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Abstract. A fast radiative transfer model (RTM), ARMS-gb, capable of simulating brightness temperatures observed by

ground-based microwave radiometers (GMRs) is proposed in this study. Several improvements are introduced in the Opti-

cal Depth in Pressure Space scheme to achieve higher accuracy. 101-level ECMWF 83 profiles are utilized as its primary

training dataset. Seven additional profiles from UMBC 48 are augmented with this dataset to improve simulation accuracy in

moist environments. When compared to MonoRTM, ARMS-gb shows high accuracy with root mean square error less than5

0.12 K for all observed channels of MP3000A and HATPRO. An advanced water vapor vertical interpolation mode is also

incorporated, which generally proves more accurate than that used in RTTOV-gb. Bias drops can reach up to 0.19 K for mean

biases (AVG) and 0.15 K for standard deviation (STD) in channels with strong water vapor absorption. Jacobian calculated by

these two modes are also differ. To further validate the performance of ARMS-gb, it is applied in simulating real observations

from GMRs, with the simulated results compared to those of RTTOV-gb. Long-term observations from two GMRs under dif-10

ferent climate conditions are selected as true reference values. Results show that ARMS-gb align with RTTOV-gb well and

can achieve smaller STD in water vapor absorption channels. Furthermore, the calibration time is more clearly identified in

the observations minus background series of ARMS-gb compared to original observation series, demonstrating its ability to

monitor observational quality.

1 Introduction

Ground-based microwave radiometers (GMRs) are considered vital tools in meteorological research due to their ability to

provide continuous, high-temporal-resolution observations of atmospheric thermal variables (Cimini et al., 2006; Wei et al.,
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2021). These instruments can operate under all-sky conditions, making them particularly useful for monitoring rapid changes

within the planetary boundary layer (PBL). The PBL, which extends from the surface to a few kilometers above, is a critical20

region where exchanges of heat, moisture, and momentum between the ground and the atmosphere predominantly occur (Wu

et al., 2024). Observations from GMRs offer a unique advantage for understanding PBL dynamics, providing valuable insights

into processes such as convection, turbulence, and boundary layer transitions (De Angelis et al., 2017).

The assimilation of GMR observations into Numerical Weather Prediction (NWP) models holds significant potential for en-

hancing forecast accuracy, particularly in the lower atmosphere. Current NWP models often face substantial uncertainties near25

the ground surface due to both observational gaps and the complex physical processes within the PBL. By incorporating GMR

observations, temperature and humidity in the PBL can be more accurately characterized, leading to improved initial condi-

tions for NWP models (Illingworth et al., 2019; Leuenberger et al., 2020). Consequently, temperature and humidity profiles

retrieved from GMR observations have been assimilated into NWPs in previous studies (e.g., Caumont et al., 2016; Martinet

et al., 2020). These studies show that such indirect assimilations enhance the accuracy of forecasts involving temperature inver-30

sions and humidity gradients, which are crucial for predicting fog and the initiation of convection. However, the performance

of these assimilations is often limited by challenges in estimating biases in GMR observations (Lin et al., 2023). This limi-

tation can be mitigated by directly assimilating the observed brightness temperatures (BTs) from GMRs. Vural et al. (2024)

demonstrated a positive impact on forecasting temperature and humidity in the PBL by directly assimilating BTs from two

channels. The advantage of direct assimilation of GMR observations is further highlighted when compared to indirect assimi-35

lation results in forecasting extreme precipitation events (Cao et al., 2023). Radiative transfer models (RTMs) are essential in

direct data assimilation, as they map atmospheric parameters from NWP models into satellite or GMR observations. Numerous

fast RTMs have been developed for the direct assimilation of satellite observations, such as the Radiative Transfer for TOVS

(RTTOV) (Saunders et al., 2018; Hocking et al., 2021), the Community Radiative Transfer Model (CRTM) (Weng and Liu,

2003; Stegmann et al., 2022; Karpowicz et al., 2022), and the Advanced Radiative Transfer Modeling System (ARMS) (Weng40

et al., 2020; Yang et al., 2020). For use with GMRs, few RTMs are specifically designed for this purpose, with RTTOV-ground-

based (RTTOV-gb) (De Angelis et al., 2016; Cimini et al., 2019) being a notable exception. Unlike the traditional RTTOV,

RTTOV-gb is optimized to handle the unique geometries and atmospheric paths associated with GMRs. RTTOV-gb is trained

using AMSUTRAN (Turner et al., 2019), which itself is based on the Millimeter-wave Propagation Model (MPM) (Liebe,

1985, 1989; Liebe et al., 1992, 1993).45

In addition to AMSUTRAN, the Monochromatic Radiative Transfer Model (MonoRTM) can also provide Line-By-Line

