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Abstract. The Tibetan Plateau (TP) is characterized by abundant snow and heightened sensitivity to climate change. 

Although the impact of snowmelt on vegetation green-up is well recognized, the duration of the vegetation response to 15 

snowmelt on the TP remains unclear. This study calculates the time differences between the green-up date and the start of 

snowmelt from 2001 to 2018 on the TP, denoted as ∆T. Exploratory spatial data analysis and Mann Kendall test were then 

applied to investigate the spatiotemporal distribution feature of ∆T. Subsequently, heatmaps, box plots, partial correlation, 

and multiple linear regression analyses were employed to examine the impact of spring mean temperature, spring total 

rainfall, and daily snowmelt on ∆T. The results reveal that the mean ∆T across the TP was 36.7 days, with a spatially 20 

clustered distribution: low-low clusters in the Hengduan Mountains and high-high clusters in the Bayankara and Himalayas 

Mountains. Additionally, ∆T shortened with increasing spring mean temperature, spring total rainfall, and daily snowmelt, 

which can explain 15.7%, 16.1%, and 25.8% of ∆T variation, respectively. In arid areas and regions with low vegetation, 

daily snowmelt was the dominant factor of ∆T for 74% and 66% of the regions, respectively. Conversely, spring mean 

temperature was the predominant factor for 65% and 59% of humid areas and regions with high vegetation. Our findings 25 

enhance the understanding of vegetation responses to snowmelt and provide a scientific basis for further research on the 

stability of alpine ecosystems and the impacts of climate change on the TP. 

1 Introduction 

The Tibetan Plateau (TP) is the largest plateau in China and the highest in the world. It serves as the source for many major 

Asian rivers, providing water resources to approximately 1.6 billion people (Bibi et al., 2018). Additionally, the TP plays a 30 

critical role in maintaining global biodiversity and ecological security (Piao et al., 2019). Over the past 50 years, climate 

change has caused the mean temperature of the TP to rise at twice the global rate (Yang et al., 2019; Zhang et al., 2018a). 
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Plant phenology, which reflects climatic patterns and influences climate through biological and biochemical processes, is a 

key aspect of this change (Piao et al., 2019; Zhang et al., 2022b). Specifically, the green-up date (𝑇𝐺𝑈), marking the onset of 

vegetation growth under favorable climatic conditions (Zhang et al., 2003), is a vital indicator for studying climate change 35 

(Shen et al., 2015). Therefore, understanding the changes and mechanisms affecting 𝑇𝐺𝑈 is essential for assessing the impact 

of climate change on the TP and its ecological stability. 

Previous studies on the climatic factors influencing 𝑇𝐺𝑈 have primarily focused on temperature and precipitation, as 

these are the two most significant determinants of 𝑇𝐺𝑈 (Zhang et al., 2022a). However, the impact of snow on 𝑇𝐺𝑈  should not 

be ignored (Wang et al., 2018a). Snow affects vegetation mainly through its influence on soil temperature, soil moisture, soil 40 

nutrients, and photosynthetically active radiation. Specifically, snow cover can mitigate the exchange of soil heat and 

moisture with the atmosphere (Zhu et al., 2019a), leading to smaller annual variations in soil temperature compared to air 

temperature (Zhang et al., 2018b), and thus providing a more favorable overwintering environment for vegetation (Zhu et al., 

2019a). Furthermore, snowmelt increases soil moisture, promoting vegetation growth (Peng et al., 2010; Potter, 2020). 

Changes in soil temperature and moisture due to snow cover can also influence microbial activity, which in turn affects the 45 

availability of nutrients for vegetation (Ren et al., 2020; Wang et al., 2015). Nevertheless, the high albedo of snow reflects 

much of the solar radiation that is essential for photosynthesis (Rixen et al., 2022; Yang et al., 2022). Consequently, changes 

in snow cover invariably influence transitions in 𝑇𝐺𝑈. 

The TP has abundant snow cover. Snow phenology serves as a crucial indicator of changes in snow cover. Several 

studies have analyzed the impact of snow phenology on 𝑇𝐺𝑈  in the TP. Key aspects of snow phenology related to 𝑇𝐺𝑈 50 

include the snow cover end date (SCED), snow cover duration (SCD), and the start of snowmelt (𝑇𝑆𝑂𝑀). SCED typically 

exhibits a significant positive correlation with 𝑇𝐺𝑈, with each 1-day advancement in SCED leading to a 0.56 days earlier 𝑇𝐺𝑈 

(Potter, 2020; Wu et al., 2023). The effect of SCD on 𝑇𝐺𝑈  is more complex and varies by region; for instance, a longer SCD 

delays 𝑇𝐺𝑈 in the western TP, whereas an extended autumn SCD advances 𝑇𝐺𝑈 in the eastern TP (Huang et al., 2019; Xiong 

et al., 2019). Notably, 𝑇𝐺𝑈 is most sensitive to 𝑇𝑆𝑂𝑀  among the various metrics of snow cover phenology on the TP (Xu et al., 55 

2022a). Wang et al. (2015) found that 39.9% of meadows and 36.7% of steppes on the TP demonstrated a significant 

correlation between 𝑇𝐺𝑈  and 𝑇𝑆𝑂𝑀 . Additionally, Wang et al. (2018a) reported positive Pearson correlation coefficients 

between 𝑇𝑆𝑂𝑀 and 𝑇𝐺𝑈 for most regions of the TP, with exceptions in warmer and drier areas. Despite these findings, the 

duration and driving factors of vegetation response to the onset of snowmelt remain unclear. 

In this study, the time difference between 𝑇𝐺𝑈 and 𝑇𝑆𝑂𝑀, denoted as ∆𝑇, was used to represent the duration of the 60 

vegetation’s green-up response to snowmelt. We firstly employed a daily snow depth dataset with a resolution of 0.05° to 

identify 𝑇𝑆𝑂𝑀  and subsequently calculated ∆𝑇 for the TP from 2001 to 2018. Exploratory spatial data analysis and the Mann-

Kendall test were employed to examine the spatiotemporal variation of ∆𝑇 . To quantify the influence of temperature, 

precipitation, and snowmelt on ∆𝑇, we applied partial correlation analysis and multiple linear regression. Additionally, we 

evaluated the quality of ∆𝑇 and discussed the response mechanism of vegetation to snowmelt. 65 
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2 Materials and Methods 

2.1 Study area 

The TP, located between 25.99°N and 39.82°N and 73.46°E and 104.67°E, has an average elevation exceeding 4000 m (Fig. 

1). The TP is characterized by distinct climatic patterns, including intense solar radiation and significant diurnal temperature 

variations. Winter temperatures range from −15 to −2 ℃, while summer temperatures average between 8 and18 ℃. Annual 70 

precipitation is approximately 400 mm, with the region transitioning from humid in the southeast to sub-humid, semiarid, 

and arid conditions in the northwest (Diao et al., 2021). 

 

Figure 1: Map of the study area with vegetation types, distribution of mountains and geographical zones (based map from ESRI) 

Due to substantial topographic uplift and its extensive spatial extent, the TP exhibits a diverse range of climate types 75 

and ecosystems. Predominant vegetation types include alpine meadows and alpine steppes, which are widespread across the 

central regions. The southeastern areas are primarily covered by forests and shrubs, while the western and northern regions 

are largely barren or desertified due to the terrain and climatic conditions (Zhao et al., 2011).  

Snow cover on the TP shows clear spatial and seasonal variability. Except for the Himalayan Mountains, the Pamir 

Plateau, and the eastern sector of the Tanggula Mountains, which have perennial snow cover, other areas experience seasonal 80 

snow cover. Snow accumulation generally begins in September, persists from October to late November, and peaks from 

December to February. The mean snow cover fraction across the TP is 36.6% (Zou et al., 2022). 
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2.2 Data sources 

2.2.1 Green-up date dataset 

Remote sensing-based vegetation indices (VIs) are commonly used to identify the 𝑇𝐺𝑈 . However, different VIs and 85 

extraction methods can introduce uncertainties into the results (Shen et al., 2014). Xu et al. (2022b) compared six different 

vegetation indices and four extraction methods, finding that the Normalized Difference Greenness Index (NDGI) combined 

with the Maximum Curvature Change Rate method (CCRmax) yielded the highest identification accuracy (r = 0.62, RMSE = 

11 days, p < 0.01) on the TP. Therefore, we utilized these data as 𝑇𝐺𝑈 for our study. The dataset, spanning from 2001 to 2018, 

had a spatial resolution of 500 m and was measured in Day of Year (DOY). To ensure consistent data resolution, we applied 90 

bilinear interpolation to reproject the dataset to a resolution of 0.05°. 

