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Abstract. Accurate short-term precipitation forecasting is critical for socio-economic activities. However, due to inherent

deficiencies of numerical weather models, the accuracy of precipitation forecasts remains significantly inadequate. In recent

years, deep learning has been employed to enhance precipitation forecasts, yet these forecasts frequently appear blurry and

fail to meet the precision required for operational applications. In this paper, we propose a Generative Adversarial Fusion

Network (GFRNet) designed to provide quantitative forecasts of 3-hour accumulated precipitation over the next 24 hours in5

North China, based on the outputs of multiple numerical weather models. Evaluation results indicate that GFRNet outperforms

numerical models across all precipitation intensities. Specifically, GFRNet’s threat scores (TS) improved by 4%, 28%, 35%,

and 19% at thresholds of 0.1 mm, 10 mm, 20 mm, and 40 mm, respectively, compared to the highest spatial resolution regional

numerical model of the China Meteorological Administration (CMA-3KM). Additionally, GFRNet’s Fraction Skill Scores

(FSS) at thresholds of 10 mm, 20 mm, and 40 mm show improvements of 13%, 18%, and 15% respectively, over those of10

CMA-3KM. These enhancements are consistent across most spatial regions and forecast lead times. Furthermore, GFRNet

outperforms all models in terms of Root Mean Square Error (RMSE) and Multi-Scale Structural Similarity Index (MS-SSIM).

Compared to the deep learning-based precipitation model FRNet, which lacks a generative strategy and tends to produce blurry

forecasts with over-prediction, GFRNet more accurately captures the fine structure and evolutionary patterns of precipitation,

demonstrating significant operational value.15

1 Introduction

Numerical Weather Prediction (NWP) serves as a fundamental tool in routine precipitation forecasting. However, its accuracy

is hindered by several factors, including initial condition errors, limited model resolution, incomplete physical parameteriza-

tions, and approximate boundary conditions, all of which contribute to persistent forecast errors (Sun et al., 2014; Boeing,

2016). As a result, it is challenging for any single numerical model to accurately capture the location, intensity, and struc-20

tural evolution of precipitation. Deep learning, a key technology in artificial intelligence, has found numerous applications in

NWP post-processing, large-scale data processing, super-resolution downscaling, and spatio-temporal forecasting Yang et al.

(2022). Significant research has also been conducted in the field of precipitation forecasting. For the nowcasting task within

0-6 hours, purely data-driven deep learning methods based on minute-level radar and satellite data have demonstrated sub-
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stantial superiority over numerical models and optical flow methods (Shi et al., 2015; Wang et al., 2018b; Sønderby et al.,25

2020; Espeholt et al., 2022). For short-term forecasting within the 6-24 hour range, precipitation prediction primarily relies

on post-processing of numerical model outputs. Zhang et al. (2020) developed a precipitation correction model for the 12 h

accumulated precipitation in eastern China using LSTM algorithms based on control forecast data from the European Center

for Medium-Range Weather Forecasts (ECMWF) ensemble prediction system, the model showed superior correction perfor-

mance for light rain(< 5mm/12h) and heavy rain(> 30mm/12h) compared to frequency matching and SVM algorithms.30

Similarly, Chen et al. (2021) constructed an hourly precipitation correction model using a CNN based on mesoscale forecasts

from the East China Regional Numerical Center (CMA-SH9), which outperformed the probability matching method. More-

over, Zhou et al. (2022) utilized a 3D convolutional network to model the nonlinear relationship between basic meteorological

variables from the ECMWF’s fifth-generation reanalysis dataset (ERA5) and corresponding 3-hour accumulated precipitation.

The trained model was then used to predict 3-hour accumulated precipitation by inputting basic variables from the ECMWF35

high-resolution model, showing significant improvement in the Threat Score (TS) at the 20mm/3h threshold compared to the

ECMWF forecast within 0-72 hours. In another study, Kim et al. (2022) used basic meteorological variables and precipitation

from numerical model forecasts as input features for a deep learning model, achieving positive correction effects for light to

moderate precipitation, though it was less effective for precipitation above 10 mm. Chen et al. (2023) employed a weighted

loss U-Net network to correct 6-hour accumulated precipitation predictions from the ECMWF, using 0.25° ERA5 precipitation40

data as a target. This approach showed improvements across various precipitation intensities, from light rain(≥ 0.1mm/6h)

to rainstorms(≥ 20mm/6h), in TS scores compared to the ECMWF forecast. Despite these advances, deep learning-based

grid-based precipitation correction methods typically achieve better results for light to moderate rainfall, with noticeable im-

provements in TS and other metrics. However, the improvement is less pronounced for heavy rainfall. Even when there is

an improvement in TS scores for heavy rainfall, the predictions often appear overly smooth, lacking clear spatial precipita-45

tion structures, and the corresponding BIAS scores are often significantly greater than 1, which undermines the operational

applicability of these algorithms.

Generative Adversarial Networks (GANs) (Goodfellow et al., 2014), as a typical deep generative model (DGM), have suc-

cessfully transformed the intractable likelihood function into a neural network framework, enabling the model to optimize its

parameters to fit the likelihood function. Through an adversarial process between the generator and the discriminator, GANs50

allow the generator to produce samples that closely resemble real data. This approach has achieved remarkable success in

super-resolution applications Wang et al. (2018a) and has proven effective in addressing issues in short-term forecasting tasks,

such as the tendency for predictions to become increasingly smooth and lose intensity over time(Ravuri et al., 2021; Zhang

et al., 2023). GANs have also demonstrated strong performance in statistical downscaling within the meteorological field

