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Authors’ Response to Reviewers 

By Irene Cheng, Amanda Cole, Leiming Zhang, and Alexandra Steffen (Environment 
and Climate Change Canada) 

 

Reviewer 1 (Danilo Custódio) 

We appreciate the comments from this reviewer and have provided responses to all comments and 
improved on the manuscript. 

The use of unsupervised methods, such as Positive Matrix Factorization (PMF), in the source 
apportionment of Total Gaseous Mercury (TGM) has proven to be highly insightful. PMF provides a 
data-driven, top-down approach to estimate mercury fluxes by breaking down the observed 
concentrations into potential sources and their relative contributions. The strength of PMF lies in its 
ability to reveal hidden patterns in large datasets without predefined assumptions about the 
sources. This makes it a powerful tool for identifying unknown or unexpected sources of mercury 
emissions and for quantifying their impacts on the environment. 

However, despite its advantages, the PMF model—especially as implemented in the U.S. EPA’s PMF 
software—has some significant limitations. One of the main drawbacks is that it operates as a 
black box, where users have limited control over the relationships between the variables loaded 
into the model. While this makes the tool remarkably user-friendly and accessible to non-experts, it 
can also introduce risks when interpreting the results. Since users have little insight into the inner 
workings of the model, there is a danger of not fully understanding the factors driving the 
apportionment. This becomes particularly critical in environmental science, where subtle changes 
in the data can lead to vastly “different source contributions”. 

Response: We hear your concerns about the PMF model. For meeting the objectives of this study, 
we consider the PMF model to be the most appropriate choice for the following reasons. First, the 
model identifies potential sources and quantifies their contributions to TGM concentrations using 
in-situ measurements. Second, the TGM source contributions can be analyzed over annual, 
seasonal, and daily time scales to gain a deeper understanding of source impacts. In this study, we 
are particularly interested in understanding the emission drivers of long-term TGM trends, which is 
a fundamental question of the Minamata Convention on Mercury. Third, the PMF model has existed 
for more than 20 years with hundreds of publications using the model for source apportionment. 
The principles and fundamental equations are detailed in the PMF user’s guide (Norris et al., 2014) 
and scientific literature. The PMF model ingests a dataset of observations and estimates the 
species’ composition in each factor and the factor contributions with the objective of minimizing 
the scaled residuals (model-observation differences). The user must derive the optimal number of 
factors in the final solution by examining the model performance statistics and the physical 
meaning of the factors. Caution must be taken in the interpretation of the factors. Although PMF is 
relatively less complex than chemical transport models, there is a lot of effort involved with the 
measurement data preparation, running the model, analyzing and interpreting the model results, 
and re-tuning the model runs based on results obtained in order to come up with the optimal 
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solution. The interpretation of the PMF results is not trivial and should be based on scientific 
literature and sound knowledge of potential sources of pollution and pollutant tracers. 

The main PMF drawback is not the limited control over the relationships between the variables 
loaded into the model. The relationships between variables can be examined prior to running the 
model itself. Scatterplots between the loaded variables can be viewed within the PMF interface, 
which allows users to examine whether there are any bivariate relationships (Norris et al., 2014).  

Norris, G., Duvall, R., Brown, S., and Bai, S.: EPA Positive Matrix Factorization (PMF) 5.0 
Fundamentals and User Guide. Office of Research and Development, Washington, DC 20460. 
https://www.epa.gov/air-research/epa-positive-matrix-factorization-50-fundamentals-and-user-
guide, 2014. 

Moreover, a key issue with PMF is that it will always produce an output, regardless of the quality or 
representativeness of the input data. This brings about the risk of "garbage in, garbage out." If the 
input data is not carefully curated, or if the underlying assumptions about the sources and their 
relationships are flawed, the model can generate misleading or incorrect apportionments. This is 
particularly concerning in mercury studies, where TGM concentrations are influenced by various 
factors, including natural emissions, re-emissions, and anthropogenic activities. The complexity of 
mercury’s behavior in the atmosphere makes it imperative for researchers to critically assess the 
outputs of PMF, and not blindly trust the results. 

