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Dear Referee, 

Thank you very much for your valuable feedback and for the careful review of our 
manuscript. We truly appreciate the time and effort you have dedicated to this 
process.Your insightful suggestions have been extremely helpful in enhancing our work. 
Please find below our detailed responses to each of your comments. If there are any 
aspects that you feel require further refinement, we would be grateful for your additional 
input. 

Kind regards, 

Víctor Galván (on behalf of the author team) 

 

General comments 

The authors describe a software package (“NN4CAST”) that allows for training neural 
networks (NNs) to predict climate model fields in a simple, single-input to single-output 
manner. The software also allows for some plotting and interpretability of the trained NN 
model and its predictions. The authors describe what neural networks are, and how they 
may fit into seasonal predictions of climate variables, at a fairly elementary level. They 
then present an example in which their package has been used to predict 
monthly-averaged SLP fields from monthly-averaged SST fields with a lead time of 
about two months, showing where the predictions have more and less skill and providing 
some examples of the ML interpretability and attribution.  

NN4CAST could provide a nice educational example of using simple NNs to predict 
single fields as outputs of other single fields. This type of software would help students 
learn about basic ML and NN implementations, and allow them to understand when 
simple predictability can be leveraged via these tools. It is nicely implemented from a 
usability standpoint, with flexible configurations for data preprocessing and simple NN 



model training/hyperparameter tuning. But, for the reasons I note below, it is unlikely to 
provide state of the art predictability improvements in the field of seasonal forecasting.  

The authors note that seasonal forecasting may be nonlinear and that conventional 
statistical techniques are primarily linear, as a justification for using neural networks for 
season forecasting. However, they state that they choose an example (Northern 
hemisphere wintertime ENSO response) that they state is mostly linear. Thus, it is likely 
that their results would be the same if they used an off-the-shelf linear approach (eg 
linear regression) that does not require NN training. In my opinion, there would be much 
stronger justification for the package if the authors could show that it produces improved 
results in a nonlinear case, beyond what a linear baseline approach could achieve. 

Thank you for your comment. We would like to apologize for the misunderstanding. We 
selected the Northern Hemisphere early winter ENSO response as it allows us to 
analyze how our model performs in different regions. On one hand, in the tropics, where 
the response to ENSO is predominantly linear, and on the other hand, in the 
extratropics, where nonlinear components play a fundamental role. This setup enables 
us to assess the behaviour of our model in both contexts. To overcome this 
misunderstanding in the text, we have added updated Lines 73-75: 

“The underlying assumption of linear relationships between predictor and predictand 
fields is a common premise in these models. However, this assumption may not be 
entirely appropriate when modelling the Earth system, which is mainly composed of 
complex non-linear components.” 

To further illustrate this point, we have implemented a baseline model based on a 
multiple linear regression approach, trained in the same manner as the neural network 
for this specific case. Specifically, both models were trained using the same 
preprocessed data from the NN4CAST library, following a four-fold cross-validation 
scheme, as described in the manuscript. As evaluation metrics, we compared both the 
Anomaly Correlation Coefficient (ACC) and the Root Mean Square Error (RMSE). 

In figure A1, we present the results obtained using the linear regression (first row) and 
the outcomes for the neural network (second row). The third row displays the differences 
between the two approaches. It is important to note that both methods aim to minimize 
the Mean Squared Error (MSE) in this case, meaning that the primary improvements 
expected from the neural network should be reflected in the RMSE. This is precisely 
what we observe, particularly in the extratropical regions, where the magnitude of the 
anomalies and, thus, the errors are higher.  



 

 

We have added some clarification in the text about this around Line 290 : 

“In this case, the highest skill in terms of ACC (>0.7) between the predicted and 
observed ND SLP during the test period is obtained at equatorial and tropical latitudes, 
specifically in the Pacific basin. This is in accordance with the higher air-sea coupling in 
this region and to the more linear response of the atmosphere to the SSTs, which takes 
place at equatorial latitudes (Wang et al. (2006)). Additionally, there is skill at 
extratropical latitudes, particularly in the North-Atlantic region, which is characterized by 
the dominance of highly non-linear signal interactions (Hurrell et al. (2010)). This is 
consistent with the findings of the study by (Hou et al. (2023)), which indicates a 
strengthening of the ENSO-East Atlantic pattern teleconnection from the 2000s onwards. 
Indeed, the centre of greatest skill in the model is located over the east of the British 
Isles (Fig. 2a). We have explicitly examined the differences between our model and a 
multiple linear regression approximation, observing improvements in both tropical and 
extratropical regions (not shown). Remarkably, even better results could be achieved by 
training the model during a period when the ENSO teleconnection with this region is 
stronger, as described by (Hou et al. (2023)), which is out of the scope of this article.” 