2.2.2 Snow depth and snowmelt products 

Daily snow depth data from 2001 to 2018 were used to identify the 𝑇𝑆𝑂𝑀. This dataset is accessible through the National 

Tibetan Plateau Data Center (https://data.tpdc.ac.cn/) and has a spatial resolution of 0.05°. Produced by Yan et al. (2022), it 

is based on a long-term series of daily snow depth data in China (1979–2023) (http://poles.tpdc.ac.cn/en/) and snow cover 95 

probability data derived from the Moderate Resolution Imaging Spectroradiometer (MODIS). Yan et al. (2022) employed a 

spatial-temporal downscaling method to improve spatial resolution from 0.25° to 0.05°, achieving greater accuracy 

compared to the original dataset (RMSE = 0.61 cm).  

Snowmelt data for the period between 2001 and 2018 were sourced from ERA5-Land, provided by the Climate Data 

Store (https://cds.climate.copernicus.eu/cdsapp#!/home). This dataset integrates physical models with global reanalysis 100 

observations and has a spatial resolution of 0.1° and a temporal resolution of one hour. The snowmelt variable quantifies the 

total amount of water (m) produced by snow melting within snow-covered areas. The data were reprojected to a 0.05° 

resolution using bilinear interpolation, and the time resolution was adjusted to daily values through summation. 

2.2.3 Meteorological dataset 

Daily average air temperature and precipitation data from 2001 to 2018 were used to investigate the impact of 105 

meteorological factors on ∆𝑇. These data were obtained from the China Meteorological Forcing Dataset (CMFD), provided 

by the National Tibetan Plateau Scientific Data Centre (https://data.tpdc.ac.cn/). The CMFD integrates remote sensing data 

with field observations, and due to its use of numerous actual observation sites, it offers higher accuracy compared to the 

Global Land Data Assimilation System (GLDAS) and ERA5-Land (He et al., 2020; Li et al., 2022). The CMFD dataset has a 

spatial resolution of 0.1° and a temporal resolution of 3 h, with units of 𝐾 for temperature and mm ℎ−1 for precipitation. To 110 

match our analysis requirements, we reprojected the dataset to a 0.05° resolution using bilinear interpolation and adjusted the 

temporal resolution to daily values by summing (for precipitation) and averaging (for air temperature). 
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2.2.4 Land cover type 

The land cover type map of the TP (2010), which provided vegetation type information for this study, was sourced from the 

Science Data Bank (https://www.scidb.cn/en). This map was classified using the support vector machine method based on 115 

MODIS images, achieving a classification accuracy of 93% with a spatial resolution of 500 m. The map delineates ten land 

cover types on the TP: alpine desert, alpine steppe, alpine meadow, bare land/desert, arable land, shrub, coniferous forest, 

broad-leaved forest, permanent snow/glacier, and lake. Prior to use, the dataset was reprojected to a resolution of 0.05°. 

2.3 Method 

2.3.1 Subsubsection (as Heading 3) Calculation of ∆𝑻 120 

The time differences between 𝑇𝐺𝑈 and 𝑇𝑆𝑂𝑀  (∆𝑇) can be calculated using the following equation: 

∆𝑇 = 𝑇𝐺𝑈 − 𝑇𝑆𝑂𝑀  (1) 

where 𝑇𝐺𝑈 and 𝑇𝑆𝑂𝑀 are the green-up date and start of snowmelt, respectively, in DOY. 

The 𝑇𝐺𝑈 dataset was provided by Xu et al. (2022b). They used the MODIS surface reflectance product MOD09A1 to 

calculate the vegetation index NDGI, which integrates red (band 1), near-infrared (band 2), and green (band 4) reflectances. 125 

The NDGI time series was then fitted with a four-parameter logistic function, and the curvature change rate (CCR) of the 

logistic function was calculated. 𝑇𝐺𝑈 was defined as the date on which the CCR reached its first local maximum. 

𝑇𝑆𝑂𝑀  was identified from snow depth measurements. A snowfall event typically involves two stages: snow 

accumulation and snowmelt (Fontrodona-Bach et al., 2023), which are characterized by changes in snow depth. The 

maximum snow depth marks the transition between these two stages (Zheng et al., 2022) (see the orange point in Fig. 2). To 130 

determine 𝑇𝑆𝑂𝑀 , the snow depth time series was first smoothed using Sacitzky-Golay filtering with a 5-day window to 

minimize the influence of outliers (as indicated by the orange line in Fig. 2). The date of the maximum snow depth in spring 

was then identified as 𝑇𝑆𝑂𝑀 . Given that multiple snow accumulation and melting events may occur throughout the snow year 

on the TP (Lei et al., 2023), two criteria were established. First, the snow depth time series was analyzed starting from DOY 

61 (March 1), as snowmelt before spring has minimal impact on vegetation dormancy and snowmelt on the TP typically 135 

begins in March (Dong et al., 2024). Second, the snowfall event with the longest duration of snow cover was considered the 

most significant. Thus, the number of consecutive snow cover days was compared to determine the turning point. According 

to Stanislaw et al. (2023), a snow cover day is defined as a day when the snow depth exceeds 1 cm. As illustrated in Fig. 2, 

Snow depth was above 1 cm from DOY 61 to DOY 107, making the duration of the first snowfall event 47 days. In contrast, 

the durations of the second and third events were 3 days and 6 days, respectively. The first snow accumulation and melting 140 

process was the longest; thus, the turning point on DOY 96 was designated as 𝑇𝑆𝑂𝑀 . 

https://doi.org/10.5194/egusphere-2024-2885
Preprint. Discussion started: 16 October 2024
c© Author(s) 2024. CC BY 4.0 License.



6 

 

 

Figure 2. Diagram showing identification of start of snowmelt (𝑻𝑺𝑶𝑴).  

2.3.2 Exploratory Spatial Data Analysis 

Classical statistical analysis models assume sample independence, which limits their ability to reveal correlations between 145 

the geographical locations of spatial data. Exploratory Spatial Data Analysis (ESDA) offers an enhancement over traditional 

methods by examining spatial discrepancies and autocorrelation in spatial datasets. Two commonly used indicators in ESDA 

are the global and local Moran's I. In this study, these indices are applied to analyze the spatial distribution of ∆𝑇. The global 

Moran's I (𝐼) measures the overall similarity of ∆𝑇 between a region and its neighboring regions, as detailed in Equation 2. 

The local Moran's I (𝐼𝑖) assesses the degree of clustering or spatial autocorrelation of ∆𝑇 within a specific region 𝑖 relative to 150 

its neighbors, as calculated using Equation 3. 

𝐼 =
𝑛∑ ∑ 𝑤𝑖𝑗

𝑛
𝑗=1 (𝑥𝑖 − 𝑥)(𝑥𝑗 − 𝑥)

𝑛
𝑖=1

∑ ∑ 𝑤𝑖𝑗
𝑛
𝑗=1

𝑛
𝑖=1 ∑ (𝑥𝑖 − 𝑥)

2𝑛
𝑖=1

(2) 

𝐼𝑖 =
𝑛(𝑥𝑖 − 𝑥)∑ 𝑤𝑖𝑗

𝑛
𝑗=1 (𝑥𝑗 − 𝑥)

∑ (𝑥𝑖 − 𝑥)
2𝑛

𝑖=1

(3) 

where 𝑥𝑖 , 𝑥𝑗 represent ∆𝑇 for region 𝑖 and 𝑗, 𝑥 is the mean value of ∆𝑇, 𝑤𝑖𝑗  is the spatial weight between region i and region j, 

and 𝑛 is the total number of regions. 155 

Moran's I ranges from −1 to 1. A positive value indicates significant spatial autocorrelation, suggesting a tendency 

for spatial clustering. Conversely, a negative value signifies significant spatial autocorrelation, indicating a tendency for 

spatial dispersion. If the value is close to zero, the data is considered to be randomly distributed. The significance of spatial 

autocorrelation can be assessed using the p-value of the standardized Z-statistic (Equation 4). 

𝑍 =
𝐼 − 𝐸(𝐼)

√𝑉𝑎𝑟(𝐼)
(4) 160 

where 𝐼  denotes the Moran’s index, 𝐸(𝐼)  represents the expectation value of I, and 𝑉𝑎𝑟(𝐼)  is the variance of 𝐼 . A 

significance level of 𝑝 < 0.01 is used to determine statistical significance. 
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2.3.3 Mann-Kendall Test 

The Mann-Kendall test was used to investigate the temporal trend of ∆𝑇 from 2001 to 2018 for each pixel. Unlike traditional 

regression or trend fitting methods, this test does not require the samples to adhere to a specific distribution. Additionally, 165 

the Mann-Kendall test is robust to outliers, thereby minimizing disturbances (Howell et al., 2012). 