Response: We agree that the PMF results are strongly dependent on the input data. In this study, we 
only used quality controlled measurement data that are published online by their respective 
monitoring networks. The quality control and quality assurance procedures are available from 
ECCC Canadian Air and Precipitation Monitoring Network (CAPMoN), ECCC National Air Pollution 
Surveillance (NAPS) program, ECCC Canadian Greenhouse Gas Measurement program, USEPA Air 
Quality System (AQS), Interagency Monitoring of Protected Visual Environments (IMPROVE), and 
ECCC Climate Data. In addition to using data that have been reviewed rigorously, we thoroughly 
checked our data processing steps for data averaging and merging. From our experience, these 
errors can lead to erroneous PMF outputs. After correcting errors in the input data and re-running 
the model, the model output was significantly more reliable. Often, the selection of chemical 
species is based on the measurements available at the site. We agree that TGM concentrations are 
influenced by different activities and sources, and this is the most challenging part of 
understanding atmospheric mercury processes. Therefore, in this study, we included variables that 
are representative of different emission sources to better derive our conclusions. This ensures the 
source attribution is not limited to well-established anthropogenic Hg sources (like coal 
combustion, metal smelting), but also the less studied Hg sources like wildfires, Hg reservoir, and 
terrestrial and aquatic surface re-emissions which also deserve more attention. We also recognize 
that chemical transformation is not taken into account in the PMF model. Therefore, we have 
limited the number of reactive species into the PMF model except for the ones crucial for 
differentiating local combustion (SO2) and regional emissions transport (SO4

2-). These chemical 
species are frequently used in the PMF literature. There is a lot of work that goes into preparing the 
dataset for PMF modeling. The steps taken in this study ensure the PMF results are robust and 
consider all types of Hg sources where possible.  

https://www.epa.gov/air-research/epa-positive-matrix-factorization-50-fundamentals-and-user-guide
https://www.epa.gov/air-research/epa-positive-matrix-factorization-50-fundamentals-and-user-guide
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Therefore, while PMF serves as a valuable tool for source apportionment, particularly in a top-down 
framework for estimating mercury fluxes, it must be used with caution. Researchers should be 
aware of the potential pitfalls and ensure that the input data is thoroughly vetted. Additionally, 
incorporating other methods to validate PMF results could mitigate the risks of misinterpretation. 
This reflective and cautious approach will ensure that PMF’s insights into TGM source 
apportionment remain robust and scientifically sound. 

Response: See response to the previous comment regarding the input data. Additionally, the PMF 
results were verified independently using source apportionment results from chemical transport 
modeling studies (ECCC, 2016; Fraser et al., 2018). PMF and chemical transport models (CTMs) 
can both produce source apportionment estimates and their methods are very different. The TGM 
source contributions from the PMF model were consistent with the GRAHM model (ECCC, 2016) 
and GEM-MACH-Hg model (Fraser et al., 2018) as discussed in section 4 of the paper. Both PMF 
and CTMs suggest anthropogenic TGM contributions comprised only a few percent of the annual 
TGM and the largest proportion of the TGM was attributed to long range transport. Wildfire 
contributions from the PMF model were a few percent higher compared to GEM-MACH-Hg model. 
However, given the uncertainties in air quality models and the extreme temporal and spatial 
variability of wildfires, differences in the order of a few percent are reasonable.  

Environment and Climate Change Canada (ECCC): Canadian mercury science assessment: report. 
Gatineau, Quebec. ISBN 978-0-660-04499-6. www.publications.gc.ca/pub?id=9.810484&sl=0, 
2016. 

Fraser, A., Dastoor, A., and Ryjkov, A.: How important is biomass burning in Canada to mercury 
contamination?, Atmos. Chem. Phys., 18(10), 7263-7286, 2018. 

