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Abstract. Downhole fractionation (DHF), a known phenomenon in static spot laser ablation, remains one of the most 

significant sources of uncertainty for laser-based geochronology. A given DHF pattern is unique to a set of conditions, 

including material, inter-element analyte pair, laser conditions, and spot volume/diameter. Current modelling methods (simple 10 

or complex linear models, spline-based modelling) for DHF do not readily lend themselves to uncertainty propagation, nor do 

they allow for quantitative inter-session comparison, let alone inter-laboratory or inter-material comparison.  

In this study, we investigate the application of orthogonal polynomial decomposition for quantitative modelling of LA-ICP-

MS DHF patterns with application to an exemplar U–Pb dataset across a range of materials and analytical sessions. We outline 

the algorithm used to compute the models and provide a brief interpretation of the resulting data. We demonstrate that it is 15 

possible to quantitatively compare the DHF patterns of multiple materials across multiple sessions accurately, and use uniform 

manifold approximation and projection (UMAP) to help visualise this large dataset.  

We demonstrate that the algorithm presented advances our capability to accurately model LA-ICP-MS DHF and may enable 

reliable decoupling of the DHF correction for non-matrix matched materials, improved uncertainty propagation, and inter-

laboratory comparison. The generalised nature of the algorithm means it is applicable not only to geochronology but also more 20 

broadly within the geosciences where predictable linear relationships exist. 

1 Introduction 

LA-ICP-MS of geological materials has significantly advanced since its adoption at the end of the 20th century and is today 

the technique of choice for most applications for mineral geochronology. Initial geochronological studies on zircon were only 

able to produce tens of individual data per session due to technical, time, and computing limitations (e.g. Hirata and Nesbitt, 25 

1995). Nowadays high-precision individual analyses on multiple minerals using a range of geochronologic systems (e.g. U–

Pb, Rb–Sr, Lu–Hf, Re–Os) can be rapidly and accurately acquired (Chew et al., 2019; Gehrels et al., 2008; Glorie et al., 2023; 

Hogmalm et al., 2017; Kendall-Langley et al., 2020; Larson et al., 2024; McFarlane, 2016; Mohammadi et al., 2024; Roberts 

et al., 2020; Simpson et al., 2021; Subarkah et al., 2021; Tamblyn et al., 2024; Zack et al., 2011). However, to achieve accurate, 

high-quality data, correction procedures need to be implemented, including calibration to reference material(s) (RM), 30 

corrections for matrix offsets, and inter-element downhole fractionation (DHF) (Agatemor and Beauchemin, 2011; Allen and 

Campbell, 2012; Gilbert et al., 2017; Günther et al., 2001; McLean et al., 2016; Ver Hoeve et al., 2018).  

As DHF is a volume-dependant spot-ablation phenomena unique to each material and (inter-element) analyte ratio pair (e.g. 

NIST glasses, zircon, 206Pb/238U, 207Pb/235U, 87Rb/87Sr) it cannot be corrected via ICP-MS tuning (Mank and Mason, 1999). 

However, DHF can be optimised to balance the overall count rate against the magnitude of DHF by adjusting the spot size and 35 

fluence parameters for analysis of a given material (Guillong and Günther, 2002; Košler et al., 2005). Researchers have 

proposed several methods for minimising DHF, typically by surface rastering or limiting acquisition times to short intervals; 

however, these compromise either the spatial or temporal resolution of analysis (Horstwood et al., 2003; Paton et al., 2010). 

Alternatively, regression modelling can be used to correct DHF during the data reduction process either using a predetermined 
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empirical model or fitting a model to the observed data (e.g. Horn et al., 2000; Paton et al., 2010). In the current state of LA-40 

ICP-MS methodology the latter method of fitting a regression model to the observed DHF of an RM is used by commercial 

data reduction software (e.g. LADR: Norris and Danyushevsky, 2018; Iolite: Paton et al., 2011). In this process a matrix-

matched RM is used (or a glass RM if no suitable matrix-matched material is available) and requires the assumption that the 

unknowns (i.e. target samples) have the same DHF as the RM. If the modelled RM poorly matches the DHF of the unknown 

it will introduce some artefact (user induced error) that may either increase the uncertainty of the observed ratio of the 45 

unknowns if using a time matched signal, or result in over- or underestimation of the observed ratio if using a subset of the 

signal [Fig. 1]. Additionally, these modelling methods (i) do not readily lend themselves to arithmetic propagation of their 

uncertainties (Paton et al., 2010), (ii) require an arbitrary user choice for the fitting method (simple or complex linear 

regression, polynomial order, or non-linear regression), and (iii) cannot be quantitatively compared between laboratories or 

even intra-laboratory analytical sessions. Thus, inter-element DHF remains one of the largest sources of uncertainty for LA-50 

ICP-MS analyses and is difficult to either qualitatively or quantitatively compare (Horstwood et al., 2016). 

 
Here we present a method to numerically quantify DHF using the coefficients of orthogonal polynomials fit to the signals. We 

develop upon the algorithms for modelling rare earth element patterns by O’Neill (2016) and Anenburg & Williams (2022). 

Our modified implementation of these algorithms accounts for input uncertainties and can be more generally applied to other 55 

purposes where there is a predictable x-to-y relationship, such as varying analyte signal intensity versus time, depth, or 

cumulative volume (i.e. during progressive pit ablation). Using a LA-ICP-MS dataset (time, analyte counts per second), an 

orthogonal decomposition is used to fit a polynomial to the signal data by generalised least squares [Fig. 2]. This method of 

using orthogonal polynomial decomposition during model fitting enables the quantitative comparison of DHF patterns via 

Figure 1 – Demonstration of the impact of using an inappropriate material to correct downhole fractionation (DHF). The two rows 
are 206Pb-238U ratios for NIST610 glass (a–c) and GJ1 zircon (d–f), respectively, collected in a single session. The columns from left to 
right are, not corrected for DHF (grey points, raw ratios), DHF corrected using NIST610 as the model, and DHF corrected using GJ1 
as the model. Blue points indicate an appropriate DHF correction (e.g. GJ1 by GJ1) while maroon points indicate an inappropriate 
DHF correction (e.g. GJ1 by NIST610). Black horizontal spans indicate the geometric mean and its asymmetric lower and upper 2-
standard error for each data set. The percent error shown is 2-standard error level of the larger geometric standard error (usually 
upper uncertainty). Note the significantly larger error for the inappropriate corrections (maroon points) compared to the appropriate 
(blue) corrections. These uncertainties would then propagate into further processing steps to obtain accurate LA-ICP-MS ratios (e.g. 
calibration to a known value).  
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their coefficients for data from different analyte ratio pairs, for varied materials, and for inter-session [Fig. 2] and inter-60 

laboratory datasets. Furthermore, this fitting method allows accurate computation of the uncertainty for each coefficient (and 

thus overall fit) and its covariance which can then be propagated into the result. 

In this research we highlight the utility of the algorithm for numeric comparison of the U–Pb DHF patterns from a range of 

natural and synthetic reference materials (RMs) used for U–Pb age date calibration. We envisage that this algorithm could be 

used to self-correct individual analyses for DHF (or as spline bases for signals that display zonation, e.g. different age domains), 65 

with a fall back to a known RM in the case of particularly noisy (analytical) data. This would allow reliable decoupling of the 

DHF correction for non-matrix matched materials, and propagation of the uncertainty in the downhole model into the result, 

thereby improving the accuracy and precision of LA-ICP-MS analyses.  
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2 Experimental 70 

To improve our ability to assess, quantify, and compare downhole fractionation we implemented a method of orthogonal 

polynomial decomposition to perform linear regression model fitting to time-resolved analytical data from ICP-MS 

instruments. In keeping with the terminology of O’Neill (2016) and Anenburg & Williams (2022) we use the term lambda (λ) 

coefficients to denote the polynomial coefficients derived from the fit to the model using orthogonal decomposition.  

