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Abstract. In light of climate change and biodiversity loss, modeling and mapping soil moisture at high spatiotemporal
resolution is increasingly crucial for a wide range of applications in Earth and environmental sciences, particularly in boreal
forests, which play a key role in global carbon cycling, are highly sensitive to hydrological changes, and are experiencing rapid
warming and more frequent disturbances. However, modeling and mapping soil moisture dynamics is challenging due to the
non-linear interactions among numerous physical and biological factors and the wide range of spatial and temporal scales at
play. This study aims to identify key spatial and temporal controls on soil moisture using an empirically based modeling
approach. We focused on a boreal forest landscape in northern Sweden, where we monitored surface soil moisture with
dataloggers at 78 locations during the summer of 2022. We investigated the relationships between observed soil moisture
variations and numerous environmental and meteorological predictors from multiple sources at varying spatial resolutions and
temporal scales, and we assessed how these relationships changed over time. Spatial variation in soil moisture was influenced
not only by topography and by the spatial resolution used to represent it, but also by soil properties, vegetation, and land
use/land cover (LULC). In addition, the relative importance of these factors changed over time, with topography generally
explaining more spatial variation during wet periods, while soil and vegetation were more relevant during dry periods. This
suggests that current soil moisture maps relying primarily on topographic indices could benefit from integrating soil,
vegetation, and LULC information to better capture spatial variability under different wetness conditions, as well as from
selecting the optimal spatial resolution for the specific area of interest. Temporal variation in soil moisture was better explained
by hydrological and meteorological variables averaged over five to seven days preceding soil moisture measurements,
highlighting the importance of accounting for both lagged and cumulative effects of weather conditions. Field predictors
generally outperformed remote sensing and modeled predictors, indicating that soil moisture mapping based solely on spatially
continuous predictors requires improving spatial detail of maps describing soil texture, structure, and organic matter content.
Our findings contribute to improving the accuracy and interpretability of data-driven methods, such as machine learning, for

mapping soil moisture across space and time for forest management and nature conservation.
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1 Introduction

Soil moisture, often referred to as the water content within the soil, is a key component in modulating terrestrial ecosystem
dynamics, playing a crucial role in the water, energy, and biogeochemical cycles at the interface between the atmosphere and
the land surface (Seneviratne et al., 2010; Ochsner et al., 2013). In boreal forests, soil moisture has been proven to affect tree
growth (Sikstrom and Hokkd, 2016; Van Sundert et al., 2018; Larson et al., 2024), influence soil nitrogen availability and, in
turn, needle production (Nogovitcyn et al., 2023), and control the distribution of soil organic carbon stocks (Larson et al.,
2023). Modeling the soil moisture state, along with its spatial and temporal fluctuations, is essential for numerous Earth and
environmental sciences applications, such as weather forecasting (Collow et al., 2014), water resource management (Dobriyal
et al., 2012), forest fire prediction (Chaparro et al., 2016), forest soil trafficability (Schonauer et al., 2024), sustaining
ecosystem services (Vereecken et al., 2016), and monitoring ecosystem response to climate change (Jones et al., 2017). Spatial
heterogeneity in soil moisture is a key factor in providing diverse habitats, thereby promoting biodiversity (McLaughlin et al.,
2017). Temporal variations in soil moisture also influence ecosystem composition, with different species communities
depending on more stable or variable soil moisture conditions (Kemppinen et al., 2019). Modeling both components of soil
moisture variability assumes even greater significance in the context of climate change and biodiversity loss. In order to
accurately model soil moisture, however, it is first necessary to gain a comprehensive understanding of the controls on both
spatial patterns and temporal dynamics of soil moisture. Despite the considerable research in this field, most studies primarily
focused on the spatial variability of soil moisture, often neglecting temporal variations (Kopecky et al., 2021; Agren et al.,
2021; Zhao et al., 2021), restricted analysis to specific spatial resolutions or temporal scales, overlooking their effects on soil
moisture predictions (de Oliveira et al., 2021; Tyystjarvi et al., 2022; Schonauer et al., 2024), or analyzed a partial subset of
soil moisture drivers, while omitting others (Potopova et al., 2016; Ge et al., 2022; Larson et al., 2022). For mapping purposes,
it is also important to evaluate how well spatially continuous variables (e.g., gridded datasets) perform as predictors of soil
moisture compared to field measurements (Zignol et al., 2023). Identifying key predictors of both spatial and temporal soil
moisture variability — particularly those derived from remote sensing and modeled products at multiple spatial resolutions
and temporal scales — can inform and strengthen data-driven approaches, such as machine learning, by improving both their
predictive accuracy and interpretability when mapping soil moisture across space and time.

Factors influencing soil moisture spatiotemporal variability can be classified into five broad groups: topographical
features, soil properties, vegetation characteristics, land use/land cover (LULC), and meteorological forcings (Petropoulos et
al., 2013; Rasheed et al., 2022). While spatial variations in soil moisture result from the combined effect of multiple types of
drivers, most studies have focused on one or two groups (Gwak and Kim, 2017), with topography being considered the most.
Due to the ever-higher spatial resolution of digital elevation models (DEMs), such as those derived from airborne light
detection and ranging (LiDAR) measurements, researchers have increasingly relied on terrain indices to explain local
influences on soil moisture (Murphy et al., 2011; Lidberg et al., 2020; Agren et al., 2021; Kopecky et al., 2021). However,

only a few studies assessed how the spatial resolution of these indices might affect the prediction of soil moisture (Serensen
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and Seibert, 2007; Agren et al., 2014; Larson et al., 2022). Non-topographical factors usually explain at least half of the spatial
variability in soil moisture (Western et al., 1999; Baldwin et al., 2017), and should be taken into account to increase the
predictive power of terrain indices (Larson et al., 2022; Kemppinen et al., 2023). Some of these drivers include soil texture
(Krauss et al., 2010), soil depth (Tyystjarvi et al., 2022), organic matter content (Amooh and Bonsu, 2015), hydraulic
conductivity (Gwak and Kim, 2017), vegetation density (Gwak and Kim, 2017), vegetation type (Gaur and Mohanty, 2013),
snow cover (Potopova et al., 2016), tillage (Jonard et al., 2013), and grazing (Zhao et al., 2011). On the other hand, temporal
variations in soil moisture are mostly driven by meteorological variables, such as evapotranspiration and precipitation
(McMillan and Srinivasan, 2015; Stark and Fridley, 2023), but the relationship between soil moisture and its controlling factors
strongly changes depending on the temporal scale considered (Entin et al., 2000; Parent et al., 2006; Chai et al., 2020). A
comprehensive investigation of the role of topography, soil, vegetation, LULC, and meteorological variables as well as the
effect of their spatial resolution and temporal scale in explaining soil moisture variations is essential for gaining new insights
into the key factors driving soil moisture and the optimal spatial resolutions and temporal scales that should be used to predict
it.

Research has demonstrated that the relative importance of controls on soil moisture spatial distribution can also vary
with changing soil wetness conditions over time (Famiglietti et al., 1998; Western et al., 2004; Joshi and Mohanty, 2010; Mei
et al., 2018; Gao et al., 2020; Wang et al., 2023). At the catchment level, the wet state is dominated by lateral surface and
subsurface flows, which are influenced by nonlocal controls, primarily macrotopography. Conversely, the dry state is
characterized by vertical water fluxes, such as infiltration and evapotranspiration, which are influenced by local controls,
mainly soil properties and vegetation (Grayson et al., 1997; Western et al., 1999; Rosenbaum et al., 2012). In cold-climate
regions with seasonal snow cover, the relationship between topography and soil moisture is strong after snowmelt but it
weakens towards the end of the snowless season when other processes, such as evaporation and transpiration, primarily control
soil moisture patterns (Riihiméki et al., 2021; Kemppinen et al., 2023). Similar results emerged from analyses comparing
different seasons (Takagi and Lin, 2012) and years (Gaur and Mohanty, 2013), showing that topography explains more
variability in soil moisture spatial patterns during the wetter season/year, while soil characteristics play a more prominent role
during the drier season/year. However, recent research reveals a more complex relationship, where the influence of topography
on soil moisture does not necessarily diminish under dry conditions or increase in wet ones. Instead, the relative importance
of terrain metrics has been found to persist or even increase as catchments became drier (Liang et al., 2017; Kaiser and
McGlynn, 2018; Han et al., 2021), or to remain low during the wet season (Dymond et al., 2021). Further research is needed
to fully understand how the relationship between soil moisture spatial variability and its controls changes in response to
different soil wetness conditions. This information holds practical significance for predicting and mapping soil moisture not
only spatially, but also over time (e.g., Schonauer et al., 2024).