In the source apportionment presented by the authors, several systematic issues have been 
identified, ranging from variable selection to the model run setup. One notable concern is the 
inclusion of temperature as a variable alongside atmospheric tracers. While temperature is a 
fundamental environmental parameter, its use in this context introduces a significant risk of 
spurious correlations due to its high amplitude variations throughout the year. These fluctuations 
can heavily influence the eigenvector decomposition in the rotational factorization, constraining 
the results based on seasonal temperature trends rather than genuine emission sources. 

The problem arises when temperature, with its pronounced seasonal patterns, overwhelms the 
underlying relationships between the atmospheric tracers and the sources of mercury emissions. 
This can lead to misleading factor identifications, where the eigenvectors are more reflective of the 
temperature’s seasonal cycle than of the true emission dynamics of the tracers. When eigenvectors 
are primarily driven by trends or seasonality, there is a high risk that the source apportionment is 
dictated by external variables not directly linked to the emission processes themselves. As a result, 
the interpretation of the PMF output can become compromised, leading to inaccurate conclusions 
about source contributions. 

Response: The decision to include temperature in PMF is based on our understanding of GEM 
surface re-emissions (volatilization), which is a process strongly dependent on air temperature as 
well as soil properties. This was discussed in section 4 with relevant papers cited. Unfortunately, 
daily data on soil properties are not available at the sites. We also note that temperature was 

http://www.publications.gc.ca/pub?id=9.810484&sl=0
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included in the PMF model for identifying GEM surface re-emissions in a previous study (Qin et al., 
2020).  

Hg sources, such as wildfire emissions and terrestrial surface re-emissions, are closely linked to 
seasonal temperature trends. The occurrence of wildfires and GEM re-emissions are expected to 
increase during the warmer months. These emissions are coupled with seasonal temperature 
cycle. Thus, temperature should not be viewed as an external variable; it drives many of the Hg 
emissions. Justification for including temperature in the PMF model is provided in the revised paper 
(section 2.2), which reads “Temperature was included in the model because it is an important driver 
of wildfire emissions and terrestrial Hg re-emissions (Zhu et al., 2016).” 

Qin, X., Zhang, L., Wang, G., Wang, X., Fu, Q., Xu, J., Li, H., Chen, J., Zhao, Q., Lin, Y. and Huo, J.: 
Assessing contributions of natural surface and anthropogenic emissions to atmospheric mercury in 
a fast-developing region of eastern China from 2015 to 2018, Atmos. Chem. Phys., 20(18), 10985-
10996, 2020. 

Furthermore, it is crucial to emphasize the importance of sensitivity tests and residual analysis to 
ensure the robustness of the PMF solution. Sensitivity tests help to evaluate how the model 
responds to changes in variable selection and model parameters, offering insights into the stability 
and reliability of the source apportionment. Residual analysis, on the other hand, provides a 
valuable check on the quality of the model fit, indicating whether the factors identified by the PMF 
model adequately explain the observed data or if there are unexplained variances that need further 
investigation. 

Response: The model fit results were shown in Supplement Figure S1 and discussed in section 2.2. 
From Fig. S1, it can be seen that the source apportionment results are reliable. The coefficient of 
determination (R2) between the PMF modelled and observed TGM concentrations is above 0.7 for 
the entire time series for each site, indicating a good model fit based on the current variable 
selection and model parameters chosen. There is also strong overlap between the modelled and 
observed time series for 24 h mean TGM, indicating the model adequately captured the daily 
variability. One of the top considerations in deriving the final PMF solution is the justification of the 
factors and assignment to Hg sources. The sensitivity tests using 5 and 7 factors resulted in factors 
that were difficult to interpret. A 5-factor solution results in tracers loading on multiple factors. This 
leads to a scenario where multiple factors can be assigned to the same source. An ideal PMF 
solution is one where each factor is assigned to a unique source. A 7-factor solution contains all the 
results of the 6-factor solution; however, it includes an additional factor that cannot be definitively 
assigned to a source. Results from the PMF sensitivity runs are discussed in Supplement section S2 
and corresponding Tables S5-S7. 

