Supplement of Measurement report: In-depth characterization of ship emissions during operations in a Mediterranean port

1210

Lise Le Berre^{1,2,3}, Brice Temime-Roussel¹, Grazia Maria Lanzafame¹, Barbara D'Anna¹, Nicolas Marchand¹, Stéphane Sauvage^{4,5}, Marvin Dufresne⁴, Liselotte Tinel⁴, Thierry Leonardis⁴, Joel Ferreira de Brito⁴, Alexandre Armengaud³, Grégory Gille³, Ludovic Lanzi³, Romain Bourjot³ and Henri Wortham¹

- ¹ Aix Marseille Univ., CNRS, LCE, Marseille, France
 ² ADEME, French Agency for ecological transition, Angers, France
 ³ AtmoSud, Regional Network for Air Quality Monitoring of Provence-Alpes-Côte-d'Azur, Marseille, France
 ⁴ CERI EE, Centre for Education, Research and Innovation in Energy and Environment, IMT Nord Europe, Institut Mines-Télécom, Univ. Lille, Lille, France
- ⁵ Univ. Grenoble-Alpes, CNRS, IRD, INP, INRAE, IGE, Grenoble, France *Correspondence to*: Lise Le Berre (lise.le-berre@univ-amu.fr) and Brice Temime-Roussel (brice.temime-roussel@univ-

amu.fr)

	Measured Quantity	Instrument	Size Range	Temporal resolution	Flow (L.min ^{.1})	Detection Limit	Uncertainty
	Particle number (PN)	CPC TSI 3776 (TSI, Germany)	$2.5 \text{ nm} - 3 \mu m^{(1)}$	1 s	1.5	n/a	±10%
	Particle number concentration (PNC)	Envi CPC 200 (PALAS, Germany)	$7 \text{ nm} - 2.5 \mu m^{(1)}$	1 s	6.0	n/a	±5%
Е	Particle size distribution	SMPS 3936 (CPC 3775 - Classifier 3080 - Long DMA) (TSI, Germany)	15 nm – 660 nm ⁽²⁾	2 min	0.3	n/a	$\pm \sqrt{N}/N^{(4)}$
SVH4 2	Particle number concentration (PNC)	SMPS 3936 (CPC 3776 - Classifier 3080 - Long DMA) (TSI, Germany)	15 nm – 660 nm ⁽²⁾	2 min	0.3	n/a	$\pm \sqrt{N}/N^{(4)}$
ITAJU	Particle size distribution Particle number and mass concentration	OPC model 1.109 (Grimm Aerosol Technik, Germany)	$0.25 \ \mu m - 32 \ \mu m^{(3)}$	1 min	1.2	n/a	±2%
SIL	Black Carbon (BC)	MAAP 5012 (ThermoFisher, USA)	< 1 µm ⁽¹⁾	1 min	16,7	0.3 µg.m ⁻³	±10%
ava	Particle mass concentration	AE33 (Aerosol Magee Scientific, USA)	$< 1 \ \mu m^{(1)}$	1 min	5	0.3 µg.m ^{.3}	±10%
	Non refractory chemical composition Particle mass concentration	HR-ToF-AMS (Aerodyne, USA)	$30 \ mm - 600 \ mm^{(1)}$	30 s	0.08	$0.005 - 0.05^{(5)} \mu g.m^3$	±30%
	Metals composition Particle mass concentration	Xact 625i (Cooper Environment, USA)	< 1 µm ⁽¹⁾	30 min	16.7	0.1 - 50 ⁽⁵⁾ ng.m ³	⁻ (6)
	Volatils Organic Compounds (VOC) Gazeous concentration	PTR-ToF-MS 8000 (Ionicon Analytik, Austria)	n/a	10 s	0.15	$0.02 - 2^{(5)} ppb$	(9)
	Sulfur dioxide (SO ₂)	AF22 (Environnement SA, France)	n/a	10 s	0.42	1.5 ppb	\pm max (1.5 ppb - 1%)
	Gazeous concentration	100E (Teledyne API, USA)	n/a	10 s	9.0	0.6 ppb	\pm max (0.6 ppb - 0.5%)
ЗSVH4	Nitrogen oxides (NO _X , NO, NO ₂) Gazeous concentration	200E (Teledyne API, USA)	n/a	10 s	0.5	0.4 ppb	\pm max (0.4 ppb - 0.5%)
S¥Đ	Ozone (O ₃) Gazeous concentration	400E (Teledyne API, USA)	n/a	10 s	0.8	0.6 ppb	\pm max (0.6 ppb - 1%)
	CO ₂ , CO, CH ₄ Gazeous concentration	G2401 (PICARRO, USA)	n/a	5 s	0.35	50 ppb (CO ₂); 15 ppb (CO); 1 ppb (CH4)	\pm 50 ppb (CO ₂); \pm 15 ppb (CO); \pm 1 ppb (CH ₄)
	Ammoniac (NH ₃) Gazeous concentration	G2103 (PICARRO, USA)	n/a	5 s	1.5	0.03 ppb	±0.058 - 0.19 ppb
TA LIARY	Wind speed (ws), wind direction (wd), Tomosetrice (T)	Weather station (2D)	n/a	1 min	n/a	0.4 m.s ⁻¹ (ws)	± max (0.2 m.s ⁻¹ - 1%) (ws); ± 3° (wd)
YA IXAY	Meteorological data	Weather station (3D sonic)	n/a	10 s	n/a	0.2 m.s ⁻¹ (ws)	\pm max (0.1 m.s^{-1} - 1%) (ws); \pm 1° (wd)
(1) aei	odynamic diameter; (2) electrical mobility diame	ster; (3) optical diameter (4) N is the number of	particles measured (5) spo	scific to each co	p (9) punodu	efined for each measurement and c	punoduo:

Table S1. Specifications of the instruments used during the campaign. The term n/a means not applicable.

	Measured Quantity	Instrument	Calibration	Calibration checks	Flow checks	Blank or zero checks
	Particle number (PN)	CPC TSI 3776 (TSI, Germany)	annal	Tutomonican of CDC.	start and end campaign	1 per week
	Particle number concentration (PNC)	Envi CPC 200 (PALAS, Germany)	annual	Intercomparison of CFCS	start and end campaign	1 per week
	Particle size distribution	SMPS 3936 (CPC 3775 - Classifier 3080 - Long DMA) (TSI, Germany)	amual	ï	start and end campaign	1 per week
азуна	Particle number concentration (PNC)	SMPS 3936 (CPC 3776 - Classifier 3080 - Long DMA) (TSI, Germany)	annual	,	start and end campaign	start and end campaign
TAL	Particle size distribution Particle number and mass concentration (PNC, PMI, PM2.5, PM ₁₀)	OPC model 1.109 (Grimm Aerosol Technik, Germany)	annual	i	start and end campaign	l per week
ITA	Black Carbon (BC)	MAAP 5012 (ThermoFisher, USA)	annual	Intercomparison of BC	start and end campaign	I per week
Vd	Particle mass concentration	AE33 (Aerosol Magee Scientific, USA)	annual	analysers	start and end campaign	start and end campaign
	Non refractory chemical composition Particle mass concentration	HR-ToF-AMS (Aerodyne, USA)	start and end campaign	ï	start and end campaign	l per week
	Metals composition Particle mass concentration	Xact 625i (Cooper Environment, USA)	start and end campaign	1 per day	start and end campaign	1 per day
	Volatils Organic Compounds (VOC) Gazeous concentration	PTR-ToF-MS 8000 (Ionicon Analytik, Austria)	start and end campaign	1 per 2 weeks	start and end campaign	1 per 2 weeks
	Sulfur dioxide (SO ₂)	AF22 (Environnement SA, France)	start and end campaign	1 per day	start and end campaign	1 per day
	Gazeous concentration	100E (Teledyne API, USA)	start and end campaign	1 per day	start and end campaign	1 per day
AASE	Nitrogen oxides (NO _x , NO, NO ₂) Gazeous concentration	200E (Teledyne API, USA)	start and end campaign	l per day	start and end campaign	1 per day
d SVĐ	Ozone (O₃) Gazeous concentration	400E (Teledyne API, USA)	start and end campaign	1 per day	start and end campaign	1 per day
	CO ₂ , CO, CH ₄ Gazeous concentration	G2401 (PICARRO, USA)	start and end campaign with 3 levels of standard gas cylinders	1 per week	start and end campaign	l per week
	Ammoniac (NH ₃) Gazeous concentration	G2103 (PICARRO, USA)	start		start and end campaign	start and end campaign
ATA LIAR	Wind speed (ws), wind direction (wd), Temporeture (T)	Weather station (2D)	start and end campaign	1 per week	n/a	n/a
TA A IXAV	Meteorological data	Weather station (3D sonic)	start and end campaign	1 per week	n/a	n/a

E	Chamian		Detection Limit	Uncertainty
Exact mass	Cnemical	Assigned chemical compound	(DL)	median
(m/z)	Iormula		(ppb)	(ppb)
33.034	CH_4OH^+	Methanol	0.25	0.70
43.054	$C_3H_6H^+$	Propene and unspecified hydrocarbon fragments	0.29	0.93
45.034	$C_2H_4OH^+$	Acetaldehyde	0.25	0.41
47.013	$CH_2O_2H^+$	Formic acid	0.28	0.60
47.049	$C_2H_6OH^+$	Ethanol	0.17	0.36
57.070	$C_4H_8H^+$	Butene	1.92	4.20
59.049	$C_3H_6OH^+$	Acetone	0.2	0.26
61.028	$C_2H_4O_2H^+$	Acetic acid	0.34	0.98
63.023	$C_2H_6SH^+$	DMS	0.08	0.07
69.070	$C_5H_8H^+$	Isoprene	0.08	0.11
71.049	$C_4H_6OH^+$	MVK, methacrolein, crotonaldehyde	0.04	0.09
71.086	$C_{5}H_{10}H^{+}$	Pentene	0.14	0.86
73.065	$C_4H_8OH^+$	Butanone or butanal	0.05	0.07
75.044	$C_3H_6O_2H^+$	Methyl acetate	0.09	0.16
79.054	$C_6H_6H^+$	Benzene	0.08	0.53
83.086	$C_{6}H_{10}H^{+}$	Cyclohexene	0.05	0.56
85.101	$C_{6}H_{12}H^{+}$	Hydrocarbon	0.08	0.63
87.080	$C_5H_{10}OH^+$	3-methyl-2-butanone, methylbutanals, pentanones	0.07	0.26
89.060	$C_4H_8O_2H^+$	Ethyl acetate	0.05	0.07
93.070	$C_7H_8H^+$	Toluene	0.04	0.07
93.091	$C_4H_{12}O_2H^+$	Dimethyl ether ethanol	0.03	0.03
97.101	$C_7H_{12}H^+$	Cycloheptene	0.05	0.31
99.044	$C_6H_{10}OH^+$	2-methanolfuranone	0.04	0.57
101.06	$C_5H_8O_2H^+$	Pentadione	0.05	0.71
101.096	$C_6H_{12}OH^+$	Hexanals, Hexanones	0.04	0.07
105.070	$C_8H_8H^+$	Styrene	0.04	0.38
107.070	$C_4H_{10}O_3H^+$	Diethylene glycol	0.04	0.02
107.086	$C_8H_{10}H^+$	C8 Aromatics	0.04	0.07
111.117	$C_8H_{14}H^+$	Hydrocarbon	0.04	0.79
117.091	$C_6H_{12}O_2H^+$	Butylesteraceticacid, Other C6 esters	0.03	0.14
121.101	$C_{9}H_{12}H^{+}$	C9 Aromatics	0.06	0.42
135.117	$C_{10}H_{14}H^+$	C10 Aromatics	0.03	0.07
137.132	$C_{10}H_{16}H^+$	Monoterpenes	0.05	0.34
139.148	$C_{10}H_{18}H^+$	Decahydronaphthalene	0.03	0.25
143.143	$C_9H_{18}OH^+$	Nonanone	0.05	0.24
149.132	$C_{11}H_{16}H^+$	C11 Aromatics	0.03	0.02
151.112	$C_{10}H_{14}OH^+$	Terpenes	0.02	0.01
151.148	$C_{11}H_{18}H^+$	(3E)-4,8-Dimethylnona-1,3,7-triene / 1-Methyladamantane	0.02	0.03
153.127	$C_{10}H_{16}OH^+$	Camphor, Other oxygenated monoterpenes	0.02	0.02
153.164	$C_{11}H_{20}H^+$	n/a	0.02	0.02
165.164	$C_{12}H_{20}H^+$	1-Ethyladamantane	0.02	0.01

Table S3. Main organic molecules studied by PTR-ToF-MS during the field campaign in the port of Marseille at PEB station.

