
General comments: 

The manuscript titled "Duration of vegetation green-up response to snowmelt on the 

Tibetan Plateau" by Ni and colleagues investigates the complex interactions between 

spring phenology and snowmelt dynamics on the Tibetan Plateau (TP), a region noted 

for its ecological sensitivity to climate change. The authors employ satellite-derived 

phenological data along with various statistical analyses to explore the spatiotemporal 

patterns and drivers of the time difference between snowmelt and vegetation green-up. 

This work offers valuable insights into TP ecosystem dynamics, aligning with the 

research interests of EGUsphere readers. However, there are several issues that could 

affect the robustness of the conclusions. The following major suggestions aim to 

enhance the paper’s scientific impact and clarity. 

Response: We sincerely appreciate your feedback and suggestion. In this revision, we 

have introduced an additional criterion for identifying the start of snowmelt (𝐷𝑆𝑂𝑀), 

recalculated the time differences (∆D), and incorporated the updated 𝐷𝑆𝑂𝑀 data into 

the subsequent statistical analysis. These revisions have been presented more concisely 

and clearly. Additionally, we have tightened the significance level to p < 0.05. Based 

on these new results, we have refined the language and restructured the results section. 

Our specific responses to each suggestion are as follows. 

 

 

Special comments 

 

Major concern 1: The first concern pertains to the snow coverage. While the TP 

experiences frequent snowfall, snow cover duration can be brief due to sublimation and 

wind dispersal. It is essential to verify that the study areas experience sustained snow 

cover throughout winter, not just isolated pixels as depicted in Figure 2. Additionally, 

consider streamlining the main text by moving certain figures (e.g., Figures 1 and 2) to 

the supplementary materials. 

Response:  

Indeed, while the Tibetan Plateau (TP) experiences frequent snowfall, its snow cover is 

typically transient, shallow, and patchy (Lei et al., 2023). For snow to have a 

measurable impact on vegetation, it must persist over time rather than appear only 

briefly. Therefore, following Chinese snow classification standards, we have 

introduced an additional criterion to the original two in Section 2.3.1. The duration of 

winter snow cover for each pixel must exceed 10 days: 



Additionally, to ensure that the snow cover is not transient and can influence 

vegetation, we have introduced a third criterion: the snow cover duration in winter 

must exceed 10 days (Zhao et al., 2022). 

The corresponding results and figures have been modified in the original text. 

 

Figure 2: Spatial distribution of multiyear averaged (a)𝑫𝑺𝑶𝑴 and (b)𝑫𝑮𝑼 from 2001 to 2018 

on the Tibetan Plateau. 

Additionally, following your valuable suggestion, original Figure 2 has been 

moved to the supplementary material to streamline the main text, and the figure 

numbering has been adjusted accordingly. 
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Major concern 2: The second concern is about the statistical analysis. Firstly, the 

variables—spring mean temperature, total spring rainfall, and daily snowmelt—are 

likely to exhibit multicollinearity, given the interdependence of temperature/rainfall 

and snowmelt. A multicollinearity check is recommended to identify and potentially 

exclude highly correlated variables. Employing a structural equation model could 

provide a more nuanced understanding of these interdependencies. Secondly, the 

chosen significance level (p < 0.1) was too large. Despite this, a substantial number of 

pixels on the TP show non-significant trends, suggesting an absence of robust 

relationships between green-up and snowmelt. To address this, consider categorizing 

pixels by significance, explaining the underlying causes for these patterns in each 

category. 

Response:  

We agree that testing for multicollinearity is crucial in multiple linear regression to 

ensure no redundancy among independent variables. Therefore, we assessed 

multicollinearity using the Variance Inflation Factor (VIF), with the results as 

follows:  

Table R1: Variance Inflation Factor for 𝑻𝒔𝒑𝒓𝒊𝒏𝒈, 𝑷𝒔𝒑𝒓𝒊𝒏𝒈 and 𝑺𝑺𝒕𝒐𝑮   

Variable VIF 

𝑇𝑠𝑝𝑟𝑖𝑛𝑔 1.243 

𝑃𝑠𝑝𝑟𝑖𝑛𝑔 1.209 

𝑆𝑆𝑡𝑜𝐺 1.174 

Since all variables have a VIF < 3, the data passes the collinearity criteria. 