In predictive models, spatial and temporal variations in soil moisture are commonly estimated by using one of two
types of predictors: either point-scale field measurements or gridded datasets derived from remote sensing and other modeling

procedures, such as spatial interpolation and data assimilation (e.g., climate reanalyses). In situ observations are typically more
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accurate but lack spatial continuity, and field campaigns require great efforts in terms of human and financial resources,
especially when many environmental variables need to be measured. Conversely, remote sensing and modeled estimates are
spatially continuous and can cover large geographic areas, with most datasets being freely available, but they tend to be less
accurate than field measurements. Due to advancements in spatial and temporal resolutions, alongside enhanced algorithms,
remote sensing and modeled products are increasingly being employed to predict spatiotemporal variability in soil moisture,
gradually replacing, in most instances, in situ observations. While field measurements have been widely used for validation
purposes, only a limited number of studies have explicitly compared these two kinds of datasets regarding their predictive
capabilities (e.g., Kaspar et al., 2021; Zignol et al., 2023). Remote sensing and modeled gridded predictors have the potential
to be used to develop dynamic soil moisture maps over extensive areas, but their predictive performance should be assessed
in relation to analogous variables collected in the field.

In this study, we investigated the climatic and environmental factors that determined spatial patterns and temporal
dynamics of surface soil moisture measured using 78 dataloggers during three snow-free months in 2022 across a
heterogeneous boreal forest landscape in northern Sweden. By taking advantage of extensive field measurements available for
the well-studied Krycklan catchment (Laudon et al., 2013, 2021), we were able to analyze a broad range of soil moisture
predictors and compare their predictive performance with those of analogous variables obtained from remote sensing or
modeled datasets. We tested the hypotheses that the spatial resolution of gridded predictors influences the ability to predict
spatial variations in soil moisture, and that meteorological conditions preceding the logger recordings are key to predict its
temporal variations. Additionally, we examined whether the relative importance of predictors in explaining spatial variability
in soil moisture changes in response to different wetness conditions throughout the study season. With the ultimate purpose of
providing insights into data-driven modeling of soil moisture across time and space, we identified four specific aims: (i) to
assess how different variables at varying spatial resolutions affect the prediction of soil moisture spatial variability, (ii) to
evaluate the relative contribution of numerous meteorological variables at multiple temporal scales in predicting soil moisture
temporal variability, (iii) to investigate how varying soil wetness conditions over time impact the ability to explain spatial
variations in soil moisture, and (iv) to compare the predictive performance of field measurements versus remote sensing and

modeled estimates.

2 Material and methods
2.1 Study area

The Krycklan catchment covers an area of about 68 km? in northern Sweden (Fig. 1), with elevations ranging between 127 and
372 ma. s. 1. (Fig. S1b) (Larson et al., 2022). Soils, lying on a poorly weathered gneiss bedrock, consist primarily of unsorted
glacial till (51%) at higher altitudes and postglacial sorted sediments of sand and silt (30%) at lower altitudes (Fig. Sla)
(Laudon et al., 2013). In the northern part of the catchment, peat has built up in areas with low topographic relief, typically
forming oligotrophic minerogenic mires (8.7%) (Figs. Sla and S1d) (Laudon et al., 2021). The landscape is predominantly
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forested (87.5%) (Figs. Slc and S1d), with Scots pine (Pinus sylvestris) and Norway spruce (Picea abies) as the main tree
species (63% and 26%, respectively), and an understory of bilberry (Vaccinium myrtillus) and cowberry (Vaccinium vitis-
idaea) on moss mats of Hylocomium splendens and Pleurozium schreberi (Laudon et al., 2013). The remaining coverage
includes arable land (2.0%), open land (0.9%), lakes (0.8%), and a small fraction of urban land (0.03%) (Fig. S1d)
(Lantmateriet, 2023). The area is characterized by a cold temperate humid climate, with a mean annual temperature of 2.1°C
and a total annual precipitation of 619 mm, of which over 30% falls as snow (Larson et al., 2022). Approximately 25% of the
forested area has been protected since 1922, while the remaining majority consists of second-growth managed forest. Forestry
practices have shifted over time, from selective cutting prior to the 1940s to predominantly rotation forestry characterized by
clear-cutting and subsequent conifer planting, resulting in a heterogeneous landscape with varying stand ages and species
compositions (Laudon et al., 2021).

Since the 1980s, the Krycklan catchment has supported research on ecosystem dynamics and forest management with
high-quality, long-term climatic, biogeochemical, hydrological, and environmental measurements, making it a unique field
infrastructure in boreal forest landscapes (Laudon et al., 2013). It features 11 gauged streams, around 1000 soil lysimeters, 150
groundwater wells, over 500 permanent forest inventory plots, 3 automatic weather stations (Fig. 1), and a 150 m tall ICOS
(Integrated Carbon Observation System) tower (Fig. 1) for measuring atmospheric gas concentrations and biosphere—
atmosphere exchanges of carbon, water, and energy (Laudon et al., 2021). Additionally, high-resolution multi-spectral LIDAR

measurements and large-scale experiments have been conducted in the Krycklan catchment over the past decade.
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Figure 1. Overview of the Krycklan catchment showing the locations of the 78 soil moisture monitoring plots, the three automatic weather
stations, and the ICOS tower, with the ERAS-Land grid superimposed. Orthophoto and water network: Lantmateriet (2021).

2.2 Meteorological and environmental data

The extensive field inventory for the Krycklan catchment, combined with remote sensing and modeled data (e.g., from spatial
interpolation and data assimilation), enabled us to evaluate a wide range of meteorological and environmental variables as

potential predictors of soil moisture, the response variable in our study. We classified predictors into two groups: “spatial”
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predictors, which were assumed to be temporally static during the study season but varied spatially, and were used to explain
the spatial variability in soil moisture (Table 1); and “temporal” predictors, which varied temporally but not spatially across

the study area, and were used to explain the temporal variability in soil moisture (Table 2).

2.2.1 Response variable: soil moisture

To measure soil moisture, we selected a subset of 78 plots (Fig. 1) from a forest survey grid established in 2014 (Larson et al.,
2023). This grid consists of 500 equally spaced plots (350 m apart), each of 10 m radius, covering the entire Krycklan
catchment. Plot selection was informed by previous research (Larson et al., 2022), which classified most of the 500 plots into
five soil moisture classes based on the Swedish National Forest Inventory (NFI) protocol. Our aim was to capture the full range
and distribution of soil moisture conditions — from dry ridges to wet peatlands — observed across the Swedish forest
landscape (see Fig. 3 in Agren et al., 2021). To achieve this, approximately half of the selected plots were located in the central
part of the catchment (Fig. 1), characterized by a highly heterogeneous landscape with diverse soil moisture conditions (Fig.
S1). The remaining loggers were distributed throughout the catchment to ensure adequate spatial coverage while maintaining
accessibility.