1230

Table S4. Classification of ship categories according to significance

Importance	Ship category
Important ships	Container Ship, Ro-Ro Cargo, Vehicles Carrier, Ro-Ro/Container Carrier, Dredger, Passenger Ship (Cruise), Ro-
	Ro/Passenger Ship (Ro-Ro Ferry), Buoy-Laying Vessel, Research/Survey Vessel, Fishing, Cement Carrier, Crude Oil
	Tanker, Oil/Chemical Tanker, Anchor Handling Vessel, Cargo/Containership, General Cargo, Supply Vessel, Tug
Other ships	Port Tender, Passenger, Pilot Vessel, Unspecified SAR, Dive Vessel, Reserved, Patrol Vessel, Law Enforce, Yacht,
	Pollution Control Vessel, Military Ops, Other

1235 Figure S1. Wind roses diagram (displayed as frequency of counts by wind direction and speed bin) during the monitoring campaign at PEB station (a) and at MAJOR station (b).

Figure S2. Map of the port of Marseille (GPMM) and marinas with the measurement stations of this study (filled green circle) and the fixed station of air quality network (filled blue circle) as well as the main areas of ship emissions in GPMM. Maps taken from Google satellite images (© Google Maps) and topographic map SCAN 25 (© IGN – 2022).

Station	Main areas of ship emissions (Figure S2.)	Probability to be downwind of ship emissions (%)	Associated wind speeds (m/s) Average (Q1 - Q3)			
РЕВ	Port access - North channel	17%	3.4 (1.5 - 5.4)			
	Cruise and container terminals	10%	2.6 (0.9 - 3.9)			
	Other emission areas	15%	3.2 (1.3 - 5.1)			
MAJOR	Port access - South channel and J4 cruise terminal	13%	2.6 (1.8 - 3.2)			
	Other emission areas	8%	1.3 (0.8 - 1.6)			

Table S5. Probability of measurement stations being downwind of the main ship emission areas during the campaign

1245 Figure S3. Cumulative number of ship arrivals (a) and departures (b) in the port of Marseille in June 2021 by time of day and ship category (excluding pilot boats, pleasure crafts and passenger shuttles) (MarineTraffic, 2022).

Table S6. Main statistical parameters (25th percentile, mean, median, 75th percentile and maximum) of all compound's concentrations measured at both stations of this study (PEB and MAJOR) and at fixed station of air quality network (MRS-LCP).

Mesured Quantity	Species	Unit	Site	Time resolution	N	P25	Median	Mean	P75	Max	Missing	DL
GAS PHASE												
Nitrogen Oxides	NO _X	µg.m ^{-s}	PEB	10 sec	259 201	6.3	15.1	33.9	42.4	2 046.2	22%	0.7
			MAJOR	10 sec	259 201	8.6	15.3	31.3	36.3	1 423.1	6%	0.7
		23	MRS-LCP	10 sec	259 201	11.1	16.4	22.8	26.2	932.3	2%	0.7
	NO ₂	µg.m ^{-s}	PEB	10 sec	259 201	5.2	12.8	22.3	34.4	508.2	22%	0.7
			MAJOR	10 sec	259 201	7.1	13.0	20.8	28.7	395.8	5%	0.7
	1000		MRS-LCP	10 sec	259 201	9.0	13.8	18.7	22.2	467.3	2%	0.7
	NO	µg.m °	PEB	10 sec	259 201	0.6	1.1	7.6	4.1	1 180.9	22%	0.5
			MAJOR	10 sec	259 201	< DL	1.1	6.7	3.7	895.1	6%	0.5
Carbon Califor	<u></u>		MRS-LCP	10 sec	259 201	1.0	1.5	2.7	2.6	545.7	2%	0.5
Carbon Oxides	002	ppm	PEB	10 sec	259 201	401.7	400.5	409.0	415.1	492.0	178	0.1
			MAJOR	10 sec	259 201	402.9	407.4	410.4	415.0	404.0	076	0.1
	<u></u>	0.000	DEB	10 sec	1 236	410.1	422.7	420.0	401.0 < DI	1.8	1194	0.7
	00	ppm	MALOR	10 860	259 201	0.1	0.1	0.1	0.2	11.0	5%	0.0
Sulfur Dioxide	SO.	ua m ⁻³	PEB	10 sec	259 201	< DI	< DI	1.5	2.9	35.7	30%	13
ound bloxide	007	pgin	MALOR	10 sec	259 201	< DL	< DI	1.0	16	31.6	7%	13
			MRS-LCP	10 sec	259 201	< DI	14	1.4	1.8	14.0	8%	1.3
Ozone	0.	ug m ⁻⁵	PEB	10 sec	259 201	53.6	88.0	82.1	108.0	206.4	23%	1.0
o como		pgin	MAJOR	10 sec	259 201	65.0	81.8	78.4	95.4	179.0	25%	12
			MRS-LCP	10 sec	259 201	59.0	77.4	76.5	93.2	181.6	3%	1.2
Ammoniac	NH ₃	ppb	PEB	10 sec	259 201	2.34	2.98	3.17	3.74	11.35	60%	0.03
Volatils Organics	CH ₄	ppm	PEB	10 sec	259 201	2.231	2.254	2.278	2.293	3.544	1%	0.001
Compounds (VOC))		MAJOR	10 sec	259 201	1.973	1.998	2.021	2.038	3.054	5%	0.001
			MRS-LCP	10 sec	259 201	1.980	2.010	1.997	2.030	2.240	1%	0.001
	(CH ₂ O ₂)H ⁺	ppb	PEB	10 sec	259 201	3.59	5.11	4.78	5.89	8.22	20%	0.28
	(CH ₃ OH)H	ppb	PEB	10 sec	259 201	2.74	4.32	4.92	6.21	15.86	20%	0.25
	(C₂H₄O)H [*]	ppb	PEB	10 sec	259 201	1.32	1.72	2.11	2.59	9.14	20%	0.25
	(C₂H₂O₂)H ⁺	ppb	PEB	10 sec	259 201	2.57	3.38	3.83	4.49	62.82	20%	0.34
	(C ₂ H _e O)H ¹	ppb	PEB	10 sec	259 201	0.91	1.70	1.97	2.34	34.77	20%	0.17
	(C ₂ H ₈ S)H [*]	ppb	PEB	10 sec	259 201	< DL	< DL	0.10	0.17	1.20	20%	0.08
	(C ₃ H _e)H [−]	ppb	PEB	10 sec	259 201	0.31	0.46	0.55	0.70	5.81	20%	0.29
	(C ₃ H ₆ O)H ⁺	ppb	PEB	10 sec	259 201	1.46	1.89	2.10	2.47	16.68	20%	0.20
	(C ₃ H ₆ O ₂)H ¹	ppb	PEB	10 sec	259 201	< DL	0.15	0.18	0.26	1.26	20%	0.09
	(C ₄ H ₁₀ O ₃)H ⁺	ppb	PEB	10 sec	259 201	< DL	< DL	< DL	< DL	1.31	20%	0.04
	(C4H12O2)H*	ppb	PEB	10 sec	259 201	< DL	< DL	< DL	0.04	0.70	20%	0.03
	(C ₄ H ₆ O)H [*]	ppb	PEB	10 sec	259 201	< DL	0.05	0.07	0.11	0.56	20%	0.04
	(C ₄ H ₈)H ⁻	ррр	PEB	10 sec	259 201	< DL	< DL	< DL	2.36	19.97	20%	1.92
	(C₄H ₈ O)H ⁺	ppb	PEB	10 sec	259 201	0.08	0.13	0.18	0.23	3.48	20%	0.05
	$(C_4H_8O_2)H^*$	ppb	PEB	10 sec	259 201	< DL	< DL	0.09	0.09	4.71	20%	0.05
	(C5H10)H	ppb	PEB	10 sec	259 201	< DL	< DL	0.14	0.17	3.04	20%	0.14
	$(C_5H_{10}O)H^{\dagger}$	рръ	PEB	10 sec	259 201	0.10	0.18	0.19	0.28	0.74	20%	0.07
	$(C_0H_8)H^-$	ppb	PEB	10 sec	259 201	< DL	0.11	0.12	0.19	0.66	20%	0.08
	$(C_5H_8O_2)H^2$	ppb	PEB	10 sec	259 201	0.06	0.12	0.12	0.16	0.61	20%	0.05
	$(C_8H_{10})H^+$	ррь	PEB	10 sec	259 201	< DL	0.05	0.07	0.09	0.49	20%	0.05
	(C ₆ H ₁₀ O)H ⁺	ppb	PEB	10 sec	259 201	< DL	< DL	< DL	0.04	0.26	20%	0.04
	(C ₆ H ₁₂)H ⁺	ppb	PEB	10 sec	259 201	< DL	< DL	< DL	< DL	0.89	20%	0.08
	(C ₆ H ₁₂ O)H [*]	ppb	PEB	10 sec	259 201	< DL	< DL	< DL	< DL	2.13	20%	0.04
	$(C_6H_{12}O_2)H^{\dagger}$	рръ	PEB	10 sec	259 201	< DL	< DL	< DL	< DL	0.40	20%	0.03
	$(C_6H_6)H^-$	ppb	PEB	10 sec	259 201	< DL	< DL	< DL	< DL	0.98	20%	0.08
	(C ₇ H ₁₂)H ⁺	ppb	PEB	10 sec	259 201	< DL	< DL	< DL	0.05	0.29	20%	0.05
	(C ₇ H _a)H ⁻	ррр	PEB	10 sec	259 201	< DL	0.10	0.22	0.27	6.55	20%	0.04
	(C ₈ H ₁₀)H ⁺	ppb	PEB	10 sec	259 201	0.05	0.20	0.37	0.49	18.34	20%	0.04
	(C ₈ H ₁₄)H	ddd	PEB	10 sec	259 201	< DL	< DL	< DL	0.04	0.23	20%	0.04
	(C ₈ H ₈)H ⁻	ppb	PEB	10 sec	259 201	< DL	< DL	< DL	0.05	0.37	20%	0.04
	(C ₉ H ₁₂)H ⁺	ppb	PEB	10 sec	259 201	< DL	0.06	0.13	0.13	20.04	20%	0.06
	(C ₉ H ₁₈ O)H ⁺	ppb	PEB	10 sec	259 201	< DL	< DL	< DL	0.07	0.42	20%	0.05
	(C ₁₀ H ₁₄)H [*]	ppb	PEB	10 sec	259 201	< DL	< DL	0.03	0.05	2.39	20%	0.03
	(C ₁₀ H ₁₄ O)H ⁺	ppb	PEB	10 sec	259 201	< DL	< DL	< DL	< DL	0.09	20%	0.02
	$(C_{10}H_{10})H^{\ast}$	ppb	PEB	10 sec	259 201	< DL	0.05	0.07	0.09	0.83	20%	0.05
	$(C_{10}H_{10}O)H'$	ppb	PEB	10 sec	259 201	< DL	< DL	< DL	< DL	0.11	20%	0.02
	$(C_{10}H_{18})H^{*}$	ppb	PEB	10 sec	259 201	< DL	< DL	< DL	< DL	0.09	20%	0.03
	$(C_{11}H_{10})H^*$	ppb	PEB	10 sec	259 201	< DL	< DL	< DL	< DL	0.16	20%	0.03
	$(\mathbf{C_1},\mathbf{H_{18}})\mathbf{H}^*$	ppb	PEB	10 sec	259 201	< DL	< DL	< DL	< DL	0.08	20%	0.02
	(C11H20)H*	ppb	PEB	10 sec	259 201	< DL	< DL	< DL	< DL	0.06	20%	0.02
	(C12H22)H*	ppb	PEB	10 sec	259 201	< DL	< DL	< DL	< DL	0.07	20%	0.02

