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Abstract. In light of climate change and biodiversity loss, modeling and mapping soil moisture at high spatiotemporal 10 

resolution is increasingly crucial for a wide range of applications in Earth and environmental sciences, particularly in boreal 

forests, which play a key role in global carbon cycling, are highly sensitive to hydrological changes, and are experiencing rapid 

warming and more frequent disturbances. However, modeling and mapping soil moisture dynamics is challenging due to the 

non-linear interactions among numerous physical and biological factors and the wide range of spatial and temporal scales at 

play. This study aims to identify key spatial and temporal controls on soil moisture using an empirically based modeling 15 

approach. We focused on a boreal forest landscape in northern Sweden, where we monitored surface soil moisture with 

dataloggers at 78 locations during the summer of 2022. We investigated the relationships between observed soil moisture 

variations and numerous environmental and meteorological predictors from multiple sources at varying spatial resolutions and 

temporal scales, and we assessed how these relationships changed over time. Spatial variation in soil moisture was influenced 

not only by topography and by the spatial resolution used to represent it, but also by soil properties, vegetation, and land 20 

use/land cover (LULC). In addition, the relative importance of these factors changed over time, with topography generally 

explaining more spatial variation during wet periods, while soil and vegetation were more relevant during dry periods. This 

suggests that current soil moisture maps relying primarily on topographic indices could benefit from integrating soil, 

vegetation, and LULC information to better capture spatial variability under different wetness conditions, as well as from 

selecting the optimal spatial resolution for the specific area of interest. Temporal variation in soil moisture was better explained 25 

by hydrological and meteorological variables averaged over five to seven days preceding soil moisture measurements, 

highlighting the importance of accounting for both lagged and cumulative effects of weather conditions. Field predictors 

generally outperformed remote sensing and modeled predictors, indicating that soil moisture mapping based solely on spatially 

continuous predictors requires improving spatial detail of maps describing soil texture, structure, and organic matter content. 

Our findings contribute to improving the accuracy and interpretability of data-driven methods, such as machine learning, for 30 

mapping soil moisture across space and time for forest management and nature conservation.  
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1 Introduction 

Soil moisture, often referred to as the water content within the soil, is a key component in modulating terrestrial ecosystem 

dynamics, playing a crucial role in the water, energy, and biogeochemical cycles at the interface between the atmosphere and 

the land surface (Seneviratne et al., 2010; Ochsner et al., 2013). In boreal forests, soil moisture has been proven to affect tree 35 

growth (Sikström and Hökkä, 2016; Van Sundert et al., 2018; Larson et al., 2024), influence soil nitrogen availability and, in 

turn, needle production (Nogovitcyn et al., 2023), and control the distribution of soil organic carbon stocks (Larson et al., 

2023). Modeling the soil moisture state, along with its spatial and temporal fluctuations, is essential for numerous Earth and 

environmental sciences applications, such as weather forecasting (Collow et al., 2014), water resource management (Dobriyal 

et al., 2012), forest fire prediction (Chaparro et al., 2016), forest soil trafficability (Schönauer et al., 2024), sustaining 40 

ecosystem services (Vereecken et al., 2016), and monitoring ecosystem response to climate change (Jones et al., 2017). Spatial 

heterogeneity in soil moisture is a key factor in providing diverse habitats, thereby promoting biodiversity (McLaughlin et al., 

2017). Temporal variations in soil moisture also influence ecosystem composition, with different species communities 

depending on more stable or variable soil moisture conditions (Kemppinen et al., 2019). Modeling both components of soil 

moisture variability assumes even greater significance in the context of climate change and biodiversity loss. In order to 45 

accurately model soil moisture, however, it is first necessary to gain a comprehensive understanding of the controls on both 

spatial patterns and temporal dynamics of soil moisture. Despite the considerable research in this field, most studies primarily 

focused on the spatial variability of soil moisture, often neglecting temporal variations (Kopecký et al., 2021; Ågren et al., 

2021; Zhao et al., 2021), restricted analysis to specific spatial resolutions or temporal scales, overlooking their effects on soil 

moisture predictions (de Oliveira et al., 2021; Tyystjärvi et al., 2022; Schönauer et al., 2024), or analyzed a partial subset of 50 

soil moisture drivers, while omitting others (Potopová et al., 2016; Ge et al., 2022; Larson et al., 2022). For mapping purposes, 

it is also important to evaluate how well spatially continuous variables (e.g., gridded datasets) perform as predictors of soil 

moisture compared to field measurements (Zignol et al., 2023). Identifying key predictors of both spatial and temporal soil 

moisture variability — particularly those derived from remote sensing and modeled products at multiple spatial resolutions 

and temporal scales — can inform and strengthen data-driven approaches, such as machine learning, by improving both their 55 

predictive accuracy and interpretability when mapping soil moisture across space and time. 

Factors influencing soil moisture spatiotemporal variability can be classified into five broad groups: topographical 

features, soil properties, vegetation characteristics, land use/land cover (LULC), and meteorological forcings (Petropoulos et 

al., 2013; Rasheed et al., 2022). While spatial variations in soil moisture result from the combined effect of multiple types of 

drivers, most studies have focused on one or two groups (Gwak and Kim, 2017), with topography being considered the most. 60 

Due to the ever-higher spatial resolution of digital elevation models (DEMs), such as those derived from airborne light 

detection and ranging (LiDAR) measurements, researchers have increasingly relied on terrain indices to explain local 

influences on soil moisture (Murphy et al., 2011; Lidberg et al., 2020; Ågren et al., 2021; Kopecký et al., 2021). However, 

only a few studies assessed how the spatial resolution of these indices might affect the prediction of soil moisture (Sørensen 
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and Seibert, 2007; Ågren et al., 2014; Larson et al., 2022). Non-topographical factors usually explain at least half of the spatial 65 

variability in soil moisture (Western et al., 1999; Baldwin et al., 2017), and should be taken into account to increase the 

predictive power of terrain indices (Larson et al., 2022; Kemppinen et al., 2023). Some of these drivers include soil texture 

(Krauss et al., 2010), soil depth (Tyystjärvi et al., 2022), organic matter content (Amooh and Bonsu, 2015), hydraulic 

conductivity (Gwak and Kim, 2017), vegetation density (Gwak and Kim, 2017), vegetation type (Gaur and Mohanty, 2013), 

snow cover (Potopová et al., 2016), tillage (Jonard et al., 2013), and grazing (Zhao et al., 2011). On the other hand, temporal 70 

variations in soil moisture are mostly driven by meteorological variables, such as evapotranspiration and precipitation 

(McMillan and Srinivasan, 2015; Stark and Fridley, 2023), but the relationship between soil moisture and its controlling factors 

strongly changes depending on the temporal scale considered (Entin et al., 2000; Parent et al., 2006; Chai et al., 2020). A 

comprehensive investigation of the role of topography, soil, vegetation, LULC, and meteorological variables as well as the 

effect of their spatial resolution and temporal scale in explaining soil moisture variations is essential for gaining new insights 75 

into the key factors driving soil moisture and the optimal spatial resolutions and temporal scales that should be used to predict 

it. 

Research has demonstrated that the relative importance of controls on soil moisture spatial distribution can also vary 

with changing soil wetness conditions over time (Famiglietti et al., 1998; Western et al., 2004; Joshi and Mohanty, 2010; Mei 

et al., 2018; Gao et al., 2020; Wang et al., 2023). At the catchment level, the wet state is dominated by lateral surface and 80 

subsurface flows, which are influenced by nonlocal controls, primarily macrotopography. Conversely, the dry state is 

characterized by vertical water fluxes, such as infiltration and evapotranspiration, which are influenced by local controls, 

mainly soil properties and vegetation (Grayson et al., 1997; Western et al., 1999; Rosenbaum et al., 2012). In cold-climate 

regions with seasonal snow cover, the relationship between topography and soil moisture is strong after snowmelt but it 

weakens towards the end of the snowless season when other processes, such as evaporation and transpiration, primarily control 85 

soil moisture patterns (Riihimäki et al., 2021; Kemppinen et al., 2023). Similar results emerged from analyses comparing 

different seasons (Takagi and Lin, 2012) and years (Gaur and Mohanty, 2013), showing that topography explains more 

variability in soil moisture spatial patterns during the wetter season/year, while soil characteristics play a more prominent role 

during the drier season/year. However, recent research reveals a more complex relationship, where the influence of topography 

on soil moisture does not necessarily diminish under dry conditions or increase in wet ones. Instead, the relative importance 90 

of terrain metrics has been found to persist or even increase as catchments became drier (Liang et al., 2017; Kaiser and 

McGlynn, 2018; Han et al., 2021), or to remain low during the wet season (Dymond et al., 2021). Further research is needed 

to fully understand how the relationship between soil moisture spatial variability and its controls changes in response to 

different soil wetness conditions. This information holds practical significance for predicting and mapping soil moisture not 

only spatially, but also over time (e.g., Schönauer et al., 2024). 95 

In predictive models, spatial and temporal variations in soil moisture are commonly estimated by using one of two 

types of predictors: either point-scale field measurements or gridded datasets derived from remote sensing and other modeling 

procedures, such as spatial interpolation and data assimilation (e.g., climate reanalyses). In situ observations are typically more 
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accurate but lack spatial continuity, and field campaigns require great efforts in terms of human and financial resources, 

especially when many environmental variables need to be measured. Conversely, remote sensing and modeled estimates are 100 

spatially continuous and can cover large geographic areas, with most datasets being freely available, but they tend to be less 

accurate than actual measurements. Due to advancements in spatial and temporal resolutions, alongside enhanced algorithms, 

remote sensing and modeled products are increasingly being employed to predict spatiotemporal variability in soil moisture, 

gradually replacing, in most instances, in situ observations. While field measurements have been widely used for validation 

purposes, only a limited number of studies have explicitly compared these two kinds of datasets regarding their predictive 105 

capabilities (e.g., Kašpar et al., 2021; Zignol et al., 2023). Remote sensing and modeled gridded predictors have the potential 

to be used to develop dynamic soil moisture maps over extensive areas, but their predictive performance should be assessed 

in relation to analogous variables collected in the field. 

In this study, we investigated the climatic and environmental factors that determined spatial patterns and temporal 

dynamics of surface soil moisture measured using 78 dataloggers during three snow-free months in 2022 across a 110 

heterogeneous boreal forest landscape in northern Sweden. By taking advantage of extensive field measurements available for 

the well-studied Krycklan catchment (Laudon et al., 2013, 2021), we were able to analyze a broad range of soil moisture 

predictors and compare their predictive performance with those of analogous variables obtained from remote sensing or 

modeled datasets. We tested the hypotheses that the spatial resolution of gridded predictors influences the ability to predict 

spatial variations in soil moisture, and that meteorological conditions preceding the logger recordings are key to predict its 115 

temporal variations. Additionally, we examined whether the relative importance of predictors in explaining spatial variability 

in soil moisture changes in response to different wetness conditions throughout the study season. With the ultimate purpose of 

providing insights into data-driven modeling of soil moisture across time and space, we identified four specific aims: (i) to 

assess how different variables at varying spatial resolutions affect the prediction of soil moisture spatial variability, (ii) to 

evaluate the relative contribution of numerous meteorological variables at multiple temporal scales in predicting soil moisture 120 

temporal variability, (iii) to investigate how varying soil wetness conditions over time impact the ability to explain spatial 

variations in soil moisture, and (iv) to compare the predictive performance of field measurements versus remote sensing and 

modeled estimates. 