(LBL) results of radiance and transmittance, and its accuracy in simulating upwelling radiative transfer (RT) has been eval-

uated against AMSUTRAN (Cady-Pereira et al., 2021). On the other hand, for downwelling RT simulations, BTs produced

by different types of LBL models can vary significantly. A study comparing results from five different LBL models found

discrepancies as large as 1.5 K in channel 1 of the MP3000A (Yang and Min, 2018), underscoring the importance of using50

a reliable and accurate LBL model to train fast RTMs for optimal performance. However, there are few studies that provide

intercomparisons between fast RTMs trained with different microwave LBL models in downwelling RT simulations.
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Furthermore, due to the use of terrain-following coordinates, the pressure levels in NWP models are not fixed, necessitating

vertical interpolation in both RTTOV and RTTOV-gb. Hocking (2014) compared five vertical interpolation methods within RT-

TOV, finding that the choice of interpolation mode affects not only the simulated BTs but also the Jacobian calculations. Kan55

et al. (2024) proposed an advanced water vapor interpolation method, significantly reducing biases caused by vertical interpo-

lation in water vapor absorption channels of microwave sensors onboard satellites. It is important to evaluate the differences in

forward simulations and Jacobians caused by vertical interpolation modes from the perspective of GMR applications.

In this study, a new RTM (ARMS-gb) capable of simulating BTs observed by GMRs and their Jacobian is proposed. ARMS-

gb relies on a clear-sky RT solver and employs MonoRTM to train the gaseous absorption scheme. The accuracy of ARMS-gb in60

moist environment is improved by expanding the training dataset and incorporating the advanced interpolation mode proposed

by Kan et al. (2024). This development also marks the first intercomparison between two RTMs for GMRs. In the following

section, each components of ARMS-gb are introduced in detail, including a clear-sky RT solver, the gaseous absorption scheme

and a Jacobian calculation module. In section 3, the accuracy of ARMS-gb is investigated by comparing its results to that of

MonoRTM. The impact of vertical interpolation on both forward simulations and Jacobian calculations is also analyzed. In65

section 4, we compare simulating results between ARMS-gb and RTTOV-gb. Observations from two GMRs under different

climate conditions are used as true reference values. The ability of ARMS-gb to monitor GMRs’ observational quality is also

demonstrated. A summary is given in section 5.

2 Model Development

The primary objective of this study is to develop ARMS-gb capable of simulating BTs observed by GMRs. These BTs are70

directly linked to downwelling radiances at the surface. Currently, ARMS-gb is limited to simulations under clear-sky condi-

tions; however, a particle scattering module will be integrated in the near future to extend its capabilities and enable simulations

under all-sky conditions.

2.1 Clear-sky RT equation

Without considering scattering effect, the RT equation (Liou, 1992) simplifies to75

µ
dI(τ,µ)

dτ
= I(τ,µ)−B(τ), (1)

where I(τ,µ) represents the radiance. τ and µ are the optical depth in the vertical direction and the cosine of the viewing zenith

angle. A vertical measurement by a GMR corresponds to a zenith angle of 0◦. The vertical distribution of the Planck function

B(τ) is described by the linear-in-tau approximation (Toon et al., 1989; Zhang et al., 2016, 2018) in ARMS-gb as

B(τ) = B0(1 +βτ), (2)80

where β = (B1/B0− 1)/τ0. B0 and B1 are the Planck functions at the upper and lower boundaries of the atmospheric layer,

respectively. τ0 is vertical optical depth of the atmospheric layer. After substituting Eq. (2) into Eq. (1) and solving Eq. (1), we
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can get

I(τ0,µ) = I(0,µ)e−d + B1−B0e
−d− (1− e−d)

d
(B1−B0), (3)

where d = τ0/µ. I(0,µ) and I(τ0,µ) are the downwelling radiances at the upper and lower boundaries of the layer, respectively.85

In a multi-layer case, I(0,µ) can be obtained from results of the previous layer and I(τ0,µ) will serve as the boundary input

for the next layer (Li and Fu, 2000; Zhang et al., 2017). Therefore, downwelling radiance is calculated layer by layer from the

Top Of the Atmosphere (TOA) to the ground surface. The boundary input at TOA equals the cosmic background radiance.

2.2 Gaseous Absorption

The accuracy of d in Eq.(3), which represents the effect of gaseous absorption at the GMR observed frequency, is critical90

for the performance of RT simulations. To address this issue, we employ Optical Depth in Pressure Space (ODPS) (Saunders

et al., 1999; Chen et al., 2010; Hocking et al., 2021), a statistical regression scheme. ODPS involves two stages: training and

simulation processes. Recent improvements to both stages have been proposed by Kan et al. (2024) and assessed by comparing

their results to satellite observations. Most of these enhancements have been incorporated into ARMS-gb.