<table-container> Defermine Reference <</table-container>	Mesured Quantity	Species	Unit	Site	Time resolution	N	P25	Median	Mean	P75	Мах	Missing	DL
<table-container><table-row><table-row>PickPic</table-row></table-row></table-container>	PARTICULATE PH	IASE											
Prices Prics Prics Prics <th>Particle number</th> <th>PN (2.5 nm - 3 µm)</th> <th>part.cm⁻³</th> <th>PEB</th> <th>10 sec</th> <th>259 201</th> <th>4 939</th> <th>10 612</th> <th>13 734</th> <th>18 098</th> <th>219 270</th> <th>13%</th> <th></th>	Particle number	PN (2.5 nm - 3 µm)	part.cm ⁻³	PEB	10 sec	259 201	4 939	10 612	13 734	18 098	219 270	13%	
<table-container> Particle Particle Parte Parte Parte Parte</table-container>		PN (7 nm - 2.5 µm)	part.cm ³	MAJOR	10 sec	259 201	6 708	10 156	12 751	15 306	116 457	6%	
Particle	Particle size distribution	PN (15 nm - 660 nm)	part.cm ⁻³	PEB	5 min	8 641	5 473	10 723	12 449	16 365	87 566	19%	
Partial <				MAJOR*	5 min	8 641	7 750	10 907	12 744	15 431	80 330	40%	
Index Index 1000 4300 100 100 104 104 104 Perfectamental Mail Index Index 100 <td></td> <td>DN (250 pm - 22 um)</td> <td></td> <td>MRS-LCP</td> <td>5 min</td> <td>43 201</td> <td>4 249</td> <td>102</td> <td>117</td> <td>9 /4/</td> <td>1 63/</td> <td>9%</td> <td></td>		DN (250 pm - 22 um)		MRS-LCP	5 min	43 201	4 249	102	117	9 /4/	1 63/	9%	
Partice interiment Partice interim Partice interiment Partice i		PN (230 mm - 32 pm)	partern	MAJOR	1 min	43 201	63	99	110	140	1 204	9%	
enerotechnicrank1/2<	Particle masse	PM ₁₀	ua.m ³	PEB	1 min	43 201	9.0	14.9	16.7	22.4	153.6	1%	0.2
Part Part <t< td=""><td>concentration</td><td></td><td></td><td>MAJOR</td><td>1 min</td><td>43 201</td><td>7.2</td><td>10.6</td><td>11.6</td><td>14.9</td><td>89.8</td><td>9%</td><td>0.2</td></t<>	concentration			MAJOR	1 min	43 201	7.2	10.6	11.6	14.9	89.8	9%	0.2
Phi Phi Pic Field Ind Sol Ind Sol Ind Sol Sol<				MRS-LCP	1 min	43 201	12.1	16.0	20.0	22.6	139.7	11%	0.2
Pho P		PM ₂₅	µg.m ⁻³	PEB	1 min	43 201	6.0	11.2	12.7	18.0	109.5	1%	0.2
Pho				MAJOR	1 min	43 201	6.0	9.0	9.8	12.8	83.8	9%	0.2
Phy P		1225		MRS-LCP	1 min	43 201	5.0	7.3	8.1	9.9	28.5	11%	0.2
MCO, P Ind 42,001 8 7.3 1.8 7.2 1.82 1.91 1.22 1.91 1.22 Composition BC pm ⁻¹ PEB 1 mm 42,201 0.3 0.5 0.7 0.30 1.2 1.91 0.41 0.31 MES, CP 1 mm 43,201 0.3 0.5 0.7 0.33 1.91 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.40 0.40 0.40 0.41 0.40 0.40 0.41 0.40 0.40 0.41 0.41 0.40 0.41 0.40 0.		PM,	hð w ,	PEB	1 min	43 201	3.4	8.0	8.9	13.1	107.2	1%	0.2
Detending Composition BC µpm ¹ PER 1 nm 42 201 6.3 0.5<				MAJUR MRSJ.CP	1 min	43 201	4.0	7.3	7.0 5.4	72	18.0	9%	0.2
Compatien MAOP Tan Algon Col Col Col Col <t< td=""><td>Chemical</td><td>BC</td><td>ua m⁻³</td><td>PEB</td><td>1 min</td><td>43 201</td><td>0.3</td><td>0.5</td><td>0.7</td><td>0.9</td><td>22.8</td><td>1%</td><td>0.3</td></t<>	Chemical	BC	ua m ⁻³	PEB	1 min	43 201	0.3	0.5	0.7	0.9	22.8	1%	0.3
Net Not Not <td>Composition</td> <td></td> <td>P.5</td> <td>MAJOR</td> <td>1 min</td> <td>43 201</td> <td>0.4</td> <td>0.7</td> <td>0.9</td> <td>1.2</td> <td>19.7</td> <td>4%</td> <td>0.3</td>	Composition		P.5	MAJOR	1 min	43 201	0.4	0.7	0.9	1.2	19.7	4%	0.3
Ci. ygm ¹ PEB 38ac 0401 0.0 0.04 0.04 0.07 080 0.04 NG, ygm ¹ PEB 38ac 0401 0.1 0.2 0.44 0.45 0				MRS-LCP	1 min	43 201	0.5	0.7	0.9	1.1	56.1	4%	0.3
N-1 upm ¹ PEB 35 are 64 or 0.20 0.30		CI	µg.m ³	PEB	30 sec	86 401	< DL	< DL	0.04	0.04	0.97	6%	0.03
NO ₁ y g n ¹ PEB 35 sec 64 of 0.14 0.24 0.54 0.75 0.75 0.75 <		NH4	µg.m ⁻³	PEB	30 sec	86 401	0.52	0.80	0.90	1.13	3.68	6%	0.04
OAopprimPEB30 sec68 4014.36.57.60.710.300.40.4Metals CompositionApopmPEB30 min12.8<0.1<0.1<0.1<0.10.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1<0.1		NO3	µg.m ³	PEB	30 sec	86 401	0.14	0.22	0.34	0.38	5.75	6%	0.04
Both Both 30 ase 84 al 1.5 2.4 2.8 3.3 2.8 0.03 Meth Composition Ag ogan ² PEB 30 min 1238 -0L -0L 0L 0L 0L 0L 0L 0L 0L 0.0		OA	µg.m ⁻³	PEB	30 sec	86 401	4.3	6.5	7.6	9.7	163.9	6%	0.4
number number number person number person number person number	Metals	SO4 ^{ee}	µg.m. ⁴	PEB	30 sec	86 401	1.5	2.4	2.6	3.3	29.1	6%	0.03
MRS-LCP 120min 360 4.0	Composition	Ag	ng.m ⁻	PER	30 min	1 236		< DL	< DL < DI	< DL < DL	3 296	11%	2 029
As ngm ³ PEB 30 min 123 ~DL			ilg.ili	MRS-LCP	120 min	360	< DL	< DL	< DL	< DL	315	2%	61
MBS-LO120 min360~DL <td></td> <td>As</td> <td>ng.m⁻³</td> <td>PEB</td> <td>30 min</td> <td>1 236</td> <td>< DL</td> <td>< DL</td> <td>0.4</td> <td>0.5</td> <td>4.8</td> <td>11%</td> <td>0.3</td>		As	ng.m ⁻³	PEB	30 min	1 236	< DL	< DL	0.4	0.5	4.8	11%	0.3
AuPEBSPEN12801280 <d< th=""><d< th=""><t< td=""><td></td><td></td><td></td><td>MRS-LCP</td><td>120 min</td><td>360</td><td>< DL</td><td>< DL</td><td>< DL</td><td>< DL</td><td>< DL</td><td>2%</td><td>0.04</td></t<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<></d<>				MRS-LCP	120 min	360	< DL	< DL	< DL	< DL	< DL	2%	0.04
MR3LCP120 min350< 0L< 0L< 0L< 0L< 0L0.00.82%0.0Bangn ²¹ PEB30 min126< 0L		Au	ng.m ⁻³	PEB	30 min	1 236	< DL	< DL	< DL	< DL	1.1	11%	0.5
Bangm ² PEB30 min12.8 <dl< th=""><dl< td="" th<=""><td></td><td></td><td></td><td>MRS-LCP</td><td>120 min</td><td>360</td><td>< DL</td><td>< DL</td><td>< DL</td><td>< DL</td><td>0.8</td><td>2%</td><td>0.2</td></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<>				MRS-LCP	120 min	360	< DL	< DL	< DL	< DL	0.8	2%	0.2
BIngm²PEB30 min1236< 0L< 0L<0		Ва	ng.m ⁻³	PEB	30 min	1 236	< DL	< DL	< DL	< DL	33.9	11%	1.9
MRS.LCP 12 mm 380 4 L 4 L 4 L 4 L 4 L 4 L 4 L 4 L 2 L 2 L 2 L 2 L 2 L 2 L 2 L 2 L 2 L 2 L 0 L 2 L 2 L 1 L 3		Bi	ng.m ⁻³	PEB	30 min	1 236	< DL	< DL	< DL	< DL	4.4	11%	0.6
B N		D -	3	MRS-LCP	120 min	360	< DL	< DL	< DL	< DL	2.2	2%	0.1
Ca ngm ³ PEB 30 min 1236 < 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 0 0 0 1 0		ы	ng.m	MRS-I CP	120 min	360	2.1	3.1	3.4	41	41.4	2%	0.0
MRS-LCP 120 min 360 7 13 39 27 1188 2% 2 Cd ng.m ³ PEB 30 min 1236 <dl< td=""> <dl< td=""> <dl< td=""> 300 2% 11% 18 Ce ng.m³ PEB 30 min 1236 <dl< td=""> <dl< td=""> <dl< td=""> <dl< td=""> 305 2% 305 11% 19 Cl ng.m³ PEB 30 min 1236 <dl< td=""> <dl< td=""> <dl< td=""> SD 2% 305 11% 19 Co ng.m³ PEB 30 min 1236 <dl< td=""> <dl< td=""> <dl< td=""> <dl< td=""> 0.0 33 2% 0.1 Co ng.m³ PEB 30 min 1236 <dl< td=""> <dl< td=""> <dl< td=""> 0.0 33 2% 0.1 Co ng.m³ PEB 30 min 1236 <dl< td=""> <dl< td=""> <dl< td=""> 2.0 13 12 2.3 11% 1.1 1.1 1.1</dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<>		Ca	na m ⁻³	PEB	30 min	1 236	< DL	< DL	28	21	1 076	11%	19
Cdngm3PEB30 min1236 <dl< th=""><dl< th=""><dl< th=""><dl< th=""><dl< th="">3911%18Cengm30PEB30 min1236<dl< td=""><dl< td=""><dl< td=""><dl< td=""><dl< td="">30.02%1.8Cingm30PEB30 min1236<dl< td=""><dl< td=""><dl< td="">2.32.530.511%19Cingm30PEB30 min1236<dl< td=""><dl< td=""><dl< td=""><dl< td="">1.82.25.52.5%3.4Cingm30PEB30 min1236<dl< td=""><dl< td=""><dl< td=""><dl< td="">0.101.80.160.1<t< td=""><td></td><td></td><td></td><td>MRS-LCP</td><td>120 min</td><td>360</td><td>7</td><td>13</td><td>39</td><td>27</td><td>1 188</td><td>2%</td><td>2</td></t<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<>				MRS-LCP	120 min	360	7	13	39	27	1 188	2%	2
MRSLCP 12 mm 360 < DL < DL < DL < DL < DL 3.0 2% 1.8 Ce ngm ³ PEB 30 min 1236 < DL		Cd	ng.m ⁻³	PEB	30 min	1 236	< DL	< DL	< DL	< DL	39	11%	18
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				MRS-LCP	120 min	360	< DL	< DL	< DL	< DL	3.0	2%	1.8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Ce	ng.m ⁻³	PEB	30 min	1 236	< DL	< DL	< DL	< DL	3.6	11%	1.5
MRS-LCP 120 min 360 <0L 4.0 13.1 13.2 226.5 2% 3.4 Co ngm ³ PEB 30 min 1236 <0L		CI	ng.m ⁻³	PEB	30 min	1 236	< DL	< DL	23	25	305	11%	19
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		6-	1	MRS-LCP	120 min	360	< DL	4.0	13.1	13.2	226.5	2%	3.4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		60	ng.m~	MESICE	30 min	1 236	< DL			< DL	1.8	11%	0.7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Cr	na m ⁻³	PEB	30 min	1 236	< DL	< DL	< DL	< DL	20.3	11%	0.6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			ng.m	MRS-LCP	120 min	360	< DL	< DL	0.2	0.1	24.7	2%	0.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Cs	ng.m ⁻³	PEB	30 min	1 236	< DL	< DL	< DL	< DL	6.5	11%	1.9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Cu	ng.m ³	PEB	30 min	1 236	< DL	< DL	1.3	1.2	52.8	11%	1.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				MRS-LCP	120 min	360	0.9	1.2	2.0	1.8	55.7	2%	0.6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Fe	ng.m ³	PEB	30 min	1 236	7	12	22	23	654	11%	6
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				MRS-LCP	120 min	360	12	20	33	36	413	2%	1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Ga	ng.m 3	PEB	30 min	1 236	< DL	< DL	< DL	< DL	0.7	11%	0.3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Ge	co m 3	MRS-LCP DEB	120 min	1 236	< DL	< DL	< DL	< DL	< DL 0.6	276	0.1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		00	iig.iii	MRS-LCP	120 min	360	< DL	< DL	< DL	< DL	< DL	2%	0.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Hg	na.m ³	PEB	30 min	1 236	< DL	< DL	< DL	< DL	1.3	11%	0.6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		04123	100 70000	MRS-LCP	120 min	360	0.4	0.4	0.3	0.4	0.4	2%	0.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1	ng.m ⁻³	PEB	30 min	1 236	< DL	< DL	< DL	< DL	185.0	11%	55.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		In	ng.m ⁻³	PEB	30 min	1 236	< DL	< DL	< DL	< DL	44.5	11%	15.0
MRS-LCP 120 min 360 20 26 32 38 162 2% 1 La ng.m ³ PEB 30 min 1236 <dl< td=""> <dl< td=""> <dl< td=""> <dl< td=""> 4.7 11% 1.8 Mn ng.m³ PEB 30 min 1236 <dl< td=""> <dl< td=""> <dl< td=""> 2.9. 11% 0.7 MR ng.m³ PEB 30 min 1236 <dl< td=""> <dl< td=""> <dl< td=""> 2.9. 11% 0.7 MRS-LCP 120 min 360 <dl< td=""> <dl< td=""> 0.3 0.3 4.6 2% 0.1 Mo ng.m³ PEB 30 min 1236 <dl< td=""> <dl< td=""> 0.3 0.3 4.6 2% 0.1 Mo ng.m³ PEB 30 min 1236 >DL <dl< td=""> <dl< td=""> 7.4 11% 2.4 MRS-LCP 120 min 360 <dl< td=""> <dl< td=""></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<></dl<>		к	ng.m ³	PEB	30 min	1 236	8	14	20	25	398	11%	6
La ng.m ³ PEB 30 min 1 236 < DL < DL < DL 4.7 11% 1.8 Mn ng.m ³ PEB 30 min 1 236 < DL				MRS-LCP	120 min	360	20	26	32	38	162	2%	1
Mm ng.m. ^{-∞} PEB 30 min 1236 < DL < DL < DL < DL 28.3 11% 0.7 MRS+LCP 120 min 360 < DL < DL 0.3 0.3 4.6 2% 0.1 Mo ng.m. ⁻³ PEB 30 min 1236 < DL < DL < DL < DL 7.4 11% 2.4 MRS+LCP 120 min 360 < DL < DL < DL < DL < DL 2% 0.3		La	ng.m ³	PEB	30 min	1 236	< DL	< DL	< DL	< DL	4.7	11%	1.8
אודש-ג-טי זבעידאיז איז טע לוע לוע טע 10 געע 10 ג Mo ng.m ⁻³ PEB 30 min 1236 לע לע געע געע געע געע געע געע געע 11% געע MRS-LCP 120 min 360 לע געע געע געע געע געע געע געע געע געע		Mn	ng.m ⁻³	PEB	30 min	1 236	< DL	< DL	< DL	< DL	29.3	11%	0.7
		Mo	pa m ⁻³	PER	i∠u min 30 min	1 236	< DL		v.a ≪ DI	0.3 ≪ DI	4.0	2%	2.4
			ng.nl	MRS-LCP	120 min	360	< DL	< DL	< DL	< DL	< DL	2%	0.3