The PMF residuals are within the recommended limit of three standard deviations and follow a 
normal distribution (Hopke et al., 2023). This confirms the modeled factors adequately explain the 
observed TGM data. The strong R2 between modeled and observed TGM concentrations also 
indicates a good model fit (Fig. S1). The model could not reproduce a few elevated TGM 
concentrations at the KEJ site. There was a total of 7 data points in the entire 2005-2016 time series 
(out of 3118 data points) where the scaled residuals were beyond three standard deviations. The 
residuals analysis is discussed in Supplement section S3 and corresponding Fig. S12. 
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Hopke, P. K., Chen, Y., Rich, D. Q., Mooibroek, D., and Sofowote, U. M.: The application of positive 
matrix factorization with diagnostics to BIG DATA, Chemometrics and Intelligent Laboratory 
Systems, 240, 104885, 2023. 

I find it puzzling why the authors chose to perform a separate PMF run for each individual year, as 
this approach undermines the potential insights that could be gained from analyzing the full, 
continuous time series together. Running the entire time series as a single dataset would provide a 
more robust and comprehensive analysis, allowing the model to capture long-term trends, 
interannual variability, and potential seasonality in a more holistic way. A year-by-year analysis may 
artificially constrain the factors identified, leading to fragmented or incomplete source 
apportionment, and it limits the ability to understand how certain sources or processes evolve over 
time. 

Response: The reviewer’s point is valid; there is some loss of statistical power by not using the 
entire time series in a PMF run. On the other hand, there is additional information gleaned from the 
separate annual runs. For example, the fact that the same factor profiles are reproduced each year 
provides additional confidence in the results, while the variability from year to year gives us an 
indication of the uncertainty in those profiles. As shown by the error bars in the PMF factor profiles 
(Figs. 2, 8, and 12), the species percentages vary from year to year. For example, in the case of the 
GEM re-emissions and biomass burning factor at SAT, the TGM percentage was 19%±10% (annual 
mean ± std. dev.). This temporal variability is captured by performing a separate PMF run for each 
year, but it would be missed if PMF was performed once for the entire time series. Source profiles 
can change over time, for example the fuel type and temperature of a forest fire can vary from one 
fire to another (and is influenced by climate variability); emissions control technology may impact 
the relative proportions of CO and TGM in the anthropogenic component of the Hg pool; Hg 
emissions from powerplants and industrial sources have decreased due to domestic regulations 
(Gov’t of Canada, 2024; USEPA, 2024). Thus, a constant factor profile assumption over the long-
term may not be valid in all cases. Performing a separate PMF run for each year requires more effort 
than a single PMF run for the entire time series, but it offers more insight into the consistency of the 
factor profiles year over year. The rationale behind performing separate yearly runs is discussed in 
the revised paper (section 2.2), which reads “Source profiles can change over time, for example the 
fuel type and temperature of a forest fire can vary from one fire to another (and is influenced by 
climate variability); emissions control technology may impact the relative proportions of CO and 
TGM in the anthropogenic component of the Hg pool; Hg emissions from powerplants and 
industrial sources have decreased due to domestic regulations. Thus, a constant factor profile 
assumption over the long-term may not be valid in all cases.” 

Government of Canada: National Pollutants Release Inventory: mercury, Canada’s actions, 
https://www.canada.ca/en/environment-climate-change/services/national-pollutant-release-
inventory/tools-resources-data/mercury.html, 2024. 

USEPA: Mercury and Air Toxics Standards, https://www.epa.gov/stationary-sources-air-
pollution/mercury-and-air-toxics-standards, 2024.   

As suggested by the reviewer, we performed an additional PMF run for the entire time series. The 
results are discussed in the revised Supplement section S1, and the daily TGM source contributions 
are plotted in Fig. S11 (yearly runs are labelled as ‘separate’ and additional run for the full time 