2 Material and methods 

2.1 Study area 125 

The Krycklan catchment covers an area of about 68 km² in northern Sweden (Fig. 1), with elevations ranging between 127 and 

372 m a. s. l. (Fig. S1b) (Larson et al., 2022). Soils, lying on a poorly weathered gneiss bedrock, consist primarily of unsorted 

glacial till (51%) at higher altitudes and postglacial sorted sediments of sand and silt (30%) at lower altitudes (Fig. S1a) 

(Laudon et al., 2013). In the northern part of the catchment, peat has built up in areas with low topographic relief, typically 

forming oligotrophic minerogenic mires (8.7%) (Figs. S1a and S1d) (Laudon et al., 2021). The landscape is predominantly 130 



5 
 

forested (87.5%) (Figs. S1c and S1d), with Scots pine (Pinus sylvestris) and Norway spruce (Picea abies) as the main tree 

species (63% and 26%, respectively), and an understory of bilberry (Vaccinium myrtillus) and cowberry (Vaccinium vitis-

idaea) on moss mats of Hylocomium splendens and Pleurozium schreberi (Laudon et al., 2013). The remaining coverage 

includes arable land (2.0%), open land (0.9%), lakes (0.8%), and a small fraction of urban land (0.03%) (Fig. S1d) 

(Lantmäteriet, 2023). The area is characterized by a cold temperate humid climate, with a mean annual temperature of 2.1°C 135 

and a total annual precipitation of 619 mm, of which over 30% falls as snow (Larson et al., 2022). Approximately 25% of the 

forested area has been protected since 1922, while the remaining majority consists of second-growth managed forest. Forestry 

practices have shifted over time, from selective cutting prior to the 1940s to predominantly rotation forestry characterized by 

clear-cutting and subsequent conifer planting, resulting in a heterogeneous landscape with varying stand ages and species 

compositions (Laudon et al., 2021). 140 

Since the 1980s, the Krycklan catchment has supported research on ecosystem dynamics and forest management with 

high-quality, long-term climatic, biogeochemical, hydrological, and environmental measurements, making it a unique field 

infrastructure in boreal forest landscapes (Laudon et al., 2013). It features 11 gauged streams, around 1000 soil lysimeters, 150 

groundwater wells, over 500 permanent forest inventory plots, 3 automatic weather stations (Fig. 1), and a 150 m tall ICOS 

(Integrated Carbon Observation System) tower (Fig. 1) for measuring atmospheric gas concentrations and biosphere–145 

atmosphere exchanges of carbon, water, and energy (Laudon et al., 2021). Additionally, high-resolution multi-spectral LiDAR 

measurements and large-scale experiments have been conducted in the Krycklan catchment over the past decade. 
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Figure 1. Overview of the Krycklan catchment showing the locations of the 78 soil moisture monitoring plots, the three automatic weather 
stations, and the ICOS tower, with the ERA5-Land grid superimposed. Orthophoto and water network: Lantmäteriet (2021). 150 

2.2 Meteorological and environmental data 

The extensive field inventory for the Krycklan catchment, combined with remote sensing and modeled data (e.g., from spatial 

interpolation and data assimilation), enabled us to evaluate a wide range of meteorological and environmental variables as 

potential predictors of soil moisture, the response variable in our study. We classified predictors into two groups: “spatial” 
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predictors, which were assumed to be temporally static during the study season but varied spatially, and were used to explain 155 

the spatial variability in soil moisture (Table 1); and “temporal” predictors, which varied temporally but not spatially across 

the study area, and were used to explain the temporal variability in soil moisture (Table 2). 

2.2.1 Response variable: soil moisture 

To measure soil moisture, we selected a subset of 78 plots (Fig. 1) from a forest survey grid established in 2014 (Larson et al., 

2023). This grid consists of 500 equally spaced plots (350 m apart), each of 10 m radius, covering the entire Krycklan 160 

catchment. Plot selection was informed by previous research (Larson et al., 2022), which classified most of the 500 plots into 

five soil moisture classes based on the Swedish National Forest Inventory (NFI) protocol. Our aim was to capture the full range 

and distribution of soil moisture conditions — from dry ridges to wet peatlands — observed across the Swedish forest 

landscape (see Fig. 3 in Ågren et al., 2021). To achieve this, approximately half of the selected plots were located in the central 

part of the catchment (Fig. 1), characterized by a highly heterogeneous landscape with diverse soil moisture conditions (Fig. 165 

S1). The remaining loggers were distributed throughout the catchment to ensure adequate spatial coverage while maintaining 

accessibility. 

At each site, we measured soil moisture content of the upper 14 cm of soil at a 15 min resolution using a TOMST 

TMS logger (Wild et al., 2019). We installed the loggers in June/July 2022 and we downloaded the data in October 2022, 

covering 92 days for all sites (from July 5 to October 4). Because the sensor in the TMS logger relies on the time domain 170 

transmission method (Wild et al., 2019), we converted the raw signals into volumetric water content using the universal 

calibration equation presented in Kopecký et al. (2021). We also evaluated the soil-specific conversion functions proposed by 

Wild et al. (2019), but we found that some of the resulting volumetric water content values were nonsensical (e.g., <0% and 

>100%), particularly in mires. Consistent with findings from other studies in similar landscapes (e.g., Kemppinen et al., 2023), 

we concluded that these conversion functions were unsuitable for the soil types in Krycklan, specifically peat soils. Because 175 

the conversion did not alter the relative order among sites, we eventually adopted the universal curve for all plots, which 

produced a more realistic range of volumetric water content values. 

We plotted each individual time series and conducted a thorough visual inspection to identify any anomalies. We 

checked for sudden drops in soil moisture that quickly reversed, as these often indicate potential loss of contact between sensor 

and soil. We carefully removed potentially erroneous data to ensure the reliability of our dataset. From the 15 min time series 180 

of volumetric water content, we calculated the mean daily time series for each plot, which served as the response variables in 

study aim (iii) (Table 3). We then aggregated these data to generate two additional datasets: the seasonal average of mean daily 

values for each plot and the spatially averaged mean daily time series across all sites, used as the response variables in study 

aims (i) and (ii), respectively (Table 3). For simplicity, when referring to our analysis, we use the term “soil moisture” in lieu 

of “volumetric water content at a depth of 0–14 cm”. 185 
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2.2.2 Spatial predictors: soil, topography, vegetation, and land use/land cover 

In addition to monitoring soil moisture, we collected a vast array of environmental variables for each of the 78 plots (Fig. 1 

and Table 1). Field variables were selected from the Krycklan inventory or during our field campaigns, whereas non-field 

variables were extracted from existing vector and raster maps, LiDAR-derived topographic indices, and other remote sensing 

products. In the case of topographic indices and the normalized difference vegetation index (NDVI), we extracted plot values 190 

from layers at different spatial resolutions (0.5, 1, 2, 4, 8, 16, 32, and 64 m for the topographic indices and 0.4, 2, and 30 m for 

NDVI) to assess how varying spatial resolutions explained soil moisture spatial variability. We also tested the effect of different 

user-defined thresholds, specifically two vertical distances (2 and 4 m) for the downslope index and six stream initiation 

thresholds (1, 2, 4, 8, 16, and 32 ha) for depth to water and elevation above stream. To facilitate the visualization and 

interpretation of the results, all predictors were subdivided into four groups, namely soil, topography, vegetation, and land 195 

use/land cover (LULC), and 18 color-coded categories (Table 1). Categories encompass analogous variables from distinct 

sources (e.g., land cover), diverse measures of a common feature (e.g., forest structure), the same variable at different spatial 

resolutions and/or user-defined thresholds (e.g., depth to water), or a combination of these cases. Note that classes of qualitative 

variables were treated as independent predictors in this analysis (e.g., soil survey). Table 1 lists all the spatial predictors 

evaluated in this study. A detailed description of each can be found in the Supplement. 200 
Table 1. All predictors of soil moisture spatial variability evaluated in this study. The 48 predictors are subdivided into four groups and 18 
color-coded categories, listed in alphabetical order within each group and category based on the abbreviation code (“Abbr.” column). The 
table also displays the data source (field, non-field raster (N-field r), non-field vector (N-field v)), data type (qualitative (Ql) vs. quantitative 
(Qn)), and references. Each class of the qualitative variables is considered as a distinct predictor in the analysis. The number of layers of the 
topographic and vegetation indices is reported in parenthesis after the predictor name, and it depends on: ¹ the spatial resolutions (0.5, 1, 2, 205 
4, 8, 16, 32, and 64 m for the topographic indices and 0.4, 2, and 30 m for NDVI); ² the stream initiation thresholds (1, 2, 4, 8, 16, and 32 ha 
for depth to water and elevation above stream); and ³ the vertical distances (2 and 4 m for the downslope index). An asterisk denotes the 22 
most relevant soil moisture predictors, which are displayed in Fig. 3. The 26 remaining predictors (without asterisk) are shown in Fig. S2. 
The Supplement provides a detailed description of each variable listed in this table. 

Group Category Name (number of layers) Abbr. Source Type Reference 

Soil 

 Organic soil Organic layer thickness * olt Field Qn Zignol et al. (2025) 

 Soil depth SGU soil depth map sd-sgu N-field r Qn SGU (2024a) 

 Soil moisture Soil moisture survey * sms Field Qn Zignol et al. (2025) 

 Soil type 

Soil survey 

loamy sand * ss-losa 

Field Ql  Zignol et al. (2025) 

peat * ss-pt 

sand ss-sa 

sandy loam ss-salo 

silt loam ss-silo 

SGU Quaternary 
deposit map  

clay to silt st-cs 

N-field v Ql SGU (2024b) 

glacifluvial sediment st-gfs 

postglacial sand st-ps 

postglacial sand to gravel st-psg 

peat * st-pt 

till st-till 
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Group Category Name (number of layers) Abbr. Source Type Reference 

Topography 

 Depth to water Depth to water (48) * dtw²-¹ 

N-field r Qn 

Lidberg et al. (2020) 

 Diffuse solar radiation Diffuse solar radiation (8) dfr-¹ 
Zignol et al. (2025) 

 Direct solar radiation Direct solar radiation (8) * drr-¹ 

 Downslope index Downslope index (16) * di³-¹ 

Lidberg et al. (2020) 

 Elevation above stream Elevation above stream (48) * eas²-¹ 

 Landscape wetness Index Landscape wetness index (8) * wilt-¹ 

 Plan curvature Plan curvature (8) * plc-¹ 

 Relative topographic position Relative topographic position (8) * rtp-¹ 

 Topographic wetness index Topographic wetness index (8) * twi-¹ 

 Topography-based map 
SLU soil moisture map * sm-slu 

N-field r Qn 
SLU (2021) 

Soil moisture index map * smi Naturvårdsverket (2022) 

Vegetation 

 Forest productivity 

Biomass above ground bio Field Qn Zignol et al. (2025) 

SLU forest biomass map bio-slu 
N-field r 

Qn SLU (2010) 

Normalized difference vegetation index (3) * ndvi-¹ Qn Lantmäteriet (2021), 
USGS (2022) 

Site index by site factors * sis 
Field Qn Zignol et al. (2025) 

Stem density stm 

 Species composition 

Volume of birch species bir Field 

Qn 

Zignol et al. (2025) 

SLU birch map bir-slu N-field r SLU (2010) 

Volume of pine species * pi Field Zignol et al. (2025) 

SLU pine map pi-slu N-field r SLU (2010) 

Volume of spruce species spr Field Zignol et al. (2025) 

SLU spruce map spr-slu N-field r SLU (2010) 

 Forest structure 

Canopy openness co 

Field 

Qn 

Zignol et al. (2025) Basal area weighted mean diameter dgv 

Basal area weighted mean height hgv 

SLU basal area weighted mean height map hgv-slu N-field r SLU (2010) 

Volume of all tree species vol Field Zignol et al. (2025) 

SLU forest volume map vol-slu N-field r SLU (2010) 

LULC  Land use/land cover 

Land map – clearcut lm-cut 

N-field v Ql 

Skogsstyrelsen (2024) 

Land map – forest * lm-for 
Lantmäteriet (2023) 

Land map – peatland * lm-ptl 

Land survey – clearcut ls-cut 

Field Ql  Zignol et al. (2025) Land survey – forest * ls-for 

Land survey – peatland * ls-ptl 

2.2.3 Temporal predictors: meteorological forcings 210 

For the temporal analysis, we selected meteorological variables (Table 2) from three datasets, including reanalysis data from 

the land component of the European Centre for Medium-Range Weather Forecasts (ECMWF) Atmospheric Reanalysis Fifth 

Generation (ERA5-Land) (Muñoz-Sabater, 2019; Muñoz-Sabater et al., 2021), atmospheric data from the ICOS tower (Peichl 
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et al., 2024), and three automatic weather stations (Svartberget Research Station, 2022a, b, c). For each variable, we generated 

a single daily time series from July 5 to October 4, 2022, for the entire catchment by calculating the spatial average between 215 

either the three weather stations or the six ERA5-Land cells covering the Krycklan area (Fig. 1). To evaluate how varying 

temporal scales explained temporal variability of soil moisture, we created seven additional time series for each variable based 

on different temporal scales, including the preceding day and the average between 3, 5, 7, 10, 14, and 21 preceding days. All 

predictors were subdivided into 12 color-coded categories to facilitate the visualization of the results. These categories group 

together analogous variables from distinct sources (e.g., precipitation), any variable measured at different depths (e.g., soil 220 

water) or heights (air temperature), diverse aspects of the same process (e.g., evaporation), or a combination of these cases. 

Table 1 lists all the temporal predictors analyzed in this study, with a detailed description of each provided in the Supplement. 
Table 2. All predictors of soil moisture temporal variability assessed in this study. The 60 predictors are subdivided into 12 color-coded 
categories, listed in alphabetical order within each category based on the abbreviation code (“Abbr.” column). The table also indicates the 
unit of measurement, the dataset (ERA5-Land, ICOS tower, or weather stations), and data source (field vs. non-field (N-field)). Whenever 225 
possible, either the sensor height (field data) or the height of the estimated values (ERA5-Land) is reported in parenthesis after the predictor 
name. An asterisk denotes the 25 most relevant predictors, which are displayed in Fig. 4. The 35 remaining predictors (without asterisk) are 
shown in Fig. S3. The Supplement provides a detailed description of each variable listed in this table. 