This ensures the validity of proceeding with multiple linear regression analysis. We 

have further elaborated on this test in Section 2.3.4 of the methodology. 

The partial correlation coefficient between each variable and ∆D was 

calculated to quantify their relationship. Subsequently, a multiple linear regression 

model was established for each pixel (Equation 8). A prerequisite for multiple linear 

regression is passing the collinearity test, which requires the Variance Inflation 

Factor (VIF) to be less than 3, indicating no collinearity. In this study, the VIF 

values for 𝑇𝑠𝑝𝑟𝑖𝑛𝑔, 𝑃𝑠𝑝𝑟𝑖𝑛𝑔, and 𝑆𝑆𝑡𝑜𝐺 were 1.243, 1.209, and 1.174, respectively, 

confirming that the collinearity test was satisfied. 



Compared to traditional regression models, the structural equation model (SEM) 

not only quantifies the contribution of independent variables to dependent variables 

but also reveals relationships among independent variables and mediating effects. 

This provides deeper insights into the influence mechanisms of 𝑇𝑠𝑝𝑟𝑖𝑛𝑔, 𝑃𝑠𝑝𝑟𝑖𝑛𝑔, 

and 𝑆𝑆𝑡𝑜𝐺  on ∆D. Your suggestion is highly valuable. However, to ensure the 

credibility of the results, we assessed precision, model fit, and significance using R², 

SRMR, and p-values, respectively. The results are presented in Figure R1:  

 

Figure R1. SEM path effect diagram for the response of 𝑫𝑮𝑼 to 𝑫𝑺𝑶𝑴 

Although all model paths are significant (p < 0.05) and the fit is acceptable 

(SRMR = 0.00 < 0.08), the precision (R² = 0.117) is insufficient for drawing 

definitive conclusions. Therefore, further investigation using additional methods is 

needed to better elucidate the underlying mechanism. 

Regarding significance, 𝑝 < 0.05  is indeed a more appropriate criterion. 

Accordingly, all results have been revised based on this standard. 

In this study, significance testing is conducted using the t-test, as detailed in 

Equation R1, which directly depends on the correlation coefficient (𝑟) and degrees 

of freedom (𝑑𝑓). 

𝑡 =
𝑟

√1 − 𝑟2
√𝑑𝑓 (𝑅1) 

The t-value can be converted to a p-value by looking up to the critical value table, 

which depends on the sample size (𝑑𝑓). In this study, we utilized the stats library in 

Python 3.8 to perform this calculation. Since each pixel has an average of 12 

samples with three independent variables (𝑥), the average degrees of freedom (𝑑𝑓) 

is 8 (𝑑𝑓 = 𝑛 − 𝑥 − 1). For 𝑑𝑓 = 8, we conducted an experiment to calculate the 

significance indicator p-values for different correlation coefficients (𝑟), as shown in 

Table R2, R3. 

Table R2: Significance levels for correlation coefficients (𝒓 = 𝟎. 𝟏~𝟎. 𝟗 with 0.1 interval) 

at 𝒅𝒇 = 𝟖 



Correlation coefficient (𝑟) Significance level (𝑝) 

0.1 0.783 

0.2 0.580 

0.3 0.400 

0.4 0.252 

0.5 0.141 

0.6 0.067 

0.7 0.024 

0.8 0.005 

0.9 0.000 

Table R3: Significance levels for correlation coefficients (𝒓 = 𝟎. 𝟔𝟏~𝟎. 𝟔𝟗 with 0.01 

interval) at 𝒅𝒇 = 𝟖 

Correlation coefficient(𝑟) Significance level (𝑝) 

0.61 0.061 

0.62 0.056 

0.63 0.051 

0.64 0.046 

0.65 0.042 

0.66 0.038 

0.67 0.034 

0.68 0.031 

0.69 0.027 

Only when 𝑟 exceeds 0.64 does the test pass with 𝑝 < 0.05. However, it is 

generally accepted that 𝑟 ≥ 0.75 indicates a strong correlation, 0.5 ≤ 𝑟 < 0.75 

indicates a moderate correlation, and 0.25 ≤ 𝑟 < 0.5 indicates a weak correlation. 