Mesured Quantity	Species	Unit	Site	Time resolution	N	P25	Median	Mean	P75	Max	Missing	DL
PARTICULATE P	HASE											
Metals	Ni	ng.m ⁻³	PEB	30 min	1 236	< DL	< DL	1.5	1.5	44.1	11%	0.6
Composition			MRS-LCP	120 min	360	0.3	0.8	1.1	1.3	9.9	2%	0.2
	P	ng.m ⁻³	PEB	30 min	1 236	< DL	< DL	< DL	< DL	38.0	11%	33.8
	Pb	ng.m ⁻³	PEB	30 min	1 236	< DL	< DL	< DL	< DL	31.2	11%	0.6
			MRS-LCP	120 min	360	1.2	1.9	2.7	3.2	43.6	2%	0.2
	Pd	ng.m ⁻³	PEB	30 min	1 236	< DL	< DL	< DL	< DL	127	11%	56
			MRS-LCP	120 min	360	< DL	< DL	< DL	< DL	8	2%	7
	Pt	ng.m ⁻³	PEB	30 min	1 236	< DL	< DL	< DL	< DL	0.9	11%	0.6
			MRS-LCP	120 min	360	< DL	< DL	< DL	< DL	< DL	2%	0.1
	Rb	ng.m ^{.a}	PEB	30 min	1 236	< DL	< DL	< DL	< DL	2.5	11%	1.0
	s	ng.m ⁻³	PEB	30 min	1 236	356	596	639	857	1711	11%	16
			MRS-LCP	120 min	360	411	605	668	849	1 697	2%	2
	Sb	ng.m ⁻³	PEB	30 min	1 236	< DL	< DL	< DL	< DL	91	11%	50
			MRS-LCP	120 min	360	< DL	< DL	< DL	< DL	11	2%	3
	Sc	ng.m ⁻³	PEB	30 min	1 236	< DL	< DL	< DL	< DL	3.2	11%	1.5
	Se	ng.m ⁻³	PEB	30 min	1 236	< DL	< DL	< DL	< DL	3.2	11%	0.4
			MRS-LCP	120 min	360	0.1	0.2	0.2	0.3	1.1	2%	0.1
	Si	ng.m ⁻³	PEB	30 min	1 236	< DL	< DL	< DL	< DL	165	11%	89
			MRS-LCP	120 min	360	< DL	< DL	25	< DL	704	2%	11
	Sn	ng.m ⁻³	PEB	30 min	1 236	< DL	< DL	< DL	< DL	138	11%	20
			MRS-LCP	120 min	360	< DL	< DL	< DL	< DL	< DL	2%	2.5
	Sr	ng.m ⁻³	PEB	30 min	1 236	< DL	< DL	< DL	< DL	12.5	11%	1.1
	Te	ng.m ⁻³	PEB	30 min	1 236	< DL	< DL	< DL	< DL	149	11%	79
	Ті	ng.m ⁻³	PEB	30 min	1 236	< DL	< DL	< DL	< DL	43	11%	1
			MRS-LCP	120 min	360	0.2	0.4	1.1	0.8	26.2	2%	0.2
	ті	ng.m ⁻³	PEB	30 min	1 236	< DL	< DL	< DL	< DL	0.9	11%	0.6
			MRS-LCP	120 min	360	< DL	< DL	< DL	< DL	< DL	2%	0.1
	v	ng.m ⁻³	PEB	30 min	1 236	< DL	< DL	1.2	1.1	46.0	11%	0.6
			MRS-LCP	120 min	360	0.2	0.7	1.0	1.4	10.1	2%	0.1
	Y	ng.m ⁻³	PEB	30 min	1 236	< DL	< DL	< DL	< DL	3.2	11%	1.4
			MRS-LCP	120 min	360	< DL	< DL	< DL	< DL	1.0	2%	0.7
	Zn	ng.m ⁻³	PEB	30 min	1 236	< DL	4.0	6.5	6.4	309.5	11%	4.0
		075	MRS-LCP	120 min	360	3.4	5.0	6.1	7.0	37.9	2%	0.3
	Zr	ng.m ⁻³	PEB	30 min	1 236	< DL	< DL	< DL	< DL	3.0	11%	1.6
			MRS-LCP	120 min	360	< DL	< DL	< DL	< DL	1.6	2%	0.4

* Data corrected with CPC data

1255 Figure S4. Temporal evolution of the main pollutants at the two measurement stations located in the port area (PEB station (a) and MAJOR station (b))

Figure S5. Temporal evolution of the particle size distribution during the campaign at measurement stations located in the port area (PEB station (a) and MAJOR station (b)). The y-axis corresponds to the particle diameter Dp in nm and the colour bar indicates the concentration dN/dlogDp (part.cm⁻³).

Figure S6. Daily profiles of nitrogen monoxide (NO), black carbon (BC), ultrafine particles and their average diameter, vanadium (V), nickel (Ni), sulphur dioxide (SO₂), sulphate (SO₄²⁻), toluene ($(C_7H_8)H^+$) and organic aerosol (OA) during the campaign at the PEB station. For each box plot, the coloured box represents the interval between the 25th percentile and the 75th percentile, the vertical error bar represents the interval between the 10th percentile and the 90th percentile, the horizontal line represents the median and the circle represents the mean.

Figure S7. Ship plumes detected at the PEB station on June 11, 2021. Temporal evolution of (a) concentrations of the main pollutants, (b) particle size distribution, (c) concentrations of selected metals, and (d) concentrations of selected NMVOCs measured using PTR-1275 ToF-MS.

Table S7. Sensitivity of emission factors to measurement time resolution for the 353 plumes: median relative deviation from the1280finest resolution values [values in brackets represent the 25th and 75th percentiles].

Species	Plume	N _{plumes}	Temporal resolution compared to 10 s			
-	duration (min)		30 s	1 min	2 min	5 min
PN	All	353	2.8% [1.1% / 6.0%]	5.1% [2.1% / 11.2%]	11.5% [4.3% / 74.5%]	85.7% [19.7% / 130.5%]
	<5	82	3.2% [1.5% / 6.2%]	5.4% [2.8% / 20.7%]	62.3% [7.3% / 100.0%]	100.0% [34.0% / 355.2%]
	5-10	113	2.7% [1.0% / 6.1%]	5.7% [2.1% / 10.3%]	11.2% [3.5% / 45.4%]	100.0% [22.4% / 211.4%]
	10-15	69	3.1% [1.2% / 8.3%]	7.3% [2.2% / 13.9%]	7.9% [4.3% / 27.6%]	94.1% [21.0% / 306.6%]
	15-20	25	3.7% [0.7% / 8.3%]	5.2% [1.9% / 8.3%]	11.6% [5.4% / 46.5%]	55.7% [12.6% / 100.0%]
	20-30	64	2.2% [1.1% / 4.2%]	3.5% [1.9% / 5.6%]	8.0% [3.2% / 19.2%]	27.7% [12.7% / 96.5%]
NO _X	All	353	4.5% [2.0% / 9.0%]	10.0% [3.9% / 25.6%]	27.0% [8.4% / 100.0%]	100.0% [28.7% / 100.0%]
	<5	82	4.4% [1.8% / 7.1%]	10.6% [3.1% / 26.1%]	62.8% [11.0% / 100.0%]	100.0% [40.3% / 100.0%]
	5-10	113	4.0% [1.7% / 10.5%]	8.6% [3.3% / 32.2%]	25.9% [6.8% / 100.0%]	100.0% [32.1% / 100.0%]
	10-15	69	5.5% [3.0% / 10.1%]	14.6% [5.7% / 43.9%]	29.0% [11.5% / 73.3%]	100.0% [37.2% / 100.0%]
	15-20	25	5.3% [2.4% / 8.7%]	9.9% [5.5% / 18.3%]	29.7% [14.7% / 86.8%]	79.2% [21.2% / 100.0%]
	20-30	64	4.8% [2.1% / 8.9%]	6.8% [3.8% / 13.6%]	15.2% [6.6% / 35.6%]	47.1% [17.6% / 100.0%]

Table S8. EF literature review: Statistical summary of ship emission factors by fuel type, presented as mean \pm standard deviation (number of EFs considered).