First, the statistic S must be calculated, as shown in Equation 5. This statistic represents the sum of the indicator 

functions that compare the differences between years: if the latter year has a higher value than the former, the function 

returns 1; if it has a lower value, it returns −1; Otherwise, it returns 0 (Semmens and Ramage, 2013). The standardized 

statistic (𝑍𝑐) is then calculated using Equation 6. 170 

𝑆 = ∑ ∑ 𝑠𝑔𝑛(𝑥𝑗 −

𝑛

𝑗=𝑖+1

𝑥𝑖)

𝑛−1

𝑖=1

(5) 

𝑍𝑐 =

{
 
 

 
 

𝑆 + 1

√𝑉𝑎𝑟(𝑆)
,    𝑆 < 0

    0,          𝑆 = 0
𝑆 − 1

√𝑉𝑎𝑟(𝑆)
,    𝑆 > 0

 (6) 

where n is the length of the time series 𝑥1, … 𝑥𝑖 , 𝑥𝑗 , … 𝑥𝑛, 𝑉𝑎𝑟(𝑆) is the variance of the statistic, and 𝑍𝑐 is used for trend 

testing. If |𝑍𝑐| > 𝑍1−𝛼/2, a significant temporal trend is present. Here, 𝑍1−𝛼/2 represents the standard normal variance, and 𝛼 

signifies the significance level. In this study, the significance levels were set at three thresholds: 𝛼 = 0.01, 𝛼 = 0.05, 𝛼 =175 

0.1. 

If the time series exhibits a significant temporal trend, the trend in ∆𝑇  can be assessed using the parameter 𝛽 

(Equation 7). 

𝛽 = 𝑀𝑒𝑑𝑖𝑎𝑛 (
𝑥𝑖 − 𝑥𝑗

𝑖 − 𝑗
) (7) 

where 𝑥𝑖 , 𝑥𝑗 are ∆𝑇 of year i and j, respectively. The median function is denoted by 𝑀𝑒𝑑𝑖𝑎𝑛, and 𝛽 indicates the degree of 180 

trend: an upward trend if 𝛽 > 0 and a decline if 𝛽 < 0. 

2.3.4 The influence of meteorological and snow factors on ∆𝑻 

Spring temperature and precipitation exerted a profound influence on 𝑇𝐺𝑈. Generally, temperature controls heat conditions, 

while precipitation provides the necessary water for vegetation (Shen et al., 2022). Recent studies have highlighted the 

varying responses of vegetation to snow phenology across different moisture and heat zones (Guan et al., 2022; Liu et al., 185 

2023). Specifically, as temperature increased, the correlation between SCED and 𝑇𝐺𝑈  initially decreased below 0℃ but then 

increased above 0℃ (Wu et al., 2023). Increased humidity from precipitation strengthened the positive correlation between 

𝑇𝑆𝑂𝑀  and 𝑇𝐺𝑈 , whereas in high temperature areas, a strong negative correlation prevailed (Xu et al., 2022a). Besides 

temperature and precipitation, snowmelt significantly altered environmental conditions conducive to vegetation growth, 

https://doi.org/10.5194/egusphere-2024-2885
Preprint. Discussion started: 16 October 2024
c© Author(s) 2024. CC BY 4.0 License.



8 

 

suggesting that the magnitude of snowmelt from 𝑇𝑆𝑂𝑀 to 𝑇𝐺𝑈 may also influence ∆𝑇 (An et al., 2022; Rixen et al., 2022). 190 

Therefore, we selected the daily mean temperature of spring (𝑇𝑠𝑝𝑟𝑖𝑛𝑔), the total spring rainfall (𝑃𝑠𝑝𝑟𝑖𝑛𝑔), and the daily mean 

snowmelt from 𝑇𝑆𝑂𝑀  to 𝑇𝐺𝑈 (𝑆𝑆𝑡𝑜𝐺) as the influencing factors of ∆𝑇. 

The partial correlation coefficient between each variable and ∆𝑇 was computed to quantify the relationship. Next, a 

multiple linear regression model was established for each pixel (Equation 8).  

∆𝑇 = 𝑎𝑇𝑠𝑝𝑟𝑖𝑛𝑔 + 𝑏𝑃𝑠𝑝𝑟𝑖𝑛𝑔 + 𝑐𝑆𝑆𝑡𝑜𝐺 + 𝑑 (8) 195 

where 𝑎、𝑏、𝑐  are the fitting coefficients used to determine the contribution of 𝑇𝑠𝑝𝑟𝑖𝑛𝑔 , 𝑃𝑠𝑝𝑟𝑖𝑛𝑔  and 𝑆𝑆𝑡𝑜𝐺  to ∆𝑇 , 

respectively, while 𝑑 represents a constant term. By comparing the fitting coefficients, the factor with the largest coefficient 

was deemed dominant. 

It is important to note that all variables were standardized by Z-scores before being input into the model to eliminate 

dimensional differences. Additionally, since the models are based on the pixel scale, only regions with more than 6 years of 200 

∆𝑇 were considered valid samples. The significance level was set at 𝑝 < 0.1. 

 

3 Result 

3.1 Spatial and temporal distribution characteristics of ∆𝑻 

Figure 3 shows the spatial pattern of the multiyear mean 𝑇𝑆𝑂𝑀  and 𝑇𝐺𝑈 data from 2001 to 2018. The Qaidam Basin and 205 

southern Qiangtang Plateau, which rarely experience snowfall (Xu et al., 2024), present challenges for snowmelt detection. 

In the northern TP, where vegetation is sparse, and in the southeastern TP, where seasonal vegetation changes are minimal, 

𝑇𝐺𝑈  was not observed. Generally, 𝑇𝑆𝑂𝑀  occurred between DOY 70 to 100 (10 March to 9 April) for 80.1% of the TP, with an 

average DOY of 86.1. The latest 𝑇𝑆𝑂𝑀  (>DOY 105) was found in the Kunlun and Nyainqentanglha Mountains, while the 

earliest 𝑇𝑆𝑂𝑀 occurred in the Hengduan and Minshan Mountains, with an averaged DOY of 76.8. In contrast, 𝑇𝐺𝑈 appeared 210 

later and was more concentrated, ranging from DOY 110 to 140 (19 April to 19 May) for 77.6% of the TP, showing a clear 

progress from west to east. 
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Figure 3: Spatial distribution of multiyear averaged (a)𝑻𝑺𝑶𝑴 and (b)𝑻𝑮𝑼 from 2001 to 2018 on the Tibetan Plateau. 

∆𝑇 was calculated using Equation 1 for regions where both 𝑇𝑆𝑂𝑀  and 𝑇𝐺𝑈  were non-null (Fig. 4). A positive ∆𝑇 215 

indicates that 𝑇𝑆𝑂𝑀  preceded 𝑇𝐺𝑈 , and vice versa. The average ∆𝑇 over the TP from 2001 to 2018 was 36.7 days, with 

positive values observed over 90% of the TP. The proportion of ∆𝑇 ranging from 40 to 60 days was the highest, accounting 

for 34.3% on average. Spatially, ∆𝑇 increases from approximately 27.8 days in the south to 39.7 days in the north of the 

southeast TP, with larger values (around 47.3 days) observed in the Bayankara, Gangdise, and Himalayas Mountains. 

Negative ∆𝑇 was mainly found in the central TP and some areas of the Qilian Mountains, averaging −25.9 days. 220 
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Figure 4: Spatial and frequency distribution histograms of ∆𝑻 on the Tibetan Plateau from 2001–2018. 

The global and local Moran’s I were calculated (Fig. 5), to gain more about spatial distribution characteristics of ∆𝑇. 

The global Moran’s I of ∆𝑇 over the TP from 2001–2018 was significant at the 0.01 level. Despite some annual fluctuations, 

the global Moran's I index consistently remained above zero and showed a gradual decrease from approximately 0.3 to 0.2 225 

(left-bottom values in each subgraph of Fig. 5). This indicates that ∆𝑇 demonstrates spatial clustering with a slight reduction 

in its concentration. The local Moran’s I index revealed that about 58.7% of the regions exhibited significant spatial 

autocorrelation. The pale blue regions in Fig. 5 represent low-value clustering, comprising 21.1% of the area, while the pink 

regions, accounting for 27.5%, indicate high-value clustering, meaning ∆𝑇 was generally longer in these areas. Red and blue 
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areas, representing high (low) values surrounded by low (high) values, accounted for 5.7 and 4.4%, respectively. The spatial 230 

distribution of ∆𝑇 clustering was relatively stable from 2001 to 2018, with low values predominatly concentrated in the 

Hengduan Mountains and high values primarily clustered around the Bayankara and Himalaya Mountains. 

 

Figure 5: Global and local Moran’s I values of ∆𝑻 on the Tibetan Plateau from 2001–2018. 

Regarding the temporal trend of ∆𝑇 , Fig. 6 shows the interannual variation from 2001–2018, along with its 235 

significance indicated in the bottom-left corner. Only 6.2% of the study area, predominantly in the eastern TP, exhibits a 
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significant trend. Of these regions, approximately 86.6% show a declining trajectory, suggesting that vegetation in these 

areas responded more rapidly to snowmelt. However, for most regions, no discernible trend was observed over time, likely 

because the warming hiatus since the 2000s has not led to noticeable advancements in 𝑇𝑆𝑂𝑀  and 𝑇𝐺𝑈 (Piao et al., 2019; Wang 

et al., 2019). 240 

 

Figure 6: Interannual variation trend and significant levels of ∆𝑻 on the Tibetan Plateau from 2001–2018. 