(Leinonen et al., 2021; Price and Rasp, 2022; Singh et al., 2019). There have been numerous successful applications of GANs55

in short-term precipitation forecasting and post-processing of NWP precipitation. For example, Price and Rasp (2022) utilized

a 4 km spatial resolution radar precipitation product as a reference to construct a CGAN model for correcting and statistically

downscaling the 6-hour accumulated precipitation from the 32 km resolution ECMWF ensemble forecast. The findings showed

that the CGAN model outperformed a standard CNN model and achieved performance comparable to that of a high-resolution
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regional ensemble model, particularly for heavy precipitation events defined as ≥ 30mm/6h. Similarly, Harris et al. (2022)60

aimed to generate high-resolution ensemble precipitation forecasts by post-processing ECMWF forecasts at 10 km resolution

using GAN and VAE-GAN methods, targeting 1-hour accumulated precipitation products at 1 km resolution. Compared to tra-

ditional methods, the GAN approach showed significant advantages in preserving precipitation structure and predicting heavy

precipitation (≥ 5mm/1h). However, these studies primarily use GANs to generate ensemble forecasts rather than deterministic

quantitative precipitation forecasts, and they often do not focus on severe storm precipitation, which is of greater concern due65

to its hazardous nature. Due to the characteristics of precipitation, especially short-term heavy precipitation, which include

sudden onset, short duration, small scale, and strong locality, a more refined temporal scale for deterministic quantitative pre-

cipitation forecasts holds greater operational significance. In this study, we employ GFRNet to predict 3-hour accumulated

precipitation over the next 24 hours in the North China region, with a spatial resolution of 5 km, based on multiple numerical

model precipitation forecasts. Compared to previous studies, this research offers the following advancements:70

– Focus on Severe Precipitation Events: We place greater emphasis on forecasting severe precipitation events, adopting a

threshold of 40mm/3hr for rainstorm classification, significantly higher than the 20mm/3hr or 5mm/hr thresholds

used in prior research, thereby focusing on more intense precipitation events.

– Application of GAN Strategy: We apply the GAN strategy in developing the GFRNet model, which not only improves

precipitation accuracy but also generates realistic predictions, effectively addressing the issue of blurriness that com-75

monly plagues precipitation forecasts.

2 Data and method

2.1 Data

This study focuses on North China (35°N - 44.55°N, 112°E - 121.55°E), as illustrated in Figure 1. Administratively, this region

includes Beijing, Tianjin, Hebei, Shanxi, and the Inner Mongolia Autonomous Region, with the southeastern part encompassing80

Shandong and the Bohai Sea region. The target area features a complex topography, dominated by the Taihang Mountains,

which extend from the southwest to the northeast. To the southeast lies the North China Plain, characterized by an average

elevation below 400 meters. West of the Taihang Mountains is the Loess Plateau, and to the north is the Inner Mongolia

Plateau, with elevations exceeding 800 meters and local peaks reaching up to 2000 meters.

This study utilizes CMA Multi-source merged Precipitation Analysis System(CMPAS) as the ground truth for precipitation85

fields. The CMPAS is a comprehensive precipitation product developed by the National Meteorological Information Center of

the China Meteorological Administration. It integrates ground automatic station data, satellite, and radar observations using

methods such as probability density function (PDF), Bayesian model averaging (BMA), optimal interpolation (OI) and down-

scaling (DS)(Pan et al., 2018). CMPAS offers a temporal resolution of 1 hour and a spatial resolution of 0.05° × 0.05°.

For numerical models, considering the operational usage, model resolution, and performance, this study uses the precipita-90

tion forecast of the following three NWPs. The high-resolution global model forecast from the European Centre for Medium-
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Figure 1. Topography distribution (shaded; in units of m) of HuaBei domain (35° - 45°N, 112° - 122°E.) . The vast area with an altitude of

less than 400m in the middle and southeast of the figure is the North Chian Plain, which reaches the southern foot of Yanshan Mountain in the

north, leans on Taihang Mountain in the west, and borders the Bohai Sea in the east. It includes Beijing (Red Triangle), Tianjin, Shandong,

and most of Hebei.

Range Weather Forecasts (ECMWF), with a horizontal resolution of approximately 9 km in the China region and a temporal

resolution of 3 hours; The mesoscale forecast from the East China Regional Numerical Center (CMA-SH9) (Zhang et al.,

2021), with a horizontal resolution of 9 km and a temporal resolution of 1 hour; The high-resolution regional numerical fore-

cast independently developed by the Numerical Prediction Center of the China Meteorological Administration (CMA-3KM)95

(Shen et al., 2020), with a horizontal spatial resolution of about 3 km and a temporal resolution of 1 hour. Forecasts are taken

from the initial times of 00 UTC and 12 UTC, retaining a 24-hour forecast range. Spatially, numerical model forecasts are

interpolated to a uniform grid of 0.05° × 0.05° using a bilinear interpolation algorithm, corresponding to a target area size of

192 × 192 grid points.

Based on the data described earlier, we performed a 3-hour accumulated precipitation (r3) forecast for the next 24 hours.100

Table 1 details the specific feature selection process, which includes five sources of features. Let r3(T) denote the accumulated

precipitation over the past 3 hours at time T, with the learning target being r3(T) from CMPAS. The input features consist of

r3(T) and r3(T-3) from ECMWF, CMA-SH9, and CMA-3KM. Given that precipitation formation, development, and movement

are closely linked to topography and location, META features including elevation, latitude, and longitude are also incorporated

into the model. The performance of numerical model forecasts varies depending on the forecast cycle and lead time. To account105

for this, temporal information such as forecast cycle and lead hour is encoded using trigonometric functions and included as

features in the deep learning model. The cycle values range from [0, 1], corresponding to the initial forecast times of 00 UTC

and 12 UTC for the numerical models. For each cycle, only the forecast lead times at 3, 6, 9, 12, 15, 18, 21, and 24 hour are

selected.
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Table 1. Data Sources and Features Used in Model

Source Feature

Input

ECMWF r3(T-3), r3(T)

CMA-SH9 r3(T-3), r3(T)

CMA-3KM r3(T-3), r3(T)

META Elevation, Latitude, Longitude

Time Cos(cycle), Sin(cycle), Cos(lead hour), Sin(lead hour)

Label CMPAS r3(T)

Using the available data from 2019 to 2022, we divided the dataset into training, validation, and test sets. In the North110

China region, precipitation is predominantly concentrated in the summer months, especially in July and August. Therefore, we

selected the period from July 10, 2021, to August 20, 2021, as the validation set, consisting of 637 samples. The period from

June 15, 2022, to August 31, 2022, was designated as the test set, containing 1204 samples. The remaining data were allocated

to the training set, resulting in 4645 samples. Since precipitation mainly occurs in the summer, with fewer events during other

times of the year, it is crucial to apply reasonable sampling of the training set. We aim to exclude non-precipitation samples115

and retain samples with a high proportion of precipitation areas or high precipitation intensity. The sampling rule is as follows:

for a given sample, if the proportion of pixels with precipitation greater than threshold t exceeds r, the sample is retained;

otherwise, it is discarded. We define valid rain samples as follows.