Consequently, with small sample sizes, only pixels with strong correlations pass the 

test (Bonett and Wright, 2000), potentially overlooking some valid information. In 

our study, a valid sample requires that both the green-up date (𝐷𝐺𝑈) and 𝐷𝑆𝑂𝑀 be 

valid, with 𝐷𝑆𝑂𝑀 preceding 𝐷𝐺𝑈. Therefore, the average sample size of 12 makes 

passing the significance test difficult. To address this, we applied the first law of 

geography by expanding the sample size to include the pixel itself and its eight 

neighboring pixels (Figure R2).  



 

Figure R2. Diagram of sample size expansion  

As a result, at the 𝑝 < 0.05 level, the significance ratios for 𝑇𝑠𝑝𝑟𝑖𝑛𝑔, 𝑃𝑠𝑝𝑟𝑖𝑛𝑔, 

and 𝑆𝑆𝑡𝑜𝐺  with ∆D were 23.5%, 28.8%, and 35.4%, respectively (Figure 6). 

Meanwhile, the dominant factor influencing ∆D was recalculated using the same 

methodology (Figure 7). While enhancing the significance, the original conclusions 

remain largely unchanged, with only minor revisions to some text and results. 

 



Figure 6: Spatial distribution of the partial correlation between ∆𝐷  and (a) spring mean 

temperature (𝑅∆𝐷&𝑇𝑠𝑝𝑟𝑖𝑛𝑔
), (b) spring total rainfall (𝑅∆𝐷&𝑃𝑠𝑝𝑟𝑖𝑛𝑔

), and (c) daily snowmelt from 𝐷𝑆𝑂𝑀 

to 𝐷𝐺𝑈 (𝑅∆𝐷&𝑆𝑆𝑡𝑜𝐺
). 

 

Figure 7: (a) Spatial distribution of dominant factor of ∆𝐷 and its proportion diagram 

among (b) different geographical zones and (c) different vegetation types.  
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Major concern 3: The third concern is about the structure of results. The results section 

currently includes an extensive number of figures, which may hinder clarity. Consider 

reorganizing this section, for example, separating spatial and temporal characteristics 

into distinct parts and using concise figures. This restructuring could improve 

readability and emphasize key findings more effectively. 

Response:  

To improve clarity, we have restructured original Section 3.1 into three 

subsections: Section 3.1 (Spatial variation of 𝐷𝑆𝑂𝑀 and 𝐷𝐺𝑈), Section 3.2.1 (Spatial 

characteristics of ∆D) and Section 3.2.2 (Temporal characteristics of ∆D). 

Additionally, we have streamlined the language in the Results section by removing 

unnecessary details and focusing on key findings. For example, instead of listing 

specific values for each region in the spatial distribution of ∆D, we now emphasize 

the general downward trend. We have also removed the specific area proportions 

for different patterns of local Moran’s I value. 

 

Minor concern: 

https://doi.org/10.1007/bf02294183


1. L15: Clarify whether you mean the "duration or date" of vegetation green-up. 

Response: We would like to emphasize that while the impact of snowmelt on 

vegetation has been verified, the response of vegetation is not instantaneous and 

exhibits a certain degree of lag. Therefore, the focus of this study is to investigate 

the length of this lag, or the time difference between two dates. In our view, the term 

"duration" more accurately captures the concept of a time difference (a period) 

compared to "date." 

 

2. L18-19: It is unnecessary to listing all methods here. 

Response: As suggested, we have removed the heatmaps and box plots, retaining 

only the two primary methods. 