3.2 Influence of air temperature, precipitation, and snowmelt on ∆𝑻 

As observed in section 3.1, ∆𝑇 is positive in most regions. Furthermore, snowmelt only significantly impact vegetation when 

𝑇𝑆𝑂𝑀  precedes 𝑇𝐺𝑈. Consequently, subsequent analyses will focus exclusively on areas where ∆𝑇 is positive. 245 

Figure 7a illustrates the mean value of ∆𝑇 under varying spring meteorological conditions. Within each column, 

𝑇𝑠𝑝𝑟𝑖𝑛𝑔 remains constant, while each row represents a fixed 𝑃𝑠𝑝𝑟𝑖𝑛𝑔. ∆𝑇 exhibits a distinct stepwise decline from cold-arid to 

warm-humid regions, decreasing from approximately 50 to 30 days. Along the X-axis (with consistent moisture conditions), 

∆𝑇 decreases as spring temperature rise. Near the freezing point (272–273 K), ∆𝑇 advances significantly by about three days. 

However, in regions below 273 K, ∆𝑇 fluctuates with temperature. In cold-humid areas, ∆𝑇 is prone to outliers and lacks a 250 

clear pattern due to the small sample size. Along the Y-axis (with constant thermal conditions), ∆𝑇  diminished with 

increasing rainfall, except in regions with temperatures between 264–267 K. For every additional 10 mm of rainfall, ∆𝑇 

decreases by 0.1–5 days. Additionally, higher spring temperature amplify the reduction in ∆𝑇 with increased precipitation. 

Fig. 7b reveals a strong negative correlation between ∆𝑇 and 𝑆𝑆𝑡𝑜𝐺  when 𝑆𝑆𝑡𝑜𝐺  exceeds 6 mm day-1. An increase of 1 mm in 

𝑆𝑆𝑡𝑜𝐺  corresponds to an approximate decrease of 0.615 days in ∆𝑇. The dispersion within each snowmelt category remains 255 

relatively constant, with a standard deviation of about 16.8 days. 
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Figure 7: Variations in ∆𝑻 across regions with differing (a) spring mean temperature (𝑻𝒔𝒑𝒓𝒊𝒏𝒈), spring total rainfall (𝑷𝒔𝒑𝒓𝒊𝒏𝒈), and 

(b) daily snowmelt from 𝑻𝑺𝑶𝑴 to 𝑻𝑮𝑼 (𝑺𝑺𝒕𝒐𝑮). In (b), points represent the mean ∆𝑻, while error bars denote one standard deviation. 

The slope and R2 value reflect the coefficient and precision of the linear regression, respectively, with a significance level of 0.01. 260 

To quantify the influence of environmental factors on ∆𝑇 across different regions, a partial correlation coefficient 

was calculated for each pixel (Fig. 8). Only pixels with valid ∆𝑇 over a 6-year period were included in the analysis. 

At a significance level of 0.1, ∆𝑇 was significantly correlated with temperature in 15.7% of samples, with 59.4% 

showing a positive correlation. These positively correlated pixels were predominantly located in the southern part of the 

valid data, while negatively correlated pixels were concentrated in the northern regions. Regarding rainfall, 16.1% of the 265 

samples exhibited a significant correlation with ∆𝑇, with 76.8% of these showing a negative correlation and 23.2% showing 

a positive one. Snowmelt demonstrated a significant relationship with ∆𝑇 in 25.8% of samples, with 86.1% showing a 

negative correlation, and the average correlation index was −0.46. 
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Figure 8: Spatial distribution of the partial correlation between ∆𝑻 and (a) spring mean temperature (𝑹∆𝑻&𝑻𝒔𝒑𝒓𝒊𝒏𝒈), (b) spring total 270 

rainfall (𝑹∆𝑻&𝑷𝒔𝒑𝒓𝒊𝒏𝒈), and (c) daily snowmelt from 𝑻𝑺𝑶𝑴 to 𝑻𝑮𝑼 (𝑹∆𝑻&𝑺𝑺𝒕𝒐𝑮). 

A linear regression model was established to determine the dominant factor influencing ∆𝑇 at each pixel (Fig. 9). 

Among the significant samples (p<0.1), 𝑇𝑠𝑝𝑟𝑖𝑛𝑔, 𝑃𝑠𝑝𝑟𝑖𝑛𝑔, and 𝑆𝑆𝑡𝑜𝐺  accounted for 40.9%, 11.1%, and 48.0% of the dominant 

factors, respectively. On the southeastern TP, 𝑇𝑠𝑝𝑟𝑖𝑛𝑔  primarily influences ∆𝑇, whereas on the northwestern TP, 𝑆𝑆𝑡𝑜𝐺  is 

more influential. This aligns with the distribution of vegetation types and geographical zones (Fig. 1). Consequently, the 275 

proportion of each dominant factor across different regions was assessed. In the arid zone, 74% of pixels were dominated by 

𝑆𝑆𝑡𝑜𝐺 , compared to 20% dominated by 𝑇𝑠𝑝𝑟𝑖𝑛𝑔. As moisture increased, the dominant factor shifted from 𝑆𝑆𝑡𝑜𝐺  to 𝑇𝑠𝑝𝑟𝑖𝑛𝑔, with 

65% of pixels in humid regions under temperature dominance and only 17% under 𝑆𝑆𝑡𝑜𝐺 . Similarly, the proportion of 
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𝑇𝑠𝑝𝑟𝑖𝑛𝑔-dominant pixels increased from 22 to 59%, while 𝑆𝑆𝑡𝑜𝐺-dominant pixels decreased from 66 to 17% as vegetation 

became higher. Additionally, 𝑃𝑠𝑝𝑟𝑖𝑛𝑔 -dominant pixels consistently represented the lowest fractions (6–24%) across all 280 

regions. 

 

Figure 9: (a) Spatial distribution of dominant factor of ∆𝑻 and its proportion diagram among (b) different geographical zones and 

(c) different vegetation types. 

4 Discussion 285 

4.1 Quality evaluation of ∆𝑻 

∆𝑇 is primarily determined by 𝑇𝑆𝑂𝑀  and 𝑇𝐺𝑈. Xu et al. (2022b) discussed the accuracy of 𝑇𝐺𝑈, so this study focused on the 

identification quality of 𝑇𝑆𝑂𝑀 . 

𝑇𝑆𝑂𝑀  can currently be derived from optical or microwave remote sensing images. The Normalized Difference Snow 

Index (NDSI) is commonly used for snow identification in optical images. During periods of surface snow coverage, the 290 

NDSI tended to remain elevated and steady. After the start of snowmelt, the NDSI began to decrease. Consequently, 𝑇𝑆𝑂𝑀  

can be identified using the dynamic threshold method on the NDSI time-series curve (Potter, 2020; Zheng et al., 2022). 

However, NDSI mainly reflects snow presence rather than the snowmelt process, which initially reduces snow depth rather 

than snow cover extent (Panday et al., 2011). 

Microwave bands, on the other hand, are more effective at tracking the internal state of snowpacks due to differences 295 

in the dielectric constant between water and snow (Ma et al., 2020). Melting snow leads to abrupt changes in brightness 

temperature or backscatter coefficient, facilitating 𝑇𝑆𝑂𝑀  identification (Smith et al., 2017). Methods developed for this 

purpose include the band threshold method (Howell et al., 2012), the diurnal amplitude variation algorithm (DAV) 

(Semmens and Ramage, 2013), and the cross-polarized gradient ratio (Grippa et al., 2005). For instance, Xiong et al. (2017) 

identified 𝑇𝑆𝑂𝑀  as the date when the differential average derivative of the Ku-band reached a maximum, providing the 300 
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snowmelt onset time for the High Mountain Asia (1979–2018) dataset (SOMHMA), available from the National Tibetan 

Plateau Scientific Data Center (https://data.tpdc.ac.cn/) with a spatial resolution of 0.25°.  

Although this dataset captures snowmelt evolution, its spatial resolution is relatively low. 𝑇𝑆𝑂𝑀  can also be indirectly 

identified from abrupt points in the snow depth/snow water equivalent time series (Fontrodona-Bach et al., 2023; Zheng et 

al., 2022). Our study used a snow depth dataset from section 2.2.2, which improved spatial resolution to 0.05° via 305 

downscaling while maintaining the benefits of microwave bands, making it more accurate than traditional microwave data 

with a 0.25° resolution. 