At each site, we measured soil moisture content of the upper 14 cm of soil at a 15 min resolution using a TOMST
TMS logger (Wild et al., 2019). We installed the loggers in June/July 2022 and we downloaded the data in October 2022,
covering 92 days for all sites (from July 5 to October 4). Because the sensor in the TMS logger relies on the time domain
transmission method (Wild et al., 2019), we converted the raw signals into volumetric water content using the universal
calibration equation presented in Kopecky et al. (2021). We also evaluated the soil-specific conversion functions proposed by
Wild et al. (2019), but we found that some of the resulting volumetric water content values were nonsensical (e.g., <0% and
>100%), particularly in mires. Consistent with findings from other studies in similar landscapes (e.g., Kemppinen et al., 2023),
we concluded that these conversion functions were unsuitable for the soil types in Krycklan, specifically peat soils. Because
the conversion did not alter the relative order among sites, we eventually adopted the universal curve for all plots, which
produced a more realistic range of volumetric water content values.

We plotted each individual time series and conducted a thorough visual inspection to identify any anomalies. We
checked for sudden drops in soil moisture that quickly reversed, as these often indicate potential loss of contact between sensor
and soil. We carefully removed potentially erroneous data to ensure the reliability of our dataset. From the 15 min time series
of volumetric water content, we calculated the mean daily time series for each plot, which served as the response variables in
study aim (iii) (Table 3). We then aggregated these data to generate two additional datasets: the seasonal average of mean daily
values for each plot and the spatially averaged mean daily time series across all sites, used as the response variables in study
aims (i) and (ii), respectively (Table 3). For simplicity, when referring to our analysis, we use the term “soil moisture” in lieu

of “volumetric water content at a depth of 0—14 cm”.
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2.2.2 Spatial predictors: soil, topography, vegetation, and land use/land cover

In addition to monitoring soil moisture, we collected a vast array of environmental variables for each of the 78 plots (Fig. 1
and Table 1). Field variables were selected from the Krycklan inventory or during our field campaigns, whereas non-field
variables were extracted from existing vector and raster maps, LIDAR-derived topographic indices, and other remote sensing
products. In the case of topographic indices and the normalized difference vegetation index (NDVI), we extracted plot values
from layers at different spatial resolutions (0.5, 1, 2, 4, 8, 16, 32, and 64 m for the topographic indices and 0.4, 2, and 30 m for
NDVI) to assess how varying spatial resolutions explained soil moisture spatial variability. We also tested the effect of different
user-defined thresholds, specifically two vertical distances (2 and 4 m) for the downslope index and six stream initiation
thresholds (1, 2, 4, 8, 16, and 32 ha) for depth to water and elevation above stream. To facilitate the visualization and
interpretation of the results, all predictors were subdivided into four groups, namely soil, topography, vegetation, and land
use/land cover (LULC), and 18 color-coded categories (Table 1). Categories encompass analogous variables from distinct
sources (e.g., land cover), diverse measures of a common feature (e.g., forest structure), the same variable at different spatial
resolutions and/or user-defined thresholds (e.g., depth to water), or a combination of these cases. Note that classes of qualitative
variables were treated as independent predictors in this analysis (e.g., soil survey). Table 1 lists all the spatial predictors
evaluated in this study. A detailed description of each can be found in the Supplement.

Table 1. All predictors of soil moisture spatial variability evaluated in this study. The 48 predictors are subdivided into four groups and 18
color-coded categories, listed in alphabetical order within each group and category based on the abbreviation code (“Abbr.” column). The
table also displays the data source (field, non-field raster (N-field r), non-field vector (N-field v)), data type (qualitative (QI) vs. quantitative
(Qn)), and references. Each class of the qualitative variables is considered as a distinct predictor in the analysis. The number of layers of the
topographic and vegetation indices is reported in parenthesis after the predictor name, and it depends on: ! the spatial resolutions (0.5, 1, 2,
4, 8, 16, 32, and 64 m for the topographic indices and 0.4, 2, and 30 m for NDVI); 2 the stream initiation thresholds (1, 2, 4, 8, 16, and 32 ha
for depth to water and elevation above stream); and 3 the vertical distances (2 and 4 m for the downslope index). An asterisk denotes the 22
most relevant soil moisture predictors, which are displayed in Fig. 3. The 26 remaining predictors (without asterisk) are shown in Fig. S2.
The Supplement provides a detailed description of each variable listed in this table.

Group Category Name (number of layers) Abbr. Source  Type Reference
B Organic soil Organic layer thickness * olt Field Qn  Zignol et al. (2025)
Soil depth SGU soil depth map sd-sgu N-fieldr Qn  SGU (2024a)
B Soil moisture Soil moisture survey * sms Field Qn  Zignol et al. (2025)
loamy sand * ss-losa
peat * ss-pt
Soil survey sand ss-sa Field Ql Zignol et al. (2025)
Soil sandy loam ss-salo
silt loam ss-silo
B Soil type clay to silt st-cs
glacifluvial sediment st-gfs
ostglacial sand st-ps
gigs(iiﬁ;)mary iostzlacial sand to gravel st—Esg Nefield v Ql SGU (2024b)
peat * st-pt

till st-till




Group Category Name (number of layers) Abbr. Source  Type Reference

B Depth to water Depth to water (48) * dtw?-! Lidberg et al. (2020)
Diffuse solar radiation Diffuse solar radiation (8) dfr- )
Zignol et al. (2025)
Direct solar radiation Direct solar radiation (8) * drr-!
B Downslope index Downslope index (16) * diz-!
Elevation above stream Elevation above stream (48) * eas?-! N-fieldr Qn
Topography M Landscape wetness Index Landscape wetness index (8) * wilt-!
P Lidberg et al. (2020)
Plan curvature Plan curvature (8) * plc-!
Relative topographic position Relative topographic position (8) * rtp-!
B Topographic wetness index ~ Topographic wetness index (8) * twi-!
SLU soil moisture map * sm-slu SLU (2021)
Topography-based map ) ) . ) N-fieldr Qn
Soil moisture index map * smi Naturvardsverket (2022)
Biomass above ground bio Field Qn  Zignol et al. (2025)
SLU forest biomass map bio-slu Qn  SLU (2010)
N-field r iteri
B Forest productivity Normalized difference vegetation index (3) * ndvi-! Qn 5%%21?512)(2021)’
Site index by site factors * sis . .
. Field Qn  Zignol et al. (2025)
Stem density stm
Volume of birch species bir Field Zignol et al. (2025)
SLU birch map bir-slu N-field r SLU (2010)
Volume of pine species * pi Field Zignol et al. (2025)
. Species composition . ) Qn
Vegetation SLU pine map pi-slu N-field r SLU (2010)
Volume of spruce species spr Field Zignol et al. (2025)
SLU spruce map spr-slu ~ N-field r SLU (2010)
Canopy openness co
Basal area weighted mean diameter dgv Field Zignol et al. (2025)
Basal area weighted mean height hgv
M Forest structure . . Qn
SLU basal area weighted mean height map hgv-slu  N-field r SLU (2010)
Volume of all tree species vol Field Zignol et al. (2025)
SLU forest volume map vol-slu  N-fieldr SLU (2010)
Land map — clearcut Im-cut Skogsstyrelsen (2024)
Land map — forest * Im-for N-fieldv Ql )
Lantmiteriet (2023)
Land map — peatland * Im-ptl
LULC Land use/land cover
Land survey — clearcut Is-cut
Land survey — forest * Is-for Field Ql Zignol et al. (2025)
Land survey — peatland * Is-ptl

210 2.2.3 Temporal predictors: meteorological forcings

For the temporal analysis, we selected meteorological variables (Table 2) from three datasets, including reanalysis data from
the land component of the European Centre for Medium-Range Weather Forecasts (ECMWF) Atmospheric Reanalysis Fifth
Generation (ERA5-Land) (Mufioz-Sabater, 2019; Muifioz-Sabater et al., 2021), atmospheric data from the ICOS tower (Peichl
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et al., 2024), and three automatic weather stations (Svartberget Research Station, 2022a, b, ¢). For each variable, we generated
a single daily time series from July 5 to October 4, 2022, for the entire catchment by calculating the spatial average between
either the three weather stations or the six ERAS5-Land cells covering the Krycklan area (Fig. 1). To evaluate how varying
temporal scales explained temporal variability of soil moisture, we created seven additional time series for each variable based
on different temporal scales, including the preceding day and the average between 3, 5, 7, 10, 14, and 21 preceding days. All
predictors were subdivided into 12 color-coded categories to facilitate the visualization of the results. These categories group
together analogous variables from distinct sources (e.g., precipitation), any variable measured at different depths (e.g., soil
water) or heights (air temperature), diverse aspects of the same process (e.g., evaporation), or a combination of these cases.
Table 1 lists all the temporal predictors analyzed in this study, with a detailed description of each provided in the Supplement.