https://www.canada.ca/en/environment-climate-change/services/national-pollutant-release-inventory/tools-resources-data/mercury.html
https://www.canada.ca/en/environment-climate-change/services/national-pollutant-release-inventory/tools-resources-data/mercury.html
https://www.epa.gov/stationary-sources-air-pollution/mercury-and-air-toxics-standards
https://www.epa.gov/stationary-sources-air-pollution/mercury-and-air-toxics-standards
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series is labelled ‘all’). For the GEM re-emissions, biomass burning and Hg pool factors, the two 
runs produced similar seasonal patterns. However, there are noticeable differences for other 
sources. The separate runs show greater interannual variability in the daily TGM relative 
contributions compared to ‘all’ run scenario. For example, elevated relative contributions during 
2010, 2011 and 2014 for local combustion. This is likely because the TGM percentages in each 
factor vary year to year as discussed above. We also see that the daily relative contributions from 
natural surfaces are elevated over the course of the time series for the ‘all’ run, whereas 
contributions from anthropogenic emissions were occasionally more important for the ‘separate’ 
runs. The ‘separate’ yearly runs capture the variability in the observations better than ‘all’ run. This 
is supported by the higher R2 between modeled and observed TGM concentrations for the ‘separate’ 
case (0.75, Fig. S1) compared to ‘all’ case (0.68). The slope of the trendline for the ‘separate’ case is 
also closer to the 1:1 line (0.81 vs. 0.70).  

The percentage contribution from natural surface emissions (wildfires plus re-emissions) from ‘all’ 
run was 70.6% on average, with a range of 66-76% depending on the year. This is higher compared 
with results from ‘separate’ runs; however, the conclusion that natural surface emission 
contribution exceeds anthropogenic contribution to TGM has not changed. Based on the ‘all’ 
scenario, the mean relative TGM source contributions were 50% from the Hg pool, 26.4% from 
terrestrial GEM re-emissions, 10.4% from shipping and SSA processing, 6.3% from oceanic 
evasion, 3.8% from wildfires, and 3.4% from local combustion. Most of the percentages were 
comparable to those obtained from ‘separate’ runs, except for higher terrestrial re-emissions and 
lower oceanic evasion. Secondary sulfate (regional Hg emissions and chemical transformation) did 
not contribute to TGM in the ‘all’ run case, whereas it contributed a few percent of the TGM in the 
‘separate’ case.  

Furthermore, I also do not understand why the authors did not merge all the sites into a single 
analysis. In a data-driven model like PMF, the number of receptors (sampling sites) is crucial for 
increasing the model’s ability to discern distinct sources. By running the sites separately, the 
authors miss out on the advantage of having a broader spatial coverage and a larger dataset, both 
of which can significantly improve the resolution of source identification. Combining data from 
multiple receptors across different sites increases the model’s power to detect and distinguish 
between sources, especially when there are overlapping emission signatures that might vary in 
strength and frequency across locations. 

Response: The data size at each site and in each year is sufficient for PMF analysis. The three sites 
are very far apart from each other with the estimated distances (km) being: SAT-EGB (3290), SAT-KEJ 
(4355), and EGB-KEJ (1165) (see map below). The regional and local sources affecting the sites have 
potentially different emission signatures. For example, metal smelting and cement production are 
the primary industrial sources near SAT, while coal-fired power plants are near KEJ. Thus, it was 
preferred to derive the factor profiles unique to each site.  
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Increasing the number of receptors also enhances the model's capacity to address complex 
atmospheric dynamics, as it allows for a richer dataset that captures variations due to both local 
sources and regional transport processes. When multiple sites are analyzed together, the model 
has more information to work with, potentially identifying regional patterns that might be missed 
when each site is treated independently. The inclusion of multiple receptors also reduces the risk of 
overfitting the model to local conditions or short-term fluctuations at any single site, leading to a 
more generalizable and reliable source apportionment. 

Response: As mentioned above, the data size at any single site is large enough. Each site has 8-14 
years of 24-h data containing 12 variables. The long-term data coverage and high-temporal data 
resolution (Supplement Table S1) are sufficient for PMF modeling to capture variations in local and 
regional sources. This is clarified in section 2.2 of the revised paper. In this study, the PMF model 
captured both local source impacts (i.e., GEM re-emissions from land and nearby ocean, local 
combustion, local shipping, crustal/soil emissions) and regional source impacts (i.e., wildfires, 
regional combustion from U.S. northeast). The Hg pool was also inferred from the PMF model; this 
captures all types of Hg emissions mostly from the northern hemisphere and its impact on the 
receptor sites via long range transport.  