Spt	ecies	Unit	TNG	Fuel % S < 0.001 %	Fuel % S < 0.1 %	Fuel % S < 0.5 %	Fuel % S < 1.5 %	Fuel % S < 3.5 %
	CO ₂	g/(kg fuel)	3 060 ± 1 440 (15)	3 078 ± 225 (2)	3 405 ± 678 (56)	3 317 ± 620 (22)	2 995 ± 166 (35)	2 936 ± 356 (47)
	NOX	g/(kg fuel)	$9.4 \pm 8.4 \ (15)$	53.2 ± 32.4 (10)	57.9 ± 30.2 (62)	$55.5 \pm 16.4 \ (157)$	$46.9 \pm 22.2 \ (289)$	$67.7 \pm 18.3 \ (40)$
	NO	g/(kg fuel)		·	32.9 ± 1.7 (3)	55.7 ± 18.5 (145)	$7.0 \pm 1.0 \ (252)$	$95.8\pm24.4~(10)$
E	NO ₂	g/(kg fuel)				$11.2 \pm 11.5 \ (145)$	$35.0 \pm 6.0 \ (252)$	$9.2 \pm 0.7 \ (10)$
SVH	co	g/(kg fuel)	$30.0\pm51.8~(15)$	4.2 ± 2.8 (8)	5.7 ± 8.6 (62)	$14.7 \pm 9.0 \ (24)$	$8.0 \pm 5.7 \ (287)$	$7.8\pm 8.0~(48)$
d SV	SO_2	g/(kg fuel)	0.01 ± 0.00 (2)	1.13 ± 0.70 (8)	1.06 ± 0.98 (34)	$4.31\pm2.60\ (151)$	$19.50\pm4.27\ (257)$	39.53 ± 14.44 (26)
9	NH ₃	g/(kg fuel)		,	$0.11 \pm 0.22 \ (10)$		$0.05\pm0.07~(15)$	
	CH4	g/(kg fuel)	$100 \pm 239 \ (15)$		$0.17 \pm 0.40 \ (19)$	0.12 ± 0.15 (2)	0.71 ± 0.08 (4)	0.06 ± 0.07 (7)
	NMVOC	mg/(kg fuel)		·	$551 \pm 398 (3)$	295 ± 304 (5)	48 ± 38 (7)	$113 \pm 9 (9)$
	03	g/(kg fuel)					-48 ± 5 (252)	
	PN	.10 ¹⁵ part/(kg fuel)	2.1 ± 4.1 (20)	$6.1 \pm 11.1 (19)$	8.1 ± 14.1 (4)	18.1 ± 21.1 (225)	4.1 ± 6.1 (255)	13.1 ± 12.1 (65)
	$\mathbf{D}_{\mathrm{mode}}$	mm	22.5 ± 16.3 (12)	44.3 ± 23.0 (3)	35.0 (1)	$34.5\pm0.7~(140)$	41.0 ± 12.7 (2)	50.5 ± 6.4 (2)
	PM1	g/(kg fuel)	'	0.07 ± 0.03 (5)	0.61 ± 0.21 (5)	$0.88\pm0.92\;(151)$	3.77 ± 3.67 (254)	1.26 ± 0.64 (24)
JSV	$PM_{2,5}$	g/(kg fuel)	0.19 ± 0.31 (5)	0.39 ± 0.13 (2)	2.33 ± 3.55 (30)	0.82 ± 0.83 (6)	3.39 ± 3.84 (4)	3.72 ± 3.13 (32)
Hd	PM_{10}	g/(kg fuel)		·	0.31 ± 0.04 (2)	1.06 ± 1.01 (6)	1.71 ± 0.24 (3)	2.05 ± 1.33 (12)
VLE	PMTOT	g/(kg fuel)	$0.06 \pm 0.07 \ (11)$	0.31 ± 0.13 (5)	$0.68 \pm 0.47 \ (21)$	$2.53 \pm 1.65 \ (14)$	$3.33 \pm 1.30 \ (18)$	$6.36 \pm 3.12 \ (19)$
'n	BC (PM1)	g/(kg fuel)	8 ± 7 (24)	98 ± 59 (5)	238 ± 305 (40)	241 ± 392 (201)	351 ± 872 (271)	214 ± 319 (80)
DITS	OA (PM1)	mg/(kg fuel)	ı	ı	624 ± 335 (5)	$1350\pm636(154)$	$3\ 000 \pm 1\ 000\ (252)$	$1 600 \pm 700 (23)$
4V4	SO_4 (PM1)	mg/(kg fuel)	ı	ı	$120 \pm 50 (5)$	$300 \pm 339 \ (154)$	$4\ 000 \pm 1000\ (252)$	$2 100 \pm 1 600 (23)$
	NH4 (PM1)	mg/(kg fuel)	ı	ı	2 ± 3 (5)	$0 \pm 1\ 000\ (15)$	1 300.0 (252)	$0 \pm 1\ 000\ (23)$
	NO ₃ (PM ₁)	mg/(kg fuel)	ı	ı	$3 \pm 6 (5)$	$0 \pm 1\ 000\ (15)$	800.0 (252)	$0 \pm 1\ 000\ (23)$
	CI- (PM ₁)	mg/(kg fuel)			0 (5)	15.5 ± 13.2 (4)	$15.7 \pm 7.8 \ (15)$	
Noi	te: References for the se	cientific articles consulted	1 for each compound are s	ummarized in Table S10				

Table S9. Scientific References used in Table S8, Organized by compound

Speci	es	Unit
	CO ₂	Aakko-Saksa et al. (2016), Agrawal et al. (2008a), Agrawal et al. (2008b), Agrawal et al. (2010), Anderson et al. (2015a), Bai et al. (2020), Celo et al. (2015), Comer et al. (2017), Cooper et al. (1996), Cooper(2001), Fridell et al. (2008), Gysel et al. (2017), Huang et al. (2018), Lehtoranta et al. (2019), McCaffery et al. (2021), Moldanová et al. (2013), Peng et al. (2020), Timonen et al. (2017), Winnes et al. (2020), Zhao et al. (2020)
	NO _x	Aakko-Saksa et al. (2016), Agrawal et al. (2008a), Agrawal et al. (2008b), Agrawal et al. (2010), Anderson et al. (2015a), Bai et al. (2020), Celik et al. (2020), Celo et al. (2015), Comer et al. (2017), Cooper et al. (1996), Cooper(2001), Diesch et al. (2013), Fridell and Salo (2016), Fridell et al. (2008), Gysel et al. (2017), Huang et al. (2018), Jeong et al. (2023), Lehtoranta et al. (2019), McCaffery et al. (2021), Moldanová et al. (2013), Peng et al. (2020), Timonen et al. (2017), Timonen et al. (2022), Winnes et al. (2020), Zetterdahl et al. (2016)
	NO	Celik et al. (2020), Diesch et al. (2013), Timonen et al. (2022), Zhao et al. (2020)
E	NO ₂	Celik et al. (2020), Diesch et al. (2013), Zhao et al. (2020)
GAS PHAS	со	Aakko-Saksa et al. (2016), Agrawal et al. (2008a), Agrawal et al. (2008b), Agrawal et al. (2010), Anderson et al. (2015a), Bai et al. (2020), Celik et al. (2020), Celo et al. (2015), Comer et al. (2017), Cooper et al. (1996), Cooper(2001), Fridell and Salo (2016), Fridell et al. (2008), Gysel et al. (2017), Huang et al. (2018), Lehtoranta et al. (2019), McCaffery et al. (2021), Moldanová et al. (2013), Peng et al. (2020), Timonen et al. (2017), Timonen et al. (2022), Winnes et al. (2020), Zetterdahl et al. (2016), Zhao et al. (2020)
	SO ₂	Agrawal et al. (2008a), Agrawal et al. (2010), Bai et al. (2020), Celik et al. (2020), Comer et al. (2017), Diesch et al. (2013), Jeong et al. (2023), Lehtoranta et al. (2019), McCaffery et al. (2021), Moldanová et al. (2013), Timonen et al. (2022), Winnes et al. (2020), Zetterdahl et al. (2016), Zhao et al. (2020)
	NH ₃	Aakko-Saksa et al. (2016), Aakko-Saksa et al. (2019), Cooper(2001), Timonen et al. (2017)
	CH4	Aakko-Saksa et al. (2016), Anderson et al. (2015a), Comer et al. (2017), Cooper(2001), Lehtoranta et al. (2019), Peng et al. (2020), Timonen et al. (2027), Timonen et al. (2022), Winnes et al. (2020)
	NMVOC	Agrawal et al. (2008a), Agrawal et al. (2010), Cooper et al. (1996), Cooper(2001), Huang et al. (2018)
	03	Celik et al. (2020)
	PN	Anderson et al. (2015a), Celik et al. (2020), Corbin et al. (2020), Diesch et al. (2013), Fridell and Salo (2016), Jeong et al. (2023), Kuittinen et al. (2021), Lack et al. (2009), Winnes et al. (2020), Zetterdahl et al. (2016), Zhao et al. (2020)
	Dmode	Corbin et al. (2020), Diesch et al. (2013), Jeong et al. (2023), Zetterdahl et al. (2016)
	PM ₁	Celik et al. (2020), Diesch et al. (2013), Fridell et al. (2008), Lack et al. (2009), Moldanová et al. (2013), Winnes et al. (2020), Zetterdahl et al. (2016)
	PM _{2.5}	Agrawal et al. (2008a), Agrawal et al. (2008b), Agrawal et al. (2010), Celo et al. (2015), Fridell et al. (2008), Gysel et al. (2017), Jeong et al. (2023), McCaffery et al. (2021), Moldanová et al. (2013), Peng et al. (2020)
ASE	PM10	Fridell et al. (2008), Moldanová et al. (2013)
ATE PH	PM _{TOT}	Aakko-Saksa et al. (2016), Anderson et al. (2015a), Comer et al. (2017), Cooper(2001), Fridell et al. (2008), Gysel et al. (2017), Huang et al. (2018), Lehtoranta et al. (2019), Moldanová et al. (2013), Timonen et al. (2022), Winnes et al. (2020), Zetterdahl et al. (2016)
PARTICUI	BC	Aakko-Saksa et al. (2016), Agrawal et al. (2008a), Agrawal et al. (2008b), Agrawal et al. (2010), Anderson et al. (2015a), Celik et al. (2020), Celo et al. (2015), Comer et al. (2017), Corbin et al. (2020), Diesch et al. (2013), Fridell and Salo (2016), Jeong et al. (2023), Lack et al. (2009), Lanzafame et al. (2022), McCaffery et al. (2021), Peng et al. (2020), Timonen et al. (2017), Timonen et al. (2022), Zetterdahl et al. (2016), Zhao et al. (2020)
	OA	Celik et al. (2020), Diesch et al. (2013), Lack et al. (2009), Lanzafame et al. (2022), Timonen et al. (2022)
	SO4 ²⁻	Celik et al. (2020), Celo et al. (2015), Diesch et al. (2013), Huang et al. (2018), Jeong et al. (2023), Lack et al. (2009), Lanzafame et al., 2022, McCaffery et al. (2021), Timonen et al. (2022)
	NH4 ⁺	Celik et al. (2020), Lack et al. (2009), Lanzafame et al. (2022), Huang et al. (2018), Timonen et al. (2022)
	NO ₃ -	Celik et al. (2020), Lack et al. (2009), Lanzafame et al. (2022), Huang et al. (2018), Timonen et al. (2022)
	Cl	Huang et al. (2018), Lanzafame et al. (2022), Timonen et al. (2022)

Table S10. Emission factors statistics for the 353 ship plumes identified during the campaign.