Table 2. All predictors of soil moisture temporal variability assessed in this study. The 60 predictors are subdivided into 12 color-coded
categories, listed in alphabetical order within each category based on the abbreviation code (“Abbr.” column). The table also indicates the
unit of measurement, the dataset (ERAS5-Land, ICOS tower, or weather stations), and data source (field vs. non-field (N-field)). Whenever
possible, either the sensor height (field data) or the height of the estimated values (ERA5-Land) is reported in parenthesis after the predictor
name. An asterisk denotes the 25 most relevant predictors, which are displayed in Fig. 4. The 35 remaining predictors (without asterisk) are
shown in Fig. S3. The Supplement provides a detailed description of each variable listed in this table.

Category Name (height of sensor or estimated values) Abbr. Unit Dataset Source
2 m dewpoint temperature (2 m) d2m
Skin temperature (0 m) skt ERAS5-Land N-field
2 m temperature (2 m) 2m
Air temperature (1.7 m) ta Weather stations
Air temperature ) °C
Air temperature level 1 (42 m) tal
Air temperature level 2 (30 m) ta2 Field
) ICOS tower
Air temperature level 3 (20 m) ta3
Air temperature level 4 (10 m) ta4
Air relative humidity (32.5 m) * rh % ICOS tower Field
B Air water
Skin reservoir content * src mm ERAS5-Land N-field
Total evaporation e
Evaporation from bare soil ebs
Evaporation Potential evaporation * ep mm, accumulated ERAS5-Land N-field
Evaporation from the top of canopy * etc
Evaporation from vegetation transpiration * evt
Soil heat flux level 1 (0 cm) shl
. W/m? ICOS tower Field
M Heat Soil heat flux level 2 (5 cm) sh2
Surface sensible heat flux (0 m) * shf  J/m?, accumulated ERAS5-Land N-field
Total precipitation * p ERAS5-Land N-field
B Precipitation mm, accumulated
Total precipitation (1.5 m) * pr Weather stations Field
Air pressure (1.7 m) * pa Weather stations Field
Surface pressure (0 m) * sp ERAS-Land N-field
B Pressure hPa 4
Vapor pressure (1.7 m) vp Weather stations Field
ie
Vapor pressure deficit (32.5 m) * vpd ICOS tower

10



Category Name (height of sensor or estimated values) Abbr. Unit Dataset Source

Forecast albedo fal dimensionless, 0—1 ERAS-Land N-field
Long wave incoming radiation (50 m) * lwi
) o W/m? ICOS tower Field
Long wave outgoing radiation (50 m) Iwo
Surface net solar radiation (0 m) nsr
Radiation J/m?, accumulated ERAS5-Land N-field
Surface net thermal radiation (0 m) * ntr
Short wave incoming radiation (50 m) * swi
) o W/m? ICOS tower Field
Short wave outgoing radiation (50 m) * SWO
Surface thermal radiation downwards (0 m) * trd J/m?, accumulated ERAS5-Land N-field
Runoff o
B Runoff Surface runoff (0 m) * sr mm, accumulated ERAS5-Land N-field
Sub-surface runoff ssr
Soil temperature level 1 (0—7 cm below surface) stl
Soil temperature level 2 (7-28 cm below surface) st2
) ERAS-Land N-field
Soil temperature level 3 (28—100 cm below surface) * st3
Soil temperature level 4 (100-289 cm below surface) st4
Soil temperature ) °C
Soil temperature level 1 (-10 cm) tsl
Weather stations
Soil temperature level 2 (-20 cm) ts2
Field
Soil temperature level 3 (-30 cm) * ts3
. ICOS tower
Soil temperature level 4 (-50 cm) ts4
Soil water content level 1 (-2.5 cm) * sml
Soil water content level 2 (-5 cm) sm2
ICOS tower Field
Soil water content level 3 (-10 cm) sm3
Soil water content level 4 (-30 cm) sm4
Soil water o %
Volumetric soil water level 1 (0—7 cm below surface) * swl
Volumetric soil water level 2 (7-28 cm below surface) sw2
ERAS5-Land N-field
Volumetric soil water level 3 (28—100 cm below surface) sw3
Volumetric soil water level 4 (100-289 cm below surface) sw4
Leaf area index, high vegetation lai m?/m? ERAS-Land N-field
Photosynthetic photon flux density below canopy incoming (1.15 m) pbc
B Vegetation Photosynthetic photon flux density diffuse (50 m) pd
. o . . umolPhotons/m*/s ICOS tower Field
Photosynthetic photon flux density incoming (50 m) * pi
Photosynthetic photon flux density outgoing (50 m) * po
10 m u-component of wind * ul0
m/s ERAS5-Land N-field
10 m v-component of wind v10
Wind . . .
Wind direction respect to geographic north (34.5 m) wd  degrees N
ICOS tower Field
Wind speed (34.5 m) * WS m/s

2.3 Statistical model

230 To identify significant predictors of soil moisture, we used orthogonal projections to latent structures (OPLS) analysis, an

enhanced version of partial least-squares regression (PLS) (Eriksson et al., 2013). OPLS separates the systematic variation in
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the predictors (X) into two parts: a predictive component (horizontal axis) that is directly associated with the response variable
of interest (Y) and an orthogonal component (vertical axis) that represents the variation unrelated to Y. This method improves
interpretability over ordinary PLS as it allows for identifying key variables for predicting Y while isolating less important
variables that contain noise. OPLS is particularly well suited for high-dimensional datasets, as it effectively handles
multicollinearity among predictors and reduces the risk of overfitting. In this two-dimensional space, positive or negative
loadings on the predictive axis denote variables that are positively or negatively correlated with Y, with stronger correlations
as distance from the origin increases. Conversely, loadings on the orthogonal axis, farther from the origin, indicate less
correlated variables (i.e., higher noise). In our study, we used soil moisture measurements from dataloggers as the response
variable (Y).

We created two types of OPLS models (Table 3). The first type, termed “spatial” OPLS, assessed the role of
environmental predictors (soil, topography, vegetation, and LULC) (Table 1) in explaining the observed spatial distribution in
soil moisture through direct plot-by-plot comparison. In these models, all environmental predictors varied across Krycklan but
were assumed constant over time. Similarly, the response variable was spatially heterogeneous, but only one time step was
included in each model. Specifically, to evaluate the relative importance of environmental predictors (aim (1)), we considered
the soil moisture seasonal average, whereas to assess how the contribution of these predictors changed over time (aim (iii)),
we ran the OPLS model 92 times using soil moisture daily values as the response variable (Table 3). The second type, termed
“temporal” OPLS, evaluated the influence of meteorological predictors (Table 2) on the observed daily variations in soil
moisture through direct day-by-day comparison (aim (ii)). In this model, all meteorological predictors and the response variable
changed daily but were considered uniform across the study area (i.e., we calculated the spatial average) (Table 3).