It is not possible to include more receptor sites because some ancillary measurements are not 
available at other TGM sites. To clarify, a sentence was added in section 2.1, “The CAPMoN TGM 
sites were selected for this study to provide an update on current concentrations and patterns. The 
same set of ancillary measurements are also available at the sites to conduct PMF analysis.” As 
mentioned above, the sites are very far apart; hence the data should not be combined considering 
the potentially different sources, meteorology, and transport patterns affecting the sites. There is 
minimal risk of the model overfitting to local conditions or short term variability because the sites 
are located in rural-remote areas infrequently impacted by large emission sources.  

The number of species used in the factorization performed by the authors appears insufficient to 
properly apportion the sources they claim to resolve. The profiles of the factors presented do not 



8 
 

convincingly align with the expected "fingerprints" of the emission sources they attribute them to. 
For example, in Figure 12, the "local combustion" factor is primarily characterized by SO2 only, yet it 
lacks loading of CO, which is a well-known combustion tracer. Instead, CO is predominantly loaded 
in the "background" factor, which should typically be dominated by long-lived species. This 
misallocation raises concerns about the accuracy of the factor assignments and suggests that the 
model may not be adequately capturing the true source profiles.  

Response: SO2 is a short-lived pollutant (lifetime of a few days) and is emitted in large quantities 
from combustion sources, especially coal combustion and metal smelting which are also 
important anthropogenic Hg sources. This makes SO2 a suitable local combustion tracer. In 
previous mercury source apportionment, SO2 and Hg were typically used to assign profiles to local 
combustion (Eckley et al., 2013; Wang et al., 2013). While CO is also emitted from combustion 
sources, it has a relatively longer lifetime in the order of a few months, which allows for it to be 
transported over long distances (Jeffery et al., 2024). Given the relatively small magnitude of 
combustion sources near these rural and remote sites, it is not surprising that the CO emissions 
from these sources contribute a relatively small proportion of the total CO observed, which is 
dominated by the hemispheric background. This characteristic is similar to that of GEM and TGM. 
These are clarified in the revised paper (section 3.1.2). Instead of “background”, we also renamed 
the factor to Hg pool, which encompasses all types of Hg emissions mostly from the northern 
hemisphere and its subsequent long distance transport. As shown in the global distribution of CO 
mixing ratios below, higher CO levels are broadly distributed across most of the northern 
hemisphere owing to fossil fuel combustion and biomass burning. 

 

Paulo Penteado, NASA/JPL-Caltech, https://airs.jpl.nasa.gov/resources/239/airs-global-carbon-
monoxide-over-20-years-2002-2022/  

 

Eckley, C.S., Parsons, M.T., Mintz, R., Lapalme, M., Mazur, M., Tordon, R., Elleman, R., Graydon, J.A., 
Blanchard, P. and St. Louis, V., 2013. Impact of closing Canada’s largest point-source of mercury 
emissions on local atmospheric mercury concentrations. Environmental Science and Technology, 
47(18), 10339-10348. 

Jeffery, P. S., Drummond, J. R., Zou, J., and Walker, K. A.: Identifying episodic carbon monoxide 
emission events in the MOPITT measurement dataset, Atmos. Chem. Phys., 24, 4253–4263, 
https://doi.org/10.5194/acp-24-4253-2024, 2024. 

https://airs.jpl.nasa.gov/resources/239/airs-global-carbon-monoxide-over-20-years-2002-2022/
https://airs.jpl.nasa.gov/resources/239/airs-global-carbon-monoxide-over-20-years-2002-2022/
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Wang, Y., Huang, J., Hopke, P. K., Rattigan, O. V., Chalupa, D. C., Utell, M. J., and Holsen, T. M., 2013. 
Effect of the shutdown of a large coal-fired power plant on ambient mercury species, 
Chemosphere, 92(4), 360-367. 