– Valid light rain samples: Samples where the proportion of pixels with precipitation ≥ 0.1mm exceeds 10%.

– Valid moderate rain samples: Samples where the proportion of pixels with precipitation ≥ 10mm exceeds 0.5%.120

– Valid heavy rain samples: Samples where the proportion of pixels with precipitation ≥ 20mm exceeds 0.2%.

– Valid rainstorm samples: Samples where the proportion of pixels with precipitation ≥ 40mm exceeds 0.1%.

In this study, we set t=1 mm and r=2% for sampling. The 1 mm precipitation threshold is low enough to capture the vast

majority of precipitation events that have a real impact. At the same time, the sample proportion of 2% ensures the representa-

tiveness of the samples, so that the model can effectively learn and predict important precipitation patterns despite the limited125

computational resources. After applying these thresholds, the training set consisted of 2,885 samples. As shown in Figure 2a,

the proportions of valid light rain samples and valid moderate rain samples increased from 40% and 25% to 60% and 40%,

respectively. The proportions of valid heavy rain samples and valid rainstorm samples also reached 26% and 11%, respectively.

This increase in the proportion of valid samples improved the stability and efficiency of model training.

When using loss functions like MSE or MAE to guide model updates, the loss is calculated at the pixel level. Therefore,130

although the image-level sampling strategy helps improve the efficiency of model learning, the distribution of precipitation
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Figure 2. Sample proportion distribution of precipitation with different intensity on training set before and after sampling (a)valid sample on

image-level and (b) sample on pixel-level.

within each pixel of the sampled image-level samples still exhibits a significant long-tail distribution(as shown in Figure 2b).

This makes learning from extreme precipitation events challenging. To address this issue, we have designed a specialized

weighted loss function, as detailed in Section 2.2

2.2 Method135

2.2.1 Model

The core idea of Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) is to use adversarial training to enable the

Generator(G) to learn the distribution of real data and generate synthetic data that closely approximates real data. Simultane-

ously, the Discriminator(D) strives to improve its ability to distinguish between real data from the data set and data generated by

the generator. In this study, we proposed a Generative Fusion Rain Net(GFRNet) for multi-NWP precipitation post-processing.140

As illustrated in Figure 3a, GFRNet consists of two main components: the Generator and the Discriminator. The core struc-

ture of the Generator in GFRNet was inspired by a U-Net with encoder-decoder architecture(Ronneberger et al., 2015). The

input to the model is a tensor of size 13×192×192 and the output is a tensor of size 1×192×192. The encoder comprises four

Down-ConvBlocks, which gradually reduce the spatial dimensions of the feature maps while extracting deep feature informa-

tion. The decoder, conversely, consists of four Up-ConvBlocks that progressively restore the spatial dimensions of the feature145

maps through upsampling operations. The specific sizes of the feature maps are illustrated in Figure 3a. Skip connections are

introduced between the encoder and decoder, connecting the output of a layer in the encoder directly to the input of the cor-

responding layer in the decoder. This helps better utilize the features extracted by the encoder. The activation function of the

generator’s final layer is set to ReLU(Agarap, 2019) for regression predictions. Each ConvBlock module consists of four parts:

– Convolution Operation: This transforms the size of the feature map, used for either upsampling or downsampling.150

– Batch Normalization (BN) (Ioffe and Szegedy, 2015), ReLU, and Dropout(Srivastava et al., 2014) layers: These are used

to accelerate the training process, improve model robustness, and prevent overfitting.
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– Residual(He et al., 2015) module: This backbone consists of two convolutional layers with BN and dropout layer at the

middle of it. The final output is obtained by adding the input data to the output of the second convolutional layer through

skip connection.155

– SE-Block: This is a channel attention module composed of two sub-modules: Squeeze and Excitation(Hu et al., 2019).

The squeeze operation compresses the feature values of each channel via global pooling to obtain channel importance

coefficients, and the excitation operation weights the feature map of each channel according to these coefficients.

The Generator’s U-Net-like structure can effectively capture the geographic and spatial dependencies of precipitation dis-

tribution. The residual structure in the ConvBlock can prevent gradient disappearance and explosion in deep-layer networks,160

enhancing model performance and accelerating training. In addition, it improves the reuse and transmission of features. SE

attention mechanisms help focus on the feature channels that contribute significantly to the prediction of precipitation.

Radford et al. (2016) significantly improved the training stability of GAN and the quality of generated images by introduc-

ing Deep Convolutional Network into GAN (DCGAN) structure. Inspired by the DCGAN, the main architecture of the our

discriminator consists of four ConvBlocks. These ConvBlocks perform four spatial downsamplings and channel dimension165

expansions on the single input image with size 192x192x1, extracting richer semantic information. Following this, a Dense

layer and a Sigmoid layer are connected externally, outputting the probability of the image being a real sample.