To evaluate the predictive performance of field versus non-field data (aim (iv)), we ran both the spatial and temporal
OPLS models using three different subsets of predictors: (1) only remote sensing and modeled estimates, including gridded
and vector datasets such as topographic and vegetation indices and metrics, soil and LULC vector maps, and ERAS5-Land time
series; (2) only field measurements from surveys or permanent stations (i.e., weather stations and ICOS tower); and (3) a
combination of all predictors. To assess the predictive performance of the overall OPLS models, we considered R?Y(cum),
which represents the cumulative variation in the response variable (i.e., soil moisture) explained by the three subsets of
predictors.

To estimate the predictive performance of each variable, we also calculated the variable importance on projection for
the predictive component (VIPpredicive) for the 94 OPLS models based on all predictors (Table 3). These values are normalized
such that if each X variable contributed equally to the model, their VIPyregiciive would be 1. Variables with a VIPpredictive Value
greater than 1 are considered relevant predictors, with higher scores indicating greater predictive power (Eriksson et al., 2013).
We used this metric and threshold to distinguish relevant soil moisture predictors, presented in Figs. 3 and 4, from less
important ones, included in the Supplement (Figs. S2 and S3). We processed all the data in R version 4.3.0 (R Core Team,
2023), we generated all OPLS models and calculated the related VIPprediciive Scores in SIMCA 17.0, and we drew all the figures
using the R ggplot2 package (Wickham, 2016), ArcGIS Pro (Esri Inc., 2023), and Adobe Illustrator (Adobe Inc., 2024).
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Table 3. All OPLS models developed in this study.

Aim Model type Predictors (X)  Predictors’ characteristics Predictors’ subsets Response variable (Y) # of models Figure

Soil 3 (all, only remote sensing

. Spatial Topography Different spatial resolutions . Seasonal average of mean _
@ OPLS Vegetation and user-defined thresholds and modeled estimates, daily values for each plot =3 3
LULC only field data)
. 3 (all, only remote sensing ~ Spatially averaged mean
(ii) ge;)?goral lf\(/f:cticl)rgloglcal Different temporal scales and modeled estimates, daily time series across all 3x1=3 4
g only field data) sites
Soil . .
. . . . 3 (all, only remote sensing Mean daily value of any day
(1ii) ?};’a{l;l €sztgar :ilggy gsﬁiﬁsgg:ﬁ;ﬁiﬁsﬁggs and modeled estimates, within the season for each 3x92=276 5
LUgLC only field data) plot
3 Results

3.1 Observed spatial and temporal variability in soil moisture

Analysis of the logger data revealed large spatial variability in both seasonal averages and seasonal standard deviations of soil
moisture, ranging from 14% to 56% (~60% = fully saturated) and 0.4% to 5.6%, respectively (Fig. 2a). Among the 78 sites
studied, 14 exhibited an increasing trend in soil moisture over the season, seven a decreasing trend, and the remaining 57 no
trend, based on the non-parametric Mann-Kendall test (Mann, 1945; Kendall, 1975) at 95% confidence level (Fig. 2bc). The
magnitude of soil moisture change over the entire study period, indicated by the trend Theil-Sen’s slope (Sen, 1968), varied
between -8.4% and 10% (Fig. 2b, Table S1), whereas the strength of the monotonic association between soil moisture and
time, as measured by Kendall’s correlation coefficient (1), ranged from -0.58 to +0.57 (Table S1). Daily peaks in soil moisture
were typically associated with major precipitation events, although the magnitude of these peaks and subsequent declines
during dry periods varied considerably across locations (Fig. 2c). Conversely, the daily spatial variability (i.e., standard
deviation) in soil moisture (black line) exhibited a sharp decline during precipitation events (especially in August and
September), followed by a steady increase leading up to peaks at the culmination of subsequent dry periods (bottom part of
Fig. 2¢). The soil moisture time series from ERAS-Land (brown lines) closely tracked the temporal variability of the sites
mean (red line), but underestimated daily soil moisture amounts averaged across all sites (Fig. 2¢). Overall, Fig. 2 showed that
the 78 sites responded differently to similar weather conditions, and that the spatial variability in soil moisture among all sites

is much larger than the temporal variability in soil moisture observed throughout the study season.
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Figure 2. Spatial and temporal variation of daily mean soil moisture (i.e., volumetric water content) measured by 78 loggers across the
Krycklan catchment from July 5 to October 4, 2022. (a) Displays the seasonal average and standard deviation of the measurements. (b)
Shows seasonal trends identified using the Mann-Kendall test at a 95% confidence interval. (c) Presents the time series plot, with logger data
grouped by color according to trend type. The graphic includes additional data for comparison: estimates from six ERAS5-Land cells covering
the catchment (brown lines), spatial mean (red line) and standard deviation (black line) among sites, and mean precipitation across Krycklan
derived from weather stations (bottom bar plot). For clarity, refer to Fig. 1 for the locations of the ERAS5-Land cells and weather stations.
Orthophoto in panels (a) and (b): Lantmateriet (2021).

3.2 Controls on soil moisture variability

OPLS plots served as a means to visualize in two dimensions the relative importance of factors controlling soil moisture
variability, with loadings located closer to the horizontal axis (i.e., lower noise) and farther from the vertical axis (i.e., higher
predictive power) indicating the most relevant predictors. Variables on the right side of the plot are positively correlated to
soil moisture, while those on the left side are negatively correlated. Remote sensing and modeled estimates are represented by
circles (raster datasets) or rhombuses (vector datasets), whereas field measurements are displayed as triangles. The size of the
symbols is proportional to either the spatial resolution or the temporal scale of the potential soil moisture predictors. Variables
are grouped together into color-coded categories to facilitate the reading of the OPLS plots. When multiple spatial resolutions
or temporal scales were investigated for a certain variable, its loadings were connected through guides transitioning from high
to low resolution or scale, and only the optimal resolution or scale was labelled. The upcoming two sections will focus on
outlining the key features of the spatial OPLS plot (Figs. 3 and S2) and the temporal OPLS plot (Figs. 4 and S3), respectively.
Due to the large amount of variables analyzed in this study, Figs. 3 and 4 only present the most relevant predictors (VIPpredictive
greater than 1, marked by an asterisk in Tables 1 and 2), whereas all remaining variables are included in the Supplement (Figs.

S2 and S3).

3.2.1 Spatial variation

Relative topographic position emerged as the strongest predictor of soil moisture at a 16 m resolution (rtp-16), but its predictive
performance decreased at lower and higher resolutions (Fig. 3). Similar to relative topographic position, depth to water and
elevation above stream were negatively correlated with soil moisture, with loadings clustered in the bottom-left quadrant (Figs.
3 and S2). These two indices showed reduced performance and increased noise for higher stream initiation thresholds (Fig.
S2). However, while coarse resolution (64 m) was optimal for elevation above stream, high resolution (0.5 or 1 m) was
preferable for depth to water (Fig. S2), with eas1-64 and dtw1-05 overall performing best (Fig. 3). In the top-right quadrant
(i.e., positively correlated), topographic wetness index and landscape wetness index were good predictors of soil moisture at
their optimal resolutions of 32 m (twi-32) and 4 m (wilt-4), respectively (Fig. 3). At these resolutions, they performed
comparably to the soil moisture index map (smi) and the SLU soil moisture map (sm-slu), with the last one exhibiting slightly
higher performance (Fig. 3). Downslope index and plan curvature at their optimal vertical distance and/or spatial resolution

(di2-32 and plc-32), also positively correlated with soil moisture, showed slightly lower predictive power but introduced less
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noise (loadings closer to the origin) (Fig. 3). Direct solar radiation was only relevant at a course resolution (drr-64) (Fig. 3),
while diffuse solar radiation was a less important predictor (Fig. S2).