 



Relatedly, most of the benefits of using NNs come from “deep” learning where datasets 
are large and have complex relationships between predictors and predicands. 
NN4CAST as applied here is not capable of tackling these kinds of problems: for models 
with many deep layers and large numbers of parameters because training will become 
impractically slow without GPU support. As such, NN4CAST as currently written is 
limited to “toy” examples, where it perhaps does not outperform linear regression. The 
software is also written in simplistic ways that will not allow it to be extended to other 
datasets and large-scale use cases. For example, it does not use typing, object-oriented 
organization, etc. that would make it easier to modify to work on other cases. 

Thank you for your comment. Indeed, we should have emphasized this aspect more 
clearly in the manuscript to better differentiate our model from other operational deep 
learning models that rely on substantial GPU support. NN4CAST is a deep learning tool 
specifically designed for conducting sensitivity experiments efficiently in seasonal 
forecasting studies. As currently implemented, it allows for the evaluation of the 
predictability of a field from a predictor (in our case, sea surface temperatures), 
facilitating not only an assessment of model skill but also enabling modifications to 
various parameters such as the forcing region, seasons, forecast times, lead times, and 
training windows. 

The strength of NN4CAST lies in its ability to deliver reliable results with lower spatial 
resolution and using a single predictor and predictand field within the observational 
record, all while keeping computational costs to a minimum. Additionally, due to the 
relatively small datasets utilized, there is no need for parallelization, making the model 
more computationally efficient. While the software is not designed for large-scale 
datasets, it is written in an object-oriented manner, and its clear and simple structure 
ensures that it could be adapted to other data-handling environments or more efficient 
computational frameworks. 

We acknowledge the potential for future improvements and, in line with your suggestion, 
are open to incorporating features such as pretraining on larger datasets (e.g., historical 
CMIP simulations) and applying transfer learning to refine the model with observational 
data. However, while the primary goal of this model is not to produce operational 
seasonal forecasts, its intended purpose extends beyond serving as a mere teaching 
tool. Instead, it provides a complementary approach to traditional models, offering 
insights into the expected impact of a given SST state and enabling comparisons with 
dynamical model results. This can enhance the interpretation of forecasts. 

For instance, we have generated a forecast for the 2024 ND SLP anomalies using 
September SST data and compared them with predictions from the ECMWF SEAS5 
model (October initialization) as well as with ERA5 reanalysis data. As illustrated in 
Figure A2, the NN-based model produced a more accurate extratropical response than 
the dynamical model, better capturing the extratropical anomaly pattern. 



 

 

Overall, however, the paper is clearly written, the figures are mostly quite informative, 
and the examples of software code snippets are quite helpful. As I mentioned, this is a 
useful tool for teaching beginner users of ML how to apply it towards earth science data.  

Thank you for your comment. However, we do not fully agree with the characterization of 
the model’s utility. While it is true that the primary goal of this model is not to produce 
operational seasonal forecasts, its purpose extends beyond serving solely as a teaching 
tool. Rather, it is intended as a complementary approach to traditional models. 

Specifically, it can be used to analyze the expected impact of a given predictor state and 
compare the results with those from dynamical models. This provides additional insights 
that may help improve forecast interpretation. In this regard, we have generated 
forecasts for ND 2024 using September SST data and compared them with predictions 
from the ECMWF SEAS5 model, as well as with ERA5 reanalysis data. As shown in 
Figure A2, the NN-based model provided a more accurate extratropical response than 
the dynamical model, better reproducing the extratropical anomaly pattern. 

 

 

 

Specific comments 

L35: “Multidecadal ocean variability and the Global Warming trend alters the global 
circulation and, thus, the way in which atmospheric teleconnections (i.e., Rossby waves) 



propagate, introducing non-stationarities in the system”. It is probably worth noting that 
non-stationarity likely is a bigger problem for statistical models than it is for dynamical 
ones/ESMs, which can generalize to unseen regimes via physical laws. As a result this 
is not a very good justification for statistical approaches like NNs, unlike the other items 
in this list which do suggest that statistical approaches will be useful. 