Category Name (height of sensor or estimated values) Abbr. Unit Dataset Source 

 Air temperature 

2 m dewpoint temperature (2 m) d2m 

°C 

ERA5-Land N-field Skin temperature (0 m) skt 

2 m temperature (2 m) t2m 

Air temperature (1.7 m) ta Weather stations 

Field 

Air temperature level 1 (42 m) ta1 

ICOS tower 
Air temperature level 2 (30 m) ta2 

Air temperature level 3 (20 m) ta3 

Air temperature level 4 (10 m) ta4 

 Air water 
Air relative humidity (32.5 m) * rh % ICOS tower Field 

Skin reservoir content * src mm ERA5-Land N-field 

 Evaporation 

Total evaporation e 

mm, accumulated ERA5-Land N-field 

Evaporation from bare soil  ebs 

Potential evaporation * ep 

Evaporation from the top of canopy * etc 

Evaporation from vegetation transpiration * evt 

 Heat 

Soil heat flux level 1 (0 cm) sh1 
W/m² ICOS tower Field 

Soil heat flux level 2 (5 cm) sh2 

Surface sensible heat flux (0 m) * shf J/m², accumulated ERA5-Land N-field 

 Precipitation 
Total precipitation * p 

mm, accumulated 
ERA5-Land N-field 

Total precipitation (1.5 m) * pr Weather stations Field 

 Pressure 

Air pressure (1.7 m) * pa 

hPa 

Weather stations Field 

Surface pressure (0 m) * sp ERA5-Land N-field 

Vapor pressure (1.7 m) vp Weather stations 
Field 

Vapor pressure deficit (32.5 m) * vpd ICOS tower 
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Category Name (height of sensor or estimated values) Abbr. Unit Dataset Source 

 Radiation 

Forecast albedo fal dimensionless, 0–1 ERA5-Land N-field 

Long wave incoming radiation (50 m) * lwi 
W/m² ICOS tower Field 

Long wave outgoing radiation (50 m) lwo 

Surface net solar radiation (0 m) nsr 
J/m², accumulated ERA5-Land N-field 

Surface net thermal radiation (0 m) * ntr 

Short wave incoming radiation (50 m) * swi 
W/m² ICOS tower Field 

Short wave outgoing radiation (50 m) * swo 

Surface thermal radiation downwards (0 m) * trd J/m², accumulated ERA5-Land N-field 

 Runoff 

Runoff ro 

mm, accumulated ERA5-Land N-field Surface runoff (0 m) * sr 

Sub-surface runoff ssr 

 Soil temperature 

Soil temperature level 1 (0–7 cm below surface) st1 

°C 

ERA5-Land N-field 
Soil temperature level 2 (7–28 cm below surface) st2 

Soil temperature level 3 (28–100 cm below surface) * st3 

Soil temperature level 4 (100–289 cm below surface) st4 

Soil temperature level 1 (-10 cm) ts1 
Weather stations 

Field 
Soil temperature level 2 (-20 cm) ts2 

Soil temperature level 3 (-30 cm) * ts3 
ICOS tower 

Soil temperature level 4 (-50 cm) ts4 

 Soil water 

Soil water content level 1 (-2.5 cm) * sm1 

% 

ICOS tower Field 
Soil water content level 2 (-5 cm) sm2 

Soil water content level 3 (-10 cm) sm3 

Soil water content level 4 (-30 cm) sm4 

Volumetric soil water level 1 (0–7 cm below surface) * sw1 

ERA5-Land N-field 
Volumetric soil water level 2 (7–28 cm below surface) sw2 

Volumetric soil water level 3 (28–100 cm below surface) sw3 

Volumetric soil water level 4 (100–289 cm below surface) sw4 

 Vegetation 

Leaf area index, high vegetation lai m²/m² ERA5-Land N-field 

Photosynthetic photon flux density below canopy incoming (1.15 m) pbc 

µmolPhotons/m²/s ICOS tower Field 
Photosynthetic photon flux density diffuse (50 m) pd 

Photosynthetic photon flux density incoming (50 m) * pi 

Photosynthetic photon flux density outgoing (50 m) * po 

 Wind 

10 m u-component of wind * u10 
m/s ERA5-Land N-field 

10 m v-component of wind v10 

Wind direction respect to geographic north (34.5 m) wd degrees N 
ICOS tower Field 

Wind speed (34.5 m) * ws m/s 

2.3 Statistical model 

To identify significant predictors of soil moisture, we used orthogonal projections to latent structures (OPLS) analysis, an 230 

enhanced version of partial least-squares regression (PLS) (Eriksson et al., 2013). OPLS separates the systematic variation in 
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the predictors (X) into two parts: a predictive component (horizontal axis) that is directly associated with the response variable 

of interest (Y) and an orthogonal component (vertical axis) that represents the variation unrelated to Y. This method improves 

interpretability over ordinary PLS as it allows for identifying key variables for predicting Y while isolating less important 

variables that contain noise. OPLS is particularly well suited for high-dimensional datasets, as it effectively handles 235 

multicollinearity among predictors and reduces the risk of overfitting. In this two-dimensional space, positive or negative 

loadings on the predictive axis denote variables that are positively or negatively correlated with Y, with stronger correlations 

as distance from the origin increases. Conversely, loadings on the orthogonal axis, farther from the origin, indicate less 

correlated variables (i.e., higher noise). In our study, we used soil moisture measurements from dataloggers as the response 

variable (Y). 240 

We created two types of OPLS models (Table 3). The first type, termed “spatial” OPLS, assessed the role of 

environmental predictors (soil, topography, vegetation, and LULC) (Table 1) in explaining the observed spatial distribution in 

soil moisture through direct plot-by-plot comparison. In these models, all environmental predictors varied across Krycklan but 

were assumed constant over time. Similarly, the response variable was spatially heterogeneous, but only one time step was 

included in each model. Specifically, to evaluate the relative importance of environmental predictors (aim (i)), we considered 245 

the soil moisture seasonal average, whereas to assess how the contribution of these predictors changed over time (aim (iii)), 

we ran the OPLS model 92 times using soil moisture daily values as the response variable (Table 3). The second type, termed 

“temporal” OPLS, evaluated the influence of meteorological predictors (Table 2) on the observed daily variations in soil 

moisture through direct day-by-day comparison (aim (ii)). In this model, all meteorological predictors and the response variable 

changed daily but were considered uniform across the study area (i.e., we calculated the spatial average) (Table 3). 250 

To evaluate the predictive performance of field versus non-field data (aim (iv)), we ran both the spatial and temporal 

OPLS models using three different subsets of predictors: (1) only remote sensing and modeled estimates, including gridded 

and vector datasets such as topographic and vegetation indices and metrics, soil and LULC vector maps, and ERA5-Land time 

series; (2) only field measurements from surveys or permanent stations (i.e., weather stations and ICOS tower); and (3) a 

combination of all predictors. To assess the predictive performance of the overall OPLS models, we considered R²Y(cum), 255 

which represents the cumulative variation in the response variable (i.e., soil moisture) explained by the three subsets of 

predictors. 

To estimate the predictive performance of each variable, we also calculated the variable importance on projection for 

the predictive component (VIPpredictive) for the 94 OPLS models based on all predictors (Table 3). These values are normalized 

such that if each X variable contributed equally to the model, their VIPpredictive would be 1. Variables with a VIPpredictive value 260 

greater than 1 are considered relevant predictors, with higher scores indicating greater predictive power (Eriksson et al., 2013). 

We used this metric and threshold to distinguish relevant soil moisture predictors, presented in Figs. 3 and 4, from less 

important ones, included in the Supplement (Figs. S2 and S3). We processed all the data in R version 4.3.0 (R Core Team, 

2023), we generated all OPLS models and calculated the related VIPpredictive scores in SIMCA 17.0, and we drew all the figures 

using the R ggplot2 package (Wickham, 2016), ArcGIS Pro (Esri Inc., 2023), and Adobe Illustrator (Adobe Inc., 2024). 265 
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Table 3. All OPLS models developed in this study. 

Aim Model type Predictors (X) Predictors’ characteristics Predictors’ subsets Response variable (Y) # of models Figure 

(i) Spatial 
OPLS 

Soil 
Topography 
Vegetation 
LULC 

Different spatial resolutions 
and user-defined thresholds 

3 (all, only remote sensing 
and modeled estimates, 
only field data) 

Seasonal average of mean 
daily values for each plot 3×1=3 3 

(ii) Temporal 
OPLS 

Meteorological 
forcings Different temporal scales 

3 (all, only remote sensing 
and modeled estimates, 
only field data) 

Spatially averaged mean 
daily time series across all 
sites 

3×1=3 4 

(iii) Spatial 
OPLS 

Soil 
Topography 
Vegetation 
LULC 

Different spatial resolutions 
and user-defined thresholds 

3 (all, only remote sensing 
and modeled estimates, 
only field data) 

Mean daily value of any day 
within the season for each 
plot 

3×92=276 5 

3 Results 

3.1 Observed spatial and temporal variability in soil moisture 

Analysis of the logger data revealed large spatial variability in both seasonal averages and seasonal standard deviations of soil 

moisture, ranging from 14% to 56% (~60% = fully saturated) and 0.4% to 5.6%, respectively (Fig. 2a). Among the 78 sites 270 

studied, 14 exhibited an increasing trend in soil moisture over the season, seven a decreasing trend, and the remaining 57 no 

trend, based on the non-parametric Mann-Kendall test (Mann, 1945; Kendall, 1975) at 95% confidence level (Fig. 2bc). The 

magnitude of soil moisture change over the entire study period, indicated by the trend Theil-Sen’s slope (Sen, 1968), varied 

between -8.4% and 10% (Fig. 2b, Table S1), whereas the strength of the monotonic association between soil moisture and 

time, as measured by Kendall’s correlation coefficient (τ), ranged from -0.58 to +0.57 (Table S1). Daily peaks in soil moisture 275 

were typically associated with major precipitation events, although the magnitude of these peaks and subsequent declines 

during dry periods varied considerably across locations (Fig. 2c). Conversely, the daily spatial variability (i.e., standard 

deviation) in soil moisture (black line) exhibited a sharp decline during precipitation events (especially in August and 

September), followed by a steady increase leading up to peaks at the culmination of subsequent dry periods (bottom part of 

Fig. 2c). The soil moisture time series from ERA5-Land (brown lines) closely tracked the temporal variability of the sites 280 

mean (red line), but underestimated daily soil moisture amounts averaged across all sites (Fig. 2c). Overall, Fig. 2 showed that 

the 78 sites responded differently to similar weather conditions, and that the spatial variability in soil moisture among all sites 

is much larger than the temporal variability in soil moisture observed throughout the study season. 
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Figure 2. Spatial and temporal variation of daily mean soil moisture (i.e., volumetric water content) measured by 78 loggers across the 285 
Krycklan catchment from July 5 to October 4, 2022. (a) Displays the seasonal average and standard deviation of the measurements. (b) 
Shows seasonal trends identified using the Mann-Kendall test at a 95% confidence interval. (c) Presents the time series plot, with logger data 
grouped by color according to trend type. The graphic includes additional data for comparison: estimates from six ERA5-Land cells covering 
the catchment (brown lines), spatial mean (red line) and standard deviation (black line) among sites, and mean precipitation across Krycklan 
derived from weather stations (bottom bar plot). For clarity, refer to Fig. 1 for the locations of the ERA5-Land cells and weather stations. 290 
Orthophoto in panels (a) and (b): Lantmäteriet (2021). 

3.2 Controls on soil moisture variability 

OPLS plots served as a means to visualize in two dimensions the relative importance of factors controlling soil moisture 

variability, with loadings located closer to the horizontal axis (i.e., lower noise) and farther from the vertical axis (i.e., higher 

predictive power) indicating the most relevant predictors. Variables on the right side of the plot are positively correlated to 295 

soil moisture, while those on the left side are negatively correlated. Remote sensing and modeled estimates are represented by 

circles (raster datasets) or rhombuses (vector datasets), whereas field measurements are displayed as triangles. The size of the 

symbols is proportional to either the spatial resolution or the temporal scale of the potential soil moisture predictors. Variables 

are grouped together into color-coded categories to facilitate the reading of the OPLS plots. When multiple spatial resolutions 

or temporal scales were investigated for a certain variable, its loadings were connected through guides transitioning from high 300 

to low resolution or scale, and only the optimal resolution or scale was labelled. The upcoming two sections will focus on 

outlining the key features of the spatial OPLS plot (Figs. 3 and S2) and the temporal OPLS plot (Figs. 4 and S3), respectively. 