Mesured Quantity	Species	Unit	Temporal resolution	N _{plume}	Min	P10	P25	Median	Mean	P75	P90	Max	DL
PARTICULATE PHA	SE												
Particle number	PN	part.(kg fuel) ⁻¹	10 sec	335	< DL	3.0E+15	4.2E+15	6.7E+15	8.1E+15	1.1E+16	1.5E+16	3.6E+16	4.5E+14
	PM _{1 (SMPS)}	g.(kg fuel) ⁻¹	2 min	236	< DL	< DL	< DL	1.0	1.6	2.3	4.0	9.8	0.4
Particle masse concentration	PM _{1 (OPC)}	g.(kg fuel)	1 min	342	< DL	< DL	0.2	0.5	0.9	1.1	2.0	8.5	0.1
concentration	PM2.5 (OPC)	g.(kg fuel)	1 min	341	< DL	< DL	< DL	0.5	1.0	1.3	2.5	8.4	0.3
	PMI10 (OPC)	g.(kg fuel)	1 min	341	< DL	< DL	< DL 162	0.0	1.2	1.0	3.3	9.2	0.5
	Cr	mg.(kg fuel) ⁻¹	30 sec	178	< DL	< DL	< DI	< DI	< DI	< DI	< DI	69.6	2.9
Chemical	NH.*	mg (kg fuel) ⁻¹	30 sec	178	< DL	< DL	< DL	< DL	10.1	16.6	31.6	96.0	5.0
Composition (PM ₁)	NO ₂	ma (ka fuel) ⁻¹	30 sec	178	< DL	< DL	< DL	< DL	12.9	18.2	43.2	124.5	5.4
	OA	ma.(ka fuel) ⁻¹	30 sec	178	< DL	355	543	863	1 872	1 742	4 044	25 445	153
	SO42.	mg.(kg fuel) ⁻¹	30 sec	178	< DL	< DL	< DL	50	175	174	567	2 002	28
GAS PHASE													
	NOx	a.(ka fuel) ⁻¹	10 sec	328	< DL	18.6	27.8	37.1	38.5	48.4	58.8	98.8	0.6
Nitrogen Oxides	NO	g.(kg fuel) ⁻¹	10 sec	329	< DL	5.3	9.4	14.2	15.8	20.8	28.2	50.6	0.2
	NO ₂	g.(kg fuel) ⁻¹	10 sec	328	< DL	4.7	9.1	14.0	15.0	19.7	25.8	49.3	0.5
Carbon Oxides	со	g.(kg fuel) ⁻¹	10 sec	353	< DL	< DL	< DL	5.4	7.4	9.3	14.7	114.1	4.0
Sulfur Dioxide	SO ₂	g.(kg fuel) ⁻¹	10 sec	286	< DL	< DL	< DL	0.4	0.6	0.7	1.5	6.7	0.1
Ozone	O ₃	g.(kg fuel) ⁻¹	10 sec	279	< DL	-3.7	-7.5	-13.4	-14.8	-19.0	-26.8	-62.5	0.6
Ammoniac	NH ₃	g.(kg fuel) ⁻¹	10 sec	51	< DL	< DL	< DL	< DL	< DL	< DL	< DL	0.2	0.1
Volatils Organics	CH ₄	g.(kg fuel) ⁻¹	10 sec	353	< DL	< DL	< DL	0.4	1.3	1.0	2.9	23.4	0.3
compounds (VOC)	(CH2O2)H*	mg.(kg fuel) ⁻¹	10 sec	132	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	138
	(CH ₃ OH)H*	mg.(kg fuel) ⁻¹	10 sec	132	< DL	< DL	< DL	< DL	< DL	< DL	< DL	869	182
	(C2H4O)H*	mg.(kg fuel) ⁻¹	10 sec	132	< DL	< DL	< DL	< DL	< DL	< DL	< DL	1 093	137
	$(C_2H_4O_2)H^*$	mg.(kg fuel) ⁻¹	10 sec	132	< DL	< DL	< DL	< DL	< DL	< DL	< DL	1 981	275
	(C2H6O)H*	mg.(kg fuel) ⁻¹	10 sec	131	< DL	< DL	< DL	< DL	< DL	< DL	< DL	1 040	89
	$(C_2H_6S)H^*$	mg.(kg fuel) ⁻¹	10 sec	132	< DL	< DL	< DL	< DL	6	< DL	< DL	755	4
	(C ₃ H ₆)H ⁺	mg.(kg fuel) ⁻¹	10 sec	131	< DL	< DL	< DL	< DL	< DL	< DL	< DL	575	87
	(C ₃ H ₆ O)H*	mg.(kg fuel) ⁻¹	10 sec	132	< DL	< DL	< DL	< DL	< DL	< DL	< DL	915	128
	(C ₃ H ₆ O ₂)H*	mg.(kg fuel) ⁻¹	10 sec	131	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	46
	(C ₄ H ₁₀ O ₃)H ⁻	mg.(kg fuel)"	10 sec	132	< DL	< DL	< DL	< DL	< DL	< DL	< DL	269	29
	(C ₄ H ₁₂ O ₂)H	mg.(kg fuel)	10 sec	132	< DL	< DL	< DL	< DL	< DL	< DL	< DL	48	33
	(C4H60)H	mg.(kg fuel)	10 sec	132	< DL	< DL	< DL	< DL	< DL	< DL	< DL	121	23
		mg.(kg fuel)	10 sec	132								124	31
	(C4080)H	mg.(kg fuel)	10 sec	132	< DL	< DL	< DL	< DL		< DL	< DL	< DI	31
	(C ₄ H ₈ O ₂)H ⁺	mg.(kg fuel) ⁻¹	10 sec	131	< DI	< DL	< DI	< DI	< DL	< DI	< DI	282	44
	(C-H-0)H*	mg (kg fuel) ⁻¹	10 sec	131	< DI	< DI	< DI	< DI	< DI	< DI	< DI	< DI	40
	(C ₂ H ₂)H ⁺	ma (ka fuel) ⁻¹	10 sec	132	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	46
	(C ₂ H ₂ O ₂)H ⁺	ma (ka fuel) ⁻¹	10 sec	132	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	31
	(C ₆ H ₁₀)H ⁺	ma.(ka fuel) ⁻¹	10 sec	132	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	32
	(C ₆ H ₁₀ O)H ⁺	mg.(kg fuel) ⁻¹	10 sec	131	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	26
	(C ₆ H ₁₂)H*	mg.(kg fuel)-1	10 sec	132	< DL	< DL	< DL	< DL	< DL	< DL	< DL	166	34
	(C6H12O)H+	mg.(kg fuel) ⁻¹	10 sec	132	< DL	< DL	< DL	< DL	< DL	< DL	< DL	308	28
	(C6H12O2)H*	mg.(kg fuel) ⁻¹	10 sec	132	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	14
	$(C_6H_6)H^+$	mg.(kg fuel) ⁻¹	10 sec	132	< DL	< DL	< DL	< DL	< DL	< DL	< DL	82	37
	(C7H12)H*	mg.(kg fuel) ⁻¹	10 sec	131	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	32
	$(C_7H_8)H^{\dagger}$	mg.(kg fuel) ⁻¹	10 sec	132	< DL	< DL	< DL	< DL	< DL	< DL	108	1 347	80
	(C ₈ H ₁₀)H ⁺	mg.(kg fuel) ⁻¹	10 sec	132	< DL	< DL	< DL	< DL	201	176	460	7 598	122
	(C ₈ H ₁₄)H*	mg.(kg fuel) ⁻¹	10 sec	131	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	33
	(C ₈ H ₈)H ⁺	mg.(kg fuel) ⁻¹	10 sec	131	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	25
	(C ₉ H ₁₂)H*	mg.(kg fuel) ⁻¹	10 sec	132	< DL	< DL	< DL	< DL	< DL	< DL	< DL	525	42
	(C ₉ H ₁₈ O)H [*]	mg.(kg fuel) ⁻¹	10 sec	132	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	28
	(C ₁₀ H ₁₄)H ⁺	mg.(kg fuel) ⁻¹	10 sec	132	< DL	< DL	< DL	< DL	< DL	< DL	< DL	118	29
	(C ₁₀ H ₁₄ O)H*	mg.(kg fuel) ⁻¹	10 sec	132	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	15
	(C ₁₀ H ₁₆)H*	mg.(kg fuel) ⁻¹	10 sec	132	< DL	< DL	< DL	< DL	< DL	< DL	< DL	145	56
	(C ₁₀ H ₁₆ O)H*	mg.(kg fuel)"	10 sec	131	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	19
	(C ₁₀ H ₁₈)H [*]	mg.(kg fuel)	10 sec	132	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	19
	(C ₁₁ H ₁₆)H [*]	mg.(kg fuel)"	10 sec	132	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	8
	(C ₁₁ H ₁₈)H	rng.(kg fuel)	10 sec	131	< DL		< DL	< DL	< DL	< DL	< DL	< DL	20
	(C L)L+	ing.(kg fuel)	10 sec	132	< DL					< DL			25

1285

Note: The number of plumes for which compounds were quantified using HR-ToF-AMS analyzers (OA, SO_4^2 , NH_4^+ et Cl⁻) and PTR-ToF-MS (NMVOCs such as $C_8H_{10}H^+$) is nearly half that of other species due to the exclusive deployment of these analyzers at the PEB station.

Table S11. Emission factors statistics categorized by operational phase for the 353 ship plumes identified during the campaign.