Figure 2 – (a) Centred, pointwise ratios for all zircon GJ1 analyses 206Pb/238U analyses measured in multiple analytical sessions from 
2020 to 2024. All analyses were collected using a 30 µm spot, 5 Hz repetition rate, and nominal fluence of 2.0 Jcm-2. The black line is 
the fitted orthogonal polynomial, with grey shading indicating the 95% confidence interval of the fit. The shaded confidence interval 
is barely visible due to its small absolute range. (b) Individual orthogonal components of the fit in the upper panel excluding λ0 (mean 
ratio, i.e. vertical central tendancy) as this is a function of mass-spectrometer tuning and not a result of downhole fractionation. For 
this aggregated GJ1 data, different mass-spectrometer  tuning parameters is accounted for by centring the data resulting in λ0 ≈ 0. 
Components λ1 and higher represent the increasing shape component (linear slope, quadratic curvature, etc) of the observed downhole 
fractionation pattern. The sum of all components forms the polynomial in the upper panel. 
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Unlike regular linear regression fitting, the implementation of orthogonal polynomial decomposition for regression modelling 75 

imparts the property of independence on lower order polynomial coefficients from their higher order counterparts (Bevington 

and Robinson, 2003). That is, the first coefficient is independent of the second and higher order coefficients, while the second 

coefficient is independent of the third and higher order coefficients and so forth. In practice, this means that the values of the 

polynomial coefficients are stable (you can fit a first or second order polynomial to some data and the value of first coefficient 

will not change) and they have some physical meaning in relation to the data. In the case of DHF data, 𝜆𝜆0 (the first coefficient) 80 

represents the (arithmetic) mean ratio, while 𝜆𝜆1 and higher are the shape parameters that represent the DHF pattern [Fig. 2]. 

For example, 𝜆𝜆1 represents the linear slope while 𝜆𝜆2 represents the quadratic curve of the DHF pattern [Fig. 2]. The 

independence and physical meaning of the lambda coefficients allows them to be used to quantitatively compare independent 

fits (e.g. single analyses, materials, analytical sessions, differing laboratories) so long as other parameters (e.g. fluence, spot 

diameter/volume, laser wavelength) are considered. Further details on the fitting algorithm and mathematics behind this 85 

process are outlined below in Sect. 2.2, detailed in Appendix A, and described in Bevington & Robinson (2003), O’Neill 

(2016), and Anenburg & Williams (2022). The raw data ingestion and required preprocessing steps are outlined below in 

section Sect. 2.1. 

Code written to perform the data ingestion, preprocessing, and fitting were written in the Julia (version 1.10) programming 

language (Bezanson et al., 2017). The code forms part of an in-development Julia package, GeochemistryTools.jl that will be 90 

formally released in the future. Should users want early access to the package or source code for the algorithms outlined in 

this manuscript they are available via GitHub (see code availability). Figures were generated using the Makie.jl plotting library 

(Danisch and Krumbiegel, 2021) using “Scientific colour maps” (Crameri et al., 2020) implemented in ColorSchemes.jl. 

2.1 Data ingestion and preprocessing 

Data were imported from the raw ICP-MS CSV files; in this case 95 

from Agilent ICP-MS instruments. The algorithm written for this 

task processes the individual files (which can be a single analysis, 

a specified sample, or entire session) and performs several 

operations, outlined in Fig. 3, on user-specified mass counts per 

second (CPS) columns (i.e. channels, analyte signals).  100 

An automated procedure for determining gas blank and signal 

windows, as well as laser fire time, and aerosol arrival was 

developed to aid in rapid data processing and quality control. This 

algorithm is outlined in Fig. S1 with examples of the 

automatically determined time points and signal windows shown 105 

in Fig. S2.  

Gas blank determination uses a geometric mean adapted for zeros 

[Eq. (1)] as per Habib (2012), 

for 𝐺𝐺 ≥ 0,  𝐺𝐺 =
𝑛𝑛+𝐺𝐺+ + 𝑛𝑛0𝐺𝐺

𝑁𝑁
=

𝑛𝑛+

𝑁𝑁
𝐺𝐺+ 

(1) 110 

where 𝐺𝐺 is the geometric mean, 𝑁𝑁 is the total count of data, 𝑥𝑥𝑖𝑖 is 

the i-th input value from 𝑖𝑖 = 1 to 𝑖𝑖 = 𝑁𝑁, 𝐺𝐺+ is the geometric mean 

of all 𝑥𝑥𝑖𝑖 > 0, 𝑛𝑛+ is the count of 𝑥𝑥𝑖𝑖 > 0, 𝐺𝐺0 is the geometric mean 

of all 𝑥𝑥𝑖𝑖 = 0 (i.e. 0), and  𝑛𝑛0 is the count of all 𝑥𝑥𝑖𝑖 = 0.  
Figure 3 – Outline of data ingestion algorithm. CPS = 

counts per second of analyte (e.g. 238U). 
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As previously outlined (Sect. 2) the nature of orthogonal polynomial decomposition means that lambda coefficients (and their 115 

uncertainties) one and higher should not change with respect to a centred or non-centred dataset for single analysis. For session-

based, sample-spot size aggregation of data there is a slight difference in the lambda coefficients, usually at the fifth decimal 

place, between the fits of centred and non-centred data. The slight discrepancy between the centred and non-centred for session 

fits suggests the central tendencies (i.e. geometric mean in our case) of the underlying analyses are slightly different to each 

other. Intersession sample aggregation requires the centring of data for accurate numeric comparison, otherwise large 120 

differences in the coefficient values may occur as the central tendency (λ0) of data from a given sample can vary across sessions 

as it is a function of ICP-MS tuning. When aggregating data, it is grouped by the sample, spot size, and fluence to control for 

these variables. 

Centring of the data aligns the central tendencies of each individual analysis to ~0 while retaining the scale and shape [Fig. 4] 

of the change in raw ratios over the time-resolved signal, i.e. the DHF. Centring is performed by subtracting the central 125 

tendency (i.e. geometric mean, or a user could alternatively use the arithmetic mean, or median) from the time-resolved ratios 

for each individual file (i.e. analysis). This centring enables visual comparison [Fig. 4] and accurate numeric assessment of 

DHF behaviours across samples, sessions, spot sizes, and fluences without the need to calibrate data to a known reference 

material ratio for each session.  
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 130 

2.2 Outline of the fitting algorithm 

In the following equations 𝑥𝑥 denotes the independent variable (e.g. time in seconds) and the dependant variable (e.g. counts 

per second) is represented by 𝑦𝑦 for observed values or 𝑦𝑦� for predicted values of some function of 𝑥𝑥, i.e. 𝑓𝑓(𝑥𝑥). For clarity, we 

use 𝜑𝜑 to differentiate the orthogonal function terms and 𝜆𝜆 to differentiate the coefficients of the orthogonal polynomial from 

their regular counterparts (𝑓𝑓 and 𝛽𝛽 respectively). Function terms and coefficients use 𝑗𝑗 and 𝑙𝑙 as indices with 𝑘𝑘 denoting the 135 

polynomial order. The indicator 𝑖𝑖 is used for the i-th value of 𝑥𝑥,  𝑦𝑦, 𝑦𝑦𝚤𝚤�  for 𝑖𝑖 = 1 to 𝑖𝑖 = 𝑁𝑁. 