You are correct that dynamical models inherently have the ability to account for such 
modulations. In this case, our intention was not to suggest that non-stationarity offers an 
advantage for statistical models, but rather to emphasize that the way these methods 
are trained can result in significantly different outcomes, depending on the training 
period, thus allowing for the detection of non-stationarities in the relationships. We have 
clarified this in the text: 

“Multidecadal ocean variability and the Global Warming trend alter the global circulation 
and, thus, the way in which atmospheric teleconnections (i.e., Rossby waves) 
propagate, introducing non-stationarities in the system (Lopez et al. (2015); Weisheimer 
et al. (2017)). While ESMs can generally extrapolate well to new regimes due to their 
reliance on physical laws, statistical models are more dependent on the training period 
and may struggle to adapt to changing relationships.” 

This is illustrated in Figure 4 of the paper, where we observe that the validation results 
vary depending on the temporal window used. These differences are particularly 
pronounced in regions where decadal modulation is stronger. This could suggest that an 
optimal approach may be to train the models during periods when the relationship 
between the variables remains more stable. 

 

L61-L74: The authors note growth of ML weather models here, but should be clearer 
that these types of models are making autoregressive forecasts of the evolution of the 



atmosphere (and in some cases the coupled earth-ocean system, eg, this paper: 
https://arxiv.org/abs/2409.16247) at sub-daily temporal frequency. Some of these ML 
models are capable of making seasonal forecasts in this way. This is a much different 
and harder problem than making predictions of static snapshots of monthly-mean 
variables, which do not capture the high-frequency temporal variability of the climate. In 
my opinion the authors need to make the distinction clearer between Graphcast, etc., 
and NN4CAST in that regard – they are not really comparable in terms of what they 
forecast. 

Thank you for your comment. We have revised this section of the text to clarify the 
differences you mentioned. We have added this clarification around Lines 80-85. We 
attach here the new paragraph:  

 

“For these reasons, we developed the Neural Network foreCAST (NN4CAST) 
application, a Python library designed to facilitate the creation of deep learning models 
for modelling of climate teleconnections, including non-linear relationships. It is important 
to highlight the differences between our approach and other machine learning-based 
weather models. In models such as GraphCast or Pangu, predictions are made 
autoregressively, meaning they generate sub-daily forecasts of the Earth system's state 
while accounting for its temporal evolution. In contrast, NN4CAST models the 
relationship between static, monthly-mean variables. This approach allows for the 
development of a simpler model, reducing the risk of treating deep learning methods as 
``black boxes'' and enabling users to analyze the sources of predictability and assess 
the sensitivity of predictions to variations in the training period.” 

 

L102: “2 Theoretical framework”: While the material in this section is useful for beginners 
to the field, it is mostly what would be covered in an elementary textbook on machine 
learning. For that reason, it is likely not necessary to cover in this article. The authors 
can assume that readers either know this information already or can read it in other 
sources. 

Thank you for your comment. In response to feedback from another referee, we have 
significantly shortened this section. However, we would like to emphasize that the 
primary goal of this tool is to enable climate experts to apply model climate 
teleconnections using deep learning techniques without the need to program these 
models from the ground up or possess an in-depth understanding of machine learning 
principles. 
 
This section provides an overview of the basic concepts involved, ensuring that users 
can grasp the key ideas behind these techniques. Nevertheless, in light of your 
comment, we have streamlined some of the introductory theory and have directed 
readers to relevant literature for further details. 
 



Equation 3: This is not the formula for ACC. This is a formula for a correlation coefficient 
between the predictions and the targets. ACC, however, is more complex: It is the 
correlation between anomalies from the mean prediction vs. anomalies from the mean 
target. See for example: 
https://wattclarity.com.au/other-resources/glossary/other-resources-glossary-anomaly-co
rrelation-coefficient/  

Thank you for the clarification. We have explicitly stated in the equation 3 that, in this 
case, both the observations and predictions represent anomalies. We attach here the 
new paragraph: 

 

“Once the model has been trained, the parameters are fixed and used to make the 
predictions over the testing dataset. To evaluate its performance, different metrics could 
be used, such as the Root Mean Squared Error (RMSE), which is the square root of the 
MSE, or the Anomaly Correlation Coefficient (ACC), which is given by: 

 

where $\mathbf{\hat{y}}^{(i)}$ is the predicted anomaly of the predictand variable for the 
$i^{th}$ instance in the dataset and $y^{(i)}$ is its corresponding observed anomaly.” 