Verifying 𝑇𝑆𝑂𝑀  is challenging due to the lack of in situ data. Snowmelt patterns, influenced by external conditions 

and similar to temperature distributions, have been cross-validated with temperature records in previous studies (Drobot and 

Anderson, 2001; Panday et al., 2011; Zheng et al., 2020). Thus, following Grippa et al. (2005), we randomly selected four 310 

sample areas on the TP and calculated the correlation coefficient between average 𝑇𝑆𝑂𝑀 and mean April temperature (Fig. 

10). Our results showed stronger consistency with temperature trends compared to SOMHMA. The ∆𝑇  calculated by 

SOMHMA was relatively random and inconclusive (Fig. S1-S3), potentially due to mixed pixel issues from its limited 

resolution. Although our method offers improved accuracy, some errors in 𝑇𝑆𝑂𝑀  persist due to original data uncertainty 

(RMSE = 0.61 cm) (Yan et al., 2022). 315 

 

Figure 10: Relevance between the average 𝑻𝑺𝑶𝑴 and mean April temperature in four sample areas. 

4.2 Response of vegetation to snowmelt 

In this study, the time difference between 𝑇𝐺𝑈 and 𝑇𝑆𝑂𝑀 was defined as ∆𝑇. This metric can have both positive and negative 

values, each with different implications. A positive ∆𝑇 indicates the time it takes for vegetation to respond to snowmelt. On 320 

the TP, ∆𝑇 was predominantly positive, with an average of 36.7 days. This suggests that vegetation response to snowmelt 

typically involves a delay of nearly one month. In contrast, response times are generally shorter in other regions. ∆𝑇 in the 
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high Arctic, Alaska, and Finland averaged 3 weeks (Cooper et al., 2011), 14.9 days (Zheng et al., 2022) and 5–13 days 

(Manninen et al., 2019), respectively. 

The influence of 𝑆𝑆𝑡𝑜𝐺  on response rate was notably widespread, with more 𝑆𝑆𝑡𝑜𝐺  shortening the response time in 325 

one-fourth of the TP. It can be inferred that reductions in ice volume and increases in the rain-to-snow ratio due to global 

warming may influence vegetation sensitivity to snowmelt (Tomaszewska et al., 2020). Snowmelt primarily affects soil 

moisture and nutrients, thus stimulating vegetative response to 𝑇𝑆𝑂𝑀 . Previous studies have emphasized the critical role of 

snowmelt in soil moisture. During early vegetation development, especially in alpine and cold regions, snow serves as an 

essential water source (Ernakovich et al., 2014; Li et al., 2020; Ma et al., 2024). This is evident in Fig. 9, where regions 330 

dominated by 𝑆𝑆𝑡𝑜𝐺  were more extensive than those dominated by 𝑃𝑠𝑝𝑟𝑖𝑛𝑔. Edwards et al. (2007) observed that nitrogen is 

leached from the snow layer during snowmelt and combines with nitrogen released from mineralization to form a pulse of 

inorganic nitrogen beneath the snow. This results in a peak in NO3− available post-snowmelt. As alpine vegetation typically 

prefers NO3− as a nitrogen source, snowmelt meets this need (Broadbent et al., 2021). Additionally, the insulating effect of 

snow on vegetation diminishes after melting (Rixen et al., 2022). For instance, Starr and Oberbauer (2003) measured solar 335 

radiation at different snow depths in the northern foothills of the Brooks Mountain Range, Alaska, finding that light levels 

were reduced by 20–40% under 10 cm of snow and declined up to 70% under 20 cm compared to bare ground. Thus, future 

remote sensing efforts should aim to quantify the snow's shielding effect to better understand vegetation response 

mechanisms. 

The vegetation response to 𝑇𝑆𝑂𝑀  is influenced not only by snowmelt but also by meteorological conditions. 340 

Temperature and precipitation, as primary factors of 𝑇𝐺𝑈 , significantly affect the response rate on the TP, accounting for 15.7% 

and 16.1% respectively (Fig. 8). Precipitation provides essential water for vegetation, enabling a swift return to growth post-

snowmelt. Temperature, on the other hand, impacts the heat required for vegetation growth and accelerates snowmelt, 

thereby supplying water and nutrients (Liu et al., 2021). Higher temperature can thus enhance 𝑇𝐺𝑈 and shorten response time 

(Fig. 7a). However, elevated temperatures may also advance 𝑇𝑆𝑂𝑀 (Mioduszewski et al., 2014; Mioduszewski et al., 2015). 345 

Due to the differential effects of temperature on 𝑇𝑆𝑂𝑀  and 𝑇𝐺𝑈, both positive and negative correlation between 𝑇𝑠𝑝𝑟𝑖𝑛𝑔 and 

∆𝑇 were observed at local scales (Fig. 8a). Statistical analysis shows that positively correlated pixels are typically found in 

southern regions with an average 𝑇𝑠𝑝𝑟𝑖𝑛𝑔  of 271.19 K, while negatively correlated areas are in northern regions with an 

average 𝑇𝑠𝑝𝑟𝑖𝑛𝑔  of 269.84 K. In warmer regions with mean annual temperatures above freezing, spring temperature 

correlates negatively with 𝑇𝑆𝑂𝑀  (−0.46) and 𝑇𝐺𝑈 (−0.07), indicating that temperature primarily influences snowmelt rather 350 

than vegetation growth, thus extending response times. Conversely, in colder regions, where spring temperatures correlate 

negatively with 𝑇𝑆𝑂𝑀  (−0.28) and 𝑇𝐺𝑈  (−0.27), increased temperatures can reduce cold stress on vegetation. However, 

consistent sub-freezing temperatures do not significantly enhance 𝑇𝑆𝑂𝑀. In summary, the relationship between temperature 

and response time is modulated by the magnitudes of their respective influences at the local scale. 
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Furthermore, the primary factors controlling response time varied across regions but exhibited a clear regional 355 

distribution. Previous studies have indicated that in arid areas, 𝑇𝐺𝑈 is more sensitive to water availability, especially in the 

central and western TP, while 𝑇𝐺𝑈 shows a more significant negative correlation with temperature in the eastern TP, which 

experiences wetter springs (Piao et al., 2019; Shen et al., 2022). Despite differences in dependent variables, this conclusion 

remains consistent (Fig. 9b). In arid regions, where water is the main limiting factor, ∆𝑇 is predominantly controlled by 

snowmelt. In contrast, in humid regions where heat is the limiting factor, ∆𝑇  is mainly influenced by 𝑇𝑠𝑝𝑟𝑖𝑛𝑔 . When 360 

analyzing by vegetation type, higher vegetation (e.g., shrubs and forests), which is more exposed to the environment, is 

primarily influenced by temperature. Conversely, lower vegetation (e.g., alpine steppes and meadows), which is covered by 

snow, is more affected by snowmelt than by 𝑇𝑠𝑝𝑟𝑖𝑛𝑔 and 𝑃𝑠𝑝𝑟𝑖𝑛𝑔 (Fig. 9c). This finding is supported by Zheng et al. (2022), 

who observed that the growth rate of soil temperatures was higher in lower vegetation compared to higher vegetation. Our 

study, which compares these factors at the pixel scale, further substantiates this view and clarifies the spatial variations 365 

across the TP. 

Specially, if ∆𝑇 is negative (i.e. 𝑇𝑆𝑂𝑀 occurs later than 𝑇𝐺𝑈), this situation is termed “false spring” (Chamberlain et al., 

2019; Chamberlain et al., 2021; Peterson and Abatzoglou, 2014). During false springs, once plant growth begins, frost 

tolerance significantly decreases. Continued exposure to freezing conditions can damage vegetation tissues and reduce 

productivity, leading to both ecological and economic impacts (Chamberlain et al., 2019). Zhu et al. (2019b) used the SI-x 370 

model to simulate the probability of false spring in China from 1950 to 2005 and projected it until 2100, finding that the TP 

exhibited the highest probability in China. Thus, false spring warrants further investigation in the TP, even though it was not 

the primary focus of this study. 

Although previous studies have established a strong positive correlation between 𝑇𝑆𝑂𝑀  and 𝑇𝐺𝑈  (An et al., 2022; 

Wang et al., 2015; Wang et al., 2018b; Xu et al., 2022a), the specific time differences between them in the TP remain 375 

unclear. Our study advances this understanding by examining the heterogeneity and mechanisms of vegetation response to 

snowmelt and reinforces the notion that snowmelt primarily affects arid regions and areas with low vegetation cover. 