2.2.2 Training

During the GAN training process, the generator and discriminator continuously compete and collaborate, driving mutual evo-

lution. The generator aims to produce samples that resemble real data, while the discriminator receives both real and generated170

data as input and outputs a probability value indicating its confidence in the input being real. In this study, the optimization

objectives for the discriminator and the generator are as follows:

min
θD

Ey,ŷ [LD (y, ŷ;θD)] (1)

min
θG

Ey,ŷ,x [LG (y, ŷ,x;θG)] (2)

LD and LG represent the loss functions of the discriminator and generator, respectively. The parameters of the corresponding175

neural networks are denoted by θD and θG. The inputs to the generator and the predicted results are represented by x and ŷ,

respectively, while y denotes the real labels. Wasserstein GANs (WGANs) Arjovsky et al. (2017); Gulrajani et al. (2017)

address the gradient vanishing problem commonly encountered in traditional GANs. Following the principles of WGAN, this

study uses a loss function with gradient penalty to optimize the discriminator. As shown in Equation ??, D(y) and D(G(ŷ|x))

denote the scores assigned by the discriminator to real samples and samples generated by the generator, respectively. The latter180

part of the equation represents the gradient penalty term, where the weight γ is set to 10, the samples ỹ are randomly weighted
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Figure 3. Model architecture (a)the generator of GFRNet model, also named FRNet and (b)Discriminator of GFRNet model.

averages of the real label y and the generator’s predicted ŷ , with ε being a randomly sampled value from a uniform distribution

between 0 and 1.

LD (y, ŷ;θD) = 1−D(y) +D(G(ŷ | x)) + γ (∥∇x̃D(ỹ | x)∥2− 1)2︸ ︷︷ ︸
gradient penalty

(3)

ỹ = εy + (1− ε)G(ŷ | x) (4)185
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The loss function LG for the generator consists of two main components. The first part D(G(ŷ | x)) is the confidence score

given by the discriminator, indicating how closely the generated images resemble real samples. We aim for this score to be

as high as possible. The second part Lcontent is the content loss, which is a weighted combination of Mean Squared Error

(MSE) and Mean Absolute Error (MAE) loss functions. By setting the weight λ to 50, we ensure that the values of both loss

components are on the same magnitude.190

LG (y, ŷ,x,θG) = 1−D(G(ŷ | x)) +λLcontent (5)

Lcontent = Lwmse + Lwmae =
192∑

i=1

192∑

j=1

wi,j (yi,j − ŷi,j)
2 +

192∑

i=1

192∑

j=1

wi,j ||yi,j − ŷi,j∥ (6)

wi,j = exp(ayi,j + b) (7)

In Lcontent, the MSE part emphasizes larger errors and provides a smoother gradient, while the MAE is less affected by

outliers. Combining MSE and MAE helps balance large and small errors, enhancing the model’s robustness and stability.195

Additionally, considering the long-tail distribution of r3 intensity as shown in ????b, where significant precipitation events

are infrequent, it is crucial to assign higher loss weights to samples with strong precipitation intensity. This approach prevents

gradient explosion or vanishing issues during training and ensures the model effectively learns and predicts these rare, high-

intensity precipitation events. As shown in Equation 7 , we found that when the loss weight is exponentially related to the

precipitation amount with parameters a=4.3 and b=0.8, the model’s performance is optimal.200

When training the model, both the generator and discriminator are optimized using the Adam optimizer Kingma and Ba

(2017) with betas set to (0.9, 0.999) and a weight decay of 0.01. The learning rate follows a CosineAnnealingLR sched-

uleLoshchilov and Hutter (2017), oscillating between 0.001 and 0 over a period of 20 epochs. During training, it was observed

that the discriminator’s ability initially improved slowly, therefore, it was necessary to slow down the training of the generator.

Experimental results showed that updating the generator every 9 steps resulted in more stable training for both the generator205

and the discriminator. During the training process, the loss value on the validation set was used as the monitoring metric, and

an early stopping strategy was employed. Training was halted if the validation loss did not decrease for 30 consecutive epochs.

The evaluation results presented below are based on the model parameters corresponding to the lowest validation loss.

The number of parameters for the generator and discriminator is 4.46M and 0.72M, respectively. The training and prediction

processes of GFRNet were executed using the NVIDIA(Compute Unified Device Architecture) CUDA library and NVIDIA210

Tesla graphics processing units (GPUs). With a single NVIDIA A100 GPU, the training process can be completed in 3 hours,

and inference for 1,000 samples can be completed in 2 minutes, meeting the speed requirements for operational applications.

To thoroughly investigate the effectiveness of GFRNet, we also conducted an experiment using a pure generator without the

GAN strategy, referred to hereafter as FRNet. The loss function, data, and training strategies for FRNet are consistent with

those used for GFRNet.215
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2.3 Evaluation metric

To evaluate the model’s prediction results, we use the following metrics: Threat Score (TS), Probability of Detection (POD),

False Alarm Rate (FAR), and BIAS score. The specific definitions are as follows:

TS =
h

h + f + m
(8)

220

POD =
h

h + m
(9)

FAR =
f

h + f
(10)

BIAS =
h + f

h + m
(11)225

The definition of h, f , m align with the confusion matrix shown in Table 2. The TS, POD, and FAR values range between 0

and 1. Higher TS and POD values and lower FAR values indicate better forecast performance. A BIAS value of 1 indicates an

unbiased forecast, while values between 0 and 1 indicate under-prediction, and values greater than 1 indicate over-prediction.

In this study, thresholds of 0.1, 10, 20, and 40 mm, corresponding to light rain, moderate rain, heavy rain, and rainstorm,

respectively, are used to comprehensively evaluate the model’s performance.230

Table 2. Confusion matrix to calculate metrics.True or False is determined by the chosen threshold

Confusion matrix
Observation

True False

Prediction
True Hit(h) False alarm(f)

False Miss(m) True negative(tn)

The metrics mentioned above are all measured by comparing individual pixel values. Even if the predicted rainfall struc-

ture and intensity match the actual conditions, a slight positional deviation in the predicted rainfall band from the observed

location can result in a high FAR and a lower POD, leading to a lower TS score, which cannot objectively reflect the true

forecasting ability of the model. To address this issue, neighborhood spatial verification methods like the Fraction Skill Score

(FSS) (Roberts and Lean, 2008) have been developed. FSS compares features within corresponding neighboring regions in235

the forecast and observation fields. This method effectively evaluates the high-resolution model’s capability to predict spatial

structures, offering a more objective assessment of forecast quality. Additionally, FSS is straightforward to construct and is
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not influenced by complex factors such as filtering thresholds or smoothing radius, resulting in consistent evaluation conclu-

sions. FSS has become a widely used spatial verification method and has been adopted by ECMWF as a standard precipitation

evaluation method to replace traditional precipitation skill scores. The FSS formula is defined as follows :240