As for soil, three field variables — peat soil class (ss-pt), soil moisture classes (sms), and organic layer thickness (olt)
— were robust predictors, showing a positive correlation with soil moisture and low noise (Fig. 3). The peat class from the
SGU soil type map (st-pt) was also positively correlated, yet it explained less variability than the analogous field predictor
(i.e., ss-pt). Both peatland (positively correlated) and forest (negatively correlated) LULC classes similarly revealed that the
data collected in the field (Is-ptl and Is-for, respectively) provided slightly better results than using information from an existing
map (Im-ptl and Im-for, respectively). Finally, the loamy sand class from the soil survey (ss-losa) was, to a lesser extent, an
important predictor, negatively correlated with soil moisture. The remaining soil and LULC variables, whether derived from
field observations or existing maps, performed poorly in predicting soil moisture (Fig. S2).

Among the vegetation-related variables, volume of pine (pi) showed the highest predictive performance, followed by
the normalized difference vegetation index at 2 m resolution (ndvi-2), and the site index by site factors (sis), with pi and sis
being negatively correlated with soil moisture whereas ndvi-2 being positively correlated (Fig. 3). While ndvi-2 and pi slightly
outperformed, in terms of predictive power, analogous predictors at courser spatial resolutions (ndvi-30 and pi-slu,
respectively), they also introduced more noise (Figs. 3 and S2). The remaining vegetation variables exhibited low predictive

performance or high noise, which made them less suitable as soil moisture predictors (Fig. S2).
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Figure 3. OPLS loading plot showing the relationship between a large array of “spatial” predictors, which vary spatially but remain constant
over time, and the mean seasonal soil moisture (July 5 — October 4, 2022). Both the spatial predictors (X-variables) and the determinant (Y-
variable) were gathered for 78 sites across the Krycklan catchment (Fig. 1 for the site locations). The spatial predictors, overall describing
soil, topography, vegetation, and land use/land cover at each site (grey dotted boxes in the figure legend) were either directly measured in
situ (symbolized by triangles) or estimated through remote sensing or modeling techniques (depicted as circles or thombuses depending on
the dataset format). These predictors were organized into 18 color-coded categories (see Table 1; here only 15 are shown) to enhance plot
readability. Gridded (i.e., raster) predictors are characterized by a certain spatial resolution (expressed in m, representing the length of the
grid cell side), which is proportional to the size of the circles. To visualize the effects of spatial resolution, guides connect loadings of the
same variable moving from high to low resolutions, with the variable name visible only in correspondence of the optimal resolution (refer
to Table 1 for variable labels). High positive and negative loadings on the predictive axis (pq[1]) represent variables that are positively and
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negatively correlated with the response variable (Y), with stronger correlation further away from the origin. The orthogonal axis (poso[1])
indicates how much of the variation for each variable was not correlated with the response variable (Y). This figure only shows the 22 most
relevant predictors (VIPpredictive greater than 1, marked by an asterisk in Tablel). If multiple user-defined thresholds were tested for a certain
topographic index (i.e., depth to water, downslope index, and elevation above stream), the plot displays only the best-performing one. All
26 remaining variables are included in Fig. S2.

3.2.2 Temporal variation

Soil moisture estimates from ERA5-Land and ICOS measurements were understandably the two best predictors of the spatially
averaged time series of soil moisture recorded at the 78 study plots (Fig. 4). Their predictive performance was highest when
selecting the top soil layer and matching the temporal scale with the response variable (sw1-0 and sm1-0). Most loadings of
these two predictors were positively correlated with the determinant (Y), though the strength of the correlation generally
decreased and noise increased with longer temporal scales and deeper soil layers (Fig. S3).

The temporal OPLS analysis revealed that the optimal temporal scale for most predictors ranged between 5 and 7
days preceding the datalogger recordings, with predictive performance decreasing for both shorter and longer temporal scales
(Fig. 4). Skin reservoir content, which accounts for the water in the vegetation canopy and in a thin layer on top of the soil, at
the 7-day scale (src-7), emerged as a strong predictor, positively correlated with soil moisture and associated with minimal
noise. Surface air pressure at the 7-day scale (sp-7 and pa-7) was also a robust predictor, showing an inverse correlation with
soil moisture. Evaporation from the top of canopy at the 5-day scale (etc-5) lay in the vicinity, yet towards higher noise and
lower predictive values.

The remaining variables explaining the temporal variability in soil moisture clustered into three distinct areas (Fig.
4). In the right side of the OPLS plot, therefore indicating a positive relationship with soil moisture, two clusters stood out: air
relative humidity (rh-7), surface net thermal radiation (ntr-7), surface sensible heat flux (shf-3), evaporation from vegetation
transpiration (evt-7), and potential evaporation (ep-5) in the top quadrant; precipitation (pr-7 and p-5), surface runoff (sr-5),
long-wave (i.e., thermal) incoming radiation (Iwi-5 and trd-5), and wind speed (ws-5) in the bottom quadrant. The third cluster,
located in the bottom-left quadrant, consisted of predictors negatively correlated with soil moisture, including incoming and
outgoing short wave radiation (swo-5 and swi-5), incoming and outgoing photosynthetic photon flux density (po-5 and pi-5),
vapor pressure deficit (vpd-7), 10 m u-component of wind (ul0-5), and soil temperature (ts3-21 and st3-21). All air temperature

variables, along with other less relevant predictors of soil moisture, are showed in the Supplement (Fig. S3).
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Figure 4. OPLS loading plot illustrating the relationship between a large array of “temporal” predictors, which do not vary spatially but
change over time, and daily mean soil moisture (i.e., volumetric water content) averaged across 78 sites within the Krycklan catchment (refer
to Fig. 1 for the site locations). Both the temporal predictors (X-variables) and the determinant (Y-variable) were aggregated at the daily
temporal scale from July 5 to October 4, 2022. The temporal predictors were either directly measured at the ICOS tower or at weather
stations within Krycklan (symbolized by triangles) or extracted from the ERAS-Land dataset (depicted as circles). These predictors were
organized into 12 color-coded categories (see Table 2; here only 11 are shown) to enhance plot readability. All predictors are characterized
by a certain temporal scale, represented by the size of the triangles or circles. To visualize the effects of temporal scale, guides connect
loadings of the same variable moving from high to low scales, with the variable name visible only in correspondence of the optimal scale
(refer to Table 2 for variable labels). High positive and negative loadings on the predictive axis (pq[1]) represent variables that are positively
and negatively correlated with the response variable (Y), with stronger correlation further away from the origin. The orthogonal axis
(poso[1]) indicates how much of the variation for each variable was not correlated with the response variable (Y). This figure only shows
the 25 most relevant predictors (VIPpredictive greater than 1, marked by an asterisk in Table2), but the 35 remaining predictors are included in
the Fig. S3.
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3.3 Spatial soil moisture variability under different wetness conditions

The relative importance of predictors in influencing spatial soil moisture variability remained relatively consistent over the
study period in the Krycklan catchment, with their VIPpegiciive Values showing little variation throughout the season (Figs. 5
and S4). The SLU soil moisture map (sm-slu) exhibited the smallest variation among all predictors (seasonal standard deviation
of VIPprediciive: 0.03) (Fig. 5). In contrast, two vegetation-related variables and direct solar radiation (ndvi-2, pi, and ddr-64)
showed the largest variation (seasonal standard deviation of VIPprdicive: 0.09), reflecting generally better performances in the
first half of the season (especially at the turn of July and August) compared to the second half (Figs. 5).