Due to the large amount of variables analyzed in this study, Figs. 3 and 4 only present the most relevant predictors (VIPpredictive 

greater than 1, marked by an asterisk in Tables 1 and 2), whereas all remaining variables are included in the Supplement (Figs. 

S2 and S3). 305 

3.2.1 Spatial variation 

Relative topographic position emerged as the strongest predictor of soil moisture at a 16 m resolution (rtp-16), but its predictive 

performance decreased at lower and higher resolutions (Fig. 3). Similar to relative topographic position, depth to water and 

elevation above stream were negatively correlated with soil moisture, with loadings clustered in the bottom-left quadrant (Figs. 

3 and S2). These two indices showed reduced performance and increased noise for higher stream initiation thresholds (Fig. 310 

S2). However, while coarse resolution (64 m) was optimal for elevation above stream, high resolution (0.5 or 1 m) was 

preferable for depth to water (Fig. S2), with eas1-64 and dtw1-05 overall performing best (Fig. 3). In the top-right quadrant 

(i.e., positively correlated), topographic wetness index and landscape wetness index were good predictors of soil moisture at 

their optimal resolutions of 32 m (twi-32) and 4 m (wilt-4), respectively (Fig. 3). At these resolutions, they performed 

comparably to the soil moisture index map (smi) and the SLU soil moisture map (sm-slu), with the last one exhibiting slightly 315 

higher performance (Fig. 3). Downslope index and plan curvature at their optimal vertical distance and/or spatial resolution 

(di2-32 and plc-32), also positively correlated with soil moisture, showed slightly lower predictive power but introduced less 
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noise (loadings closer to the origin) (Fig. 3). Direct solar radiation was only relevant at a course resolution (drr-64) (Fig. 3), 

while diffuse solar radiation was a less important predictor (Fig. S2). 

As for soil, three field variables — peat soil class (ss-pt), soil moisture classes (sms), and organic layer thickness (olt) 320 

— were robust predictors, showing a positive correlation with soil moisture and low noise (Fig. 3). The peat class from the 

SGU soil type map (st-pt) was also positively correlated, yet it explained less variability than the analogous field predictor 

(i.e., ss-pt). Both peatland (positively correlated) and forest (negatively correlated) LULC classes similarly revealed that the 

data collected in the field (ls-ptl and ls-for, respectively) provided slightly better results than using information from an existing 

map (lm-ptl and lm-for, respectively). Finally, the loamy sand class from the soil survey (ss-losa) was, to a lesser extent, an 325 

important predictor, negatively correlated with soil moisture. The remaining soil and LULC variables, whether derived from 

field observations or existing maps, performed poorly in predicting soil moisture (Fig. S2). 

Among the vegetation-related variables, volume of pine (pi) showed the highest predictive performance, followed by 

the normalized difference vegetation index at 2 m resolution (ndvi-2), and the site index by site factors (sis), with pi and sis 

being negatively correlated with soil moisture whereas ndvi-2 being positively correlated (Fig. 3). While ndvi-2 and pi slightly 330 

outperformed, in terms of predictive power, analogous predictors at courser spatial resolutions (ndvi-30 and pi-slu, 

respectively), they also introduced more noise (Figs. 3 and S2). The remaining vegetation variables exhibited low predictive 

performance or high noise, therefore resulting less suitable as soil moisture predictors (Fig. S2). 
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Figure 3. OPLS loading plot showing the relationship between a large array of “spatial” predictors, which vary spatially but remain constant 335 
over time, and the mean seasonal soil moisture (July 5 – October 4, 2022). Both the spatial predictors (X-variables) and the determinant (Y-
variable) were gathered for 78 sites across the Krycklan catchment (Fig. 1 for the site locations). The spatial predictors, overall describing 
soil, topography, vegetation, and land use/land cover at each site (grey dotted boxes in the figure legend) were either directly measured in 
situ (symbolized by triangles) or estimated through remote sensing or modeling techniques (depicted as circles or rhombuses depending on 
the dataset format). These predictors were organized into 18 color-coded categories (see Table 1; here only 15 are shown) to enhance plot 340 
readability. Gridded (i.e., raster) predictors are characterized by a certain spatial resolution (expressed in m, representing the length of the 
grid cell side), which is proportional to the size of the circles. To visualize the effects of spatial resolution, guides connect loadings of the 
same variable moving from high to low resolutions, with the variable name visible only in correspondence of the optimal resolution (refer 
to Table 1 for variable labels). High positive and negative loadings on the predictive axis (pq[1]) represent variables that are positively and 
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negatively correlated with the response variable (Y), with stronger correlation further away from the origin. The orthogonal axis (poso[1]) 345 
indicates how much of the variation for each variable was not correlated with the response variable (Y). This figure only shows the 22 most 
relevant predictors (VIPpredictive greater than 1, marked by an asterisk in Table1). If multiple user-defined thresholds were tested for a certain 
topographic index (i.e., depth to water, downslope index, and elevation above stream), the plot displays only the best-performing one. All 
26 remaining variables are included in Fig. S2. 

3.2.2 Temporal variation 350 

Soil moisture estimates from ERA5-Land and ICOS measurements were understandably the two best predictors of the spatially 

averaged time series of soil moisture recorded at the 78 study plots (Fig. 4). Their predictive performance was highest when 

selecting the top soil layer and matching the temporal scale with the response variable (sw1-0 and sm1-0). Most loadings of 

these two predictors were positively correlated with the determinant (Y), though the strength of the correlation generally 

decreased and noise increased with longer temporal scales and deeper soil layers (Fig. S3).  355 

The temporal OPLS analysis revealed that the optimal temporal scale for most predictors ranged between 5 and 7 

days preceding the datalogger recordings, with predictive performance decreasing for both shorter and longer temporal scales 

(Fig. 4). Skin reservoir content, which accounts for the water in the vegetation canopy and in a thin layer on top of the soil, at 

the 7-day scale (src-7), emerged as a strong predictor, positively correlated with soil moisture and associated with minimal 

noise. Surface air pressure at the 7-day scale (sp-7 and pa-7) was also a robust predictor, showing an inverse correlation with 360 

soil moisture. Evaporation from the top of canopy at the 5-day scale (etc-5) lay in the vicinity, yet towards higher noise and 

lower predictive values. 

The remaining variables explaining the temporal variability in soil moisture clustered into three distinct areas (Fig. 

4). In the right side of the OPLS plot, therefore indicating a positive relationship with soil moisture, two clusters stood out: air 

relative humidity (rh-7), surface net thermal radiation (ntr-7), surface sensible heat flux (shf-3), evaporation from vegetation 365 

transpiration (evt-7), and potential evaporation (ep-5) in the top quadrant; precipitation (pr-7 and p-5), surface runoff (sr-5), 

long-wave (i.e., thermal) incoming radiation (lwi-5 and trd-5), and wind speed (ws-5) in the bottom quadrant. The third cluster, 

located in the bottom-left quadrant, consisted of predictors negatively correlated with soil moisture, including incoming and 

outgoing short wave radiation (swo-5 and swi-5), incoming and outgoing photosynthetic photon flux density (po-5 and pi-5), 

vapor pressure deficit (vpd-7), 10 m u-component of wind (u10-5), and soil temperature (ts3-21 and st3-21). All air temperature 370 

variables, along with other less relevant predictors of soil moisture, are showed in the Supplement (Fig. S3). 
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Figure 4. OPLS loading plot illustrating the relationship between a large array of “temporal” predictors, which do not vary spatially but 
change over time, and daily mean soil moisture (i.e., volumetric water content) averaged across 78 sites within the Krycklan catchment (refer 
to Fig. 1 for the site locations). Both the temporal predictors (X-variables) and the determinant (Y-variable) were aggregated at the daily 375 
temporal scale from July 5 to October 4, 2022. The temporal predictors were either directly measured at the ICOS tower or at weather 
stations within Krycklan (symbolized by triangles) or extracted from the ERA5-Land dataset (depicted as circles). These predictors were 
organized into 12 color-coded categories (see Table 2; here only 11 are shown) to enhance plot readability. All predictors are characterized 
by a certain temporal scale, represented by the size of the triangles or circles. To visualize the effects of temporal scale, guides connect 
loadings of the same variable moving from high to low scales, with the variable name visible only in correspondence of the optimal scale 380 
(refer to Table 2 for variable labels). High positive and negative loadings on the predictive axis (pq[1]) represent variables that are positively 
and negatively correlated with the response variable (Y), with stronger correlation further away from the origin. The orthogonal axis 
(poso[1]) indicates how much of the variation for each variable was not correlated with the response variable (Y). This figure only shows 
the 25 most relevant predictors (VIPpredictive greater than 1, marked by an asterisk in Table2), but the 35 remaining predictors are included in 
the Fig. S3. 385 
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3.3 Spatial soil moisture variability under different wetness conditions 

The relative importance of predictors in influencing spatial soil moisture variability remained relatively consistent over the 

study period in the Krycklan catchment, with their VIPpredictive values showing little variation throughout the season (Figs. 5 

and S4). The SLU soil moisture map (sm-slu) exhibited the smallest variation among all predictors (seasonal standard deviation 

of VIPpredictive: 0.03) (Fig. 5). In contrast, two vegetation-related variables and direct solar radiation (ndvi-2, pi, and ddr-64) 390 

showed the largest variation (seasonal standard deviation of VIPpredictive: 0.09), reflecting generally better performances in the 

first half of the season (especially at the turn of July and August) compared to the second half (Figs. 5). 

Most predictors experienced abrupt drops in VIPpredictive during intense and/or multi-day precipitation occurrences 

(e.g., September 16) (Fig. 5), when the soil moisture variability across all 78 sites was also at its lowest (bottom graphic in 

Fig. 2c). However, some topographic indices (dtw1-05, eas1-64, and, to a lesser degree, plc-32 and rpt-16) showed increasing 395 

predictive power after the beginning of a precipitation event (e.g., July 15 or September 15) (Fig. 5). During drying periods 

(e.g., between late August and almost mid-September), the VIPpredictive values of the majority of predictors tended to steadily 

and slowly decrease, except for three notable exceptions: the loamy sand soil class (ss-losa), the site index by site factors (sis), 

and the downslope index (di2-32). 

 400 
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Figure 5. VIPpredictive values of 92 spatial OPLS models generated using mean daily soil moisture over the study season (July 5 – October 4, 
2022) as the response variable (Y). The lower section of the figure displays the mean precipitation across Krycklan derived from weather 
stations (refer to Fig. 1 for their locations). The spatial predictors, overall describing soil, topography, vegetation, and land use/land cover at 
each site (grey dotted boxes in the figure legend), were organized into 18 color-coded categories (see Table 1; here only 14 are shown) to 
enhance plot readability. Color-coded labels on the right side of the figure are ordered according to their VIPpredictive on the last day of the 405 
study season (October 4, 2022). To avoid clutter and highlight the key findings, only a subset of predictors is presented, but a graphic with 
all 22 relevant predictors (VIPpredictive greater than 1) displayed in Fig. 3 is included in Fig. S4. 

3.4 Field measurements compared to remote sensing and modeled estimates 

Field measurements generally outperformed remote sensing and modeled data by approximately 6% in both spatial and 

temporal OPLS models, with the combination of all predictors yielding the highest performance (Fig. 6a). In the temporal 410 

OPLS models, more variance in soil moisture dynamics was explained by data from the ICOS tower and weather stations 

(R²Y(cum) = 0.96) compared to ERA5-Land estimates (R²Y(cum) = 0.90). A similar pattern emerged in the spatial OPLS 

models, where soil, vegetation, and LULC data collected in the field (R²Y(cum) = 0.51) better explained spatial variability in 

seasonal soil moisture than topographic indices and existing soil, vegetation, and LULC maps (R²Y(cum) = 0.45). 

In the spatial OPLS daily models (Fig. 6b), these two subsets of predictors showed the same relative ranking, with 415 

field measurements (green line) outperforming remote sensing and modeled estimates (blue line) throughout the season. 

However, they responded differently to changing wetness conditions. This was most evident between late August and mid-

September, a period marked by 24 nearly rain-free days followed by five days of persistent precipitation. R²Y(cum) of field-

based models (green line) increased sharply during the dry spell, then abruptly dropped by 10% with the onset of rain. In 

contrast, the models using remote sensing and modeled data showed only a marginal improvement during the dry period and 420 

a smaller and more gradual decline (~2%) during rainfall. 