FBS =
1
N

N∑

i=1

(Or −Mr)
2 (12)

FSS = 1− FBS

1
N

(∑N
i=1 Or

2 +
∑N

i=1 Mr
2
) (13)

N is the total number of grid points within the domain, Mr and Or represent the ratio of grid points exceeding a threshold to

the total number of grid points within a given window size for the forecast and observation fields, respectively. First, we use a

modified Brier score to compare the precipitation frequency between forecasts and observations, known as the Fraction Brier245

Score (FBS). Then, employing the variance skill score concept, we derive the Fraction Skill Score (FSS), which ranges from 0

to 1, where 0 indicates no match and 1 indicates a perfect match. Typically, the FSS value increases as the neighborhood scale

increases. From the definitions of FBS and BIAS, it can be observed that if the BIAS within the given window is significantly

greater or less than 1, the FBS value increases, leading to a lower FSS score. This indicates that FSS penalizes both under-

prediction (BIAS < 1) and over-prediction (BIAS > 1). To further assess the accuracy of forecast images, we introduce the250

Root Mean Square Error (RMSE) and the Multi-Scale Structural Similarity Index (MS-SSIM) (Wang et al., 2003). MS-SSIM

evaluates image similarity by considering brightness, contrast, and structure, providing a score between 0 and 1, with higher

values indicating greater similarity.

3 Results

The statistical evaluation results on the test set are given below.255

3.1 Overall evaluation

Table 3 presents the evaluation metrics for GFRNet, FRNet, and NWPs, including pixel-wise TS, BIAS, FAR, POD scores for

different rainfall thresholds, and spatial-wise FSS scores (window size=5). Additionally, RMSE and MS-SSIM scores for each

model are also assessed (Table 4). In general, both GFRNet and FRNet outperform NWP in TS scores, with GFRNet achieving

the most optimal BIAS score near 1 and the highest FSS scores. GFRNet ranks second in RMSE next to ECMWF and has the260

best performance in MS-SSIM, indicating superior prediction of spatial structure and intensity across various rainfall levels.

For light rain (r3≥ 0.1mm), the TS and FSS scores across models are similar, with GFRNet and FRNet slightly outper-

forming NWPs. GFRNet has a BIAS of 0.78, showing a slight underprediction, while ECMWF’s BIAS of 1.44 indicates slight

overprediction, resulting in higher POD and FAR values. In moderate (r3≥ 10mm) and heavy rain (r3≥ 20mm) predictions,

GFRNet and FRNet significantly outperform NWPs in TS scores. GFRNet’s TS for moderate and heavy rain improved by265
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28% and 34%, respectively, compared to CMA-3KM. FRNet’s high BIAS reflects overprediction, lowering its FSS score, even

below CMA-3KM. In contrast, GFRNet achieves the highest FSS score with the lowest FAR, improved POD compared to

NWPs, and a BIAS value close to 1.

For storm rainfall (r3≥ 40mm), GFRNet leads in FSS, with a TS score slightly lower than FRNet but superior to NWPs.

GFRNet’s FSS and TS scores improved by 15% and 20%, respectively, compared to CMA-3KM. GFRNet maintains the270

lowest FAR but has a lower POD than FRNet and CMA-3KM. While both CMA-SH9 and FRNet have BIAS values above

1.8, indicating overprediction, ECMWF’s BIAS of 0.2 shows significant underprediction. GFRNet’s BIAS of 0.60 indicates a

slight underprediction.

Among NWPs, ECMWF tends to over-predict light rain but significantly under-predicts heavy precipitation. For r3≥ 10mm,

CMA-SH9 has the highest FAR and BIAS among NWPs, indicating overprediction. CMA-3KM demonstrates better forecast-275

ing skills for moderate, heavy, and severe rainfall compared to ECMWF and CMA-SH9, with higher TS and POD scores, a

BIAS closer to 1, and the highest FSS score.

GFRNet and ECMWF have comparable RMSE values around 2.2, with CMA-SH9 having the highest RMSE at 3. ECMWF’s

lowest RMSE results from generally weaker rainfall predictions, while GFRNet maintains the second-lowest RMSE with high

prediction accuracy. The GFRNet MS-SSIM score of 0.763, the highest among the models, indicates the greatest realism in280

the forecast results. Although FRNet has a high TS score, its high BIAS for heavy rainfall and lack of spatial detail result in a

lower SSIM than GFRNet.

Figure 4 illustrates the TS, BIAS, and FSS scores across different lead hours for various precipitation levels. Overall, GFR-

Net generally outperforms NWPs at most lead hours, though all models show declining performance as lead time increases,

consistent with typical weather predictability.285

For light rain, the TS and FSS scores of GFRNet and FRNet do not consistently surpass those of NWPs across all lead hours.

CMA-3KM excels at +3h, while ECMWF performs best at +12h and +24h. In moderate and heavy rain predictions, GFRNet

consistently outperforms NWPs in TS scores across all lead hours and achieves the highest FSS scores. BIAS values mostly

range between 0.6 and 1.5, close to the ideal 1. For rainstorms, GFRNet maintains lower BIAS values, around 0.5, at most lead

hours, and while its FSS and TS scores are sometimes slightly lower than CMA-3KM’s, they generally outperform ECMWF290

and CMA-SH9.

For precipitation exceeding 10mm, FRNet’s TS outperforms NWPs at all lead hours, but BIAS values are generally higher,

mostly between 1.5 and 2.5, resulting in noticeable decreases in FSS scores, occasionally falling below CMA-3KM. In particu-

lar, for rainfall exceeding 10 mm, GFRNet, like CMA-3KM, exhibits significantly higher TS, FSS, and BIAS scores at lead 3h

compared to other lead hours, and CMA-3KM’s BIAS can exceed 3, likely due to overprediction caused by its cloud initializa-295

tion scheme. In contrast, GFRNet’s BIAS at lead 3h is generally below 2, indicating that GFRNet can learn the characteristics

of CMA-3KM and optimize corrections based on model biases.
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Table 3. The evaluation results of ECMWF CMA-SH9 CMA-3KM FRNet and GFRNet for r3 prediction for next 24h(3-h interval).TS BIAS

FAR POD and FSS are listed. Note: The best and second best score of each metric are shown in bold and underlined.