 

3. L50-55: too many abbreviations make this paper hard to follow 

Response: We have streamlined the text to reduce the use of abbreviations and 

improve the flow of the narrative. The revised text is as follow: 

Snow phenology serves as a crucial indicator of changes in snow cover. Several 

studies have analysed the impact of snow phenology on 𝐷𝐺𝑈 in the TP. The Snow 

cover end date typically exhibits a significant positive correlation with 𝐷𝐺𝑈, with 

each 1-day advancement leading to a 0.56 days earlier 𝐷𝐺𝑈 (Potter, 2020; Wu et 

al., 2023). In contrast, the effect of snow cover duration on 𝐷𝐺𝑈  is more complex 

and region-dependent. For instance, a longer snow cover duration leads to a 

delayed 𝐷𝐺𝑈 in the western TP, while it advances 𝐷𝐺𝑈 in the eastern TP(Huang 

et al., 2019; Xiong et al., 2019). Notably, 𝐷𝐺𝑈  is most sensitive to the start of 

snowmelt (𝐷𝑆𝑂𝑀) among various snow cover phenology metrics on the TP (Xu et al., 

2022). 

 

4. L118: Provide more details for this treatment. For instance, if merging 10 pixels 

with various plant functional types (PFTs), specify which PFT the combined pixel 

represents. Confirm if all PFTs were included, and consider excluding bare and 

arable land, which lack seasonal dynamics relevant to this analysis. 

Response: The original land cover types in the dataset remain unchanged, and non-

seasonal and non-vegetated land were excluded from the experimental samples. 

Following your suggestion, we have added further clarification in Section 2.2.4: 

Considering that some land covers are non-seasonal or non-vegetation, this study 

focuses exclusively on alpine steppe, alpine meadow, shrub, coniferous forest, and 

broad-leaved forest. 



 

5. Figure 3: please make sure two figures have matched pixels and adjust the 

colorbar in 3b for better visibility. 

Response: The discrepancy in the number of valid pixels for 𝐷𝐺𝑈 and 𝐷𝑆𝑂𝑀 arises 

from differences in pixel selection criteria and identification methods. The objective 

here is to clarify the distinct distribution of valid pixels for the two dates. In the 

subsequent calculation of ∆𝐷, only matched pixels that were valid for both dates 

were considered. Additionally, in response to your suggestion, the color bands in 

both figures have been standardized (Figure 2). 

 

6. Figure 4: With 18 subplots, distinguishing annual differences is challenging. 

Move this figure to supplementary materials and replace it with a simplified version, 

such as a comparison between two periods (e.g., 2001-2009 vs. 2010-2018). 

Response: Replacing the annual subplots with period average values is a 

constructive suggestion. However, the Mann-Kendall test results indicate no 

significant temporal changes in ∆𝐷. Therefore, we have calculated the average over 

the entire period (Figure 3a) and moved the original Figure 4 to the supplementary 

materials. 



 

Figure 3: (a)Spatial, frequency distribution histograms and (b) local and global Moran’s I 

values of average ∆𝑫 on the Tibetan Plateau over 2001–2018. 

 

7. Figure 5: Similar suggestion as Figure 4—consider a more concise format. 

Response: We have redrawn Figure 3b using the same methodology, and the 

original Figure 5 has been moved to the supplementary materials. 

 

8. The direct relationship between temperature/precipitation and green-up may be 

more pronounced than that of snowmelt. If so, this would suggest a lesser role for 

snowmelt, especially given the year-round snowfall on the Tibetan Plateau. 

Response: Indeed, temperature and precipitation are the two most significant 

determinants of 𝐷𝐺𝑈 , and snowmelt has also been shown to influence 𝐷𝐺𝑈 . 



However, the duration and driving factors of vegetation response to the onset of 

snowmelt remain unclear. Therefore, this study focuses not only on 𝐷𝐺𝑈 itself but 

on the vegetation's response to 𝐷𝑆𝑂𝑀. The independent variable in this study is not 

the green-up date (DOY), but the time difference between 𝐷𝐺𝑈 and 𝐷𝑆𝑂𝑀 (∆𝐷). 