Polynomials of order k [Eq. (2)] can be orthogonal to each other under some inner product [Eq. (3)]. Orthogonal polynomials 

[Eq. (4)] have the important property that a lower order coefficient is independent of all higher order coefficients and thus each 

have a specific meaning with relation to the input data. The property of independence also enables efficient computation of 

Figure 4 – (a) Pointwise computed 206Pb-238U ratios for each measurement of NIST610 glass in the dataset. (b) Centred pointwise 
206Pb-238U ratios for each measurement of NIST610 glass in the dataset. Centring preserves the relative scaling of the data by 
aliging their central tendancies while retaing the shape and scale of the DHF pattern thus allowing accurate comparison between 
measurements of differing spot size, measurements on different materials, and across ICP-MS sessions. 
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the polynomial statistics (errors, variances and covariances, residual sum of squares etc) at each order. The efficient 140 

computation is enabled because only the coefficient matrix of the highest order (five in our case) needs to be calculated, rather 

than the entire solution for each polynomial order. Once computed, subsequent calculations can use specific subsets of the 

operator and coefficient matrices to determine predictions and statistics for each polynomial order.  

𝑓𝑓(𝑥𝑥) = 𝛽𝛽0 + ��𝛽𝛽𝑗𝑗𝑓𝑓𝑗𝑗(𝑥𝑥)�
𝑘𝑘

𝑗𝑗=1

 

 (2) 145 

�𝑓𝑓𝑗𝑗(𝑥𝑥), 𝑓𝑓𝑙𝑙(𝑥𝑥)� = 0 for 𝑗𝑗 ≠ 𝑙𝑙 

(3) 

𝜑𝜑(𝑥𝑥) = 𝜆𝜆0 + ��𝜆𝜆𝑗𝑗𝜑𝜑𝑗𝑗(𝑥𝑥)�
𝑘𝑘

𝑗𝑗=1

 

(4) 

In our case, we apply this to the DHF observed during LA-ICP-MS using the orthogonal property in Eq. (5). 150 

��𝜑𝜑𝑗𝑗(𝑥𝑥𝑖𝑖)𝜑𝜑𝑙𝑙(𝑥𝑥𝑖𝑖)� = 0 for 𝑗𝑗 ≠ 𝑙𝑙 

(5) 

We construct a fourth-order polynomial function [Eq. (6)] using the sum of a set of orthogonal polynomials (Anenburg and 

Williams, 2022; Bevington and Robinson, 2003; O’Neill, 2016). 

𝑦𝑦�(𝑥𝑥𝑖𝑖) = 𝜆𝜆0 + 𝜆𝜆1𝜑𝜑1(𝑥𝑥𝑖𝑖) + 𝜆𝜆2𝜑𝜑2(𝑥𝑥𝑖𝑖) + 𝜆𝜆3𝜑𝜑3(𝑥𝑥𝑖𝑖) + 𝜆𝜆4𝜑𝜑4(𝑥𝑥𝑖𝑖) 155 

(6) 

The orthogonal functions are solved for using the methods outlined by Anenburg & William (2022) which make use of Vietta’s 

formula and polynomial root finding. See Anenburg & William (2022) or the source code for further detail. Once the 

orthogonal polynomial forms are computed, the algorithm generates the operator matrix X and uses generalised least-squares 

regression [Eq. (7) to Eq. (9)] to solve the vector 𝜦𝜦, and matrix Σ, while accounting for analytical uncertainties. The vector 𝜦𝜦 160 

contains the polynomial coefficients (𝜆𝜆0 … 𝜆𝜆4), while the matrix Σ contains the variances and covariances. 

𝒚𝒚� = 𝐗𝐗𝜦𝜦 + 𝚺𝚺 

(7) 

𝜦𝜦 = (𝐗𝐗T𝛀𝛀𝐗𝐗)−1𝐗𝐗T𝛀𝛀𝒚𝒚 

(8) 165 

𝚺𝚺 = (𝐗𝐗T𝛀𝛀𝐗𝐗)−1 

(9) 

A graphical representation of the individual orthogonal polynomial components and an example of the resulting fit is shown 

in Fig. 2. 

Our algorithm also allows the user to employ automated outlier removal with an outlier considered to have a studentised 170 

residual ≥ 3. The residuals used in outlier identification are computed from the orthogonal polynomial order with the minimum 

Akaike Information Criteria corrected (AICc) value [Eq. (10)] (Akaike, 1974; Burnham and Anderson, 2002). If outlier 

removal is enabled, it will iterate over the input data until no studentised residuals ≥ 3 remain in the fit or it has gone through 

ten iterations. The minimum AICc is used to determine the ‘best fit’ (i.e. minimum information loss) polynomial order for 

each dataset. 175 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑛𝑛log �
𝑟𝑟𝑟𝑟𝑟𝑟
𝑛𝑛

� + 2𝑘𝑘 +
2𝑘𝑘(𝑘𝑘 + 1)
𝑛𝑛 − 𝑘𝑘 − 1

 

(10) 

where 𝑘𝑘 is the order plus two, 𝑛𝑛 is the count of data, and rss is the residual sum of squares for the model. 
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Other measures of fit are computed and accessible to the user via the object created during the fitting algorithm. These measures 

include the Bayesian Information Criteria corrected (BICc), the AICc and BICc weights, the reduced chi-squared statistic 𝜒𝜒𝑟𝑟
2, 180 

the multiple correlation coefficient (𝜌𝜌2 or 𝑅𝑅2) value, and an unbiased Olkin-Pratt adjusted estimator (𝜌𝜌𝑂𝑂𝑂𝑂
2 ) of ρ2 (Karch, 2020; 

Olkin and Pratt, 1958). Further detail can on these measures of fit be found in Appendix A. 

An additional consideration in this algorithm is that floating point computation is inherently inexact, has finite precision and 

can incur round-off errors (Fernández et al., 2003). While round-off errors are not an issue with most geochemical 

computations generally, due to the often-small absolute values and numerous sequential computations being performed in this 185 

algorithm, these errors can lead to inaccuracy in the result. To overcome these potential accuracy issues we utilise the extended 

precision library MultiFloats.jl (Zhang, 2024). If, after the final calculation, the absolute value of a coefficient is less than the 

default machine rounding tolerance for the Float64 type it is rounded to zero. 

2.3 Reference materials analysis by LA-ICP-MS 

Several reference materials for apatite (401, KO, MAD, Durango, Wilberforce), baddeleyite (BADPHE, G15874, G18650), 190 

monazite (TS1MNZ, 222, RW1, MAdel, MtGar, Ambat), rutile (R10, R19), titanite (Mt Painter, MKED), xenotime (MG1, 

BS1), and zircon (Mud Tank, Plešovice, GJ1, 91500, Temora, Rak17) were analysed for U–Pb isotope ratios and trace element 

concentrations using optimal methods for the specific mineral (Bockmann et al., 2022; Fletcher et al., 2004; Gain et al., 2019; 

Glorie et al., 2020; Hall et al., 2018; Horstwood et al., 2016; Liu et al., 2011; Lloyd et al., 2022; Payne et al., 2008; Sláma et 

al., 2008; Spandler et al., 2016; Thompson et al., 2016; Wiedenbeck et al., 2004; Yang et al., 2024). An additional monazite 195 

(Pilbara) and several potential cassiterite (in-house) reference materials were also measured. Samples were analysed using a 

RESOlution-LR 193 nm ArF excimer laser ablation system coupled to an Agilent 8900 ICP-MS/MS. Both instruments are 

housed at the University of Adelaide within the analytical facilities at Adelaide Microscopy. Full metadata for LA-ICP-MS 

analysis can be found in Appendix B. 
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Additional zircon, rutile, and baddeleyite reference material data 200 

from prior studies were added to supplement the dataset and 

provide the ability to assess inter-session variability (Lloyd et al., 

2020, 2022, 2023, 2024; van der Wolff, 2020; Yang et al., 2024). 