Forecast result Model TS FAR POD BIAS FSS

r3≥ 0.1mm

ECMWF 0.405 0.511 0.706 1.444 0.693

CMA-SH9 0.400 0.436 0.578 1.024 0.689

CMA-3KM 0.389 0.409 0.532 0.899 0.704

FRNet 0.416 0.379 0.557 0.896 0.702

GFRNet 0.406 0.343 0.515 0.784 0.700

r3≥ 10mm

ECMWF 0.155 0.704 0.2245 0.829 0.443

CMA-SH9 0.128 0.790 0.246 1.174 0.376

CMA-3KM 0.167 0.734 0.310 1.167 0.469

FRNet 0.216 0.725 0.501 1.822 0.465

GFRNet 0.214 0.683 0.398 1.254 0.530

r3≥ 20mm

ECMWF 0.066 0.805 0.091 0.466 0.248

CMA-SH9 0.075 0.882 0.171 1.458 0.270

CMA-3KM 0.108 0.830 0.227 1.333 0.363

FRNet 0.147 0.804 0.373 1.901 0.352

GFRNet 0.145 0.748 0.254 1.006 0.427

r3≥ 40mm

ECMWF 0.019 0.887 0.023 0.200 0.092

CMA-SH9 0.031 0.953 0.086 1.850 0.151

CMA-3KM 0.047 0.926 0.117 1.588 0.198

FRNet 0.077 0.889 0.201 1.810 0.215

GFRNet 0.056 0.858 0.085 0.603 0.228

Table 4. The RMSE and MS-SSIM of ECMWF CMA-SH9 CMA-3KM FRNet and GFRNet for r3 prediction for next 24h(3-h interval).Note:

The best and second best score of each metric are shown in bold and underlined.

Model RMSE MS-SSIM

ECMWF 2.208 0.653

CMA-SH9 3.049 0.717

CMA-3KM 2.826 0.754

FRNet 2.459 0.754

GFRNet 2.264 0.763
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Figure 4. TS BIAS and FSS temporal distribution of 3 - 24h precipitation forecasts from ECMWF, CMA-SH9, CMA-3KM, FRNet and

GFRNet for 0.1, 10, 20, 40 mm(3h)-1. (a) TS score (b) BIAS score and (c) FSS score.
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Figure 5. Spatial distribution of TS score and BIAS score on the test set. (a) TS score and (b) BIAS score. The solid black lines are 500m

contours. The ECMWF, CMA-SH9, CMA-3KM, FRNet, and GFRNet models are represented from left to right columns, and 0.1 mm, 10

mm, 20 mm, and 40 mm(3h)-1 from top to bottom rows.

3.2 Spatial analysis

The spatial distribution of precipitation is closely related to topography. Figure 5 depicts the spatial distribution of TS and BIAS

scores for various precipitation intensities across different models. Due to the limited test set of 1024 samples, calculating300
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scores for each pixel would yield unrepresentative results. To address this, the 192 × 192 spatial domain was divided into 576

patches, each 8 × 8 in size, and metric scores were calculated for each patch to represent the spatial distribution.

For light rain, TS scores are relatively low in Inner Mongolia, while higher scores are observed in Hebei, Shanxi, and Shan-

dong. For moderate and heavy rain, peak TS values appear in northern Shanxi, the Bohai area, and central Inner Mongolia.

Storm rainfall events, primarily east of the 500m contour line, are concentrated in eastern Hebei, Bohai, and Shandong. Com-305

paring GFRNet with NWPs, GFRNet and FRNet effectively leverage the strengths of each NWP. In regions where any NWP

performs well, GFRNet generally achieves better performance, reflected in higher TS scores.

Regarding BIAS for light rain, all models show BIAS < 0.6 in the Bohai area. Outside this region, ECMWF has BIAS above

1.5, while GFRNet, similar to CMA-3KM, maintains BIAS close to 1 in most areas. For moderate and heavy rain, areas of high

BIAS (BIAS > 2) in CMA-SH9 and CMA-3KM are primarily west of the Taihang Mountains above 500m elevation, indicating310

overprediction. For severe storm precipitation, high BIAS regions in CMA-SH9 and CMA-3KM are concentrated in Shanxi

and the eastern Taihang Mountains. For precipitation over 10 mm, FRNet’s high BIAS areas are concentrated east of the 500m

contour line, including most of Beijing, Tianjin, Hebei, Shandong, and Bohai, corresponding to its high TS areas. In contrast,

GFRNet shows a relatively uniform BIAS distribution for moderate and heavy rain, with most BIAS values between 0.5 and

1.5. For severe storm rainfall, GFRNet’s low BIAS areas align with the 500m contour line, and BIAS intensity elsewhere is315

close to 1. This suggests that while NWPs and FRNet exhibit significant spatial BIAS heterogeneity, often leading to over-

or under-prediction, GFRNet’s precipitation spatial distribution is the most similar to the truth, with overall lower and more

uniformly distributed spatial BIAS.

Figure 6 also presents the spatial distribution of the GFRNet FSS gains compared to other models. For light rain, GFRNet’s

improvement zone extends from the southwest to the northeast, aligning with the direction and location of the 500m contour320

line.In regions like Shandong and the Bohai Sea, however, GFRNet performs slightly weaker than NWP. For moderate and

heavy rain, GFRNet shows improvement across nearly all regions, with the most significant gains in low-altitude or flat areas.