 
Figure 6. OPLS model performance using only remote sensing and modeled predictors (blue), only field predictors (green), and all predictors 
combined (red). R²Y(cum) indicates the cumulative proportion of variance in the response variable Y (i.e., soil moisture) explained by each 
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model (see Table 3 for the models’ specifications). (a) Shows the R²Y(cum) values, indicated by crosses, of models using either the seasonal 425 
average per plot (spatial OPLS) or the spatially averaged daily time series across all sites (temporal OPLS) as the response variable. (b) 
Displays the R²Y(cum) values of 92 daily spatial OPLS models over the study period (July 5 – October 4, 2022), with mean precipitation 
across Krycklan (from weather stations shown in Fig. 1) plotted below for reference. 

4 Discussion 

In this study, we investigated a vast array of climatic and environmental factors controlling spatial patterns and temporal 430 

dynamics of surface soil moisture in a boreal forest landscape in northern Sweden with the purpose of providing new insights 

into modeling and mapping soil moisture. Specifically, we evaluated the ability of numerous variables extracted from multiple 

sources, including field measurements, remote sensing retrievals, and modeled data at different spatial resolutions and temporal 

scales, to explain soil moisture variations recorded during three snow-free months in 2022 by 78 dataloggers distributed across 

the Krycklan catchment. In the sections that follow, we discuss the primary findings from our analysis. 435 

4.1 Spatial variation 

We found that all four groups of spatial predictors considered in this analysis, namely topographical features, soil properties, 

vegetation characteristics, and land use/land cover (LULC), played a significant role in explaining spatial variations in soil 

moisture (Fig. 3). With the advent of LiDAR-derived DEMs at very high spatial resolution, researchers have increasingly used 

terrain indices, or a combination of them, as a proxy for soil moisture (Kemppinen et al., 2018; e.g., Kopecký et al., 2021; 440 

Riihimäki et al., 2021; Winzeler et al., 2022), including the 10 m resolution soil moisture index map (smi) (Naturvårdsverket, 

2022) and the 2 m resolution SLU soil moisture map (sm-slu) (Ågren et al., 2021) that we evaluated in our study. While these 

maps correlated well with soil moisture measured in the field, our analysis revealed that soil predictors, such as organic layer 

thickness and soil texture, vegetation-related variables, and land cover information distinguishing between mire and forest 

were also important. The relevance of integrating soil and terrain information to characterize soil moisture patterns in the 445 

context of hydrological modeling was highlighted by similar studies at the catchment scale (e.g., Baldwin et al., 2017). Previous 

research demonstrated that soil properties were determinant in controlling soil moisture spatial variance at the hillslope (Wang 

et al., 2023) and regional (Wu et al., 2020) scales as well. Consistent with other studies (e.g., Sørensen and Seibert, 2007; 

Ågren et al., 2014; Lidberg et al., 2020; Larson et al., 2022), our analysis also indicated that the performance of any terrain 

index varied greatly depending on the threshold and resolution considered, with 1 ha stream initiation threshold providing the 450 

best results and 0.5 m spatial resolution being the optimal choice only in one case (i.e., depth to water index). Interestingly, 

relative topographic position at 16 m resolution (rtp-16) emerged as the best predictor of soil moisture spatial variability, 

capable of identifying wetter depressions and drier ridges in the landscape (Weiss, 2001). While several examples in the 

literature demonstrate the importance of this index in soil moisture estimation (e.g., Engstrom et al., 2005; Zhao et al., 2021), 

it is somewhat surprising that Larson et al. (2022), who used five soil moisture classes estimated in the field as the response 455 

variable (sms predictor in our study) (see Table 1 and Fig. 3), observed that relative topographic position was not among the 

best performing variables in the Krycklan catchment. Therefore, in the pursuit of estimating spatial variability in soil moisture, 
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we advise caution when selecting terrain indices and their spatial resolutions and thresholds. We argue that an enhanced spatial 

resolution in topographical data does not necessarily compensate for the absence of soil, vegetation, and LULC information. 

We finally reiterate the importance of soil moisture datalogger measurements to validate predictive models. 460 

4.2 Temporal variation 

 Our research demonstrated that daily soil moisture fluctuations within the Krycklan catchment are strongly influenced 

by the hydrological and meteorological conditions over five to seven days preceding soil moisture measurements, regardless 

of whether these conditions were estimated (ERA5-Land dataset) or measured directly in the field (weather stations and ICOS 

tower) (Fig. 4). Among other variables, increased soil moisture was correlated with lower air pressure, shortwave radiation, 465 

vapor pressure deficit, and evaporation from the top of canopy; conversely, it was associated with higher thermal (longwave) 

radiation, precipitation, air humidity, evapotranspiration, and wind speed. Averaged conditions over five to seven days for all 

these variables exhibited the strongest correlation with daily variations in soil moisture in Krycklan, indicating both lagged 

and cumulative effects of these processes on soil moisture. Previous research has also highlighted the importance of 

considering multi-day accumulations and time lags between meteorological drivers and soil moisture response (Williams et 470 

al., 2009; Pan, 2012; Li et al., 2024), with most studies focusing on precipitation–soil moisture relationship. Parent et al. (2006) 

showed that the transfer of energy from precipitation to soil moisture via infiltration, percolation, and redistribution processes 

mostly occurs over temporal scales ranging between 2 and 14 days. Piao et al. (2009) proved that precipitation frequency can 

be a more crucial factor than precipitation amount in shaping soil moisture variations, making it essential to account for the 

cumulative effect of precipitation over multi-day temporal scales (Ge et al., 2022). Our study identified soil temperature (28–475 

100 cm below surface) as the most notable exception to the optimal temporal scale of five to seven days observed for almost 

all other relevant predictors. While we found a negative correlation between soil temperature and soil moisture as expected 

(Aalto et al., 2013), the strongest effects emerged at the 3-week scale (the longest temporal scale considered in our analysis), 

possibly because soil temperature at those depths (28–100 cm) also varies more slowly compared to topsoil temperature. Soil 

temperature, along with air temperature — which showed weak correlation with soil moisture in our study — might better 480 

correlate with soil moisture over longer temporal scales, such as seasonal or annual (Liang et al., 2024). In regard to our 

findings, it is important to acknowledge that the optimal temporal scale for estimating daily fluctuations in soil moisture can 

vary according to soil drainage conditions (Parent et al., 2006) and initial wetness conditions characterizing specific climate 

zones (Chai et al., 2020) or resulting from different seasonal and annual variations in large-scale climate patterns (Li et al., 

2024). 485 

4.3 Temporal stability of soil moisture patterns 

Different initial wetness conditions can also influence the processes controlling spatial variability in soil moisture (Famiglietti 

et al., 1998; Western et al., 2004; Joshi and Mohanty, 2010; Mei et al., 2018; Gao et al., 2020; Wang et al., 2023). Although 

the ranking among predictors remained nearly constant over the study season, we observed that their predictive power changed 
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non-uniformly in relation to daily fluctuations in wetness conditions (i.e., variables responded differently to the same wetness 490 

conditions in any day) (Fig. 5). Previous studies indicated that, under drying conditions, lateral water movement is gradually 

replaced by vertical water movement (Grayson et al., 1997; Western et al., 1999; Rosenbaum et al., 2012), and the spatial 

variability in soil moisture is likely due to diverse infiltration and evapotranspiration rates related to the spatial distribution of 

soil and vegetation features (Teuling and Troch, 2005; Takagi and Lin, 2012; Jia et al., 2013; Launiainen et al., 2019). 

Conversely, the soil moisture spatial variability under rewetting conditions is mostly determined by topographical structures 495 

that guide lateral subsurface flow and surface runoff (Grayson et al., 1997; Gaur and Mohanty, 2013). These findings are in 

line with the results of our study, suggesting that higher infiltration rates in loamy sand soils compared to other soil types and 

diverse evapotranspiration rates associated to different vegetation (i.e., different site index values) increasingly contributed to 

the observed spatial distribution of soil moisture particularly during drying periods (e.g., late August to mid-September in our 

case), while most topographic variables became steadily less relevant during this time. On the other hand, during large 500 

precipitation events, topographic indices showed an initial drop in the predictive power likely due to the accumulation of water 

in the top soil layer and the consequent reduced spatial variability in soil moisture among sites, followed by a time-lagged peak 

in the predictive power, likely associated with the beginning of lateral subsurface flow driven by topographical features (Grabs 

et al., 2012). Regarding vegetation, we also observed a clear seasonal pattern: during the peak of the growing season, generally 

characterized by warmer and longer days, the spatial heterogeneity of vegetation usually had a larger effect on soil moisture 505 

distribution. This may be due to stronger effects of increased transpiration or shading during this period, leading to more 

pronounced differences across plots, whereas this influence diminished towards the end of the summer, when days were usually 

cooler and shorter. Seasonal patterns in solar radiation affected evapotranspiration rates and soil moisture levels differently 

not only in forests compared to peatlands, with forests responding more strongly due to higher canopy cover and biomass 

(Mackay et al., 2007), but also depending on tree species composition, with pine being potentially more responsive to high 510 

radiation than spruce (Lagergren and Lindroth, 2002). These findings reiterate the importance of considering the temporal 

stability of spatial soil moisture patterns under changing wetness conditions (Wang et al., 2023), and we suggest that future 

research should focus on modeling soil moisture dynamics over longer time scales, beyond a single growing season, 

particularly in high-latitude environments, where this remains an underexplored topic. 

4.4 Mapping spatiotemporal variability in soil moisture 515 

While there exists an extensive literature assessing the accuracy of remote sensing and modeled estimates of soil moisture 

based on analogous data measured in situ (Romano, 2014; Petropoulos et al., 2015; Dorigo et al., 2021), we are not aware of 

any study explicitly comparing the ability of numerous field versus non-field environmental and climate predictors in 

explaining spatial and temporal variations in soil moisture. Field measurements generally outperformed remote sensing and 

modeled data, both in terms of overall model performance (Fig. 6) and when comparing pairs of analogous variables from 520 

different sources, especially in the case of spatial variability (Figs. 4 and S2). However, field data alone, which included soil, 

vegetation, and LULC information, did not yield the highest performance, as DEM-derived topographic information also 
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proved essential, with both types of predictors influencing soil moisture differently depending on prevailing weather conditions 

(Figs. 5 and 6). We also acknowledge that, even when combining both field and non-field environmental variables in our 

models, the spatial distribution of soil moisture was not fully captured. In part, this may be explained by measurement 525 

inaccuracies, including errors in soil moisture datalogger recordings, and temporal discrepancies in data collection, with some 

data measured or recorded prior to the 2022 study season (see Supplement). Moreover, we assumed spatial homogeneity for 

meteorological forcings across the Krycklan catchment, a reasonable assumption for variables like precipitation, but less so 

for variables such as soil and air temperatures (Aalto et al., 2022; Kolstela et al., 2024), whose fine scale variations likely 

influenced soil moisture patterns. At even finer spatial scales, variations in soil moisture may have stemmed from local factors 530 

not represented by our predictors, such as soil discontinuities, small understory vegetation, and the presence of stones (Parajuli 

et al., 2020). Future studies should focus on analyzing soil moisture datasets with higher temporal variability (e.g., covering 

the entire snow-free season, including post-snowmelt periods, and multiple seasons or years), evaluating more accurate 

LiDAR-derived vegetation metrics, accounting for microclimatic variations, and comparing catchments with diverse 

characteristics (e.g., spanning a large latitudinal gradient). For future soil moisture mapping, greater efforts should be devoted 535 

to improving the quality and resolution of spatially continuous soil information. The lack of detailed soil maps describing soil 

properties such as texture, structure, and organic matter content was most likely the major cause behind the relatively lower 

predictive performance of remote sensing and modeled data compared to field data. Enhanced soil maps would benefit not 

only data-driven approaches to soil moisture mapping but also physically based modeling efforts that rely on such inputs. 

Informed by the results of this study, we are now able to select a smaller subset of key spatial and temporal predictors of soil 540 

moisture, which, in the future, could be integrated into a machine learning model to generate dynamic soil moisture maps for 

Krycklan. While machine learning models can handle high dimensional data, pre-selecting variables enhances interpretability, 

reduces overfitting, and ensures that inputs reflect the variation most relevant to soil moisture dynamics (Meyer et al., 2019). 

Due to their ability to process large volumes of data, such models can leverage detailed spatial and temporal information from 

multiple sources to potentially map soil moisture at both high spatial and temporal resolutions across vast geographic areas. 545 

5 Conclusions 

The Krycklan field infrastructure provided a unique setting for designing a comprehensive study to advance our understanding 

of the relationship between surface soil moisture and its controls in a forest boreal landscape. By combining remote sensing 

and modeled data with field measurements across 78 sites in the Krycklan catchment, this study is among the first to examine 

such a broad range of climatic and environmental factors at different spatial resolutions and temporal scales, focusing on both 550 

the spatial and temporal components of soil moisture variability. Our findings suggest that topographical features, soil 

properties, vegetation characteristics, land use/land cover, and meteorological forcings should all be included when modeling 

and mapping variations in soil moisture. We highlight the importance of identifying the optimal spatial resolution and temporal 

scale for each predictor and considering the dynamic nature of the relationship between soil moisture and its controls, which 
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varies over time. Our results support the development of more accurate and interpretable data-driven models for mapping soil 555 

moisture in space and time. 