5 Conclusion 

In this study, we first identified the start of snowmelt (𝑇𝑆𝑂𝑀) using snow depth products and integrated this with green-up 

date datasets to calculate ∆𝑇 from 2001 to 2018 on the TP. We further explored the effects of  𝑇𝑠𝑝𝑟𝑖𝑛𝑔, 𝑃𝑠𝑝𝑟𝑖𝑛𝑔, and 𝑆𝑆𝑡𝑜𝐺  on 380 

∆𝑇 through heatmaps, box plots, partial correlation analysis, and multiple linear regression. The results showed that (1) 𝑇𝑆𝑂𝑀  

ranged from DOY 70 to 100 across 80.1% of the TP, with an average of DOY 86.1. The average ∆𝑇 from 2001 to 2018 was 

36.7 days, with ∆𝑇  being positive over 90% of the TP, which is longer compared to other regions due to snowpack 

characteristics. (2) Spatially, low ∆𝑇 was concentrated in the Hengduan Mountains, while high ∆𝑇 was observed in the 

Bayankara and Himalayas Mountains. Only 6.2% of the study area exhibited a significant temporal trend, attributed toa 385 
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warming hiatus. (3) At the significance level of 0.1, 𝑇𝑠𝑝𝑟𝑖𝑛𝑔, 𝑃𝑠𝑝𝑟𝑖𝑛𝑔, and 𝑆𝑆𝑡𝑜𝐺  explained 15.7%, 16.1%, and 25.8% of ∆𝑇 

variation, respectively, with negative correlation accounting for 40.6%, 76.8%, and 86.1%. (4) 𝑆𝑆𝑡𝑜𝐺  was the dominant factor 

affecting ∆𝑇 for 74% and 66% of arid regions and areas with low vegetation respectively, while 𝑇𝑠𝑝𝑟𝑖𝑛𝑔 was predominant in 

humid and areas with high vegetation, affecting 65% and 59% of these regions. Our findings suggest that 𝑇𝑆𝑂𝑀, derived from 

downscaled snow depth dataset, provides more reliable information on the snow-melting process. Additionally, as a source 390 

of water and nitrogen, 𝑆𝑆𝑡𝑜𝐺  significantly influences vegetation response to 𝑇𝑆𝑂𝑀 . This study also confirms that vegetation in 

arid regions is more reliant on water than heat, and low-vegetation areas are more dependent on sub-snow habitat than 

external factors. These insights underscore the critical role of snowmelt in vegetation growth and enhance our understanding 

of vegetation responses to snowmelt. Future research should focus on the effects of snow cover and false springs. 

Data availability 395 

The data used in this study is all available on the request from the corresponding author. 

Author Contribution 

JN: Investigation, methodology, data curation, validation, visualization, wrting – original draft. JC: Conceptualization, 

methodology, formal analysis, writing - review & editing. YT: Methodology, formal analysis. JX: Methodology, resources. 

JX: Methodology, visualization. LD: Formal analysis. QG: Formal analysis. BY: Fomal analysis. JW: Fomal analysis. YH: 400 

Conceptualization, Project administration, Funding acquisition, Validation, Resources, Fomal analysis, Wrting – review & 

editing. 

Competing interests 

The authors declare that they have no conflict of interest. 

Acknowledgments 405 

This study was supported by the National Natural Science Foundation of China (No. 42071306). And we also thank the 

National Tibetan Plateau Data Center, the Climate Data Store, and the Science Data Bank for providing the required data. 

https://doi.org/10.5194/egusphere-2024-2885
Preprint. Discussion started: 16 October 2024
c© Author(s) 2024. CC BY 4.0 License.



20 

 

References 

An, S., Zhang, X., and Ren, S.: Spatial Difference between Temperature and Snowfall Driven Spring Phenology of Alpine 

Grassland Land Surface Based on Process-Based Modeling on the Qinghai-Tibet Plateau, Remote Sens., 14, 410 

https://doi.org/10.3390/rs14051273, 2022. 

Bibi, S., Wang, L., Li, X. P., Zhou, J., Chen, D. L., and Yao, T. D.: Climatic and associated cryospheric, biospheric, and 

hydrological changes on the Tibetan Plateau: a review, Int. J. Climatol., 38, E1-E17, 

https://doi.org/10.1002/joc.5411, 2018. 

Broadbent, A. A. D., Snell, H. S. K., Michas, A., Pritchard, W. J., Newbold, L., Cordero, I., Goodall, T., Schallhart, N., 415 

Kaufmann, R., Griffiths, R. I., Schloter, M., Bahn, M., and Bardgett, R. D.: Climate change alters temporal 

dynamics of alpine soil microbial functioning and biogeochemical cycling via earlier snowmelt, ISME J., 15, 2264-

2275, https://doi.org/10.1038/s41396-021-00922-0, 2021. 

Chamberlain, C. J., Cook, B. I., de Cortazar-Atauri, I. G., and Wolkovich, E. M.: Rethinking false spring risk, Global 

Change Biol., 25, 2209-2220, https://doi.org/10.1111/gcb.14642, 2019. 420 

Chamberlain, C. J., Cook, B. I., Morales-Castilla, I., and Wolkovich, E. M.: Climate change reshapes the drivers of false 

spring risk across European trees, New Phytol., 229, 323-334, https://doi.org/10.1111/nph.16851, 2021. 

Cooper, E. J., Dullinger, S., and Semenchuk, P.: Late snowmelt delays plant development and results in lower reproductive 

success in the High Arctic, Plant Sci., 180, 157-167, https://doi.org/10.1016/j.plantsci.2010.09.005, 2011. 

Diao, C., Liu, Y., Zhao, L., Zhuo, G., and Zhang, Y. Q.: Regional-scale vegetation-climate interactions on the Qinghai-Tibet 425 

Plateau, Ecol. Inf., 65, https://doi.org/10.1016/j.ecoinf.2021.101413, 2021. 

Dong, L., Zhou, H., Xu, J., Tang, Y., Teng, X., Ni, J., Yu, B., Wu, J., and Huang, Y.: BI or IB: Which Better Generates High 

Spatiotemporal Resolution NDSI by Fusing Sentinel-2A/B and MODIS Data?, IEEE J. Sel. Top. Appl. Earth Obs. 

Remote Sens., 17, 3314-3333, https://doi.org/10.1109/jstars.2023.3347202, 2024. 

Drobot, S. D. and Anderson, M. R.: An improved method for determining snowmelt onset dates over Arctic sea ice using 430 

scanning multichannel microwave radiometer and Special Sensor Microwave/Imager data, J. Geophys. Res-atmos., 

106, 24033-24049, https://doi.org/10.1029/2000jd000171, 2001. 

Edwards, A. C., Scalenghe, R., and Freppaz, M.: Changes in the seasonal snow cover of alpine regions and its effect on soil 

processes: A review, Quat. Int., 162, 172-181, https://doi.org/10.1016/j.quaint.2006.10.027, 2007. 

Ernakovich, J. G., Hopping, K. A., Berdanier, A. B., Simpson, R. T., Kachergis, E. J., Steltzer, H., and Wallenstein, M. D.: 435 

Predicted responses of arctic and alpine ecosystems to altered seasonality under climate change, Global Change 

Biol., 20, 3256-3269, https://doi.org/10.1111/gcb.12568, 2014. 

Fontrodona-Bach, A., Schaefli, B., Woods, R., Teuling, A. J., and Larsen, J. R.: NH-SWE: Northern Hemisphere Snow 

Water Equivalent dataset based on in situ snow depth time series, Earth Syst. Sci. Data, 15, 2577-2599, 

https://doi.org/10.5194/essd-15-2577-2023, 2023. 440 

Grippa, M., Mognard, N., and Le Toan, T.: Comparison between the interannual variability of snow parameters derived from 

SSM/I and the Ob river discharge, Remote Sens. Environ., 98, 35-44, https://doi.org/10.1016/j.rse.2005.06.001, 

2005. 

Guan, X., Guo, S., Huang, J., Shen, X., Fu, L., and Zhang, G.: Effect of seasonal snow on the start of growing season of 

typical vegetation in Northern Hemisphere, Geogr, Sustain., 3, 268-276, 445 

https://doi.org/10.1016/j.geosus.2022.09.001, 2022. 

He, J., Yang, K., Tang, W. J., Lu, H., Qin, J., Chen, Y. Y., and Li, X.: The first high-resolution meteorological forcing 

dataset for land process studies over China, Sci. Data, 7, https://doi.org/10.1038/s41597-020-0369-y, 2020. 

Howell, S. E. L., Assini, J., Young, K. L., Abnizova, A., and Derksen, C.: Snowmelt variability in Polar Bear Pass, Nunavut, 

Canada, from QuikSCAT: 2000-2009, Hydrol. Processes, 26, 3477-3488, https://doi.org/10.1002/hyp.8365, 2012. 450 

Huang, K., Zu, J., Zhang, Y., Cong, N., Liu, Y., and Chen, N.: Impacts of snow cover duration on vegetation spring 

phenology over the Tibetan Plateau, J. Plant Ecol., 12, 583-592, https://doi.org/10.1093/jpe/rty051, 2019. 

Lei, Y., Pan, J., Xiong, C., Jiang, L., and Shi, J.: Snow depth and snow cover over the Tibetan Plateau observed from space 

in against ERA5: matters of scale, Clim. Dyn., 60, 1523-1541, https://doi.org/10.1007/s00382-022-06376-0, 2023. 

https://doi.org/10.5194/egusphere-2024-2885
Preprint. Discussion started: 16 October 2024
c© Author(s) 2024. CC BY 4.0 License.