The primary zones of heavy precipitation are Shandong and Bohai, where GFRNet demonstrates substantial FSS improvements

over ECMWF and CMA-SH9, and notable gains over CMA-3KM in central and northern Shandong. GFRNet not only main-

tains but extends the forecasting capabilities of NWPs in regions where they perform well, showing marked improvements. In325

areas where NWPs perform moderately, both GFRNet and FRNet show enhancements, though the extent of improvement is

limited.

Deep learning approaches, can enhance forecasts of moderate and heavy precipitation in the western mountainous areas,

eastern plains and sea surfaces, and southern plains of the Beijing-Tianjin-Hebei region. However, FRNet’s significant TS

score improvements come with an increase in BIAS. In contrast, GFRNet achieves simultaneous improvements in both TS and330

BIAS, significantly reducing false alarms and effectively preventing smoothing of spatial fields.

3.3 Case Study

3.3.1 Case1: 2022-07-05 00Z
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Figure 6. GFRNet’s FSS spatial gain distribution on test set comparing with ECMWF CMA-SH9 CMA-3KM and FRNet(from left to right

columns) for 0.1 mm, 10 mm, 20 mm, and 40 mm(3h)-1 (from top to bottom).The black represent 500m altitude. The wihte area means both

models get zero FSS score.
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Figure 7. Precipitation forecasts of all models initiated at 0000 UTC on 5 July 2022 for the next 15h - 24h and the corresponding TS BIAS

and FSS score of each models. OBS is the abbreviation CMPAS observation (same below).
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On July 2nd, central and southern Hebei in North China experienced heavy rain due to the influence of an upper trough.

Meanwhile, southern China was affected by the typhoons "Chaba" and "Aere." By July 3rd, "Chaba" had moved near 30°N,335

and by July 5th, it weakened into an extratropical cyclone (figure omitted). The precipitation in North China was driven by

both the upper trough and the weakening cyclone, resulting in significant rainfall in the southern and eastern parts of the region.

This event exemplifies the forecasting challenges in North China related to typhoon influences, particularly in predicting the

development and intensity of convective systems in the warm sector before the typhoon’s northward movement. Additionally,

there was considerable uncertainty in predicting the extent and intensity of rainfall caused by the merging of the upper trough340

with the weakening low-pressure system as it moved northeastward.

During this event, multiple small areas of heavy rainfall were observed at +15h, which later coalesced into a long, narrow

southwest-northeast oriented band of heavy rain by +18h. The southernmost rain cluster developed and moved northward. By

+21h and +24h, the heavy rain band moved northeastward and split into two clusters, with the southern cluster expanding

in coverage. ECMWF’s response to moderate and heavy rain was noticeably delayed, failing to predict the northern heavy345

rain cluster. However, it performed reasonably well in predicting the location of southern rainfall at +21h and +24h. Both

the CMA-SH9 and CMA-3KM models correctly predicted the shapes and evolution of the two rain clusters, though with

slight positional deviations. Additionally, CMA-9KM exhibited significant false alarms and overestimated intensity. The two

deep learning models effectively captured the trend of precipitation movement. Although FRNet accurately forecasted the rain

center and achieved the highest TS score, it predicted overly smoothed results with high FAR and BIAS, limiting its operational350

value. GFRNet, on the other hand, integrated the location and intensity forecasting strengths of both ECMWF and CMA-3KM,

enhancing the prediction of the location, intensity, and evolution of moderate to heavy rainfall. Moreover, it provided clearer

fine-scale precipitation structures, outperforming numerical models in both TS and FSS scores.

3.3.2 Case2: 2022-07-27 12Z
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Figure 8. Precipitation forecasts of all models initiated at 1200 UTC on 27 July 2022 for the next 3h-15h and the corresponding TS BIAS

and FSS of each models all showed below.
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The heavy rainfall event on July 27th in North China was caused by the interaction between the westerly belt cold air355

and the subtropical high. The NWPs perform well in capturing the general rainband but had significant biases in predicting

localized heavy rain. Among them, the ECMWF global model most accurately predicted the location, shape, and movement

of the rainband, but its intensity forecast was too weak. The CMA-SH9 model predicted the highest precipitation intensity, but

had a significant delay in movement and overestimated the intensity. The CMA-3KM model did not perform well overall in

predicting location and intensity but did accurately forecast some localized heavy rain centers. During development, at +03h,360

there were three small areas of heavy rain in the southwest. The two northern centers moved northeastward and by +06h and

+09h, formed a narrow southwest-northeast oriented rainband on the eastern side of the Taihang Mountains, paralleling the

mountain range. By +12h, this band broke into two centers again; the southern center weakened and dissipated by +15h as

it moved eastward. At +03h, both GFRNet and CMA-3KM accurately predicted the three rain centers. By +06h and +09h,

CMA-3KM significantly underpredicted the linear convection, while ECMWF and CMA-SH9 performed better in predicting365

the location and intensity, respectively. FRNet, despite improving its TS score through blurred predictions, lacked the capability

to forecast the detailed structure and evolution of the heavy rain centers. In contrast, GFRNet integrated the positional and

intensity advantages of ECMWF and CMA-SH9, successfully predicting the detailed structure and evolution of the convective

centers. GFRNet improved the TS score for moderate rain from 0.15 to 0.24 and for heavy rain from 0.1 to 0.14.

3.3.3 Case3: 2022-08-18 00Z370
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Figure 9. Precipitation forecasts of all models initiated at 0000 UTC on 18 August 2022 for the next 12h-24h and the corresponding TS

BIAS and FSS of each models all showed below.
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On 18 August, a significant regional heavy rainfall event occurred in eastern North China, influenced by the northward

extension of the subtropical high and a low-level jet stream. While the NWPs adequately forecasted the overall precipitation

area, they underestimated the extent of the heavy rainfall centers and the extreme precipitation intensity. As shown in Figure

9, the +12h forecast indicated a strong precipitation center in the central-eastern part of North China, which then extended and

developed southeastward, with increasing intensity and area. The peak was reached at +21h, and the strong center persisted375

at +24 hours but with a significantly smaller impact area. During this event, the ECMWF model accurately predicted the

position of the rainband and the center of heavy rain, although the intensity was slightly underestimated. The CMA-SH9

model predicted the precipitation center too far west and failed to forecast the rainfall center after +21h. Both GFRNet and

CMA-3KM provided consistent predictions regarding the location, intensity, and evolution of the precipitation center. Among

these, the GFRNet’s forecast for the area of moderate to heavy rain was larger and closer to the actual situation. The TS score380

for heavy rain increased from 0.23 to 0.28, and for storm rainfall, from 0.09 to 0.11, significantly higher than those of ECMWF

and CMA-SH9, with BIAS values close to 1. In contrast, while FRNet also had higher TS scores compared to NWP, its BIAS

values were above 2, indicating significant overprediction.