These supplementary data were collected using the same LA 

system, coupled to either an Agilent 7900 ICP-MS (prior to 205 

November 2021) or the Agilent 8900 ICP-MS/MS in single 

quadrupole mode (from November 2021). Analytical conditions 

for these additional data can be found in the relevant references. 

3 Results and Discussion 

In total, 5478 analyses (CSV files) were processed, and their 210 

DHF patterns were modelled with the orthogonal polynomial 

decomposition outlined above. This results in 5478 analysis fits, 

188 session (sample per session) fits, and 58 sample fits [Fig. 5, 

Fig. 6] accounting for differences in spot size diameter across 29 

unique materials. Linear slopes for the sample fits (𝜆𝜆1) range 215 

from +3.17E-5 to +0.0217, quadratic curvatures (𝜆𝜆2) range from 

-3.12E-5 to +3.17E-5, cubic curvatures (𝜆𝜆3) range from -1.08E-

5 to +2.15-5, and quartic curvatures (𝜆𝜆4) range from -3.6E-6 to 

+3.9E-7. Given the small numbers and the large quantity of fits, 

it is not feasible to display a table with all parameters nor is it 220 

intuitive for the reader. Instead, we provide the visual 

representation of 𝜆𝜆1 plotted against 𝜆𝜆2 and their best fit 

uncertainties (2-standard error) in Fig. 5, as well as the visual 

polynomial fit and its uncertainty for the sample fits in Fig. 6.  

Figure 5 - Scatter plot of λ1 (x) and λ2 (y) for sample (a), 
session (b), and analysis (c) orthogonal polynomial fits. 
Uncertainty bars are 2-standard error. Fits with greater 
positive linear slope will plot further to the right, and fits 
with greater quadratic curvature will plot to higher 
(positive) or lower (negative) on the y-axis. The middle and 
lower panels are zoomed in to show greater detail in the 
areas where most data lie. 
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225 

Figure 6 - Orthogonal polynomial fits of downhole fractionation (206Pb/238U) grouped by sample material. Note that the baddeleyite 
has a significantly larger y-axis scale due to the steeper linear fractionation component. Shaded areas show the 95% confidence 
interval of the individual fit. Increasing line solidity corresponds to increasing spot diameters. 
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3.1 Data interpretation and visualisation 

Without needing reference material calibration, the derived coefficients (𝜆𝜆1 and higher) represent numerical parameters of 

downhole fractionation for any given analysis. The coefficients can be plotted as x-y scatter plots with uncertainty bars (e.g. 

Fig. 5) or used in dimensional reduction visualisation methods such as principal component analysis, multidimensional scaling, 

and uniform manifold approximation and projection (UMAP). Specifically, we use UMAP to visualise [Fig. 7] the structure 230 

of a dataset (McInnes et al., 2020). UMAP takes the input multi-dimensional data (5478 x 4 𝜆𝜆 coefficients in this study) and 

tries to find a common embedding space (using the manifold assumption) to represent the local and global data topology in a 

lower dimension. UMAP has several variables called hyperparameters which control the output of the algorithm. The n-nearest 

neighbours hyperparameter is the most important for finding the balance between the global (low n-n) and local (high n-n) 

data structure. We use a value of 10 for the n-nearest neighbours hyperparameter, and a value of 0.4 for the minimum distance 235 

hyperparameter to help alleviate overplotting. 

In simpler terms, UMAP works by constructing a graph in high-dimensional space (e.g. 4-dimensional) that is projected onto 

a lower-dimensional space (e.g. 2- dimensional) where points are connected based on their closeness in higher-dimensional 

space. 

3.1.1 Interpreting the (sample aggregated) data fits 240 

Oxides generally have a greater affine DHF component (λ1) compared to other materials analysed, cassiterite being an 

exception [Fig. 5 and Fig. 6]. The glass (NIST610), cassiterite, and xenotime samples show the least overall downhole 

fractionation. Of note with the glass (NIST610) is we can clearly see the impact of spot diameter (thus geometry) on DHF. 

With decreasing spot size, the overall magnitude of DHF is increased [Fig. 6], but it also exacerbates the complex shape 

parameters (quadratic and cubic curvatures etc).  245 

There are two distinct groupings (accounting for different spot sizes) for baddeleyite, with one group being the samples from 

Phalaborwa, and the other group being the Kovdor sample [Fig. 6]. The cause of this stark disparity in baddeleyite DHF is 

unknown, but the Ti concentration is 9–14x higher in the Phalaborwa samples than in the Kovdor samples. The obvious outliers 

in the apatite, cassiterite, and monazite subpanels of Fig. 6 are the Durango and Wilberforce apatite samples, CstT4370 

cassiterite, and the Pilbara monazite sample. For the Pilbara monazite, some analyses show considerable variation in their Pb 250 

and U concentration (proxied by count rate; see signal plot supplementary figures available at figshare). Excluding these 

analyses from the sample/session base fit for the Pilbara monazite will reduce the polynomial confidence interval, and would 

improve the quality of the fit. However, this data is still analytically relevant and indicates that the Pilbara monazite is not 

suitable to be a reference material due to the variable ratio of Pb and U. For the Durango apatite, the flat DHF fit and larger 

uncertainty are due to low Pb counts, and for Wilberforce, the steeper linear DHF component and larger uncertainty are due 255 

to inclusion of several points from some analyses that are highly leveraging the fit, even with automated outlier removal being 

applied. For cassiterite, the relatively flat fits, and outlier (CstT4370) are generally due to low Pb and/or U counts, and greater 

scatter in the underlying data. The discrepancies and/or larger uncertainties in the lambda coefficients for materials of the same 

type provide a way to numerically check for outliers in reference material data, prior to further data reduction, rather than 

needing a user to review all the data graphically (although the user should still review their data via graphical means as well 260 

to check for spurious results).  
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3.1.2 Application of UMAP as a data visualisation aid 

Techniques like UMAP offer an efficient and robust way to deal with high-dimensionality and overplotting for data 

visualisation purposes. UMAP is a data hungry method and performs better with higher data density (McInnes et al., 2020). 265 

For this study, a UMAP diagram [Fig. 7] helps to visualize the relative similarities between λ1...4 for the 5478 analyses. The 

resulting map [Fig. 7] clearly differentiates the various materials better than to the simple biplot [Fig. 5c], which suffers from 

overplotting, obscuring any similarities/trends. 

Figure 7 – (a) Uniform manifold approximation and project (UMAP) of λ coefficients 1…4 for all analysis data in the study. In a 
practical sense, the closer two points are to each other the more similar they are. (b) subset of (a) only including zircon analyses. 
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In Fig. 7, it is obvious that baddeleyite (pale blue markers in lower left of upper panel) DHF is significantly different to all 

other materials analysed in this study. The deviation by baddeleyite is also reflected in Fig. 5 where baddeleyite analyses are 270 

plotting to the far right of each subplot, indicating a much stronger affine fractionation component. What is also noticeable is 

that there is a large diversity in the DHF patterns of zircon  [Fig. 7], which in part is due to analytical noise as the individual 

points represent a single analysis and the fits have greater uncertainty as they are more susceptible to that noise. Nevertheless, 

in general 91500 is behaving most differently of all the zircons at a given spot size [Fig. 8], and Plešovice is behaving the most 

like NIST610 of all the zircons [Fig. 7]. We do not suggest that NIST610 glass is a suitable alternative to correct DHF for 275 

zircon (as seen in Fig. 6, and Fig. 1), rather that there is significant variation in the DHF of zircon standards, and therefore 

careful consideration should be given to applying appropriate zircon standards for analytical sessions depending on the 

unknown zircons to be analysed and the time period used for signal integration (Guillong and Günther, 2002; Hergenröder, 

2006; Košler et al., 2005; Paton et al., 2010).  

