
 We  thank  the  reviewers  for  their  time  and  constructive  comments  on  our  manuscript. 
 Our responses are color-coded in blue. 

 To  preface  our  response  (and  previously  mentioned  in  our  separate  responses  to 
 Reviewer  #1),  this  manuscript  is  part  of  a  bigger  project  to  develop  a  machine-learning 
 emulator  of  atmospheric  transport  that  can  compute  the  footprint  for  a  receptor  in  any 
 region  at  any  time  and  can  be  used  in  a  flux  inversion.  This  project  consists  of  distinct 
 projects: 

 1.  He  et  al.,  GMD  (in  press)  is  a  proof  of  concept  to  demonstrate  that  we  can 
 emulate  footprints  using  machine  learning  for  surface  observations.  This  work 
 focused on two regional case studies. 

 2.  This  manuscript  under  consideration  here  (Dadheech  et  al.,  under  review)  is  a 
 demonstration  that  machine  learning  emulators  can  be  used  in  a  GHG  flux 
 inversion  with  minimal  error  induced.  This  work  focused  on  comparing  against 
 previously published work in a single region. 

 3.  The  final  paper  (in  prep)  aims  to  generalize  this  methodology  to  any  region  for 
 both surface and column-averaged observations. 

 Below are our responses to the comments from reviewers: 

 Reviewer #1 

 See responses:  https://egusphere.copernicus.org/preprints/2024/egusphere-2024-2918 

 Reviewer #2 

 Line  9-11  (abstract)  Authors  mention  that,  surprisingly,  “the  updated  FootNet  model 
 out-performs  the  full-physics  model  when  used  in  a  flux  inversion”.  However,  they  don’t 
 have  a  rational  explanation  for  this  and  speculate  as:  “This  improved  performance  is 
 likely  because  atmospheric  transport  simulated  with  a  full-physics  transport  model  is  not 
 necessarily  more  accurate.  The  more  simplistic  representation  of  transport  in  the 
 machine  learning  model  helps  to  mitigate  transport  errors”.  Suggest  to  drop  this 
 speculative  discussion,  as  it  may  happen  that  in  the  next  version  or  a  case  study  the  ML 
 and full-physics footprints will have other biases and advantage of the ML will be lost. 

 We  thank  the  reviewer  for  this  suggestion.  It  is  presently  unclear  if  this  result  is  only 
 present  for  the  SF  Bay  Area  region  or  is  a  more  general  result.  We  plan  to  revisit  this  in 
 the  third  manuscript  where  we  can  more  confidently  say  if  this  is  just  due  to  regional 

https://egusphere.copernicus.org/preprints/2024/egusphere-2024-2918


 variance  or  a  general  finding.  As  such,  we  have  dropped  the  explanation  of 
 FootNet's  better  performance  from  the  abstract  and  will  revisit  this  in  the 
 forthcoming analysis. 

 Line  21-22  Giving  the  list  of  references  here,  authors  implicitly  limit  the  type  of  models 
 useful  for  inverse  modeling  at  high  resolution  to  Lagrangian,  while  there  are  successful 
 examples  of  using  Eulerian  models  for  the  same  purpose  (eg  Steiner  et  al,  2024).  On 
 the  other  hand,  the  possible  applications  of  ML-based  footprint  simulators  do  not  have 
 to  be  regional  as  there  are  global  models  using  Lagrangian  footprints  (eg  Nayagam  et 
 al,  2024,  Janardanan  et  al  2024)  facing  same  or  bigger  computational  challenges  as  for 
 the regional ones. 

 We  thank  the  reviewer  for  this  comment.  The  reference  list  was  indeed  largely  focused 
 on  Lagrangian  approaches  because  our  manuscript  uses  a  Lagrangian  emulator.  We 
 have included additional references to Eulerian models: 

 Line  20-23:  However,  the  large  computational  and  storage  costs  associated  with  full 
 physics  atmospheric  transport  models  in  the  current  inversion  framework  limit  our  ability 
 to  perform  near-real-time  emissions  monitoring  from  urban  to  global  scales  (Roten  et 
 al.,  2021;  Varon  et  al.,  2022a;  Cartwright  et  al.,  2023;  Fillola  et  al.,  2023;  Nayagam  et 
 al., 2023; Steiner et al., 2024; Janardanan et al., 2024). 

 Lines  28-30  Can  add  satellite-based  studies  of  point  sources  (eg  Janardanan  et  al 
 2016). 

 We added a reference for satellite-based studies of point sources. 

 Line  28-31:  Previous  work  has  shown  the  importance  of  point  sources  for  methane 
 emissions  (e.g.,  Brandt  et  al.,  2014;  Zavala-Araiza  et  al.,  2015;  Frankenberg  et  al., 
 2016;  Duren  et  al.,  2019;  Lauvaux  et  al.,  2022;  Chen  et  al.,  2022;  Cusworth  et  al.,  2022; 
 Sherwin  et  al.,  2023;  He  et  al.,  2024),  and  urban  &  localized  sources  for  CO2  (e.g., 
 Hutyra  et  al.,  2014;  Janardanan  et  al.,  2016;  Turner  et  al.,  2020;  Wu  et  al.,  2020;  Kiel  et 
 al., 2021). 