GFRNet and FRNet demonstrated comparable TS performance for light rain to NWPs, with BIAS values closer to 1 than

ECMWF. For moderate rain, heavy rain, and severe storm precipitation, GFRNet and FRNet significantly outperformed NWPs385

in terms of TS scores. However, FRNet exhibited higher BIAS values and tended towards more blurred predictions, lacking

detailed precipitation information, which was particularly evident in heavy precipitation. GFRNet maintained BIAS values

between 0.6 and 1.5, indicating no significant forecast bias and demonstrating the ability to forecast the formation, movement,

and detailed structure of rainbands and heavy precipitation centers. In terms of FSS scores, FRNet’s overly blurred predic-

tions resulted in lower scores than CMA-3KM, while GFRNet consistently showed the best spatial structure and morphology390

predictions for moderate rain and above.

In analyzing the relationship between numerical models, FRNet, and GFRNet across the case studies, it is evident that NWP

performance varies depending on the precipitation event. For instance, CMA-SH9 performed best in the second case, while

CMA-3KM excelled in the third, followed by ECMWF. FRNet employs a more coarse learning approach, primarily achieving

the lowest loss in the loss function through smooth predictions, sacrificing precipitation detail morphology. Although POD395

increased, BIAS and FAR also significantly increased. In contrast, GFRNet, using adversarial generation strategies, enables

more refined model learning, as evidenced by: a. Avoiding the forecast defects of poorly performing numerical models and

dynamically learning the advantages of better-performing models. b. Ensuring accuracy while also predicting the detailed

structure of precipitation, thereby enhancing actual forecasting capabilities.

4 Discussion and conclusions400

This study used a GAN strategy to build GFRNet for quantitative prediction of heavy rainfall in North China for the next 24

hours at 3-hour intervals, based on forecast data from the global ECMWF model and regional models CMA-SH9 and CMA-

3KM. By employing a reasonable sample sampling strategy and a weight loss function design to optimize the model, GFRNet
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demonstrated superior performance in forecasting precipitation intensity and location across all thresholds compared to NWPs

in the independent validation of the summer 2022 test set, and the advantage is particularly pronounced for precipitation of405

10 mm and above. Additionally, compared to the FRNet model, which does not use a generative adversarial strategy, GFRNet

significantly alleviates the common blurring issue prevalent in deep learning precipitation predictions.

FRNet primarily smooths predictions to minimize the content loss, sacrificing detailed precipitation structures. This approach

results in a high BIAS score, with significant overprediction, and a lower FSS score compared to CMA-3KM. In contrast,

GFRNet employs co-evolution between the generator and discriminator, leading to more refined learning. This allows the410

model to dynamically integrate the strengths of multiple numerical models, ensuring accuracy while also predicting detailed

precipitation structures.

In precipitation prediction tasks, conventional deep learning models often sacrifice prediction clarity to enhance the TS score,

which significantly decreases their practical value. This study demonstrates that by using a Generative Adversarial Network

(GAN) strategy, it is possible to improve accuracy without compromising the prediction of detailed precipitation structures,415

showing that these objectives are not mutually exclusive. Moving forward, we will continue to explore the application of

generative models in precipitation tasks, including but not limited to:

1. Exploring Better Precipitation Forecast Generative Model Architectures: The current adversarial generative network

used in this study is relatively preliminary. Future work can improve model accuracy and prediction clarity by designing

more optimal adversarial generative network architectures and incorporating conditional generation ideas.420

2. Improving Effective Resolution of Precipitation Predictions Using Generative Models. Currently, due to limitations in

computational resources and time, the highest resolution for global and regional precipitation forecasts of NWP is 9km

and 3km, respectively, which cannot meet the growing demand for refined forecasts. Generative models can increase

NWP forecasts to 1 km resolution by leveraging fine-grained 1km resolution precipitation reality products.

3. Generating Ensemble and Probabilistic Forecasts with Generative Models. This approach can provide uncertainty in-425

formation and improve forecast reliability, offering more scientific and practical forecast services to the public. While

ensemble forecasting with numerical models is computationally expensive, generative models can generate multiple

forecast ensembles through random sampling at a very low cost. However, ensuring reasonable dispersion, diversity, and

complementarity among forecast members remains challenging.

4. Incorporating physical guidance can enhance the model’s ability to predict newly developed convection. Currently, GFR-430

Net dynamically learns the strengths of precipitation forecasts from multiple numerical models, but it also performs

poorly for precipitation that none of the numerical models can predict. By inputting information such as temperature,

humidity, pressure, and wind speed into the model, it can help the model understand the non-linear and complex rela-

tionships between atmospheric physical states and precipitation, thus improving its ability to forecast newly developed

convective precipitation.435

24

https://doi.org/10.5194/egusphere-2024-2888
Preprint. Discussion started: 27 November 2024
c© Author(s) 2024. CC BY 4.0 License.



Developing precipitation evaluation metrics that match forecasters’ actual operational needs is also crucial. While FSS

improves upon TS by considering spatial location and intensity deviations and penalizing blurry forecasts, it can still be mis-

leading if the TS gains from blurred forecasts are sufficiently high. Unreasonable evaluation metrics hinder accurate assessment

of model performance, impeding further model iteration. New metrics should comprehensively consider pixel-wise accuracy

and structural clarity, penalize spatial location and intensity biases, and ensure the forecasts are accurate and realistic to be440

valuable.
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