21 

 

Li, Y., Li, T., Liu, D., Fu, Q., Hou, R., Ji, Y., and Cui, S.: Estimation of snow meltwater based on the energy and mass 455 

processes during the soil thawing period in seasonally frozen soil areas, Agric. For. Meteorol., 292, 

https://doi.org/10.1016/j.agrformet.2020.108138, 2020. 

Li, Y. Z., Qin, X., Liu, Y. S., Jin, Z. Z., Liu, J., Wang, L. H., and Chen, J. Z.: Evaluation of Long-Term and High-Resolution 

Gridded Precipitation and Temperature Products in the Qilian Mountains, Qinghai-Tibet Plateau, Frontiers in 

Environmental Science, 10, https://doi.org/10.3389/fenvs.2022.906821, 2022. 460 

Liu, H., Xiao, P., Zhang, X., Chen, S., Wang, Y., and Wang, W.: Winter snow cover influences growing-season vegetation 

productivity non-uniformly in the Northern Hemisphere, Commun. Earth Environ., 4, 

https://doi.org/10.1038/s43247-023-01167-9, 2023. 

Liu, X. G., Chen, Y. N., Li, Z., Li, Y. P., Zhang, Q. F., and Zan, M.: Driving Forces of the Changes in Vegetation Phenology 

in the Qinghai-Tibet Plateau, Remote Sens., 13, https://doi.org/10.3390/rs13234952, 2021. 465 

Ma, W., Hu, J., Zhang, B., Guo, J., Zhang, X., and Wang, Z.: Later-melting rather than thickening of snowpack enhance the 

productivity and alter the community composition of temperate grassland, Sci. Total Environ., 923, 

https://doi.org/10.1016/j.scitotenv.2024.171440, 2024. 

Ma, W., Xiao, P., Zhang, X., Song, Y., Ma, T., and Ye, L.: Retrieving snow wetness based on surface and volume scattering 

simulation, ISPRS J. Photogramm. Remote Sens., 169, 17-28, https://doi.org/10.1016/j.isprsjprs.2020.08.021, 2020. 470 

Manninen, T., Aalto, T., Markkanen, T., Peltoniemi, M., Bottcher, K., Metsamaki, S., Anttila, K., Pirinen, P., Leppanen, A., 

and Arslan, A. N.: Monitoring changes in forestry and seasonal snow using surface albedo during 1982-2016 as an 

indicator, Biogeosciences, 16, 223-240, https://doi.org/10.5194/bg-16-223-2019, 2019. 

Mioduszewski, J. R., Rennermalm, A. K., Robinson, D. A., and Mote, T. L.: Attribution of snowmelt onset in Northern 

Canada, J. Geophys. Res-atmos., 119, 9638-9653, https://doi.org/10.1002/2013jd021024, 2014. 475 

Mioduszewski, J. R., Rennermalm, A. K., Robinson, D. A., and Wang, L.: Controls on Spatial and Temporal Variability in 

Northern Hemisphere Terrestrial Snow Melt Timing, 1979-2012, J. Clim., 28, 2136-2153, 

https://doi.org/10.1175/jcli-d-14-00558.1, 2015. 

Panday, P. K., Frey, K. E., and Ghimire, B.: Detection of the timing and duration of snowmelt in the Hindu Kush-Himalaya 

using QuikSCAT, 2000-2008, Environ. Res. Lett., 6, https://doi.org/10.1088/1748-9326/6/2/024007, 2011. 480 

Peng, S., Piao, S., Ciais, P., Fang, J., and Wang, X.: Change in winter snow depth and its impacts on vegetation in China, 

Global Change Biol., 16, 3004-3013, https://doi.org/10.1111/j.1365-2486.2010.02210.x, 2010. 

Peterson, A. G. and Abatzoglou, J. T.: Observed changes in false springs over the contiguous United States, Geophys. Res. 

Lett., 41, 2156-2162, https://doi.org/10.1002/2014gl059266, 2014. 

Piao, S., Liu, Q., Chen, A., Janssens, I. A., Fu, Y., Dai, J., Liu, L., Lian, X., Shen, M., and Zhu, X.: Plant phenology and 485 

global climate change: Current progresses and challenges, Global Change Biol., 25, 1922-1940, 

https://doi.org/10.1111/gcb.14619, 2019. 

Potter, C.: Snowmelt timing impacts on growing season phenology in the northern range of Yellowstone National Park 

estimated from MODIS satellite data, Landscape Ecol., 35, 373-388, https://doi.org/10.1007/s10980-019-00951-3, 

2020. 490 

Ren, Y., Zhang, L., Yang, K., Li, Z., Yin, R., Tan, B., Wang, L., Liu, Y., Li, H., You, C., Liu, S., Xu, Z., and Kardol, P.: 

Short-term effects of snow cover manipulation on soil bacterial diversity and community composition, Sci. Total 

Environ., 741, https://doi.org/10.1016/j.scitotenv.2020.140454, 2020. 

Rixen, C., Høye, T. T., Macek, P., Aerts, R., Alatalo, J. M., Anderson, J. T., Arnold, P. A., Barrio, I. C., Bjerke, J. W., 

Björkman, M. P., Blok, D., Blume-Werry, G., Boike, J., Bokhorst, S., Carbognani, M., Christiansen, C. T., Convey, 495 

P., Cooper, E. J., Cornelissen, J. H. C., Coulson, S. J., Dorrepaal, E., Elberling, B., Elmendorf, S. C., Elphinstone, 

C., Forte, T. a. G. W., Frei, E. R., Geange, S. R., Gehrmann, F., Gibson, C., Grogan, P., Halbritter, A. H., Harte, J., 

Henry, G. H. R., Inouye, D. W., Irwin, R. E., Jespersen, G., Jónsdóttir, I. S., Jung, J. Y., Klinges, D. H., Kudo, G., 

Lämsä, J., Lee, H., Lembrechts, J. J., Lett, S., Lynn, J. S., Mann, H. M. R., Mastepanov, M., Morse, J., Myers-

Smith, I. H., Olofsson, J., Paavola, R., Petraglia, A., Phoenix, G. K., Semenchuk, P., Siewert, M. B., Slatyer, R., 500 

Spasojevic, M. J., Suding, K., Sullivan, P., Thompson, K. L., Väisänen, M., Vandvik, V., Venn, S., Walz, J., Way, 

R., Welker, J. M., Wipf, S., and Zong, S.: Winters are changing: snow effects on Arctic and alpine tundra 

ecosystems, Arct. Sci., 8, 572 - 608, 2022. 

https://doi.org/10.5194/egusphere-2024-2885
Preprint. Discussion started: 16 October 2024
c© Author(s) 2024. CC BY 4.0 License.



22 

 

Semmens, K. A. and Ramage, J. M.: Recent changes in spring snowmelt timing in the Yukon River basin detected by 

passive microwave satellite data, Cryosphere, 7, 905-916, https://doi.org/10.5194/tc-7-905-2013, 2013. 505 

Shen, M., Wang, S., Jiang, N., Sun, J., Cao, R., Ling, X., Fang, B., Zhang, L., Zhang, L., Xu, X., Lv, W., Li, B., Sun, Q., 

Meng, F., Jiang, Y., Dorji, T., Fu, Y., Iler, A., Vitasse, Y., Steltzer, H., Ji, Z., Zhao, W., Piao, S., and Fu, B.: Plant 

phenology changes and drivers on the Qinghai-Tibetan Plateau, Nat. Rev. Earth Environ., 3, 633-651, 

https://doi.org/10.1038/s43017-022-00317-5, 2022. 

Shen, M. G., Zhang, G. X., Cong, N., Wang, S. P., Kong, W. D., and Piao, S. L.: Increasing altitudinal gradient of spring 510 

vegetation phenology during the last decade on the Qinghai-Tibetan Plateau, Agric. For. Meteorol., 189, 71-80, 

https://doi.org/10.1016/j.agrformet.2014.01.003, 2014. 

Shen, M. G., Piao, S. L., Dorji, T., Liu, Q., Cong, N., Chen, X. Q., An, S., Wang, S. P., Wang, T., and Zhang, G. X.: Plant 

phenological responses to climate change on the Tibetan Plateau: research status and challenges, Natl. Sci. Rev., 2, 

454-467, https://doi.org/10.1093/nsr/nwv058, 2015. 515 

Smith, T., Bookhagen, B., and Rheinwalt, A.: Spatiotemporal patterns of High Mountain Asia's snowmelt season identified 

with an automated snowmelt detection algorithm, 1987-2016, Cryosphere, 11, 2329-2343, 

https://doi.org/10.5194/tc-11-2329-2017, 2017. 