 Lines  57-58  Note  that  for  large  n,  one  may  opt  to  using  forward  transport  instead,  either 
 Lagrangian or Eulerian or plume-based like PMIF (Wang et al, 2020) 

 Excellent point.  We have updated the text. 

 Line  61-63:  Gaussian  Plume  models  are  known  for  their  simplicity  and  are  often  used 
 for  point  source  modeling  (Bovensmann  et  al.,  2010;  Nassar  et  al.,  2017;  Wang  et  al., 
 2020}.  However,  these  models  typically  assume  favorable  conditions  such  as  constant 
 winds and flat topography, which may not always be the case. 

 Line  224  Table  1.  Looking  from  the  experience  of  applying  limited  set  of  parameters  for 
 describing  PBL  mixing  before  3-D  dynamic  models  of  turbulence  (eg  Hanna,  1984),  the 
 choice  of  driving  variables  does  not  look  optimal.  Why  don’t  include  surface  stress, 
 Monin-Obukhov length, 100 m or mid-PBL winds, for example? 

 We  conducted  a  number  of  early  experiments  with  larger  sets  of  parameters  but  found 
 that  it  did  not  improve  the  performance  of  the  model.  The  STILT  model  directly  uses 
 PBL  height  as  a  parameter  to  compute  footprints  (Lin  et.  al.,  2003).  Given  our  previous 
 experience  with  the  STILT  model,  it  was  unsurprising  that  PBL  height  was  found  to  be 
 key  for  predicting  footprints.  In  the  end,  we  opted  for  a  parsimonious  model.  We  have 
 updated the text as follows: 

 Line  251-252:  We  also  use  PBL  height  as  it  is  an  important  input  for  computing 
 footprints  from  the  trajectories  of  the  particles  in  a  full  physics  LPDM  (e.g.  STILT;  Lin  et. 
 al., 2003). 

 Line  315-320  There  is  an  impression  that  the  ad  hoc  replacement  of  time-resolving 
 footprints  with  a  decay-based  model  will  not  be  universally  applicable,  and  it  should  be 
 mentioned as a limitation of the proposed method. 

 This  is  a  fair  concern.  We  do  think  it  may  be  universally  applicable,  but  our  study  is 
 currently  limited  to  two  regions,  thus  the  caveat  here.  We  have  updated  the  text  as 
 follows: 

 Line  343-346:  We  observe  that  time-integrated  footprints  perform  better  as  they  can 
 mitigate  transport  errors  in  the  time-resolved  representation.  The  time-resolved 
 footprints  are  a  more  realistic  representation  of  the  source-receptor  relationship  but  not 
 necessarily  more  accurate.  Additional  tests  are  needed  to  understand  the  transport 



 errors  in  the  time-resolved  footprint  and  the  broader  applicability  of  the  exponential 
 decay footprints. 

 Reviewer #3 

 General Comment: 

 The  manuscript  “High-Resolution  GHG  Flux  Inversions  Using  a  Machine  Learning 
 Surrogate  Model  for  Atmospheric  Transport”  presents  an  important  study  showcasing  the 
 potential  of  ML-based  emulators  for  atmospheric  transport  in  enabling  fast  computation  of 
 observation  footprints  used  in  flux  inversions.  The  demonstrated  gains  in  computational 
 speed  and  storage  compared  to  traditional  methods  relying  on  full-physics  models  are 
 convincing  and  could  pave  the  way  for  near-real-time  GHG  flux  monitoring  using  dense 
 observational  systems,  such  as  the  new  generation  of  satellite  instruments.  Provided  the 
 comments  below  are  addressed,  this  paper  would  be  suitable  for  publication  in  this 
 journal. 

 One  key  claim  of  this  work  is  that  the  proposed  ML  approach  (FootNet  v2)  outperforms 
 the  full-physics  model  in  the  flux  inversion.  The  authors  attribute  this  to  the  smoother 
 spatial  structure  of  the  FootNet  v2  footprints,  which  they  hypothesize  helps  mitigate 
 transport  error.  Given  the  broad  implications  of  this  finding  for  the  field,  this  important 
 statement  should  be  supported  with  more  evidence  than  the  statistical  results  obtained 
 from a single case study. Two potential avenues for further substantiation are: 

 1.Extending the comparison to other cases reflecting different meteorological conditions. 

 2.Conducting an OSSE (Observing System Simulation Experiment). 

 I suggest the authors conduct at least an OSSE experiment, which would entail: 

 a) Generating synthetic observations from a reference “true” emission field. 

 b) Generating a prior ensemble of HRRR meteorology (or from another model) and fluxes. 

 c) Performing multiple inversions using both STILT and FootNet v2. 

 Each  inversion  would  use  a  different  meteorological  realization  to  simulate  transport  error. 
 The  hypothesis  presented  in  this  study  suggests  that  the  ML  surrogate,  by  smoothing  the 
 transport  patterns,  would  produce  better  inversion  results  on  average  than  STILT.  This 
 could  be  evaluated  by  comparing  the  standard  deviations  of  inversion  errors  (relative  to 
 the known true fluxes) and the biases. 