We can see that spot geometry has a significant impact on DHF [Fig. 6 (glass and zircon subpanels), Fig. 7, and Fig. 8], which 280 

is a known phenomenon (Horn et al., 2000; Mank and Mason, 1999; Paton et al., 2010). However, all zircons except 91500 

have remarkably similar DHF patterns at 29 µm (and 30 µm) [Fig. 8]. The affine component (λ1) of the DHF pattern appears 

to be relatively constant between laser sessions for a given zircon and spot size, while the quadratic component varies (Fig. 

8b) but has greater uncertainty associated with it. The exact mechanism as to why 91500 shows greater DHF than the other 

analysed zircons is unknown, and not the focus of this manuscript; however, prior studies have investigated the potential causes 285 

of differing DHF patterns in zircon and glass (Košler et al., 2005), and it is possible that radiation damage plays a role (Allen 

and Campbell, 2012; Marillo-Sialer et al., 2014; Solari et al., 2015; Thompson et al., 2018).  
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3.2 Applications 290 

The algorithm defined in this manuscript offers a way to numerically quantify the DHF patterns of varied materials during 

LA-ICP-MS with uncertainty quantification. We envisage that this algorithm could be implemented in data reduction software 

to self-correct the DHF pattern of well-behaved materials (i.e. fitting a single geochemical zone), or as splines to geologically 

meaningful zonation, with a fallback to a known homogenous material where the analysis signal is complex (e.g. due to 

complex zonation or inclusions). In the latter case, the user would need to select an appropriate material, and it would likely 295 

result in somewhat inaccurate correction in any case, thus impacting the accuracy of the final result [Fig. 1].  

Figure 8 – (a) Orthogonal polynomial fitting of downhole fractionation for zircon data in this study. The visualised polynomials 
represent the best-order fit for the aggregated data of a given sample at a single spot size, e.g. GJ1 at 30 µm, GJ1 at 19 µm, …. Shaded 
areas show the 95% confidence interval of the individual fit. The inset graph (b) shows the λ1 and λ2 coefficients and their 2-standard 
error uncertainty for each of the session-based fits for the seven zircons analysed. Fits with a greater affine slope plot further to the 
right and fits with a greater negative quadratic curvature (i.e. the slope flattens at a faster rate) will plot toward the bottom. 
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The quantification of the DHF pattern enables numeric assessment of fits to unknowns against fits of knowns to find the most 

similar material with respect to DHF and of the appropriate model order. For example, the AICc is minimised for the fourth 

order polynomial for NIST610 and the third order polynomial for most zircon RMs, we can see this reflected visually in Fig. 

2, Fig. 4, Fig. 6, and Fig. 8. Using the measures of fit provides users with a way to choose an appropriate model that accurately 300 

reflects the uncertainty and scatter, while avoiding overfitting and the introduction of artefact errors. 

Additionally, this algorithm provides a way for laboratories to quantitatively compare the downhole fractionation behaviour 

of their reference materials and analytical setup against other laboratories. Furthermore, the generalised nature of this algorithm 

allows it to be used for orthogonal polynomial fitting, up to fourth order, of any data where is it sensible, i.e. there exists a 

linear polynomial of order k (0…4) that can model the input data. 305 

4 Conclusions 

Quantitative modelling of DHF patterns observed during static spot LA-ICP-MS is made possible by the algorithm we 

developed in the Julia programming language that uses orthogonal polynomial decomposition. We apply it to an exemplar 

dataset of U–Pb reference materials and guide the reader through data visualisation and interpretation of the derived 

coefficients. 310 

The algorithm can be used to quantitatively compare downhole fractionation for the same reference materials across 

laboratories and implemented into data reduction programs to numerically assess the similarities and fit qualities of DHF 

correction. It is probable that the algorithm could be used to self-correct a given analysis (within a single signal zone), with a 

fall back to a known reference material by quantitatively choosing the most similar fit in the case where the fit has high 

uncertainty or is covering multiple signal zones. We also envisage that the algorithm could be more widely used for other 315 

polynomial modelling in the geosciences where there is a predictable x-to-y relationship in a linear space (e.g. element 

volatilities as the x-axis).  

Appendix A: Algorithmic Mathematics 

LA-ICP-MS count data are strictly positive integers and follow a (discrete) Poisson distribution at low count level (e.g. gas 

blank), although eventually approximate a normal distribution at high count rate as implied by the central limit theorem 320 

(Bevington and Robinson, 2003). Data from a mass-spectrometer used for geochronology and/or elemental analysis are 

generally output in counts-per-second (CPS) not counts and violate the integer requirement of a discrete probability 

distribution. This combined with the less intuitive and asymmetric scale parameters of geometric means has led to the use of 

normal statistics (e.g. arithmetic means) for ratio computations. The use of normal statistics for gas blank measurements 

generally leads to overestimation (arithmetic mean) or underestimation (median if lots of 0 counts), and to a violation of the 325 

equality A B⁄ = (B A⁄ )−1 . This latter violation is commonly seen in U–Pb geochronology, where P 206 b U 238⁄ ≠

( U 238 P 206 b⁄ )−1. Given that elemental count data and elemental ratios are compositional data and are strictly positive real 

values (i.e. positively skewed) which often follow a log-normal distribution, a geometric mean is a more appropriate measure 

of the central tendency of the data. In our algorithm we use the geometric mean to compute the gas blank value. 

While geometric means are often used to address the problems above, we use a modified geometric mean to incorporate valid 330 

zero values which a standard geometric mean cannot. We will first review the standard geometric mean before detailing the 

modified version. 

The geometric mean is defined for a set of positive real numbers as Eq. (A1) (Habib, 2012), 
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(A1) 335 

where 𝐺𝐺 is the geometric mean, 𝑁𝑁 is the total count of data, and xi is the 𝑖𝑖-th input value from 𝑖𝑖 = 1 to 𝑖𝑖 = 𝑁𝑁. Alternatively, 

it can be calculated by the arithmetic mean of the logarithm of the values [Eq. (A2)] and then raising the result to e [Eq. (A3)] 

(Habib, 2012; Kirkwood, 1979). 

log 𝐺𝐺 =
1
𝑁𝑁

� log 𝑥𝑥𝑖𝑖 

𝑁𝑁

𝑖𝑖=1

 

(A2) 340 

G = 𝑒𝑒log(𝐺𝐺) 

(A3) 

 

As computing the product of an arbitrarily large series of numbers can lead to overflow errors (Fernández et al., 2003; Polhill 

et al., 2006), and therefore inaccurate results, most geometric mean algorithms implement the second form where the arithmetic 345 

mean is calculated from the logarithm transformed data and raised to e. The logarithmic transformation requires that all 𝑥𝑥𝑖𝑖 >

0. Additionally, as this is a multiplicative mean, when any 𝑥𝑥𝑖𝑖 = 0, G = 0. 

To overcome these limitations and obtain a more accurate estimate of the mean gas blank, we implement a geometric mean 

that accounts for zeros [Eq. (A4)]. This equation is effectively a weighted geometric mean of the values > 0, and the geometric 

mean of the zeros, i.e. 0, with the weights equal to the number of values in each category (Habib, 2012),  350 

for G ≥ 0,  G =
𝑛𝑛+𝐺𝐺+ + 𝑛𝑛0G0

𝑁𝑁
=

𝑛𝑛+

𝑁𝑁
𝐺𝐺+ 

(A4) 

where 𝐺𝐺+ is the geometric mean of all 𝑥𝑥𝑖𝑖 > 0, 𝑛𝑛+ is the count of 𝑥𝑥𝑖𝑖 > 0, 𝐺𝐺0  is the geometric mean of all 𝑥𝑥𝑖𝑖 = 0 (i.e. 0), and  𝑛𝑛0 

is the count of all 𝑥𝑥𝑖𝑖 = 0.  