Mesured Quantity	Species	Unit	Time	Operation shace	N	Min	P10	P25	Median	Mean	P75	Pan	Max	Di
PARTICIII ATE PH	apecies	Unit	resolution	Operating phase	Ryiste	IMUTS	FIG	F23	median	Mean	F/5	1.90	Mdx	bu
Particle number	PN	part.(kg fuel) ⁻¹	10 sec	At berth	115	3.5E+15	6.2E+15	7.9E+15	9.9E+15	1.0E+16	1.2E+16	1.5E+16	2.9E+16	4.5E+14
				Manoeuvring	44	9.0E+14	2.9E+15	3.6E+15	5.6E+15	6.5E+15	9.2E+15	1.1E+16	2.1E+18	4.5E+14
				Navigation	161	< DL	2.7E+15	3.3E+15	4.9E+15	6.9E+15	8.7E+15	1.5E+16	3.6E+16	4.5E+14
				Mixed phase	15	2.3E+15	3.2E+15	4.2E+15	5.9E+15	7.9E+15	9.3E+15	1.5E+16	2.4E+16	4.5E+14
Particle masse concentration	PM _{1 (SuPR)}	g.(kg fuel) ¹	2 min	At berth	89	< DL	< DL	< DL	0.6	0.5	0.9	1.1	2.9	0,4
				Manoeuvring	27	< DL	< DL	< DL	1.1	1.1	1.7	2.6	2.7	0.4
				Mixed phase	10	< DL	0.7	1.2	3.3	3.3	4.7	5.3	8.3	0.4
	PM _{1(OPC)}	g.(kg fuel) ¹	1 min	At berth	114	< DL	< DL	0.1	0.2	0.3	0.4	0.6	4.6	0.1
				Manoeuvring	46	< DL	< DL	0.2	0.7	1.2	1,1	3.0	6.4	0.1
				Navigation	166	< DL	0.3	0.4	0.6	1.1	1.5	2.3	8.5	0.1
				Mixed phase	16	< DL	< DL	0.6	1.4	1.6	1.9	3.0	6.4	0.1
	PM25(0PC)	g.(kg fuel)1	1 min	At berth	114	< DL	< DL	< DL	< DL	0.3	0.4	0.7	5.8	0.3
				Navination	165	< DL	< DL	0.4	0.5	13	1.3	2.9	8.4	0.3
				Mixed phase	16	< DL	< DL	0.7	1.9	1.8	2.1	3.1	6.5	0.3
	PM _{3D (OPC)}	g.(kg fuel) ¹	1 min	At berth	113	< DL	< DL	< DL	< DL	< DL	0.6	1.0	6.2	0.5
				Manoeuvring	46	< DL	< DL	< DL	0.7	1.4	1.7	3.9	8.9	0.5
				Navigation	166	< DL	< DL	< DL	1.0	1.5	2.2	3.5	9.2	0.5
				Mixed phase	16	< DL	< DL	1.1	2.0	2.1	2.9	3.6	5.7	0.5
Chemical Composition (PM ₁)	BC	mg.(kg fuel) '	1 min	At berth Manogeneting	114	< DL	< DL 112	105	105	190	247	318	2 080	84
				Navigation	167	< DL	< DL	268	477	594	791	1 226	3 254	84
				Moved phase	16	135	185	380	796	806	1 063	1 278	2 200	84
	C	mg.(kg.fuel) ¹	30 sec	At berth	91	< DL	< DL	< DL	< DL	< DL	< DL	< DL	37	2.9
				Manoeuvring	12	< DL	< DL	< DL	< DL	< DL	< DL	3	13	2.9
				Navigation	66	< DL	< DL	< DL.	< DL	< DL	< DL	< DL	70	2.9
	A		20.000	Mixed phase	9	< DL	< DL	< DL	< DL	3	< DL	10	19	2.9
	ren ₄	mg (kg tuel)	30 560	Manoeuvring	12	< DL	< DL	< DL	< DL	15	31	40	45	5.0
				Navigation	66	< DL	< DL	< DL	< DL	15	22	54	96	5.0
				Mixed phase	9	< DL	< DL	11	30	23	36	41	41	5.0
	NO ₃	mg.(kg fuei) ¹	30 sec	At berth	91	< DL	< DL	< DL	< DL	6	9	23	67	5.4
				Manoeuvring	12	< DL	< DL	< DL	< DL	15	23	48	67	5.4
				Navigation	66	< DL	< DL	< DL	< DL	18	32	56	123	5.4
	04	one the bush?	30 500	Mixed phase	9	< DL	< DL 334	18	22	37	29	103	125	5.4
	04	mg.(kg tuei)		Manoeuvring	12	< DL	181	487	861	969	1 394	1 986	2 237	153
				Navigation	66	< DL	752	1 250	2 247	3 716	4 301	6 626	25 445	153
				Mixed phase	9	429	759	1 137	2 164	1 827	2 371	2 692	3 177	153
	SO4	mg.(kg fuel) ¹	30 sec	At berth	91	< DL	< DL	< DL	< DL	33	50	80	289	28
				Manoeuvring	12	< DL	< DL	< DL	< DL	58	120	149	190	28
				Navigation	66	< DL	< DL	75	235	390	580	944	2 002	28
GAS PHASE				Mixed phase		*DL		67	102	109	210	351	305	20
Nitrogen Oxides	NO _X	g.(kg fuel) ⁻¹	10 sec	At berth	114	< DL	21.2	29.4	40.0	39.8	50.8	58.3	78.3	0.6
				Manoeuvring	45	3.7	14.4	23.1	33.5	36.3	44.8	65.0	98.8	0.6
				Navigation	155	< DL	17.3	28.0	36.2	38.3	48.2	61.8	97.8	0.6
	10		10	Mixed phase	14	14.7	26.1	30.9	39.1	38.3	46.5	52.9	59.2	0.6
	NO	gring inter)	10 200	Mangeuvring	45	0.5	5.2	8.0	14.3	15.9	19.2	31.0	41.6	0.2
				Navigation	155	< DL	4.4	8.8	12.3	15.1	19.4	30.1	50.6	0.2
				Mixed phase	15	5.9	12.5	13.1	16.2	16.4	19.9	22.4	25.0	0.2
	NO ₂	g.(kg fuel) ¹	10 sec	At berth	114	< DL	5.9	10.0	14.6	15.2	19.2	25.7	48.2	0.5
				Manoeuvring	45	< DL	3.3	4.9	9.9	12.6	19.0	23.7	41.0	0.5
				Navigation	155	< DL	5.3	10.4	15.1	15.8	20.5	26.5	49.3	0.5
Carbon Ovides	co	a Ratural	10	At berth	14	1.4 < DI	5.4	<.Di	12.9 < Di	13.7 < Di	20.0	71	28.7	0.5
LIDON CAMPS		arting inter)	10 900	Manoeuvring	46	< DL	< DL	< DL	7.1	8.3	12.1	16.9	46.5	4.0
				Navigation	173	< DL	< DL	< DL	7.2	9.8	10.9	17.9	114.1	4.0
				Mixed phase	16	< DL	< DL	4.9	8.6	7.3	10.7	11.8	13.2	4.0
Sulfur Dioxide	SO ₂	g.(kg fuel) ⁻¹	10 sec	At berth	94	< DL	< DL	< DL	0.4	0.4	0.6	1.0	2.1	0.1
				Manoeuvring	43	< DL	< DL	0.2	0.4	0.9	1.5	2.4	4.3	0.1
				Navigation	136	< DL	< DL	< DL	0.4	0.6	0.6	1.5	5.9	0.1
02008	0.	a fire fuels ¹	10 sec	At herth	13	< DL	-4.1	.0.2	-13.4	-13.8	-18.6	-23.8	45.7	0.1
	3	8-(n8-1361)		Manoeuvring	37	-2.5	-4.2	-6.5	-9.8	-12.5	-13.6	-23.3	-50.3	0.6
				Navigation	126	< DL	-3.5	-10.0	-14.5	-16.5	-21.7	-27.9	-62.5	0.6
				Mixed phase	13	-1.4	-4.1	-5.7	-13.3	-12.7	-16.7	-18.3	-35.8	0.6
Ammoniac	NH ₂	g.(kg fuel) ⁻¹	10 sec	At berth	24	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	0.1
				Manoeuvring	3	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	0.1
				Navigation	20	< DL	< DL	< DL	< DL	< DL	< DL	< DL	0.2	0.1
	C11			Mixed phase	4	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	0.1
Volatils Organics Compounds (VOC)	UH ₆	g.(kg fuel)	10 sec	Al berth	118	< DL	< DL	< DL	0.6	1.9	1.7	4.5	23.4	0.3
				Navigation	173	< DL	< DL	< DL	0.3	0.6	0.7	1.4	10.4	0.3
				Mixed phase	16	< DL	< DL	< DL	0.3	2.1	0.7	7.3	15.2	0.3
	(CH2O2)H"	mg.(kg fuel) ⁻¹	10 sec	At berth	59	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	138
		12022		Manoeuvring	9	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	138
				Navigation	54	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	138
				Mixed phase	10	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	138

Mesured Quantity	Species	Unit	Time resolution	Operating phase	N _{plane}	Min	P10	P25	Median	Mean	P75	P90	Max	DL
Volatils Organics	(CH3OH)H*	mg.(kg fuel) ⁻¹	10 sec	At berth	59	< DL	869	182						
Compounds (VOC)				Manoeuvring	9	< DL	316	426	621	182				
				Navigation Mixed phase	54	< DL < DI	< DL 829	182						
	(C2H40)H*	mg.(kg fuel) ¹	10 sec	At berth	59	< DL	821	137						
				Manoeuvring	9	< DL	< DL	< DL	< DL	153	< DL	447	1 093	137
				Navigation	54	< DL	216	137						
	(C H O H)	ma first satural	10	Mixed phase	10	< DL	137							
	(C2H2O2)H	mg.(kg tuer)	TO SEC	Manoeuvring	9	< DL	465	275						
				Navigation	54	< DL	1 981	275						
				Mixed phase	10	< DL	275							
	(C2H80)H*	mg.(kg fuel) ¹	10 sec	At berth	59	< DL	911	89						
				Manoeuvring	9	< DL	235	390	89					
				Mixed phase	10	< DL	94	221	271	89				
	(C2H8S)H*	mg.(kg fuel) ¹	10 sec	At berth	59	< DL	4							
				Manoeuvring	9	< DL	4							
				Navigation	54	< DL	< DL	< DL	< DL	14	< DL	< DL	755	4
	IC H IN		10	Mixed phase	10	< DL	4							
	(U ₂ H ₆)H	mg.(kg fuel)	10 560	Manoeuvring	9	< DL < DL	< DL	< DL < DL	< DL	< DL	< DL < DL	< DL < DL	< DL	87
				Navigation	53	< DL	103	87						
				Mixed phase	10	< DL	87							
	(C ₂ H ₆ O)H*	mg.(kg fuel) ¹	10 sec	At berth	59	< DL	915	128						
				Manoeuvring	9	< DL	< DL	< DL	< DL.	< DL	< DL	< DL	348	128
				Navigation Mixed phase	10	< DL < DL	< DL	< DL < DL	< DL < DL	< DL < DL	< DL < DL	< DL 201	277	128
	(C3H8O2)H*	mg.(kg fuel) ¹	10 sec	At berth	59	< DL	46							
				Manoeuvring	9	< DL	46							
				Navigation	53	< DL	46							
				Mixed phase	10	< DL	46							
	(C ₄ H ₁₀ O ₃)H [*]	mg.(kg fuel)	10 sec	At berth Manoeusring	59	< DL	< DL < DI	< DL	< DL < DL	< DL	< DL	< DL	269	29
				Navigation	54	< DL	29							
				Moved phase	10	< DL	29							
	(C ₄ H ₁₂ O ₂)H*	mg.(kg fuel) ¹	10 sec	At berth	59	< DL.	< DL	48	33					
				Manoeuvring	9	< DL	33							
				Navigation Minut share	54	< DL	33							
	(C_H_O)H*	ma (ka fuel) ¹	10 sec	At berth	59	< DL	23							
				Manoeuvring	9	< DL	24	121	23					
				Navigation	54	< DL	36	23						
				Mixed phase	10	< DL	23							
	(C ₄ H ₅)H [*]	mg.(kg fuel) ¹	10 sec	At berth	59	< DL	147							
				Navigation	54	< DL	1 474	147						
				Mixed phase	10	< DL	147							
	(C ₄ H ₈ O)H [*]	mg.(kg fuel) ⁻¹	10 sec	At berth	59	< DL	31							
				Manoeuvring	9	< DL	< DL	< DL.	< DL	< DL	< DL	< DL	124	31
				Navigation	54	< DL	86	31						
	(C.H.O.)H	ma (ka fuel) ¹	10 sec	At berth	59	< DL < DL	< DL	< DL	< DL < DL	< DL	< DL < DL	< DL	< DL	31
	1-4-4-20-			Manoeuvring	9	< DL	31							
				Navigation	54	< DL	31							
				Moved phase	10	< DL	31							
	(C ₂ H ₁₀)H*	mg.(kg fuel) ¹	10 sec	At berth	59	< DL.	< DL	< DL.	< DL	44				
				Navigation	53	< DL	44							
				Moved phase	10	< DL	44							
	(C ₅ H ₁₀ O)H*	mg.(kg fuel) ⁻¹	10 sec	At berth	59	< DL	40							
				Manoeuvring	9	< DL	40							
				Navigation	53	< DL	40							
	ICH.H	ma (ka funl) ¹	10 sec.	Moved phase At herth	10	< DL < DI	< DL < DI	< DL < DL	< DL < DL	< DL < DI	< DL < DL	< DL < DI	< DL < DL	40
	1-2-0	1.0.1.0 1001		Manoeuvring	9	< DL	46							
				Navigation	54	< DL	46							
				Mixed phase	10	< DL	46							
	(C5H8O2)H*	mg.(kg fuel) ⁻¹	10 sec	At berth	59	< DL	31							
				Manoeuvring	9	< DL	31							
				Mixed phase	10	< DL	31							
	(C ₀ H ₁₀)H [*]	mg.(kg fuel) ¹	10 sec	At berth	59	< DL	32							
				Manoeuvring	9	< DL	32							
				Navigation	54	< DL	32							
		-		Moved phase	10	< DL	32							
	(UppH10)H	mg.(kg fuel) '	IU Sec	Manoeuvring	9	< DL < DI	< DL < DI	< DI	< DL < DL	< DL < DL	< DL < DI	< DL < DL	< DL < DL	26
				Navigation	53	< DL	26							
				Mixed phase	10	< DL	26							
	$(C_{9}H_{12})H^{*}$	mg.(kg fuel) ⁻¹	10 sec	At berth	59	< DL	34							
				Manoeuvring	9	< DL	166	34						
				Navigation	54	< DL	34							
				moteo phase	10	< DL	< DL	< DL	< DL	< 0L	< DL	< DL	< DL	34