Most predictors experienced abrupt drops in VIPprdicive during intense and/or multi-day precipitation occurrences
(e.g., September 16) (Fig. 5), when the soil moisture variability across all 78 sites was also at its lowest (bottom graphic in
Fig. 2¢). However, some topographic indices (dtw1-05, eas1-64, and, to a lesser degree, plc-32 and rpt-16) showed increasing
predictive power after the beginning of a precipitation event (e.g., July 15 or September 15) (Fig. 5). During drying periods
(e.g., between late August and almost mid-September), the VIPpredgiciive Values of the majority of predictors tended to steadily
and slowly decrease, except for three notable exceptions: the loamy sand soil class (ss-losa), the site index by site factors (sis),

and the downslope index (di2-32).
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Figure 5. VIPpredictive values of 92 spatial OPLS models generated using mean daily soil moisture over the study season (July 5 — October 4,
2022) as the response variable (Y). The lower section of the figure displays the mean precipitation across Krycklan derived from weather
stations (refer to Fig. 1 for their locations). The spatial predictors, overall describing soil, topography, vegetation, and land use/land cover at
each site (grey dotted boxes in the figure legend), were organized into 18 color-coded categories (see Table 1; here only 14 are shown) to
enhance plot readability. Color-coded labels on the right side of the figure are ordered according to their VIPpredictive on the last day of the
study season (October 4, 2022). To avoid clutter and highlight the key findings, only a subset of predictors is presented, but a graphic with
all 22 relevant predictors (VIPpredictive greater than 1) displayed in Fig. 3 is included in Fig. S4.

3.4 Field measurements compared to remote sensing and modeled estimates

Field measurements generally outperformed remote sensing and modeled data by approximately 6% in both spatial and
temporal OPLS models, with the combination of all predictors yielding the highest performance (Fig. 6a). In the temporal
OPLS models, more variance in soil moisture dynamics was explained by data from the ICOS tower and weather stations
(R?Y(cum) = 0.96) compared to ERA5-Land estimates (R*Y(cum) = 0.90). A similar pattern emerged in the spatial OPLS
models, where soil, vegetation, and LULC data collected in the field (R*Y(cum) = 0.51) better explained spatial variability in
seasonal soil moisture than topographic indices and existing soil, vegetation, and LULC maps (R?Y(cum) = 0.45).

In the spatial OPLS daily models (Fig. 6b), these two subsets of predictors showed the same relative ranking, with
field measurements (green line) outperforming remote sensing and modeled estimates (blue line) throughout the season.
However, they responded differently to changing wetness conditions. This was most evident between late August and mid-
September, a period marked by 24 nearly rain-free days followed by five days of persistent precipitation. R?Y(cum) of field-
based models (green line) increased sharply during the dry spell, then abruptly dropped by 10% with the onset of rain. In
contrast, the models using remote sensing and modeled data showed only a marginal improvement during the dry period and

a smaller and more gradual decline (~2%) during rainfall.
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Figure 6. OPLS model performance using only remote sensing and modeled predictors (blue), only field predictors (green), and all predictors
combined (red). R*Y(cum) indicates the cumulative proportion of variance in the response variable Y (i.e., soil moisture) explained by each
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model (see Table 3 for the models’ specifications). (a) Shows the R?Y(cum) values, indicated by crosses, of models using either the seasonal
average per plot (spatial OPLS) or the spatially averaged daily time series across all sites (temporal OPLS) as the response variable. (b)
Displays the R?Y(cum) values of 92 daily spatial OPLS models over the study period (July 5 — October 4, 2022), with mean precipitation
across Krycklan (from weather stations shown in Fig. 1) plotted below for reference.

4 Discussion

In this study, we investigated a vast array of climatic and environmental factors controlling spatial patterns and temporal
dynamics of surface soil moisture in a boreal forest landscape in northern Sweden with the purpose of providing new insights
into modeling and mapping soil moisture. Specifically, we evaluated the ability of numerous variables extracted from multiple
sources, including field measurements, remote sensing retrievals, and modeled data at different spatial resolutions and temporal
scales, to explain soil moisture variations recorded during three snow-free months in 2022 by 78 dataloggers distributed across

the Krycklan catchment. In the sections that follow, we discuss the primary findings from our analysis.

4.1 Spatial variation

We found that all four groups of spatial predictors considered in this analysis, namely topographical features, soil properties,
vegetation characteristics, and land use/land cover (LULC), played a significant role in explaining spatial variations in soil
moisture (Fig. 3). With the advent of LIDAR-derived DEMs at very high spatial resolution, researchers have increasingly used
terrain indices, or a combination of them, as a proxy for soil moisture (Kemppinen et al., 2018; e.g., Kopecky et al., 2021;
Riithiméki et al., 2021; Winzeler et al., 2022), including the 10 m resolution soil moisture index map (smi) (Naturvardsverket,
2022) and the 2 m resolution SLU soil moisture map (sm-slu) (Agren et al., 2021) that we evaluated in our study. While these
maps correlated well with soil moisture measured in the field, our analysis revealed that soil predictors, such as organic layer
thickness and soil texture, vegetation-related variables, and land cover information distinguishing between mire and forest
were also important. The relevance of integrating soil and terrain information to characterize soil moisture patterns in the
context of hydrological modeling was highlighted by similar studies at the catchment scale (e.g., Baldwin et al., 2017). Previous
research demonstrated that soil properties were determinant in controlling soil moisture spatial variance at the hillslope (Wang
et al., 2023) and regional (Wu et al., 2020) scales as well. Consistent with other studies (e.g., Serensen and Seibert, 2007;
Agren et al., 2014; Lidberg et al., 2020; Larson et al., 2022), our analysis also indicated that the performance of any terrain
index varied greatly depending on the threshold and resolution considered, with 1 ha stream initiation threshold providing the
best results and 0.5 m spatial resolution being the optimal choice only in one case (i.e., depth to water index). Interestingly,
relative topographic position at 16 m resolution (rtp-16) emerged as the best predictor of soil moisture spatial variability,
capable of identifying wetter depressions and drier ridges in the landscape (Weiss, 2001). While several examples in the
literature demonstrate the importance of this index in soil moisture estimation (e.g., Engstrom et al., 2005; Zhao et al., 2021),
it is somewhat surprising that Larson et al. (2022), who used five soil moisture classes estimated in the field as the response
variable (sms predictor in our study) (see Table 1 and Fig. 3), observed that relative topographic position was not among the

best performing variables in the Krycklan catchment. Therefore, in the pursuit of estimating spatial variability in soil moisture,
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we advise caution when selecting terrain indices and their spatial resolutions and thresholds. We argue that an enhanced spatial
resolution in topographical data does not necessarily compensate for the absence of soil, vegetation, and LULC information.

We finally reiterate the importance of soil moisture datalogger measurements to validate predictive models.

4.2 Temporal variation

Our research demonstrated that daily soil moisture fluctuations within the Krycklan catchment are strongly influenced
by the hydrological and meteorological conditions over five to seven days preceding soil moisture measurements, regardless
of whether these conditions were estimated (ERAS5-Land dataset) or measured directly in the field (weather stations and ICOS
tower) (Fig. 4). Among other variables, increased soil moisture was correlated with lower air pressure, shortwave radiation,
vapor pressure deficit, and evaporation from the top of canopy; conversely, it was associated with higher thermal (longwave)
radiation, precipitation, air humidity, evapotranspiration, and wind speed. Averaged conditions over five to seven days for all
these variables exhibited the strongest correlation with daily variations in soil moisture in Krycklan, indicating both lagged
and cumulative effects of these processes on soil moisture. Previous research has also highlighted the importance of
considering multi-day accumulations and time lags between meteorological drivers and soil moisture response (Williams et
al., 2009; Pan, 2012; Li et al., 2024), with most studies focusing on precipitation—soil moisture relationship. Parent et al. (2006)
showed that the transfer of energy from precipitation to soil moisture via infiltration, percolation, and redistribution processes
mostly occurs over temporal scales ranging between 2 and 14 days. Piao et al. (2009) proved that precipitation frequency can
be a more crucial factor than precipitation amount in shaping soil moisture variations, making it essential to account for the
cumulative effect of precipitation over multi-day temporal scales (Ge et al., 2022). Our study identified soil temperature (28—
100 cm below surface) as the most notable exception to the optimal temporal scale of five to seven days observed for almost
all other relevant predictors. While we found a negative correlation between soil temperature and soil moisture as expected
(Aalto et al., 2013), the strongest effects emerged at the 3-week scale (the longest temporal scale considered in our analysis),
possibly because soil temperature at those depths (28—100 cm) also varies more slowly compared to topsoil temperature. Soil
temperature, along with air temperature — which showed weak correlation with soil moisture in our study — might better
correlate with soil moisture over longer temporal scales, such as seasonal or annual (Liang et al., 2024). In regard to our
findings, it is important to acknowledge that the optimal temporal scale for estimating daily fluctuations in soil moisture can
vary according to soil drainage conditions (Parent et al., 2006) and initial wetness conditions characterizing specific climate
zones (Chai et al., 2020) or resulting from different seasonal and annual variations in large-scale climate patterns (Li et al.,
2024).