We also implement a geometric variance [Eq. (A5)], geometric standard deviation [Eq. (A6)], and standard error of the mean 355 

[Eq. (A7)] (Habib, 2012; Kirkwood, 1979).  

for G ≥ 0,  σ2 = �
𝑛𝑛+

𝑁𝑁 �
2

𝑒𝑒σlog 𝑥𝑥+
2

 

(A5) 

for G ≥ 0,  σ = ��
𝑛𝑛+

𝑁𝑁 �
2

𝑒𝑒σlog 𝑥𝑥+
2

= �σ2 

(A6) 360 

for G ≥ 0,  SE = �
𝑛𝑛+

𝑁𝑁 �
2

𝑒𝑒SElog 𝑥𝑥+  

(A7) 

Where σlog 𝑥𝑥+
2  and SElog 𝑥𝑥+ are, respectively, the variance and standard error of the mean of the logarithms of 𝑥𝑥𝑖𝑖 > 0, and again 

weighted by the ratio: 𝑛𝑛+ 𝑁𝑁⁄ . In geometric statistics, the measures of variance, standard deviation, and standard errors are a 

scale parameter. The corresponding uncertainty range of G for these statistics is asymmetric and denoted by 365 

(G × 𝑢𝑢; G ÷ 𝑢𝑢)where u is the corresponding statistic (e.g. variance, σ2). 

 

Orthogonal Polynomial Decomposition 
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We use orthogonal polynomial decomposition to fit a polynomial to analyte ratio data where the coefficients have physical 

meaning in relation to that data. This decomposition enables quantification of the shape parameters of a downhole fractionation 370 

pattern. Integral to this process is the calculation of the orthogonal polynomials [Eq. (A8)] to be used to fit the final model. 

𝑦𝑦�(𝑥𝑥𝑖𝑖) = 𝜆𝜆0 + 𝜆𝜆1𝜑𝜑1(𝑥𝑥𝑖𝑖) + 𝜆𝜆2𝜑𝜑2(𝑥𝑥𝑖𝑖) + 𝜆𝜆3𝜑𝜑3(𝑥𝑥𝑖𝑖) + 𝜆𝜆4𝜑𝜑4(𝑥𝑥𝑖𝑖) 

(A8) 

Our implementation can fit up to a fourth order polynomial and requires solving the orthogonal property of Eq. (A9) for each 

orthogonal function, φ. 375 

��φ𝑗𝑗(𝑥𝑥𝑖𝑖)φ𝑘𝑘(𝑥𝑥𝑖𝑖)� = 0 for j ≠ 𝑘𝑘 

(A9) 

The functions φ1…4 are as follows: 

φ1 = 𝑥𝑥𝑖𝑖 − β 

φ2 = (𝑥𝑥𝑖𝑖 − γ1)(𝑥𝑥𝑖𝑖 − γ2) 380 

φ3 = (𝑥𝑥𝑖𝑖 − δ1)(𝑥𝑥𝑖𝑖 − δ2)(𝑥𝑥𝑖𝑖 − δ3) 

φ4 = (𝑥𝑥𝑖𝑖 − ε1)(𝑥𝑥𝑖𝑖 − ε2)(𝑥𝑥𝑖𝑖 − ε3)(𝑥𝑥𝑖𝑖 − ε4) 

Where β,  γ𝑛𝑛, δ𝑛𝑛, ε𝑛𝑛 are predetermined constants calculated prior to fitting the final model. The solution to β is simply the 

arithmetic mean of the x values [Eq. (A10)]. 

�(𝑥𝑥𝑖𝑖 − β)
𝑁𝑁

𝑖𝑖=1

= 0 leading to 
1
𝑁𝑁

�(𝑥𝑥𝑖𝑖)
𝑁𝑁

𝑖𝑖=1

= 𝛽𝛽 385 

(A10) 

The solutions to γ1…2, δ1…3, ε1…4 require solving systems of equations with increasing complexity as follows, with a line break 

between polynomial orders: 

�(𝑥𝑥𝑖𝑖  −  γ1)(𝑥𝑥𝑖𝑖  −  γ2) = 0 

� 𝑥𝑥𝑖𝑖(𝑥𝑥𝑖𝑖  −  γ1)(𝑥𝑥𝑖𝑖  −  γ2) = 0 390 

 

�(𝑥𝑥𝑖𝑖  −  δ1)(𝑥𝑥𝑖𝑖  −  δ2)(𝑥𝑥𝑖𝑖  −  δ3) = 0 

� 𝑥𝑥𝑖𝑖(𝑥𝑥𝑖𝑖  −  δ1)(𝑥𝑥𝑖𝑖  −  δ2)(𝑥𝑥𝑖𝑖  −  δ3) = 0 

� 𝑥𝑥𝑖𝑖
2(𝑥𝑥𝑖𝑖  −  δ1)(𝑥𝑥𝑖𝑖  −  δ2)(𝑥𝑥𝑖𝑖  −  δ3) = 0 

 395 

�(𝑥𝑥𝑖𝑖  −  ε1)(𝑥𝑥𝑖𝑖  −  ε2)(𝑥𝑥𝑖𝑖  −  ε3)(𝑥𝑥𝑖𝑖  −  ε4) = 0 

� 𝑥𝑥𝑖𝑖(𝑥𝑥𝑖𝑖  −  ε1)(𝑥𝑥𝑖𝑖  −  ε2)(𝑥𝑥𝑖𝑖  −  ε3)(𝑥𝑥𝑖𝑖  −  ε4) = 0 

� 𝑥𝑥𝑖𝑖
2(𝑥𝑥𝑖𝑖  −  ε1)(𝑥𝑥𝑖𝑖  −  ε2)(𝑥𝑥𝑖𝑖  −  ε3)(𝑥𝑥𝑖𝑖  −  ε4) = 0 

� 𝑥𝑥𝑖𝑖
3(𝑥𝑥𝑖𝑖  −  ε1)(𝑥𝑥𝑖𝑖  −  ε2)(𝑥𝑥𝑖𝑖  −  ε3)(𝑥𝑥𝑖𝑖  −  ε4) = 0 

This system of equations can be solved for numerically using an optimisation algorithm, or as stated in Anenburg & Williams 400 

(2022) we can utilise Vieta’s formulas to rearrange the complex system of equations to achieve an analytical solution. The 

application of Vieta’s formula allows the conversion of the above complex systems to a simple polynomial whose real roots 

are the γ1…2, δ1…3, ε1…4 values. Defining γ1 + γ2 = a and γ1γ2 = b, and through simplification we obtain the matrix form of 

the following problem: 
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� 405 

Once solved, a and b are the used as coefficients in the quadratic polynomial [Eq. (A11)] whose real roots are the two 

parameters γ1 and γ2. 