Data availability 

The soil moisture time series from the TOMST loggers, their geographic locations within the Krycklan catchment, the field 

survey data listed in Table 1, and the topographic solar radiation data are available at https://doi.org/10.17632/s8zg5ymkh6.1 

(Zignol et al., 2025) 560 

Author contribution 

FZ, AÅ, and WL were responsible for the conceptualization of the study. FZ, CG, JL, and RH conducted fieldwork. WL and 

JL provided the data for the terrain indices. FZ was responsible for the data processing and analysis, prepared the manuscript 

including all figures, and led the writing of the paper with contributions from all the co-authors. Funding acquisition AÅ, WL, 

and CG. 565 

Competing interests 

The authors declare that they have no conflict of interest. 

Acknowledgements 

We thank the skilled scientists, technicians, and students that have collated the massive amount of data available for the 

Krycklan catchment. 570 

Financial support 

This work was funded by The Swedish Research Council Formas (proj no. 2021–00713, 2021–00115 to AÅ, and 2021–01993 

to CG) and Knut and Alice Wallenberg Foundation (2018–0259 Future Silviculture). This work was partially supported by the 

Wallenberg AI, Autonomous Systems and Software Program – Humanities and Society (WASP-HS) funded by the Marianne 

and Marcus Wallenberg Foundation, the Marcus and Amalia Wallenberg Foundation. The funding sources had no involvement 575 

in the study design and collection, analysis and interpretation of data, nor in the writing of the report. 



27 
 

Supplement 

Supplementary materials associated with this article can be found, in the online version, at link.  



28 
 

References 

Aalto, J., le Roux, P. C., and Luoto, M.: Vegetation Mediates Soil Temperature and Moisture in Arctic-Alpine 580 
Environments, Arctic, Antarctic, and Alpine Research, 45, 429–439, https://doi.org/10.1657/1938-4246-45.4.429, 
2013. 

Aalto, J., Tyystjärvi, V., Niittynen, P., Kemppinen, J., Rissanen, T., Gregow, H., and Luoto, M.: Microclimate temperature 
variations from boreal forests to the tundra, Agricultural and Forest Meteorology, 323, 109037, 
https://doi.org/10.1016/j.agrformet.2022.109037, 2022. 585 

Adobe Inc.: Adobe Illustrator, Version 28.2, 2024. 

Ågren, A. M., Lidberg, W., Strömgren, M., Ogilvie, J., and Arp, P. A.: Evaluating digital terrain indices for soil wetness 
mapping – a Swedish case study, Hydrology and Earth System Sciences, 18, 3623–3634, https://doi.org/10.5194/hess-
18-3623-2014, 2014. 

Ågren, A. M., Larson, J., Paul, S. S., Laudon, H., and Lidberg, W.: Use of multiple LIDAR-derived digital terrain indices 590 
and machine learning for high-resolution national-scale soil moisture mapping of the Swedish forest landscape, 
Geoderma, 404, 115280, https://doi.org/10.1016/j.geoderma.2021.115280, 2021. 

Amooh, M. K. and Bonsu, M.: Effects of Soil Texture and Organic Matter on the Evaporative Loss of Soil Moisture, Journal 
of Global Agriculture and Ecology, 2015. 

Baldwin, D., Naithani, K. J., and Lin, H.: Combined soil-terrain stratification for characterizing catchment-scale soil 595 
moisture variation, Geoderma, 285, 260–269, https://doi.org/10.1016/j.geoderma.2016.09.031, 2017. 

Chai, Q., Wang, T., and Di, C.: Evaluating the impacts of environmental factors on soil moisture temporal dynamics at 
different time scales, Journal of Water and Climate Change, 12, 420–432, https://doi.org/10.2166/wcc.2020.011, 2020. 

Chaparro, D., Vall-llossera, M., Piles, M., Camps, A., Rüdiger, C., and Riera-Tatché, R.: Predicting the Extent of Wildfires 
Using Remotely Sensed Soil Moisture and Temperature Trends, IEEE Journal of Selected Topics in Applied Earth 600 
Observations and Remote Sensing, 9, 2818–2829, https://doi.org/10.1109/JSTARS.2016.2571838, 2016. 

Collow, T. W., Robock, A., and Wu, W.: Influences of soil moisture and vegetation on convective precipitation forecasts 
over the United States Great Plains, Journal of Geophysical Research: Atmospheres, 119, 9338–9358, 
https://doi.org/10.1002/2014JD021454, 2014. 

Dobriyal, P., Qureshi, A., Badola, R., and Hussain, S. A.: A review of the methods available for estimating soil moisture and 605 
its implications for water resource management, Journal of Hydrology, 458–459, 110–117, 
https://doi.org/10.1016/j.jhydrol.2012.06.021, 2012. 

Dorigo, W., Himmelbauer, I., Aberer, D., Schremmer, L., Petrakovic, I., Zappa, L., Preimesberger, W., Xaver, A., Annor, F., 
Ardö, J., Baldocchi, D., Bitelli, M., Blöschl, G., Bogena, H., Brocca, L., Calvet, J.-C., Camarero, J. J., Capello, G., 
Choi, M., Cosh, M. C., van de Giesen, N., Hajdu, I., Ikonen, J., Jensen, K. H., Kanniah, K. D., de Kat, I., Kirchengast, 610 
G., Kumar Rai, P., Kyrouac, J., Larson, K., Liu, S., Loew, A., Moghaddam, M., Martínez Fernández, J., Mattar Bader, 
C., Morbidelli, R., Musial, J. P., Osenga, E., Palecki, M. A., Pellarin, T., Petropoulos, G. P., Pfeil, I., Powers, J., 
Robock, A., Rüdiger, C., Rummel, U., Strobel, M., Su, Z., Sullivan, R., Tagesson, T., Varlagin, A., Vreugdenhil, M., 
Walker, J., Wen, J., Wenger, F., Wigneron, J. P., Woods, M., Yang, K., Zeng, Y., Zhang, X., Zreda, M., Dietrich, S., 
Gruber, A., van Oevelen, P., Wagner, W., Scipal, K., Drusch, M., and Sabia, R.: The International Soil Moisture 615 



29 
 

Network: serving Earth system science for over a decade, Hydrology and Earth System Sciences, 25, 5749–5804, 
https://doi.org/10.5194/hess-25-5749-2021, 2021. 

Dymond, S. F., Wagenbrenner, J. W., Keppeler, E. T., and Bladon, K. D.: Dynamic Hillslope Soil Moisture in a 
Mediterranean Montane Watershed, Water Resources Research, 57, e2020WR029170, 
https://doi.org/10.1029/2020WR029170, 2021. 620 

Engstrom, R., Hope, A., Kwon, H., Stow, D., and Zamolodchikov, D.: Spatial distribution of near surface soil moisture and 
its relationship to microtopography in the Alaskan Arctic coastal plain, Hydrology Research, 36, 219–234, 
https://doi.org/10.2166/nh.2005.0016, 2005. 

Entin, J. K., Robock, A., Vinnikov, K. Y., Hollinger, S. E., Liu, S., and Namkhai, A.: Temporal and spatial scales of 
observed soil moisture variations in the extratropics, Journal of Geophysical Research: Atmospheres, 105, 11865–625 
11877, https://doi.org/10.1029/2000JD900051, 2000. 

Eriksson, L., Byrne, T., Johansson, E., Trygg, J., and Vikström, C.: Multi- and Megavariate Data Analysis Basic Principles 
and Applications, Third revised ed., Umetrics Academy, 509 pp., 2013. 

Esri Inc.: ArcGIS Pro, Version 3.1.1, 2023. 

Famiglietti, J. S., Rudnicki, J. W., and Rodell, M.: Variability in surface moisture content along a hillslope transect: 630 
Rattlesnake Hill, Texas, Journal of Hydrology, 210, 259–281, https://doi.org/10.1016/S0022-1694(98)00187-5, 1998. 

Gao, L., Peng, X., and Biswas, A.: Temporal instability of soil moisture at a hillslope scale under subtropical hydroclimatic 
conditions, CATENA, 187, 104362, https://doi.org/10.1016/j.catena.2019.104362, 2020. 

Gaur, N. and Mohanty, B. P.: Evolution of physical controls for soil moisture in humid and subhumid watersheds, Water 
Resources Research, 49, 1244–1258, https://doi.org/10.1002/wrcr.20069, 2013. 635 

Ge, F., Xu, M., Gong, C., Zhang, Z., Tan, Q., and Pan, X.: Land cover changes the soil moisture response to rainfall on the 
Loess Plateau, Hydrological Processes, 36, e14714, https://doi.org/10.1002/hyp.14714, 2022. 

Grabs, T., Bishop, K., Laudon, H., Lyon, S. W., and Seibert, J.: Riparian zone hydrology and soil water total organic carbon 
(TOC): implications for spatial variability and upscaling of lateral riparian TOC exports, Biogeosciences, 9, 3901–
3916, https://doi.org/10.5194/bg-9-3901-2012, 2012. 640 

Grayson, R. B., Western, A. W., Chiew, F. H. S., and Blöschl, G.: Preferred states in spatial soil moisture patterns: Local and 
nonlocal controls, Water Resources Research, 33, 2897–2908, https://doi.org/10.1029/97WR02174, 1997. 

Gwak, Y. and Kim, S.: Factors affecting soil moisture spatial variability for a humid forest hillslope, Hydrological Processes, 
31, 431–445, https://doi.org/10.1002/hyp.11039, 2017. 

Han, X., Liu, J., Srivastava, P., Liu, H., Li, X., Shen, X., and Tan, H.: The Dominant Control of Relief on Soil Water 645 
Content Distribution During Wet-Dry Transitions in Headwaters, Water Resources Research, 57, e2021WR029587, 
https://doi.org/10.1029/2021WR029587, 2021. 

Jia, Y.-H., Shao, M.-A., and Jia, X.-X.: Spatial pattern of soil moisture and its temporal stability within profiles on a loessial 
slope in northwestern China, Journal of Hydrology, 495, 150–161, https://doi.org/10.1016/j.jhydrol.2013.05.001, 2013. 



30 
 

Jonard, F., Mahmoudzadeh, M., Roisin, C., Weihermüller, L., André, F., Minet, J., Vereecken, H., and Lambot, S.: 650 
Characterization of tillage effects on the spatial variation of soil properties using ground-penetrating radar and 
electromagnetic induction, Geoderma, 207–208, 310–322, https://doi.org/10.1016/j.geoderma.2013.05.024, 2013. 

Jones, L. A., Kimball, J. S., Reichle, R. H., Madani, N., Glassy, J., Ardizzone, J. V., Colliander, A., Cleverly, J., Desai, A. 
R., Eamus, D., Euskirchen, E. S., Hutley, L., Macfarlane, C., and Scott, R. L.: The SMAP Level 4 Carbon Product for 
Monitoring Ecosystem Land–Atmosphere CO2 Exchange, IEEE Transactions on Geoscience and Remote Sensing, 55, 655 
6517–6532, https://doi.org/10.1109/TGRS.2017.2729343, 2017. 

Joshi, C. and Mohanty, B. P.: Physical controls of near-surface soil moisture across varying spatial scales in an agricultural 
landscape during SMEX02, Water Resources Research, 46, https://doi.org/10.1029/2010WR009152, 2010. 

Kaiser, K. E. and McGlynn, B. L.: Nested Scales of Spatial and Temporal Variability of Soil Water Content Across a 
Semiarid Montane Catchment, Water Resources Research, 54, 7960–7980, https://doi.org/10.1029/2018WR022591, 660 
2018. 

Kašpar, V., Hederová, L., Macek, M., Müllerová, J., Prošek, J., Surový, P., Wild, J., and Kopecký, M.: Temperature 
buffering in temperate forests: Comparing microclimate models based on ground measurements with active and passive 
remote sensing, Remote Sensing of Environment, 263, 112522, https://doi.org/10.1016/j.rse.2021.112522, 2021. 

Kemppinen, J., Niittynen, P., Riihimäki, H., and Luoto, M.: Modelling soil moisture in a high-latitude landscape using 665 
LiDAR and soil data, Earth Surface Processes and Landforms, 43, 1019–1031, https://doi.org/10.1002/esp.4301, 2018. 

Kemppinen, J., Niittynen, P., Aalto, J., le Roux, P. C., and Luoto, M.: Water as a resource, stress and disturbance shaping 
tundra vegetation, Oikos, 128, 811–822, https://doi.org/10.1111/oik.05764, 2019. 