4.3 Temporal stability of soil moisture patterns

Different initial wetness conditions can also influence the processes controlling spatial variability in soil moisture (Famiglietti
et al., 1998; Western et al., 2004; Joshi and Mohanty, 2010; Mei et al., 2018; Gao et al., 2020; Wang et al., 2023). Although

the ranking among predictors remained nearly constant over the study season, we observed that their predictive power changed
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non-uniformly in relation to daily fluctuations in wetness conditions (i.c., variables responded differently to the same wetness
conditions in any day) (Fig. 5). Previous studies indicated that, under drying conditions, lateral water movement is gradually
replaced by vertical water movement (Grayson et al., 1997; Western et al., 1999; Rosenbaum et al., 2012), and the spatial
variability in soil moisture is likely due to diverse infiltration and evapotranspiration rates related to the spatial distribution of
soil and vegetation features (Teuling and Troch, 2005; Takagi and Lin, 2012; Jia et al., 2013; Launiainen et al., 2019).
Conversely, the soil moisture spatial variability under rewetting conditions is mostly determined by topographical structures
that guide lateral subsurface flow and surface runoff (Grayson et al., 1997; Gaur and Mohanty, 2013). These findings are in
line with the results of our study, suggesting that higher infiltration rates in loamy sand soils compared to other soil types and
diverse evapotranspiration rates associated to different vegetation (i.e., different site index values) increasingly contributed to
the observed spatial distribution of soil moisture particularly during drying periods (e.g., late August to mid-September in our
case), while most topographic variables became steadily less relevant during this time. On the other hand, during large
precipitation events, topographic indices showed an initial drop in the predictive power likely due to the accumulation of water
in the top soil layer and the consequent reduced spatial variability in soil moisture among sites, followed by a time-lagged peak
in the predictive power, likely associated with the beginning of lateral subsurface flow driven by topographical features (Grabs
etal., 2012). Regarding vegetation, we also observed a clear seasonal pattern: during the peak of the growing season, generally
characterized by warmer and longer days, the spatial heterogeneity of vegetation usually had a larger effect on soil moisture
distribution. This may be due to stronger effects of increased transpiration or shading during this period, leading to more
pronounced differences across plots, whereas this influence diminished towards the end of the summer, when days were usually
cooler and shorter. Seasonal patterns in solar radiation affected evapotranspiration rates and soil moisture levels differently
not only in forests compared to peatlands, with forests responding more strongly due to higher canopy cover and biomass
(Mackay et al., 2007), but also depending on tree species composition, with pine being potentially more responsive to high
radiation than spruce (Lagergren and Lindroth, 2002). These findings reiterate the importance of considering the temporal
stability of spatial soil moisture patterns under changing wetness conditions (Wang et al., 2023), and we suggest that future
research should focus on modeling soil moisture dynamics over longer time scales, beyond a single growing season,

particularly in high-latitude environments, where this remains an underexplored topic.

4.4 Mapping spatiotemporal variability in soil moisture

While there exists an extensive literature assessing the accuracy of remote sensing and modeled estimates of soil moisture
based on analogous data measured in situ (Romano, 2014; Petropoulos et al., 2015; Dorigo et al., 2021), we are not aware of
any study explicitly comparing the ability of numerous field versus non-field environmental and climate predictors in
explaining spatial and temporal variations in soil moisture. Field measurements generally outperformed remote sensing and
modeled data, both in terms of overall model performance (Fig. 6) and when comparing pairs of analogous variables from
different sources, especially in the case of spatial variability (Figs. 4 and S2). However, field data alone, which included soil,

vegetation, and LULC information, did not yield the highest performance, as DEM-derived topographic information also
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proved essential, with both types of predictors influencing soil moisture differently depending on prevailing weather conditions
(Figs. 5 and 6). We also acknowledge that, even when combining both field and non-field environmental variables in our
models, the spatial distribution of soil moisture was not fully captured. In part, this may be explained by temporal discrepancies
in data collection, with some data obtained prior to the 2022 study season (see Supplement), and measurement inaccuracies,
including errors in soil moisture datalogger recordings. In particular, calibrating TOMST sensors in organic-rich peat soils
remains challenging, and volumetric water content measurements in these soils may not reflect full saturation (Menberu et al.,
2021; Kemppinen et al., 2023). Moreover, we assumed spatial homogeneity for meteorological forcings across the Krycklan
catchment, a reasonable assumption for variables like precipitation, but less so for variables such as soil and air temperatures
(Aalto et al., 2022; Kolstela et al., 2024), whose fine scale variations likely influenced soil moisture patterns. At even finer
spatial scales, variations in soil moisture may have stemmed from local factors not represented by our predictors, such as soil
discontinuities, small understory vegetation, and the presence of stones (Parajuli et al., 2020). Future studies should focus on
analyzing soil moisture datasets with higher temporal variability (e.g., covering the entire snow-free season, including post-
snowmelt periods, and multiple seasons or years), evaluating more accurate LiDAR-derived vegetation metrics, accounting
for microclimatic variations, and comparing catchments with diverse characteristics (e.g., spanning a large latitudinal gradient).
For future soil moisture mapping, greater efforts should be devoted to improving the quality and resolution of spatially
continuous soil information. The lack of detailed soil maps describing soil properties such as texture, structure, and organic
matter content was most likely the major cause behind the relatively lower predictive performance of remote sensing and
modeled data compared to field data. Enhanced soil maps would benefit not only data-driven approaches to soil moisture
mapping but also physically based modeling efforts that rely on such inputs. Informed by the results of this study, we are now
able to select a smaller subset of key spatial and temporal predictors of soil moisture, which, in the future, could be integrated
into a machine learning model to generate dynamic soil moisture maps for Krycklan. While machine learning models can
handle high dimensional data, pre-selecting variables enhances interpretability, reduces overfitting, and ensures that inputs
reflect the variation most relevant to soil moisture dynamics (Meyer et al., 2019). Due to their ability to process large volumes
of data, such models can leverage detailed spatial and temporal information from multiple sources to potentially map soil

moisture at both high spatial and temporal resolutions across vast geographic areas.

5 Conclusions

The Krycklan field infrastructure provided a unique setting for designing a comprehensive study to advance our understanding
of the relationship between surface soil moisture and its controls in a forest boreal landscape. By combining remote sensing
and modeled data with field measurements across 78 sites in the Krycklan catchment, this study is among the first to examine
such a broad range of climatic and environmental factors at different spatial resolutions and temporal scales, focusing on both
the spatial and temporal components of soil moisture variability. Our findings suggest that topographical features, soil

properties, vegetation characteristics, land use/land cover, and meteorological forcings should all be included when modeling
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and mapping variations in soil moisture. We highlight the importance of identifying the optimal spatial resolution and temporal
scale for each predictor and considering the dynamic nature of the relationship between soil moisture and its controls, which
varies over time. Our results support the development of more accurate and interpretable data-driven models for mapping soil

moisture in space and time.
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