γ2 − aγ + b = 0 

(A11) 

Following the same process, δ1…3 can be solved using Eq. (A12) and Eq. (A13), while ε1…4 can be solved using Eq. (A14) and 410 

Eq. (A15). 
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(A12) 

δ3 − aδ2 + bδ − c = 0 

(A13) 415 
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(A14) 

ε4 − aε3 + bε2 − cε + d = 0 

(A15) 

To account for errors in y (i.e. analyte ratios) we use generalised least squares [Eq. A16] to fit the model. 420 

let 𝚺𝚺 = (𝐗𝐗𝐓𝐓𝛀𝛀𝐗𝐗)−1 and 𝜦𝜦 = 𝚺𝚺𝐗𝐗𝐓𝐓𝛀𝛀𝒚𝒚, then 𝒚𝒚� = 𝐗𝐗𝜦𝜦 + 𝚺𝚺 

(A16) 

To retain the orthogonal nature of the fit, the design matrix, 𝐗𝐗, uses the φ1…4 functions from above and is as follows: 

�

1 φ1(𝑥𝑥1) φ2(𝑥𝑥1) φ3(𝑥𝑥1) φ4(𝑥𝑥1)
1 φ1(𝑥𝑥𝑖𝑖) φ2(𝑥𝑥𝑖𝑖) φ3(𝑥𝑥𝑖𝑖) φ4(𝑥𝑥𝑖𝑖)
⋮ ⋮ ⋮ ⋮ ⋮
1 φ1(𝑥𝑥𝑛𝑛) φ2(𝑥𝑥𝑛𝑛) φ3(𝑥𝑥𝑛𝑛) φ4(𝑥𝑥𝑛𝑛)

� 

Let the individual weights, ω𝑖𝑖, be the relative error of 𝑦𝑦𝑖𝑖, then the weight matrix, 𝛀𝛀, is as follows: 425 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 1
ω1

ω��

−1

  

 
1

ω𝑖𝑖
ω��

−1

 

  
1

ω𝑛𝑛
ω��

−1

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

The system can then be solved for the vector of coefficients, 𝜦𝜦, using Eq. (A16). 

In the following equations, 𝑦𝑦𝑖𝑖 is the i-th value of the observed dependant variable (e.g. analyte ratio), 𝑦𝑦�𝑖𝑖 is i-th value of the 

predicted dependant variable, n is the total number of values and k is the polynomial order. To assess the quality of fitted 
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models, and to assist with choosing an optimal model, we implemented several measures of fit. Standard measures of fit 430 

calculated are the residual sum of squares [rss, Eq. (A17)],  

rssk = ��yi − y�ik�
n

i=1

 

(A17) 

 

the mean square error or reduced chi-squared value in multiple regression [mse or χ𝑟𝑟
2, Eq. (A18)],  435 

χ𝑟𝑟𝑘𝑘
2 = msek =

rss
𝑛𝑛 − 𝑘𝑘 + 1

 

(A18) 

the root mean square error [rmse, Eq. (A19)], 

rmse𝑘𝑘 = �mse𝑘𝑘 

(A19) 440 

and the multiple regression coefficient [ρ2or 𝑅𝑅2, Eq. (A20)] 

ρ2 = 1
rssk

[y − y�]𝑇𝑇Ω[𝑦𝑦 − 𝑦𝑦�]
 

(A20) 

Additionally, we implement two measures based on Bayesian reasoning and information theory. The first of these is the 

corrected Bayesian (or Schwarz) information criterion [BICc, Eq. (A21)] and corresponding BICc weights [BICcW, Eq. (A22)] 445 

(Burnham and Anderson, 2002; Schwarz, 1978).  

BICc𝑘𝑘 = n log �
rss
𝑛𝑛 � + (𝑘𝑘 + 2) log(𝑛𝑛) + log(2π) + n 

(A21) 

BICcW𝑘𝑘 =
exp(−0.5BICc𝑘𝑘 − min[BICc])

∑ exp(−0.5BICc𝑘𝑘 − min[BICc])𝑚𝑚𝑚𝑚𝑥𝑥(𝑘𝑘)
0

 

(A22) 450 

 

The second is the corrected Akaike information criterion [AICc, Eq. (A23)] and corresponding AICc weights [AICcW, Eq. 

(A24)] (Akaike, 1974; Burnham and Anderson, 2002). 

AICc𝑘𝑘 = n log �
rss
𝑛𝑛 � + 2(𝑘𝑘 + 2) +

2(𝑘𝑘 + 2)([𝑘𝑘 + 2] + 1)
𝑛𝑛 − (𝑘𝑘 + 2) − 1

  

(A23) 455 

AICcWk =
exp(−0.5AICck − min[AICc])

∑ exp(−0.5AICck − min[AICc])𝑚𝑚𝑚𝑚𝑥𝑥(𝑘𝑘)
0

 

(A24) 

Finally, we implement an Olkin-Pratt adjusted multiple correlation coefficient [ρ𝑂𝑂𝑂𝑂
2 , Eq. (A25)] which is the optimal unbiased 

estimator of ρ2 (Karch, 2020; Olkin and Pratt, 1958).  

ρ�𝑂𝑂𝑂𝑂
2 (ρ2) = 1 −

𝑛𝑛 − 3
𝑛𝑛 − (𝑘𝑘 + 1) − 1

(1 − ρ2) 𝐹𝐹2
 

1 �1,1;
𝑛𝑛 − (𝑘𝑘 + 1) − 1

2
; 1 − ρ2� 460 

(A25) 

The Olkin-Pratt adjusted multiple correlation coefficient requires computation of the Gauss hypergeometric function, which 

is computationally non-trivial, however, Karch (2020) outlines the process to do this, and this is implemented as Eq. (A26) 

using the Taylor series expansion [Eq. (A27)] of the Gauss hypergeometric function (Pearson et al., 2017). 
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F2
 

1(a, b; c; z) =

⎩
⎪⎪
⎨

⎪⎪
⎧

0 : z = 0
c − 1
c − 2

: z = 1

�
(a)j(b)j

(c)j

1
j!

zj

�������
Tj

∞

j=0

: 0 < z < 1
 465 

(A26) 

For the case, 0 < z < 1, the Taylor series is truncated when either the ratio of the value for next term in the series and the 

current sum of the series are less than or equal to the machine epsilon value for a Float64 type, or when the number of iterations 

(and thus terms) reaches 1000 [Eq. (A27)]. This will effectively truncate the series when the machine cannot resolve the 

difference between the change in successive terms.  470 

Let T0 = 1, S0 = 1, j = 1 then for 1 < 𝑗𝑗 < 1000  ∧  
𝑇𝑇𝑗𝑗+1

𝑆𝑆𝑗𝑗
> 𝜖𝜖 

𝑇𝑇𝑗𝑗+1 = 𝑇𝑇𝑗𝑗 �

(𝑎𝑎 + 𝑗𝑗)(𝑏𝑏 + 𝑗𝑗)
(𝐴𝐴 + 𝑗𝑗)𝑧𝑧
(𝑗𝑗 + 1) � 

𝑆𝑆𝑗𝑗 = � 𝑆𝑆0 + 𝑇𝑇𝑗𝑗+1

1000

𝑗𝑗=1

 

(A27) 

 475 

Outlier Detection 

We implement automated outlier removal based on the studentised residual. An outlier is considered to have a studentised 

residual ≥ 3 from the model with the polynomial order (k) that minimises the AICc. This outlier removal process is 

computationally intensive as it requires calculation of leverages (ℎ𝑖𝑖𝑖𝑖) which are the diagonal values of the projection matrix. 

The individual leverages are calculated using Eq. (A28). 480 

ℎ𝑖𝑖𝑖𝑖 = � 𝐗𝐗𝑖𝑖,1:𝑘𝑘�𝚺𝚺1:𝑘𝑘,1:𝑘𝑘𝐗𝐗1:𝑘𝑘,1:𝑛𝑛
𝐓𝐓 𝛀𝛀� 

(A28) 

From the non-studentised residuals [Eq. (A29)] and the mean square error [mse, Eq. (A18)], the studentised residuals are 

calculated using Eq. (A30). 