Kemppinen, J., Niittynen, P., Rissanen, T., Tyystjärvi, V., Aalto, J., and Luoto, M.: Soil Moisture Variations From Boreal 
Forests to the Tundra, Water Resources Research, 59, e2022WR032719, https://doi.org/10.1029/2022WR032719, 670 
2023. 

Kendall, M. G.: Rank correlation methods, 4th ed., Charles Griffin, London, 202 pp., 1975. 

Kolstela, J., Aakala, T., Maclean, I., Niittynen, P., Kemppinen, J., Luoto, M., Rissanen, T., Tyystjärvi, V., Gregow, H., 
Vapalahti, O., and Aalto, J.: Revealing fine-scale variability in boreal forest temperatures using a mechanistic 
microclimate model, Agricultural and Forest Meteorology, 350, 109995, 675 
https://doi.org/10.1016/j.agrformet.2024.109995, 2024. 

Kopecký, M., Macek, M., and Wild, J.: Topographic Wetness Index calculation guidelines based on measured soil moisture 
and plant species composition, Science of The Total Environment, 757, 143785, 
https://doi.org/10.1016/j.scitotenv.2020.143785, 2021. 

Krauss, L., Hauck, C., and Kottmeier, C.: Spatio-temporal soil moisture variability in Southwest Germany observed with a 680 
new monitoring network within the COPS domain, Meteorologische Zeitschrift, 523–537, 
https://doi.org/10.1127/0941-2948/2010/0486, 2010. 

Lagergren, F. and Lindroth, A.: Transpiration response to soil moisture in pine and spruce trees in Sweden, Agricultural and 
Forest Meteorology, 112, 67–85, https://doi.org/10.1016/S0168-1923(02)00060-6, 2002. 

Lantmäteriet: Orthophoto [dataset], https://www.lantmateriet.se/globalassets/geodata/geodataprodukter/flyg--och-685 
satellitbilder/e_pb_ortofoto.pdf, last access: 20 August 2024, 2021. 



31 
 

Lantmäteriet: Swedish Property Map, scale 1:10000 [map], 
https://www.lantmateriet.se/globalassets/geodata/geodataprodukter/topografi_10_nedladdning_vektor.pdf, last access: 
20 August 2024, 2023. 

Larson, J., Lidberg, W., Ågren, A. M., and Laudon, H.: Predicting soil moisture conditions across a heterogeneous boreal 690 
catchment using terrain indices, Hydrology and Earth System Sciences, 26, 4837–4851, https://doi.org/10.5194/hess-
26-4837-2022, 2022. 

Larson, J., Wallerman, J., Peichl, M., and Laudon, H.: Soil moisture controls the partitioning of carbon stocks across a 
managed boreal forest landscape, Sci Rep, 13, 14909, https://doi.org/10.1038/s41598-023-42091-4, 2023. 

Larson, J., Vigren, C., Wallerman, J., Ågren, A. M., Appiah Mensah, A., and Laudon, H.: Tree growth potential and its 695 
relationship with soil moisture conditions across a heterogeneous boreal forest landscape, Sci Rep, 14, 10611, 
https://doi.org/10.1038/s41598-024-61098-z, 2024. 

Laudon, H., Taberman, I., Ågren, A., Futter, M., Ottosson-Löfvenius, M., and Bishop, K.: The Krycklan Catchment Study—
A flagship infrastructure for hydrology, biogeochemistry, and climate research in the boreal landscape, Water 
Resources Research, 49, 7154–7158, https://doi.org/10.1002/wrcr.20520, 2013. 700 

Laudon, H., Hasselquist, E. M., Peichl, M., Lindgren, K., Sponseller, R., Lidman, F., Kuglerová, L., Hasselquist, N. J., 
Bishop, K., Nilsson, M. B., and Ågren, A. M.: Northern landscapes in transition: Evidence, approach and ways forward 
using the Krycklan Catchment Study, Hydrological Processes, 35, e14170, https://doi.org/10.1002/hyp.14170, 2021. 

Launiainen, S., Guan, M., Salmivaara, A., and Kieloaho, A.-J.: Modeling boreal forest evapotranspiration and water balance 
at stand and catchment scales: a spatial approach, Hydrology and Earth System Sciences, 23, 3457–3480, 705 
https://doi.org/10.5194/hess-23-3457-2019, 2019. 

Li, R., Zhang, S., Li, F., Lin, X., Luo, M., Wang, S., Yang, L., and Zhao, X.: Impact of time-lagging and time-preceding 
environmental variables on top layer soil moisture in semiarid grasslands, Science of The Total Environment, 912, 
169406, https://doi.org/10.1016/j.scitotenv.2023.169406, 2024. 

Liang, G., Stefanski, A., Eddy, W. C., Bermudez, R., Montgomery, R. A., Hobbie, S. E., Rich, R. L., and Reich, P. B.: Soil 710 
respiration response to decade-long warming modulated by soil moisture in a boreal forest, Nat. Geosci., 1–7, 
https://doi.org/10.1038/s41561-024-01512-3, 2024. 

Liang, W.-L., Li, S.-L., and Hung, F.-X.: Analysis of the contributions of topographic, soil, and vegetation features on the 
spatial distributions of surface soil moisture in a steep natural forested headwater catchment, Hydrological Processes, 
31, 3796–3809, https://doi.org/10.1002/hyp.11290, 2017. 715 

Lidberg, W., Nilsson, M., and Ågren, A.: Using machine learning to generate high-resolution wet area maps for planning 
forest management: A study in a boreal forest landscape, Ambio, 49, 475–486, https://doi.org/10.1007/s13280-019-
01196-9, 2020. 

Mackay, D. S., Ewers, B. E., Cook, B. D., and Davis, K. J.: Environmental drivers of evapotranspiration in a shrub wetland 
and an upland forest in northern Wisconsin, Water Resources Research, 43, https://doi.org/10.1029/2006WR005149, 720 
2007. 

Mann, H. B.: Nonparametric tests against trend, Econometrica, 13, 245–259, https://doi.org/10.2307/1907187, 1945. 



32 
 

McLaughlin, B. C., Ackerly, D. D., Klos, P. Z., Natali, J., Dawson, T. E., and Thompson, S. E.: Hydrologic refugia, plants, 
and climate change, Glob Chang Biol, 23, 2941–2961, https://doi.org/10.1111/gcb.13629, 2017. 

McMillan, H. K. and Srinivasan, M. S.: Characteristics and controls of variability in soil moisture and groundwater in a 725 
headwater catchment, Hydrology and Earth System Sciences, 19, 1767–1786, https://doi.org/10.5194/hess-19-1767-
2015, 2015. 

Mei, X., Zhu, Q., Ma, L., Zhang, D., Liu, H., and Xue, M.: The spatial variability of soil water storage and its controlling 
factors during dry and wet periods on loess hillslopes, CATENA, 162, 333–344, 
https://doi.org/10.1016/j.catena.2017.10.029, 2018. 730 

Meyer, H., Reudenbach, C., Wöllauer, S., and Nauss, T.: Importance of spatial predictor variable selection in machine 
learning applications – Moving from data reproduction to spatial prediction, Ecological Modelling, 411, 108815, 
https://doi.org/10.1016/j.ecolmodel.2019.108815, 2019. 

Muñoz-Sabater, J.: ERA5-Land hourly data from 1950 to present, Copernicus Climate Change Service (C3S) Climate Data 
Store (CDS) [dataset], https://doi.org/10.24381/cds.e2161bac, last access: 3 December 2024, 2019. 735 

Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., Boussetta, S., Choulga, M., 
Harrigan, S., Hersbach, H., Martens, B., Miralles, D. G., Piles, M., Rodríguez-Fernández, N. J., Zsoter, E., Buontempo, 
C., and Thépaut, J.-N.: ERA5-Land: a state-of-the-art global reanalysis dataset for land applications, Earth System 
Science Data, 13, 4349–4383, https://doi.org/10.5194/essd-13-4349-2021, 2021. 

Murphy, P. N. C., Ogilvie, J., Meng, F.-R., White, B., Bhatti, J. S., and Arp, P. A.: Modelling and mapping topographic 740 
variations in forest soils at high resolution: A case study, Ecological Modelling, 222, 2314–2332, 
https://doi.org/10.1016/j.ecolmodel.2011.01.003, 2011. 

Naturvårdsverket: The National Land Cover database: soil moisture index map, spatial resolution: 10×10 m, Swedish 
Environmental Protection Agency [map], 
https://geodatakatalogen.naturvardsverket.se/geonetwork/srv/swe/catalog.search#/metadata/cae71f45-b463-447f-804f-745 
2847869b19b0, last access: 5 September 2024, 2022. 

Nogovitcyn, A., Shakhmatov, R., Morozumi, T., Tei, S., Miyamoto, Y., Shin, N., Maximov, T. C., and Sugimoto, A.: 
Historical variation in the normalized difference vegetation index compared with soil moisture in a taiga forest 
ecosystem in northeastern Siberia, Biogeosciences, 20, 3185–3201, https://doi.org/10.5194/bg-20-3185-2023, 2023. 

Ochsner, T. E., Cosh, M. H., Cuenca, R. H., Dorigo, W. A., Draper, C. S., Hagimoto, Y., Kerr, Y. H., Larson, K. M., Njoku, 750 
E. G., Small, E. E., and Zreda, M.: State of the Art in Large-Scale Soil Moisture Monitoring, Soil Science Society of 
America Journal, 77, 1888–1919, https://doi.org/10.2136/sssaj2013.03.0093, 2013. 

de Oliveira, V. A., Rodrigues, A. F., Morais, M. A. V., Terra, M. de C. N. S., Guo, L., and de Mello, C. R.: Spatiotemporal 
modelling of soil moisture in an Atlantic forest through machine learning algorithms, European Journal of Soil Science, 
72, 1969–1987, https://doi.org/10.1111/ejss.13123, 2021. 755 

Pan, F.: Estimating Daily Surface Soil Moisture Using a Daily Diagnostic Soil Moisture Equation, Journal of Irrigation and 
Drainage Engineering, 138, 625–631, https://doi.org/10.1061/(ASCE)IR.1943-4774.0000450, 2012. 

Parajuli, K., Jones, S. B., Tarboton, D. G., Hipps, L. E., Zhao, L., Sadeghi, M., Rockhold, M. L., Torres-Rua, A., and 
Flerchinger, G. N.: Stone Content Influence on Land Surface Model Simulation of Soil Moisture and 
Evapotranspiration at Reynolds Creek Watershed, https://doi.org/10.1175/JHM-D-19-0075.1, 2020. 760 



33 
 

Parent, A.-C., Anctil, F., and Parent, L.-É.: Characterization of temporal variability in near-surface soil moisture at scales 
from 1 h to 2 weeks, Journal of Hydrology, 325, 56–66, https://doi.org/10.1016/j.jhydrol.2005.09.027, 2006. 

Peichl, M., Nilsson, M., Smith, P., Marklund, P., De Simon, G., Löfvenius, P., Dignam, R., Holst, J., Mölder, M., 
Andersson, T., Kozii, N., Larmanou, E., Linderson, M., and Ottosson-Löfvenius, M.: ETC L2 Meteo, Svartberget, 
2018-12-31–2023-12-31, ICOS RI [dataset], https://hdl.handle.net/11676/kF7lHD8qztNl_5HdsSPWUmHs, last access: 765 
20 May 2024, 2024. 

Petropoulos, G. P., Griffiths, H. M., Dorigo, W., Xaver, A., and Gruber, A.: Surface Soil Moisture Estimation: Significance, 
Controls, and Conventional Measurement Techniques, in: Remote Sensing of Energy Fluxes and Soil Moisture 
Content, CRC Press, 2013. 

Petropoulos, G. P., Ireland, G., and Barrett, B.: Surface soil moisture retrievals from remote sensing: Current status, products 770 
& future trends, Physics and Chemistry of the Earth, Parts A/B/C, 83–84, 36–56, 
https://doi.org/10.1016/j.pce.2015.02.009, 2015. 

Piao, S., Yin, L., Wang, X., Ciais, P., Peng, S., Shen, Z., and Seneviratne, S. I.: Summer soil moisture regulated by 
precipitation frequency in China, Environ. Res. Lett., 4, 044012, https://doi.org/10.1088/1748-9326/4/4/044012, 2009. 

Potopová, V., Boroneanţ, C., Možný, M., and Soukup, J.: Driving role of snow cover on soil moisture and drought 775 
development during the growing season in the Czech Republic, International Journal of Climatology, 36, 3741–3758, 
https://doi.org/10.1002/joc.4588, 2016. 

R Core Team: R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, 
Austria, 2023. 