 Although  this  approach  is  idealized,  it  would  provide  more  robust  statistical  evidence  to 
 support  the  claim  that  the  ML  surrogate  yields  better  performance  than  the  full-physics 
 model. 

 We  thank  the  reviewer  for  this  excellent  suggestion.  This  study  serves  as  a 
 proof-of-concept  that  demonstrates  the  potential  of  using  a  machine-learning  surrogate 
 model  for  atmospheric  transport  in  high-resolution  flux  inversion.  The  outperformance  of 
 FootNet  carries  significant  implications  for  the  field.  We  agree  that  conducting  an  OSSE 
 study,  as  suggested,  would  provide  more  robust  statistical  evidence  to  support  our  results. 
 However,  even  with  such  an  OSSE  we  would  be  wary  of  claiming  that  this  is  universally 
 true  because  our  study  is  limited  to  one  region.  The  OSSE  proposed  above  would  carry  a 
 large  computational  burden  because  we  would  need  to  generate  footprints  with  another 
 model  (or  wind  fields).  In  light  of  this,  we  have  updated  the  text  to  remove  some  of  the 
 conclusions that we don’t feel are fully supported by the current simulations. 

 Additionally,  we  are  in  the  process  of  acquiring  meteorological  data  from  the  Global 
 Forecast  System  (GFS)  and  plan  to  perform  an  OSSE  similar  to  the  one  proposed  by  the 
 reviewer  using  FootNet  v3  that  we  are  fine-tuning.  This  model  is  generalizable  to  all  of 
 CONUS  and  would  allow  us  to  make  more  general  claims  about  the  applicability  of  the 
 findings to other flux inversions. 

 Line  336-338:  This  updated  deep  learning  model  for  atmospheric  transport  (FootNet  v2) 
 outperforms  the  full-physics  model  in  an  inversion  estimating  urban  CO  2  fluxes  at  high 
 spatio-temporal  resolution  in  the  San  Francisco  Bay  Area.  Further  tests  are  required  to 
 investigate the generalizability of this finding. 

 Line  351-352:  We  find  that  FootNet  v2  outperforms  the  full-physics  model  in  the  flux 
 inversion in this particular study. 

 Minor Comments: 

 Introduction: 

 The  authors  should  discuss  the  use  of  variational  methods  as  an  alternative  approach  to 
 address  high-dimensional  inversion  problems  involving  large  flux  and/or  observation 
 spaces.  In  this  framework,  transport  Jacobians  do  not  need  to  be  explicitly  constructed, 
 and efficient minimization algorithms enable rapid computation of mean posterior fluxes. 



 Thank  you  for  the  suggestion.  We  have  added  a  discussion  on  the  variational  methods 
 along with Lagrangian and Eulerian models in the manuscript: 

 Line  57-61:  Variational  methods  such  as  4D-var  can  be  used  with  large  state  and 
 observation  space.  However,  it  requires  computing  an  adjoint,  which  is  a  computationally 
 expensive  process.  Additionally,  this  process  iteratively  minimizes  the  cost  function  with 
 many  forward  runs  and,  as  such,  can  not  be  parallelized.  The  computation  cost  of  4D-var 
 is  independent  of  the  number  of  observations  but  can  still  be  very  large.  It  also  requires 
 storing  many  checkpoint  files  which  can  become  very  large  for  high  spatial  resolution  and 
 can have high storage costs. 

 Conclusion: 

 It  would  be  useful  to  discuss  the  potential  application  of  ML  surrogates  for  atmospheric 
 transport  in  performing  MCMC  inversions.  This  approach  could  provide  full  posterior 
 probability  density  functions  (PDFs)  without  constraining  the  prior  PDFs  to  specific  forms, 
 such as Gaussian priors. 

 This  is  a  fantastic  point.  The  ML  surrogates  for  atmospheric  transport  can  indeed  be 
 helpful  in  computing  the  posterior  PDF  using  methods  such  as  MCMC,  which  does  not 
 assume  Gaussian  distribution  for  the  prior  PDF.  We  have  included  a  discussion  in  the 
 conclusion section on this: 

 Line  357-363:  Previous  work  has  shown  that  the  distribution  of  GHG  sources  may  be 
 skewed  with  a  “heavy-tail”  of  super  emitters.  This  suggests  that  the  assumption  of 
 Gaussian  distribution  for  the  prior  PDFs  may  not  be  accurate.  Stochastic  methods  such  as 
 Markov  Chain  Monte  Carlo  can  allow  one  to  specify  non-Gaussian  prior  PDFs  as  well  as 
 jointly  solve  for  meteorology  (e.g.  uncertainties  in  PBL  height).  However,  it  is  currently 
 infeasible  to  implement  with  traditional  models  as  it  requires  evaluation  of  the  forward 
 model  many  times,  which  is  computationally  intractable.  FootNet  can  compute  the 
 footprints  in  near-real-time,  making  it  feasible  to  use  these  methods  to  estimate  posterior 
 emissions.  This  can  be  one  potential  application  of  machine  learning  surrogates  of 
 atmospheric transport in improving the flux estimates. 