Moreover, it seems that the authors constrained the number of factors to a level that exceeds what 
the available data can reliably cluster (with physical apportionment mean). The factorization results 
in some clusters that are difficult to justify from a source attribution perspective. For instance, 
there is a factor which unlikely represen a source, this suggests that the model may be overfitting, 
potentially driven by non-source-related variables. 

There are also several indications in the presented profiles that attempting to resolve six sources 
from the limited number of species (or variables) used in the analysis constitutes an over-
extrapolation of what is feasible through this factorization method. Some factors, for example, the 
cluster is basically loaded with Ca and Mg, other that is loaded with Cl and Na only. These 
elemental groupings suggest that the model is forming clusters based on chemical similarity only, 
rather than true source-specific emissions. This is further evidence that the factorization may be 
over-constrained, leading to artificial factors that do not accurately represent distinct sources. 

Response: Twelve variables were included in the PMF model. The six model factors represent a 
variety of sources, which are all potential sources of Hg. The sources include not only well-
established anthropogenic Hg sources (i.e. fossil fuel combustion), but also those that are less 
understood and less constrained in terms of the global Hg emissions budget, e.g. GEM re-
emissions, wildfires, evasion of GEM from ocean, crustal/soil dust, and contributions from the Hg 
pool. Given that the sites are in rural-remote areas (infrequently impacted by large Hg point 
sources), the role of these less-studied sources are potentially important. Therefore, we used Cl 
and Na as tracers of a potential marine source of Hg, such as oceanic Hg evasion or shipping 
emissions (explained in section 3.1.2 of the revised paper). Ca and Mg are tracers of crustal/soil 
dust. In terrestrial ecosystems, Hg is derived either geologically or via atmospheric wet and dry 
(including litterfall) deposition, and is mainly bound to soil organic matter as oxidized Hg or Hg(II) 
(Eckley et al., 2016). Hg(II) also has a strong affinity for NaCl particles (Rutter and Schauer, 2007), 
which may explain the presence of TGM in the road salt factor. Hg can subsequently be re-emitted 
by wind erosion or land disturbance. This is explained in the revised paper (section 3.2.2). 

The TGM percentage in the crustal/soil factor with high Ca and Mg and factors with high Cl and/or 
Na) are small; however, the values are not negligible (see Figures 2, 8 and 12). The annual TGM 
percentages are 8-10% on average and vary interannually. On a daily basis, TGM contributions can 
reach up to 90% for crustal/soil emissions and road salt (Fig. 10). In Figure 5, we can see another 
example where daily TGM contributions can reach up to 90% from shipping and SSA processing and 
oceanic evasion. The reviewer is concerned that these are artificial or non-significant sources of 
Hg; however, it is clear that their contributions to daily TGM can be important.  

Eckley, C.S., Tate, M.T., Lin, C.J., Gustin, M., Dent, S., Eagles-Smith, C., Lutz, M.A., Wickland, K.P., 
Wang, B., Gray, J.E., Edwards, G.C., Krabbenhoft, D. P., and Smith, D. B.: Surface-air mercury fluxes 
across Western North America: A synthesis of spatial trends and controlling variables, Sci. Total 
Environ., 568, 651-665, 2016. 



10 
 

Rutter, A. P., and Schauer, J. J.: The effect of temperature on the gas–particle partitioning of reactive 
mercury in atmospheric aerosols. Atmos. Environ., 41(38), 8647-8657, 2007. 

Based on the issues discussed, I recommend a major revision of the manuscript. It is clear that the 
authors have put significant effort into this work, but there are substantial improvements that need 
to be made, particularly in the source apportionment performing and analysis. I strongly encourage 
the authors to further explore the capabilities of source apportionment resource. While there is 
certainly a learning curve, catching up in this area will greatly enhance the robustness and accuracy 
of the study. I am confident that it will be worth the effort and will lead to more defensible results 
and insightful discussions. 

