (Fig 7b) caused measured bulk 680 

density to decrease but simulated bulk density increased. Identifying depth hoar type with the proposed stages of snowpack 

evolution would not only aid in parameterizing algorithm retrievals (should their microstructure properties prove to be 

sufficiently different) but could also support applications where snow hardness and thermal conductivity are relevant – for 

example, permafrost thermal regimes and conditions for subnivean life (Domine et al., 2016b).  

 Algorithm estimates generally followed expected densification trajectories (i.e. increasing density over time) in the polar 685 

desert (e.g. Fig 7b) but exhibited different behaviour at Cambridge Bay. Early season density estimates were too high in all, 

but one, simulations at Cambridge Bay and decreased over time to move closer to in situ measurements (e.g. Fig 7f). Early 

season overestimation could be explained by penetration depth at 19 GHz exceeding lake ice thickness (Derksen et al., 2009), 

which reduced observed ΔTb and caused simulated density to pin at the upper limit to minimize volume scattering. Then, 

estimates improve over the mid-season when lake ice thickness should exceed the penetration depth at 19 GHz, before thinning 690 

ice thickness reintroducing uncertainty in observed brightness temperatures at the end-of-season (Derksen et al., 2009). 

Additionally, the radiometric influence of water bodies made it more difficult to interpret the stages of snowpack evolution at 

Cambridge Bay – Stage 0 was only identified during a couple seasons, despite tundra conditions being generally favourable 

for depth hoar development (Royer et al., 2021). Furthermore, unfrozen water bodies around Cambridge Bay caused pre-snow 

ΔTb to be very low (i.e. negative ~10 K) artificially modifying DHI values, likely contributing to the spread of points in Figure 695 

8. After February, when ice thickness should exceed penetration depth  (Derksen et al., 2009), algorithm performance for 

Cambridge Bay was comparable to the polar dessert sites (MAPE = 13.2 % and overlap = 43.6 %). 

6.3 Scalability Across the Pan-Arctic 

 The ultimate goal of this research is to develop a pan-Arctic snow density retrieval algorithm, though the algorithm would 

need to be modified for that purpose. The current retrieval design is predicated on two-layer snowpack with distinct properties 700 

(i.e. found in the tundra/polar desert) and would need to be modified to consider other Arctic snow types (e.g. taiga). Traditional 

ecological knowledge of snow conditions (e.g. Riseth et al., 2011) could help to identify important snowpack parameters across 

various environments to be generalized for the electromagnetic model. Additionally, water bodies could impede retrievals 

using a ΔTb approach (as described for Cambridge Bay) and a single channel retrieval using only 37 GHz might be more 

appropriate across the pan-Arctic (Derksen et al., 2010). Also, the dynamic depth hoar parameterization required PM 705 
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observations from snow-on to March 15th limiting it to retrospective analyses, though the relatively long PM observation record 

allows for climatological analysis. 

 After required modifications, additional datasets would be required to expand the spatial extent of algorithm retrievals. 

Snow depth data are the most important to force the algorithm (after radiometry) and the sparse distribution of AWS across 

the pan-Arctic render them unsuitable for extensive model forcing. Spatially continuous snow depth estimates could be derived 710 

from reanalysis models, even as a first order effect, despite their uncertainty in high latitude areas where data are sparse (Cao 

et al., 2020). Assimilation of reanalysis snow depth estimates with AWS data for bias correction might be a promising way 

forward. Similarly, bias corrected ground temperature estimates from reanalysis products (Herrington et al., 2024) could 

replace our simple model based on AWS air temperature. Additionally, auxiliary wind speed and soil moisture data could aid 

with parameterizing the depth hoar layer (i.e. quantifying the potential for development) as they restrict and promote 715 

development, respectively (Davesne et al., 2022). Finally, a pan-Arctic snow density product would require extensive reference 

data to support algorithm calibration and evaluation which will need to be curated, specifically regarding extensive datasets of 

snow stratigraphy. 

 

7 Conclusions and Future Work  720 

 A prototype algorithm was developed to estimate snow density in the tundra environment using PM remote sensing, given 

the challenges in estimating spatiotemporally varying snow density in that  the Arctic environment. An experiment was 

conducted to assess the algorithm’s ability to estimate snow density at sites distributed in the Canadian tundrahigh Arctic. 

Results from those sites demonstrate algorithm estimates of snow density have the potential to provided information on snow 

density comparable to those collected with snow courses. and appeared best suited for estimating snow density conditions later 725 

in the season. In its current configuration, the algorithm performed best at estimating snow density conditions later in the 

season, with end-of-season MAPE within (i.e. Alert and Eureka), or approaching (i.e. Resolute and Cambridge Bay), the ±10 

% uncertainty range of manual snow density sampling. With some modifications, and more extensive forcing data, (e.g. snow 

depth estimates from global climate models) theis proposed algorithm could be applied over the tundra biomeacross the pan-

Arctic to provide snow density estimates at spatiotemporal scales that were not previously available. 730 

 The experimental design for this study was opportunistic due to the limited snow density data available for algorithm 

development calibration and evaluation. CanSWE was the only readily available dataset which covered the required spatial 

and temporal domain for algorithm development but was limited to bulk estimates and, as result, the algorithm estimates for 

the two distinct snow layers could not be sufficiently parameterized calibrated nor evaluated. Specifically, algorithm 

calibration with bulk density measurements introduced uncertainty in the parameterization of depth hoar thickness and SSA, 735 

because of their complementary effects on volume scattering. Future algorithm development will focus on datasets from sites 



31 

 

 

with distributed stratigraphic measurements that will improve snow density parameterization at the PM scale. Further, Tundra 

Arctic snow conditions are known to be driven by terrain types (Rees et al., 2014; Woo, 1998)(Woo, 1998), and future 

algorithm development will focus on sites with distributed stratigraphic data to better quantify snow density conditions at the 

PM scale. By characterizing terrain variability at the regional scale,  and we hypothesise the DMRTmicrowave-plausible range 740 

of snow densities for the PM scene could be disaggregated using high resolution active microwave data to provide information 

on stratigraphic heterogeneity and better estimate density values for the two distinct snow layers (to (replacinge the static 

abstract H parameter).  
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Appendix A: Comparison of measured and modelled substrate temperatures.  745 

 

 

 

 

 750 

 

 

  

Figure A1 – Air and substrate temperatures measured at (a) Bylot 2016-17 and (b) Ward Hunt Island 2015-16 (original images 

from Domine et al.  (2018)), and from our model (described in Section 4.4.3) under (c) normal depth hoar conditions at Eureka 

2010-2011 and (d) restricted depth hoar conditions at Alert 2003-04. 
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Appendix B: Algorithm Outputs 

 755 

Figure B1 – All algorithm simulations (top panel) and forcing data (lower panels) for Alert and Eureka sites. 
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Figure B2 – All algorithm simulations (top panel) and forcing data (lower panels) for Resolute and Cambridge Bay sites. 
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