 

9. Figure 7: Why the figure 7b use a different pattern unlike 7a? it is much better to 

testing Tspring and Sstog, and Pspring and Sstog effects on deltaT effect on ∆T 

separately for clarity. 

Response: Indeed, our intention was not to compare the combined effects of two 

independent variables. Thus, there was no need to use a dual-axis heatmap, which 

conveys different information compared to the box plot and is less suitable for 

comparisons between variables. The updated figure now uses consistent boxplots 

for all variables, improving clarity in the comparisons (Figure 5). Additionally, we 

have revised Section 3.2 based on the new results: 

Figure 5 illustrates the mean value of ∆𝐷 under varying spring meteorological 

conditions. ∆𝐷  exhibits a clear stepwise decline from cold to warm regions, 

decreasing from approximately 48 to 37 days (Fig. 5a). In colder or hotter spring 

conditions (i.e., 𝑇𝑠𝑝𝑟𝑖𝑛𝑔 < 270 𝐾 𝑜𝑟 𝑇𝑠𝑝𝑟𝑖𝑛𝑔 > 275 𝐾 ), ∆𝐷  decreased slightly. 

However, near the freezing point (270–275 K), ∆𝐷 shortens by 3 days with each 1K 

increase in 𝑇𝑠𝑝𝑟𝑖𝑛𝑔. Under various precipitation conditions (Fig. 5b), ∆𝐷 shortens by 

0.29~1.96 days for every 10 mm increase in 𝑃𝑠𝑝𝑟𝑖𝑛𝑔. Fig. 5c reveals a strong negative 

correlation between ∆𝐷 and 𝑆𝑆𝑡𝑜𝐺 when 𝑆𝑆𝑡𝑜𝐺 exceeded 6 mm day-1. For each 1 mm 

increase in 𝑆𝑆𝑡𝑜𝐺, ∆D decreases by approximately 0.615 days. The dispersion within 

each snowmelt category remains relatively consistent, with a standard deviation of 

about 16.8 days. 

 

Figure 5: Variations in ∆𝐷  across regions with differing (a) spring mean temperature 

(𝑇𝑠𝑝𝑟𝑖𝑛𝑔), (b) spring total rainfall (𝑃𝑠𝑝𝑟𝑖𝑛𝑔), and (c) daily snowmelt from 𝐷𝑆𝑂𝑀 to 𝐷𝐺𝑈 (𝑆𝑆𝑡𝑜𝐺). 

Points represent the mean ∆𝐷, while error bars denote one standard deviation. The slope and 



R2 value reflect the coefficient and precision of the linear regression, respectively, with a 

significance level of 0.01. 

 

10. Conclusion: Condense to focus on primary findings for a stronger impact.  

Response: We have streamlined the conclusion by removing some detailed result-

oriented information and emphasizing the core findings and key contributions of the 

study. 

This study investigates the dynamic response of vegetation to snowmelt on the 

Tibetan Plateau from 2001 to 2018. Our results reveal that the effect of snowmelt 

on vegetation is not immediate, with a mean response lag of 38.5 days from 𝐷𝑆𝑂𝑀 

to 𝐷𝐺𝑈 . Notably, the false spring was observed in the north-western TP, which 

warrants further exploration. As precipitation and snowmelt increase, the response 

time shortens. More complex than these factors, temperature exerts a greater 

influence on 𝐷𝐺𝑈 than 𝐷𝑆𝑂𝑀 in colder regions, thus shortening the response time. 

Conversely, in warmer areas, increased temperatures have a stronger impact on 

𝐷𝑆𝑂𝑀, which lengthens the response time. Furthermore, vegetation in arid regions 

is more dependent on water than heat, and low-vegetation areas rely more on sub-

snow habitats than external climatic factors. These findings provide valuable 

insights into how vegetation responds to snowmelt in the context of climate change, 

deepening our understanding of the relationship between snowmelt onset and green-

up dates. This knowledge is essential for predicting vegetation phenology and 

managing ecosystem services under changing climate conditions. Future research 

should focus on the impacts of snow cover and false spring. 

 