Rasheed, M. W., Tang, J., Sarwar, A., Shah, S., Saddique, N., Khan, M. U., Imran Khan, M., Nawaz, S., Shamshiri, R. R., 780 
Aziz, M., and Sultan, M.: Soil Moisture Measuring Techniques and Factors Affecting the Moisture Dynamics: A 
Comprehensive Review, Sustainability, 14, 11538, https://doi.org/10.3390/su141811538, 2022. 

Riihimäki, H., Kemppinen, J., Kopecký, M., and Luoto, M.: Topographic Wetness Index as a Proxy for Soil Moisture: The 
Importance of Flow-Routing Algorithm and Grid Resolution, Water Resources Research, 57, e2021WR029871, 
https://doi.org/10.1029/2021WR029871, 2021. 785 

Romano, N.: Soil moisture at local scale: Measurements and simulations, Journal of Hydrology, 516, 6–20, 
https://doi.org/10.1016/j.jhydrol.2014.01.026, 2014. 

Rosenbaum, U., Bogena, H. R., Herbst, M., Huisman, J. A., Peterson, T. J., Weuthen, A., Western, A. W., and Vereecken, 
H.: Seasonal and event dynamics of spatial soil moisture patterns at the small catchment scale, Water Resources 
Research, 48, https://doi.org/10.1029/2011WR011518, 2012. 790 

Schönauer, M., Ågren, A. M., Katzensteiner, K., Hartsch, F., Arp, P., Drollinger, S., and Jaeger, D.: Soil moisture modeling 
with ERA5-Land retrievals, topographic indices, and in situ measurements and its use for predicting ruts, Hydrology 
and Earth System Sciences, 28, 2617–2633, https://doi.org/10.5194/hess-28-2617-2024, 2024. 

Sen, P. K.: Estimates of the Regression Coefficient Based on Kendall’s Tau, Journal of the American Statistical Association, 
63, 1379–1389, https://doi.org/10.1080/01621459.1968.10480934, 1968. 795 



34 
 

Seneviratne, S. I., Corti, T., Davin, E. L., Hirschi, M., Jaeger, E. B., Lehner, I., Orlowsky, B., and Teuling, A. J.: 
Investigating soil moisture–climate interactions in a changing climate: A review, Earth-Science Reviews, 99, 125–161, 
https://doi.org/10.1016/j.earscirev.2010.02.004, 2010. 

SGU (Sveriges geologiska undersökning): Soil depth map, spatial resolution: 10×10 m [map], 
https://resource.sgu.se/dokument/produkter/jorddjupsmodell-beskrivning.pdf, last access: 20 August 2024a, 2024. 800 

SGU (Sveriges geologiska undersökning): Soil types map, scale 1:25000 [map], 
https://resource.sgu.se/dokument/produkter/jordarter-25-100000-beskrivning.pdf, last access: 20 August 2024b, 2024. 

Sikström, U. and Hökkä, H.: Interactions between soil water conditions and forest stands in boreal forests with implications 
for ditch network maintenance, Silva Fenn., 50, https://doi.org/10.14214/sf.1416, 2016. 

Skogsstyrelsen: Utförda avverkningar (clearcuts carried out) [dataset], 805 
https://geodpags.skogsstyrelsen.se/geodataport/feeds/UtfordAvverk.xml, last access: 2 April 2025, 2024. 

SLU (Sveriges lantbruksuniversitet): SLU Forest Map, spatial resolution: 25×25 m, Department of Forest Resource 
Management [map], https://www.slu.se/en/Collaborative-Centres-and-Projects/the-swedish-national-forest-
inventory/foreststatistics/slu-forest-map/, last access: 7 April 2025, 2010. 

SLU (Sveriges lantbruksuniversitet): SLU Soil Moisture Map, spatial resolution: 2×2 m, Department of Forest Ecology and 810 
Management [map], https://www.slu.se/en/departments/forest-ecology-management/forskning/soil-moisture-maps/, last 
access: 8 April 2025, 2021. 

Sørensen, R. and Seibert, J.: Effects of DEM resolution on the calculation of topographical indices: TWI and its components, 
Journal of Hydrology, 347, 79–89, https://doi.org/10.1016/j.jhydrol.2007.09.001, 2007. 

Stark, J. R. and Fridley, J. D.: Topographic Drivers of Soil Moisture Across a Large Sensor Network in the Southern 815 
Appalachian Mountains (USA), Water Resources Research, 59, e2022WR034315, 
https://doi.org/10.1029/2022WR034315, 2023. 

Svartberget Research Station: Meteorological data from Stortjärn, platform, 2016-07-02–2022-11-22, Swedish Infrastructure 
for Ecosystem Science (SITES) [dataset], https://meta.fieldsites.se/objects/SwldWWD0fJ6VIl7VCCrGknQT, last 
access: 20 May 2024a, 2022. 820 

Svartberget Research Station: Meteorological data from Svartberget, Åheden AWS, 2022, Swedish Infrastructure for 
Ecosystem Science (SITES) [dataset], https://hdl.handle.net/11676.1/v0bn_ufBJ4vgq8Nen9d-Vqe5, last access: 20 
May 2024b, 2022. 

Svartberget Research Station: Meteorological data from Svartberget, Hygget AWS, 2022, Swedish Infrastructure for 
Ecosystem Science (SITES) [dataset], https://hdl.handle.net/11676.1/ztFYjWV-ljPFra7V0z7NKHvg, last access: 20 825 
May 2024c, 2022. 

Takagi, K. and Lin, H. S.: Changing controls of soil moisture spatial organization in the Shale Hills Catchment, Geoderma, 
173–174, 289–302, https://doi.org/10.1016/j.geoderma.2011.11.003, 2012. 

Teuling, A. J. and Troch, P. A.: Improved understanding of soil moisture variability dynamics, Geophysical Research 
Letters, 32, https://doi.org/10.1029/2004GL021935, 2005. 830 



35 
 

Tyystjärvi, V., Kemppinen, J., Luoto, M., Aalto, T., Markkanen, T., Launiainen, S., Kieloaho, A.-J., and Aalto, J.: Modelling 
spatio-temporal soil moisture dynamics in mountain tundra, Hydrological Processes, 36, e14450, 
https://doi.org/10.1002/hyp.14450, 2022. 

USGS (U.S. Geological Survey): Landsat 8 Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS), Level 2 
Science Product (Surface Reflectance), Path 194, Row 015, Collection 2, Tier 1, acquired on 2022-08-26 [dataset], 835 
https://earthexplorer.usgs.gov/, last access: 16 September 2024, 2022. 

Van Sundert, K., Horemans, J. A., Stendahl, J., and Vicca, S.: The influence of soil properties and nutrients on conifer forest 
growth in Sweden, and the first steps in developing a nutrient availability metric, Biogeosciences, 15, 3475–3496, 
https://doi.org/10.5194/bg-15-3475-2018, 2018. 

Vereecken, H., Schnepf, A., Hopmans, J. w., Javaux, M., Or, D., Roose, T., Vanderborght, J., Young, M. h., Amelung, W., 840 
Aitkenhead, M., Allison, S. d., Assouline, S., Baveye, P., Berli, M., Brüggemann, N., Finke, P., Flury, M., Gaiser, T., 
Govers, G., Ghezzehei, T., Hallett, P., Hendricks Franssen, H. j., Heppell, J., Horn, R., Huisman, J. a., Jacques, D., 
Jonard, F., Kollet, S., Lafolie, F., Lamorski, K., Leitner, D., McBratney, A., Minasny, B., Montzka, C., Nowak, W., 
Pachepsky, Y., Padarian, J., Romano, N., Roth, K., Rothfuss, Y., Rowe, E. c., Schwen, A., Šimůnek, J., Tiktak, A., Van 
Dam, J., van der Zee, S. e. a. t. m., Vogel, H. j., Vrugt, J. a., Wöhling, T., and Young, I. m.: Modeling Soil Processes: 845 
Review, Key Challenges, and New Perspectives, Vadose Zone Journal, 15, vzj2015.09.0131, 
https://doi.org/10.2136/vzj2015.09.0131, 2016. 

Wang, F., Wang, G., Cui, J., Guo, L., Tang, X., Yang, R., and Huang, K.: Hillslope-scale variability of soil water potential 
over humid alpine forests: Unexpected high contribution of time-invariant component, Journal of Hydrology, 617, 
129036, https://doi.org/10.1016/j.jhydrol.2022.129036, 2023. 850 

Weiss, A. D.: Topographic position and landforms analysis, in: Topographic position and landforms analysis, ESRI Users 
Conference, San Diego, CA, 2001. 

Western, A. W., Grayson, R. B., Blöschl, G., Willgoose, G. R., and McMahon, T. A.: Observed spatial organization of soil 
moisture and its relation to terrain indices, Water Resources Research, 35, 797–810, 
https://doi.org/10.1029/1998WR900065, 1999. 855 

Western, A. W., Zhou, S.-L., Grayson, R. B., McMahon, T. A., Blöschl, G., and Wilson, D. J.: Spatial correlation of soil 
moisture in small catchments and its relationship to dominant spatial hydrological processes, Journal of Hydrology, 
286, 113–134, https://doi.org/10.1016/j.jhydrol.2003.09.014, 2004. 

Wickham, H.: ggplot2: Elegant Graphics for Data Analysis, 2nd ed., Springer, New York, NY, 2016. 

Wild, J., Kopecký, M., Macek, M., Šanda, M., Jankovec, J., and Haase, T.: Climate at ecologically relevant scales: A new 860 
temperature and soil moisture logger for long-term microclimate measurement, Agricultural and Forest Meteorology, 
268, 40–47, https://doi.org/10.1016/j.agrformet.2018.12.018, 2019. 

Williams, C. J., McNamara, J. P., and Chandler, D. G.: Controls on the temporal and spatial variability of soil moisture in a 
mountainous landscape: the signature of snow and complex terrain, Hydrology and Earth System Sciences, 13, 1325–
1336, https://doi.org/10.5194/hess-13-1325-2009, 2009. 865 

Winzeler, H. E., Owens, P. R., Read, Q. D., Libohova, Z., Ashworth, A., and Sauer, T.: Topographic Wetness Index as a 
Proxy for Soil Moisture in a Hillslope Catena: Flow Algorithms and Map Generalization, Land, 11, 2018, 
https://doi.org/10.3390/land11112018, 2022. 



36 
 

Wu, D., Wang, T., Di, C., Wang, L., and Chen, X.: Investigation of controls on the regional soil moisture spatiotemporal 
patterns across different climate zones, Science of The Total Environment, 726, 138214, 870 
https://doi.org/10.1016/j.scitotenv.2020.138214, 2020. 

Zhao, Y., Peth, S., Reszkowska, A., Gan, L., Krummelbein, J., Peng, X., and Horn, R.: Response of soil moisture and 
temperature to grazing intensity in a Leymus chinensis steppe, Inner Mongolia, Plant and Soil, 340, 89–89, 2011. 

Zhao, Z., Yang, Q., Ding, X., and Xing, Z.: Model Prediction of the Soil Moisture Regime and Soil Nutrient Regime Based 
on DEM-Derived Topo-Hydrologic Variables for Mapping Ecosites, Land, 10, 449, 875 
https://doi.org/10.3390/land10050449, 2021. 

Zignol, F., Kjellström, E., Hylander, K., Ayalew, B., Zewdie, B., Rodríguez-Gijón, A., and Tack, A. J. M.: The understory 
microclimate in agroforestry now and in the future – a case study of Arabica coffee in its native range, Agricultural and 
Forest Meteorology, 340, 109586, https://doi.org/10.1016/j.agrformet.2023.109586, 2023. 

Zignol, F., Lidberg, W., Greiser, C., Larson, J., Hoffrén, R., and Ågren, A. M.: Data repository: Controls on spatial and 880 
temporal variability of soil moisture across a heterogeneous boreal forest landscape, Mendeley Data, V1 [dataset], 
https://doi.org/10.17632/s8zg5ymkh6.1, last access: 13 April 2025, 2025. 

  


	1 Introduction
	2 Material and methods
	2.1 Study area
	2.2 Meteorological and environmental data
	2.2.1 Response variable: soil moisture
	2.2.2 Spatial predictors: soil, topography, vegetation, and land use/land cover
	2.2.3 Temporal predictors: meteorological forcings

	2.3 Statistical model

	3 Results
	3.1 Observed spatial and temporal variability in soil moisture
	3.2 Controls on soil moisture variability
	3.2.1 Spatial variation
	3.2.2 Temporal variation

	3.3 Spatial soil moisture variability under different wetness conditions
	3.4 Field measurements compared to remote sensing and modeled estimates

	4 Discussion
	4.1 Spatial variation
	4.2 Temporal variation
	4.3 Temporal stability of soil moisture patterns
	4.4 Mapping spatiotemporal variability in soil moisture

	5 Conclusions
	Data availability
	Author contribution
	Competing interests
	Acknowledgements
	Financial support
	Supplement
	References