 

Listing 3: There is a typo here - the output of the first line is “outputs_hold_out”, but the 
inputs to the second line include “outputs_cross_validation” that is not defined in this 
block.   

Thank you very much for pointing that out! You are correct, and we have made the 
necessary corrections. The output of the first line should indeed be "outputs_hold_out," 
and we have ensured that the second line now properly references the correct variable. 

Figure 2: Note that it is more typical to use stippling for areas where there **is** 
significant correlation, rather than areas where there is **not** significant correlation as 
Figures 2, 3, and 4 do. I would suggest using the more conventional approach.  

Thank you for your suggestion. However, we believe that adding stippling to areas where 
the results are not significant makes it easier to quickly discard those regions and focus 
on the meaningful signals. This approach enhances clarity and facilitates interpretation. 
Additionally, institutions such as the Barcelona Supercomputing Center and the 
Intergovernmental Panel on Climate Change (IPCC) also follow this convention in their 
reports. 



 

L310: “In this case, the metrics evaluating the performance of the model, depicted in Fig. 
3, are slightly different than before. Concretely, the ACC map is smoother and less noisy 
globally (Fig. 3a).” I think this is misleading. My guess is that the reason the correlation 
maps are less noisy is not due to the k-folds approach, but simply that the map in Figure 
3a is computed over a 4x longer period than the map in Figure 2a. A more correct 
comparison of the effects of k-folds would be to use the same test period (2000-2019) 
both with and without k-folds. 

Thank you for your comment. As you correctly point out, the smoothing of the ACC map 
in Figure 3a is indeed due to the model being validated over a longer period (using k-fold 
cross-validation), whereas in Figure 2a, it is only tested over the 2000–2019 period. To 
allow for a clearer comparison, we agree that it is more appropriate to evaluate both 
cases over the same period. For this reason, in Figure 4d, we present the ACC of the 
model specifically for the 2000–2019 fold. 

However, it is important to note that there are slightly differences between both maps. In 
Figure 2a, the model is trained on the 1940–1989 period and validated on 1990–1999. 
Here, training stops when the validation error does not decrease over several 
consecutive epochs. In contrast, in the cross-validated model, the validation set is 
chosen as 10% of the data in each fold, leading to a different validation period and, 
consequently, slightly different results. Therefore, while the longer validation period does 
contribute to the smoother appearance, the primary reason for using k-fold 
cross-validation is to ensure that the model is evaluated across the entire available 
period rather than being limited to a single testing set.  

We have added this clarification in the original text around lines 310-312: 

“In this case, the metrics evaluating the performance of the model, depicted in Fig. 3, are 
slightly different than before. Specifically, the ACC map appears smoother and less 
noisy globally (Fig. 3a). This difference arises not only due to the use of k-fold 
cross-validation, but also because the map in  Fig. 3a is computed over a longer period 
compared to the map in Fig 2a , which is based on the shorter 2000-2019 testing 
period.” 

 

Figure 5b - It is visually difficult for me to assess the skill of the model in 5b when the 
predictions are plotted in shading and the observations are plotted in contours. An easier 
way for reasons to assess the skill of the predictions would be to plot two maps (one of 
shaded predictions and one of shaded observations, or one of shaded predictions and 
one of shaded model error with the same colorbar) side-by-side.  

Thank you very much for the suggestion. We have redesigned the figure accordingly and 
have attached the updated version below: 



 

Figure 6b: This seems to just repeat Figure 5b -- does it need to be shown again? 

Thank you for your insightful observation. You are correct that Figure 6b was redundant. 
We have redesigned the figure to enhance clarity and eliminate repetition. Accordingly, 
we have changed in the version of the manuscript this figure. Please find the revised 
version attached below. 

 



Technical corrections 

Note: I attempted to download the zipfile of the datasets used from Zenodo, and found 
that I was not able to uncompress the zipfile (an error occurred). I am not sure if this 
data is correctly archived.  

Thank you very much for bringing this to our attention. We had not noticed this issue 
before, but we have now updated the file on Zenodo. You can access the corrected 
dataset using the following link: https://doi.org/10.5281/zenodo.14918750. 