Given the concerns raised about the current factorization and its interpretation, revisiting the 
apportionment process will likely result in significant changes to the manuscript’s overall findings 
and discussion. I recommend that the authors reanalyze the data, addressing the over-
extrapolation issues and ensuring that the profiles correspond more clearly to recognizable 
emission sources. Once the source apportionment is properly refined, I encourage the authors to 
resubmit the manuscript, as I believe it has the potential to make a valuable contribution to the 
field. 

Response: The reviewer’s concerns regarding the source apportionment analysis have been 
addressed in the responses and additional analysis and results have been incorporated in the 
revised paper. The major revisions to the manuscript are summarized below. 

• Justification for including temperature in the PMF model (section 2.2) 
• Clarification on the long term data coverage available at the sites (section 2.2) 
• Justification for performing yearly model runs (section 2.2) and results of PMF model runs 

using the entire time series and comparison with the yearly runs (Supplement S1, Fig. S11) 
• Discussion of PMF sensitivity runs using a different number of factors (Supplement S2, 

Tables S5-S7) 
• Discussion of model fit and residuals plots for the final PMF solution (Supplement S3, Fig. 

S12) 
• Renaming of background factor to Hg pool (throughout the manuscript) 
• Clarification on using SO2 as a tracer for local combustion and CO as a tracer of the Hg pool 

and long range transport (section 3.1.2) 
• Intercomparison of model X and B TGM concentrations and related discussion (Supplement 

S4, Fig. S13) 

In addition, I suggest that the authors expand on the differences between the two analyzers used 
(2537B and 2537X) as part of their revised manuscript. A thorough comparison of these 
instruments would be highly interesting, especially regarding any differences in performance or 
measurement outcomes. I would be very keen to see these comparisons and an error vector 
decomposition. 

Response: Our assessment of the hourly TGM differences between Tekran 2537X and 2537B is 
published along with the quality controlled TGM dataset (ECCC, 2024). The monthly plots of TGM 
from model X and B are shown in Supplement Fig. S13. The model X and B analyzers at the EGB site 
operated side by side during Feb-Aug 2017.  The model X reported slightly higher TGM than model B 
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with a mean hourly difference of 0.06 ng m-3 (3.9%). Monthly mean hourly TGM differences were in 
the range of 0.02-0.1 ng m-3 (1.4-6.3%). Model X and model B analyzers were also operated side by 
side at the same site during Mar-Jul 2018. The model X reported higher TGM than model B with a 
mean hourly difference of 0.08 ng m-3 (6.4%). Monthly mean hourly TGM differences were in the 
range of 0.07-0.09 ng m-3 (5.4-7.4%). Considering the differences were not significant and the 
concentrations showed similar trends, TGM concentrations from the model X and B analyzers were 
averaged during the periods when valid hourly data were available.  

TGM was measured concurrently at KEJ and KEB from February to June in 2017.  Note that KEJ and 
KEB sites are not co-located. KEJ was operating a model B analyzer; the site was relocated 3 km 
south of the original site in Feb 2017 (KEB) and the model X analyzer began operating at the new 
site. TGM was higher at KEB than at KEJ with a mean hourly difference of 0.26 ng m-3 (18.8%).  
Monthly mean hourly TGM differences were 0.20-0.29 ng m-3 (16.6-21.5%). These differences may 
be due to the different analyzer models and/or relocation of the monitoring site; the exact cause is 
inconclusive. Given the large TGM differences between KEB and KEJ, our decision was that the data 
from the two sites should not be combined into a single time series. Therefore, the 2017-2018 data 
at the new site were not used for PMF modeling and long-term trends analysis. We have added this 
discussion to Supplement section S4 and corresponding plots in Fig. S13. 

Environment and Climate Change Canada: Canadian Air and Precipitation Monitoring Network 
(CAPMoN), Toronto, Ontario, Canada, Data files: AtmosphericGases-TGM-CAPMoN-AllSites-
2017.csv, AtmosphericGases-TGM-CAPMoN-AllSites-2018.csv, https://doi.org/10.18164/e1df5764-
1eec-4a9f-9c03-f515b396b717, 2024. (Go to Downloads, views, and links > View ECCC Data 
Mart) 

 