lesured Quantity	Species	Unit	Time resolution	Operating phase	N _{plume}	Min	P10	P25	Median	Mean	P75	P90	Max	DL
platils Organics	(C ₀ H ₁₂ O)H*	mg.(kg fuel) ⁻¹	10 sec	At berth	59	< DL	< DL	< DL	< DL	< DL	< DL	< DL	308	28
ompounds (VOC)				Manoeuvring	9	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	28
				Navigation	54	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	28
	900 900 3	2		Mixed phase	10	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	28
	(C ₆ H ₁₂ O ₂)H*	mg.(kg fuel) ⁻¹	10 sec	At berth	59	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	14
				Manoeuvring	9	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	14
				Mixed phase	10	< DL	< DL	< DL	< DL	< DL < DL	< DL	< DL	< DL	14
	(C.H.)H*	ma (ka fuel) ¹	10 sec	At berth	59	< DI	< DI	< DI	< DL	< DL	< DI	< DL	< DL	37
	1-0-07-1	mg.(ng non)		Manoeuvring	9	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	37
				Navigation	54	< DL	< DL.	< DL	< DL	< DL	< DL	< DL	82	37
				Mixed phase	10	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	37
	(C7H12)H*	mg.(kg fuel) ⁻¹	10 sec	At berth	59	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	32
				Manoeuvring	9	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	32
				Navigation	53	< DL	< DL	< DL	< DL.	< DL	< DL	< DL	< DL	32
				Mixed phase	10	< DL	< DL.	< DL	< DL	< DL	< DL	< DL	< DL	32
	(C ₇ H ₈)H*	mg.(kg fuel) ¹	10 sec	At berth	59	< DL	< DL	< DL	< DL	< DL	< DL	94	800	80
				Manoeuvring	9	< DL	< DL	< DL	< DL	183	191	442	1 108	80
				Navigation	54	< DL	< DL	< DL	< DL	< DL	< DL	< DL	1 347	80
	(C.U. N.)*		10	Mixed phase	10	< DL	< DL	< DL	< DL	< DL	< DL	190	4/3	80
	(G8010)0	mg.(kg tuel)	TU Sec	Manoeuvring	9	< DL	< DL	< DL	< DL	143	281	370	466	122
				Navigation	54	< DL	< DL	< DL	< DL	< DL	< DL	284	937	122
				Mixed phase	10	< DL	< DL	< DL	< DL	< DL	217	333	359	122
	(C ₈ H ₁₄)H*	mg.(kg fuel) ⁻¹	10 sec	At berth	59	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	33
				Manoeuvring	9	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	33
				Navigation	53	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	33
				Mixed phase	10	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	33
	(C ₈ H ₈)H [*]	mg.(kg fuel) ⁻¹	10 sec	At berth	59	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	25
				Manoeuvring	9	< DL	< DL	< DL	< DL	< DL.	< DL	< DL	< DL	25
				Navigation	53	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	25
		1010		Mixed phase	10	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	25
	(C ₉ H ₁₂)H [*]	mg.(kg fuel)1	10 sec	At berth	59	< DL	< DL	< DL	< DL	< DL	< DL	52	525	42
				Navigation	54	< DL	< DL	< DL	< DL	50 < DI	< DL	105 < DI	151	42
				Mixed phase	10	< DL	< DL	< DL	< DL	< DL	< DL	< DL	107	42
	(C ₀ H ₁₈ O)H [*]	ma.(ka fuel) ¹	10 sec	At berth	59	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	28
	1.2.12.2			Manoeuvring	9	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	28
				Navigation	54	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	28
				Mixed phase	10	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	28
	(C10H14)H*	mg.(kg fuel) ⁻¹	10 sec	At berth	59	< DL	< DL	< DL	< DL	< DL	< DL	< DL	118	29
				Manoeuvring	9	< DL	< DL.	< DL	< DL	< DL	< DL	< DL	75	29
				Navigation	54	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	29
				Mixed phase	10	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	29
	(C10H14O)H*	mg.(kg fuel) ¹	10 sec	At berth	59	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	15
				Manoeuvring	9	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	15
				At berth	59	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	15
	(C H)H*		10 cos	Manoeuvring	9	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	15
	(C10H16)H	mg.(kg ruer)	TO BEC	Manoeuvring	9	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DI	56
				At berth	59	< DL	< DL	< DL	< DL	< DL	< DL	< DL	145	56
				Manoeuvring	9	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	56
	(C10H16O)H*	mg.(kg fuel) ⁻¹	10 sec	At berth	59	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	19
				Manoeuvring	9	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	19
				At berth	59	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	19
				Manoeuvring	9	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	19
	(C ₁₀ H ₁₈)H*	mg.(kg fuel) ⁻¹	10 sec	At berth	59	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	19
				Manoeuvring	9	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL.	19
				At berth	59	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	19
				Manoeuvring	9	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	19
	(C ₁₁ H ₃₆)H	mg.(kg fuel) '	10 sec	At berth	59	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	8
				Naviation	54	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	0
				Mixed phase	10	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	8
	(C11H18)H*	mg.(kg fuel) ⁻¹	10 sec	At berth	59	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	20
				Manoeuvring	9	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	20
				Navigation	53	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	20
				Mixed phase	10	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	20
	(C11H20)H*	mg.(kg fuel) ⁻¹	10 sec	At berth	59	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	17
				Manoeuvring	9	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	17
				Navigation	54	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	17
				Mixed phase	10	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	17
			10	At barth	59	< DL	< DI	< DL	< DL	< DI	< DI	< DI	< DI	25
	(C ₁₂ H ₂₀)H"	mg.(kg tuer)	10 sec	AL MIT UT										
	(C ₁₂ H ₂₀)H [*]	mg.(kg tuer)	10 Sec	Manoeuvring	9	< DL	< DL	< DL	< DL	< DL	< DL	< DL	< DL	25

Table S12.	Potential	hypotheses f	for elevated	methane emission	factors in	the study area
		~ 1				•

N°	Hypothesis details
1	Some plumes may originate from multiple ships of the same category, particularly "at berth" ships. In such cases, one ship might be using a hybrid engine running on both fuel (fuel oil and LNG), or an engine operating on natural gas or LNG, which could elevate the emission factor without reaching the levels typically associated with LNG-powered ships. This scenario is most plausible for the EFs observed from "at berth." cruise ships, which often consist of several vessels
2	Capture of emissions at engine starts-up, where incomplete combustion could result in higher CH_4 emissions. However, the lack of correlation between CH_4 and CO (a known tracer of incomplete combustion (Latarche, 2021)) does not support this hypothesis.
3	A GTL (liquefied methane gas) pilot boat that routinely accompanies ships entering or leaving the port could also contribute to the observed EFs. This boat operates from the channel entrance to the berth and vice versa. Thus, one likely explanation for higher EFs for ships in "manoeuvring/navigation" is the simultaneous measurement of emissions from both the ship and pilot boat. In this case, the CH ₄ emission factor calculated underestimates CH ₄ emissions from the pilot boat because concentrations are related to the combined CO ₂ emissions of both the ship and the pilot boat (dominated by the ship). Conversely, this calculation overestimates the EF_{CH4} for the ship alone.
4	Diffuse oceanic emissions of CH ₄ from ships in "manoeuvring/navigation" was also considered due to the shallow seabed near the measurement stations (less than 10 m (Pairaud et al., 2011)), as well as water temperature and weather conditions at this time of year. Specific studies on methane emitted by oceans show that diffuse oceanic emissions close to the coasts (<2,000 m) contribute to the greatest diffusive flux of methane due to surface water supersaturation (Vogt et al., 2023). This supersaturation is linked both to emissions from the ocean floor and methanogenesis of the microbial cycle of organic matter compounds dissolved in water, particularly DMS (Weber et al., 2019). The stirring up of the water by passing ships could increase these diffuse emissions. However, the absence of DMS in plumes with higher CH ₄ levels does not support this hypothesis.

* NSP: Number of plumes studied - ** NQP: Number of quantified plumes - *** TDQP: Total duration of quantified plumes (hours) **** NDVQP: Number of different vessels in the quantified plumes

Figure S8. EF_{BC} distribution as a function of Tier regulations imposed by the MARPOL Convention. For each box plot, the coloured box represents the interquartile range between the 25th percentile (P25) and the 75th percentile (P75), the vertical error bar represents the interval between the 10th percentile (P10) and the 90th percentile (P90), the black horizontal line represents the median, the white circle represents the mean and the grey dots represent the extremes.

Figure S9. Correlation between NH₄ measured and NH₄ predicted to evaluate the ion balance or neutralisation of the aerosol for (a) ships "at berth" and (b) ships "manoeuvring/navigation" during (i) the periods defining the background noise before and after each plume and (ii) the duration of the plumes (each point is coloured according to the sulphate emission factor of the plume considered).

Measured Quantity	Species	units	Operating phase	N plumes ⁽¹⁾	Additional concentrations from shipping ⁽²⁾	Relative contribution of shipping ⁽³⁾
Metals	Ca	ng.m ⁻³	At berth	22	<dl <dl]<="" [<dl="" td=""><td>- [- / -]</td></dl>	- [- / -]
(PM ₁)			In Manoeuvring/Navigation (arrival)	27	<dl 2.5]<="" [<dl="" td=""><td>- [-/3.7%]</td></dl>	- [-/3.7%]
			In Manoeuvring/Navigation (departure)	20	<dl 4.3]<="" [<dl="" td=""><td>- [- / 12.2%]</td></dl>	- [- / 12.2%]
	Fe	ng.m ⁻³	At berth	22	<dl <dl]<="" [<dl="" td=""><td>- [- / -]</td></dl>	- [- / -]
			In Manoeuvring/Navigation (arrival)	27	2.4 [<dl 4.7]<="" td=""><td>11.2% [-/31.2%]</td></dl>	11.2% [-/31.2%]
			In Manoeuvring/Navigation (departure)	20	1.2 [<dl 3.8]<="" td=""><td>5.2% [-/16.2%]</td></dl>	5.2% [-/16.2%]
	K	ng.m ⁻³	At berth	22	<dl 1.5]<="" [<dl="" td=""><td>- [-/9.5%]</td></dl>	- [-/9.5%]
			In Manoeuvring/Navigation (arrival)	27	<dl 3.0]<="" [<dl="" td=""><td>- [- / 15.7%]</td></dl>	- [- / 15.7%]
			In Manoeuvring/Navigation (departure)	20	<dl 2.0]<="" [<dl="" td=""><td>- [- / 10.8%]</td></dl>	- [- / 10.8%]
	Ni	ng.m ⁻³	At berth	22	<dl <dl]<="" [<dl="" td=""><td>- [- / -]</td></dl>	- [- / -]
			In Manoeuvring/Navigation (arrival)	27	4.4 [0.4 / 7.5]	86.4% [10.8% / 94.3%]
			In Manoeuvring/Navigation (departure)	20	2.1 [0.6 / 3.0]	67.5% [23.5% / 91.1%]
	V	ng.m ⁻³	At berth	22	<dl <dl]<="" [<dl="" td=""><td>- [- / -]</td></dl>	- [- / -]
			In Manoeuvring/Navigation (arrival)	27	1.9 [0.4 / 8.5]	71.8% [12.7% / 93.8%]
			In Manoeuvring/Navigation (departure)	20	1.3 [0.3 / 2.1]	58.1% [39.4% / 84.8%]
	Zn	ng.m ⁻³	At berth	22	<dl <dl]<="" [<dl="" td=""><td>- [- / -]</td></dl>	- [- / -]
			In Manoeuvring/Navigation (arrival)	27	<dl 1.0]<="" [<dl="" td=""><td>- [-/13%]</td></dl>	- [-/13%]
			In Manoeuvring/Navigation (departure)	20	<dl 0.1]<="" [<dl="" td=""><td>- [-/0.8%]</td></dl>	- [-/0.8%]

Table S13. Metals - additional concentrations and contribution from shipping in plumes by operating phases. The 25th and 75th percentiles are indicated for each median value and are presented as follows median [25th percentile / 75th percentile].

(1) N plumes represents the total number of plumes used as the basis for the statistical calculations; (2) statistics from the average excess concentration of each plume; (3) statistics from the relative contribution of each plume, relative to global concentrations; (4) Below detection limit (<DL).