Stanislaw, K., Pawel, C., Danuta, K., and Robert, P.: Variability and changes of the height and duration of snow cover on the 

Gasienicowa Glade (Tatras), Int. J. Climatol., 43, 7018-7031, https://doi.org/10.1002/joc.8249, 2023. 520 

Starr, G. and Oberbauer, S. F.: Photosynthesis of arctic evergreens under snow: Implications for tundra ecosystem carbon 

balance, Ecology, 84, 1415-1420, https://doi.org/10.1890/02-3154, 2003. 

Tomaszewska, M. A., Nguyen, L. H., and Henebry, G. M.: Land surface phenology in the highland pastures of montane 

Central Asia: Interactions with snow cover seasonality and terrain characteristics, Remote Sens. Environ., 240, 

111675, https://doi.org/https://doi.org/10.1016/j.rse.2020.111675, 2020. 525 

Wang, K., Zhang, L., Qiu, Y., Ji, L., Tian, F., Wang, C., and Wang, Z.: Snow effects on alpine vegetation in the Qinghai-

Tibetan Plateau, Int. J. Digital Earth, 8, 56-73, https://doi.org/10.1080/17538947.2013.848946, 2015. 

Wang, X., Wu, C., Peng, D., Gonsamo, A., and Liu, Z.: Snow cover phenology affects alpine vegetation growth dynamics on 

the Tibetan Plateau: Satellite observed evidence, impacts of different biomes, and climate drivers, Agric. For. 

Meteorol., 256, 61-74, https://doi.org/10.1016/j.agrformet.2018.03.004, 2018a. 530 

Wang, X., Xiao, J., Li, X., Cheng, G., Ma, M., Zhu, G., Arain, M. A., Black, T. A., and Jassal, R. S.: No trends in spring and 

autumn phenology during the global warming hiatus, Nat. Commun., 10, https://doi.org/10.1038/s41467-019-

10235-8, 2019. 

Wang, X. Y., Wang, T., Guo, H., Liu, D., Zhao, Y. T., Zhang, T. T., Liu, Q., and Piao, S. L.: Disentangling the mechanisms 

behind winter snow impact on vegetation activity in northern ecosystems, Global Change Biol., 24, 1651-1662, 535 

https://doi.org/10.1111/gcb.13930, 2018b. 

Wu, Y., Xiao, P., Zhang, X., Liu, H., Dong, Y., and Feng, L.: Effects of Snow Cover on Spring Vegetation Phenology Vary 

With Temperature Gradient Across the Pan-Arctic, J. Geophys, Res. :Biogeosci., 128, 

https://doi.org/10.1029/2022jg007183, 2023. 

Xiong, C., Shi, J., Cui, Y., and Peng, B.: Snowmelt Pattern Over High-Mountain Asia Detected From Active and Passive 540 

Microwave Remote Sensing, IEEE Geosci. Remote Sens. Lett., 14, 1096-1100, 

https://doi.org/10.1109/lgrs.2017.2698448, 2017. 

Xiong, T., Zhang, H., Zhao, J., Zhang, Z., Guo, X., Zhu, Z., and Shan, Y.: Diverse Responses of Vegetation Dynamics to 

Snow Cover Phenology over the Boreal Region, Forests, 10, https://doi.org/10.3390/f10050376, 2019. 

Xu, J., Tang, Y., Dong, L., Wang, S., Yu, B., Wu, J., Zheng, Z., and Huang, Y.: Temperature-dominated spatiotemporal 545 

variability in snow phenology on the Tibetan Plateau from 2002 to 2022, Cryosphere, 18, 1817-1834, 

https://doi.org/10.5194/tc-18-1817-2024, 2024. 

Xu, J. Y., Tang, Y., Xu, J. H., Shu, S., Yu, B. L., Wu, J. P., and Huang, Y.: Impact of Snow Cover Phenology on the 

Vegetation Green-Up Date on the Tibetan Plateau, Remote Sens., 14, https://doi.org/10.3390/rs14163909, 2022a. 

Xu, J. Y., Tang, Y., Xu, J. H., Chen, J., Bai, K. X., Shu, S., Yu, B. L., Wu, J. P., and Huang, Y.: Evaluation of Vegetation 550 

Indexes and Green-Up Date Extraction Methods on the Tibetan Plateau, Remote Sens., 14, 

https://doi.org/10.3390/rs14133160, 2022b. 

https://doi.org/10.5194/egusphere-2024-2885
Preprint. Discussion started: 16 October 2024
c© Author(s) 2024. CC BY 4.0 License.



23 

 

Yan, D., Ma, N., and Zhang, Y.: Development of a fine-resolution snow depth product based on the snow cover probability 

for the Tibetan Plateau: Validation and spatial-temporal analyses, J. Hydrol., 604, 

https://doi.org/10.1016/j.jhydrol.2021.127027, 2022. 555 

Yang, M. X., Wang, X. J., Pang, G. J., Wang, G. N., and Liu, Z. C.: The Tibetan Plateau cryosphere: Observations and 

model simulations for current status and recent changes, Earth Sci. Rev., 190, 353-369, 

https://doi.org/10.1016/j.earscirev.2018.12.018, 2019. 

Yang, T., Li, Q., Zou, Q., Hamdi, R., Cui, F. Q., and Li, L. H.: Impact of Snowpack on the Land Surface Phenology in the 

Tianshan Mountains, Central Asia, Remote Sens., 14, https://doi.org/10.3390/rs14143462, 2022. 560 

Zhang, J., Chen, S. Z., Wu, Z. F., and Fu, Y. H.: Review of vegetation phenology trends in China in a changing climate, Prog. 

Phys. Geogr.: Earth Environ., 46, 829-845, https://doi.org/10.1177/03091333221114737, 2022a. 

Zhang, Q., Kong, D. D., Shi, P. J., Singh, V. P., and Sun, P.: Vegetation phenology on the Qinghai-Tibetan Plateau and its 

response to climate change (1982-2013), Agric. For. Meteorol., 248, 408-417, 

https://doi.org/10.1016/j.agrformet.2017.10.026, 2018a. 565 

Zhang, Q., Yuan, R. Y., Singh, V. P., Xu, C. Y., Fan, K. K., Shen, Z. X., Wang, G., and Zhao, J. Q.: Dynamic vulnerability 

of ecological systems to climate changes across the Qinghai-Tibet Plateau, China, Ecol. Indic., 134, 

https://doi.org/10.1016/j.ecolind.2021.108483, 2022b. 

Zhang, X. Y., Friedl, M. A., Schaaf, C. B., Strahler, A. H., Hodges, J. C. F., Gao, F., Reed, B. C., and Huete, A.: Monitoring 

vegetation phenology using MODIS, Remote Sens. Environ., 84, 471-475, https://doi.org/10.1016/s0034-570 

4257(02)00135-9, 2003. 

Zhang, Y., Sherstiukov, A. B., Qian, B., Kokelj, S. V., and Lantz, T. C.: Impacts of snow on soil temperature observed 

across the circumpolar north, Environ. Res. Lett., 13, https://doi.org/10.1088/1748-9326/aab1e7, 2018b. 

Zhao, D. S., Wu, S. H., Yin, Y. H., and Yin, Z. Y.: Vegetation distribution on Tibetan Plateau under climate change scenario, 

Reg. Environ. Change, 11, 905-915, https://doi.org/10.1007/s10113-011-0228-7, 2011. 575 

Zheng, J., Jia, G., and Xu, X.: Earlier snowmelt predominates advanced spring vegetation greenup in Alaska, Agric. For. 

Meteorol., 315, https://doi.org/10.1016/j.agrformet.2022.108828, 2022. 

Zheng, L., Zhou, C., Zhang, T., Liang, Q., and Wang, K.: Recent changes in pan-Antarctic region surface snowmelt detected 

by AMSR-E and AMSR2, Cryosphere, 14, 3811-3827, https://doi.org/10.5194/tc-14-3811-2020, 2020. 

Zhu, L., Ives, A. R., Zhang, C., Guo, Y., and Radeloff, V. C.: Climate change causes functionally colder winters for snow 580 

cover-dependent organisms, Nat. Clim. Change, 9, 886-+, https://doi.org/10.1038/s41558-019-0588-4, 2019a. 

Zhu, L. K., Meng, J. J., Li, F., and You, N. S.: Predicting the patterns of change in spring onset and false springs in China 

during the twenty-first century, Int. J. Biometeorol., 63, 591-606, https://doi.org/10.1007/s00484-017-1456-4, 

2019b. 

Zou, Y. F., Sun, P., Ma, Z. C., Lv, Y. F., and Zhang, Q.: Snow Cover in the Three Stable Snow Cover Areas of China and 585 

Spatio-Temporal Patterns of the Future, Remote Sens., 14, https://doi.org/10.3390/rs14133098, 2022. 

 

https://doi.org/10.5194/egusphere-2024-2885
Preprint. Discussion started: 16 October 2024
c© Author(s) 2024. CC BY 4.0 License.