𝑟𝑟𝑖𝑖 = 𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖 485 

(A29) 

𝑟𝑟𝑖𝑖 = �mse(1 − ℎi𝑖𝑖) 

(A30 

If the user chooses this automated outlier removal, the algorithm will loop until either a) no studentised residuals are ≥ 3, or b) 

the loop has performed ten iterations. 490 
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Appendix B: Laser Conditions 

Table B1: LA-ICP-MS parameters 

Laboratory and Sample Preparation 

Laboratory name Adelaide Microscopy 

Sample type/mineral Apatite, baddeleyite, cassiterite, glass, monazite, rutile, titanite, xenotime, zircon 

Sample preparation All new material mounted in 25 mm round mount then polished, existing materials were in 25 mm round mount 

Laser Ablation System 

Make, model, type RESOlution-LR ArF excimer 

Ablation cell and volume Laurin Technic S155 laser 

Laser wavelength (nm) 193 nm 

Pulse width (ns) 20 ns 

Fluence (J cm-2) Material dependent – see table below 

Repetition rate (Hz) 5 Hz 

Ablation duration (s) 30 and 40 (session dependent) 

Spot diameter (µm) nominal/actual Material dependent – see table below 

Sampling mode/pattern Static spot 

Ablation gas He, 1.0 Lmin-1 

Carrier gas Ar, 1.0 Lmin-1 

ICP-MS Instrument 

Make, model, type Agilent 8900x – no reaction gas mode 

RF power (W) 1500 

Torch depth (mm) 4–4.5 

Masses measured 

Mg24, Al27, Si29, P31, Ca43, Ti49, Fe57, Y89, Zr90, Nb93, Sn118, Ba137, La139, Ce140, Pr141, Nd146, Sm147, 

Eu153, Gd157, Tb159, Dy163, Ho165, Er166, Tm169, Yb172, Lu175, Hf178, Hg202, Pb204, Pb206, Pb207, Pb208, 

Th232, U235, U238 

Data Processing 

Gas blank 30 second (25 seconds of signal used) 

Other Information 
Data processing to compute gas blank, raw ratios, and uncertainties was done using the algorithms outlined in this 

publication. 

 

Table B2: Summary of materials analysed in each session, and laser conditions 

Session Date Material 
Spot Diameter 

(µm) 

Repetition 

Rate (Hz) 

Nominal 

Fluence (Jcm-2) 

Measured Fluence 

(Jcm-2) 
Ablation Time (seconds) 

2020/02/24 zircon 29 5 2 
 

30 

2020/02/24 glass 29 5 3.5 
 

30 

2020/02/24 glass 51 5 3.5 
 

30 

2020/02/26 zircon 29 5 2 
 

30 

2020/02/26 glass 29 5 3.5 
 

30 

2020/02/26 glass 51 5 3.5 
 

30 

2020/05/06 zircon 19 5 2 
 

40 

2020/05/06 glass 19 5 3.5 
 

40 

2020/05/06 glass 51 5 3.5 
 

40 

2020/05/08 glass 43 5 3.5 
 

40 

2020/05/11 zircon 29 5 2 
 

40 

2020/05/11 glass 29 5 3.5 
 

40 

2020/05/11 glass 51 5 3.5 
 

40 

2021/03/30 zircon 29 5 2 
 

30 
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2021/03/30 glass 43 5 3.5 
 

30 

2021/03/31 zircon 30 5 2 
 

40 

2021/03/31 glass 43 5 3.5 
 

40 

2021/05/06 zircon 30 5 2 
 

40 

2021/05/06 glass 43 5 3.5 
 

40 

2021/09/06 zircon 30 5 2 
 

30 

2021/09/06 glass 43 5 3.5 
 

30 

2021/09/06 monazite 20 5 2 
 

30 

2022/01/19 baddeleyite 20 5 2 
 

30 

2022/01/19 zircon 20 5 2 
 

30 

2022/01/19 glass 43 5 3.5 
 

30 

2022/01/19 apatite 30 5 3.5 
 

30 

2022/02/01 monazite 13 5 2 1.9 30 

2022/02/01 xenotime 13 5 2 1.9 30 

2022/02/01 glass 43 5 3.5 3.6 30 

2022/04/01 glass 43 5 3.5 3.4 30 

2022/04/21 apatite 30 5 3.5 3.4 30 

2022/04/21 zircon 30 5 2 2 30 

2022/04/21 glass 43 5 3.5 3.4 30 

2022/05/31 glass 43 5 5 5.2 30 

2022/05/31 monazite 13 5 2 1.9 30 

2022/05/31 xenotime 13 5 2 1.9 30 

2022/06/20 zircon 30 5 2 2.1 30 

2022/06/20 glass 43 5 3.5 3.6 30 

2022/06/20 xenotime 13 5 2 2.1 30 

2022/06/29 glass 43 5 3.5 3.4 30 

2022/06/29 xenotime 13 5 2 1.9 30 

2022/07/08 glass 43 5 3.5 3.6 40 

2022/07/08 rutile 43 5 5 5.2 40 

2022/08/30 monazite 20 5 2 2 30 

2022/08/30 zircon 20 5 2 2 30 

2022/10/10 glass 43 5 3.5 3.4 30 

2022/10/10 zircon 30 5 2 1.9 30 

2022/10/11 glass 30 5 3.5 3.4 30 

2022/10/11 zircon 43 5 2 1.9 30 

2022/12/09 glass 43 5 3.5 3.5 40 

2022/12/09 rutile 43 5 5 4.9 40 

2023/02/20 apatite 30 5 3.5 3.5 30 

2023/02/20 glass 30 5 3.5 3.5 30 

2023/02/20 zircon 30 5 2 1.9 30 

2023/03/22 monazite 13 5 2 1.8 30 

2023/03/22 xenotime 13 5 2 1.8 30 

2023/04/21 glass 43 5 3.5 3.5 30 

2023/04/21 apatite 43 5 3.5 3.5 30 

2023/04/21 zircon 30 5 2 2 30 

2023/05/09 glass 43 5 3.5 3.5 40 

2023/05/23 glass 43 5 3.5 3.6 40 

2023/05/29 glass 43 5 3.5 3.4 30 

2023/05/29 monazite 13 5 2 2.1 30 

2023/06/30 glass 30 5 3.5 3.4 30 

2023/06/30 apatite 30 5 3.5 3.4 30 

2023/07/11 glass 43 5 3.5 3.5 40 
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2023/07/11 zircon 20 5 2 1.9 40 

2023/11/24 apatite 30 5 3.5 3.5 30 

2023/11/24 baddeleyite 30 5 2 2 30 

2023/11/24 monazite 20 5 2 2 30 

2023/11/24 rutile 43 5 5 4.9 30 

2023/11/24 titanite 43 5 5 4.9 30 

2023/11/24 xenotime 20 5 2 2 30 

2023/11/24 zircon 30 5 2 2 30 

2023/11/24 glass 30 5 3.5 3.5 30 

2024/04/29 apatite 30 5 3.5 3.5 40 

2024/04/29 baddeleyite 30 5 2 2.1 40 

2024/04/29 cassiterite 43 5 5 5.1 40 

2024/04/29 monazite 20 5 2 2.1 40 

2024/04/29 rutile 43 5 5 5.1 40 

2024/04/29 titanite 43 5 5 5.1 40 

2024/04/29 xenotime 20 5 2 2.1 40 

2024/04/29 zircon 30 5 2 2.1 40 

2024/04/29 glass 30 5 3.5 3.5 40 

Data and Code Availability 

The Julia package which implements the above algorithms is in early development, however it is available to all via GitHub 495 

at: https://github.com/jarredclloyd/GeochemistryTools.jl  

The raw and derived data is available from figshare at this link: https://doi.org/10.25909/26778298  

The code used to compile the raw data, fit the data, and generate the figures in this manuscript are available from figshare at 

this link: https://doi.org/10.25909/26779255  

Supplementary Figures 500 

Supplementary figures S01 and S02 detailing the automatic signal times algorithm employed in this manuscript, and example 

data it was tested on are available at: https://doi.org/10.25909/27041821  

Additional supplementary figures showing the individual analysis signals are also available from figshare at: 

https://doi.org/10.25909/26778592. A plot exists for each sample for each session, with the arbitrary colours of each plot 

representing individual analyses. 505 
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