The ODPS training process utilizes ECMWF 83 profiles as its primary dataset. To improve simulation accuracy, particularly95

in moist environments, we augment this dataset with seven additional profiles (1st, 6th, 14th, 15th, 16th, 18th, 20th) from the

University of Maryland at Baltimore County (UMBC) 48 profiles. MonoRTM Clough et al. (2005) is employed to calculate

LBL transmittance at 7 observed zenith angles (0◦, 36◦, 48◦, 55◦, 60◦, 63◦, 70◦). Water vapor absorption, oxygen absorption,

ozone line absorption and nitrogen continuum absorption are considered. In MonoRTM, line absorption calculation relies on

HITRAN database (Gordon et al., 2022) and continuum absorption is handled by the MT_CKD continuum model (Mlawer100

et al., 2012; Clough et al., 2005). As channel-dependent Spectral Response Functions (SRF) are not available, the transmittance

of GMRs’ channels is calculated as the mean of the monochromatic transmittance in channel spectral V :

Γch,j =

∫
V

Γj(v)dv∫
V

dv
, (4)

where subscript j refers to the transmittance from surface to the j-th level. Γch,j is the transmittance of an observed channel

and Γj(v) is the monochromatic transmittance.105

In ARMS-gb, water vapor is the only variable gas, while other gases are fixed during the training process. As a result, the

total transmittance can be written as

Γtotal
ch,j =

Γtotal
ch,j

Γmixed
ch,j

Γmixed
ch,j , (5)

where Γtotal
ch,j and Γmixed

ch,j are the total transmittance and the transmittance of all fixed gases, respectively. Following McMillin

et al. (1995), We define the effective transmittance of water vapor ΓH2O,∗
ch,j as110

ΓH2O,∗
ch,j =

Γtotal
ch,j

Γmixed
ch,j

. (6)
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Both the water vapor absorption and overlap absorption are included in ΓH2O,∗
ch,j . A linear regression is applied to fit layer optical

depth related to Γmixed
ch,j and ΓH2O,∗

ch,j :

dj = Dj −Dj+1 =
Np∑

i=1

Ci,jXi,j , (7)

where dj is the layer optical depth of the j-th layer which is bounded by the j-th level and the (j+1)-th level. Dj =− ln(Γch,j)115

is the optical depth from the surface to the j-th level. Xi,j and Ci,j are predictors and corresponding fitting coefficients,

respectively. To achieve high accuracy, we construct a predictor pool first and then use the backward stepwise regression to

select the optimal combination of predictors. The detailed information about the predictor pool can be found in Appendix A.

Both the transmittance calculation and linear regression are performed at fixed 101 pressure levels. These pressure levels are

identical to those used in RTTOV-gb (Angelis et al., 2016), which are dense below 2 km.120

Most of NWP and reanalysis data have their own vertical coordinates whereas optical depth calculations are constrained to

the 101 levels. Consequently, in the ODPS simulation process, temperatures and water vapors from input pressure levels are

remapped onto the 101 levels using the Rochon interpolation (Rochon et al., 2007) for the purpose of calculating predictors.

After the optical depth calculations, the resulting Dj values are interpolated back to the original input pressure levels via a

nearest-neighbour log-linear interpolation.125

GMRs are sensitive to atmospheric parameters near the surface. To improve simulation accuracy, temperatures and water

vapor values at a height of 2 meters above ground level are used to correct the predictor values of the first layer above the

surface. Furthermore, Kan et al. (2024) has shown that the logarithm of partial pressure is more effective than mass or volume

mixing ratios in describing the vertical distribution of water vapor. In line with this finding, the unit of water vapor is converted

to partial pressure, followed by a vertical interpolation of the logarithm of water vapor partial pressure to the 101 levels. The130

impact of this vertical interpolation on both forward simulation and Jacobian calculation is discussed in section 3.

2.3 Jacobian Calculation

Jacobian calculation is a crucial component of a RT model. It is essential for inversion and data assimilation. The aim of this

calculation is to construct a K matrix that quantifies the sensitivity of radiances or BTs at each channel with respect to all input

parameters. K matrix can be represented as:135

K =




∂I1/∂x1 ∂I2/∂x1 ... ∂IN/∂x1

∂I1/∂x2 ∂I2/∂x2 ... ∂IN/∂x2

... ... ... ...

∂I1/∂xM ∂I2/∂xM ... ∂IN/∂xM




, (8)

where N and M denote the number of channels and input parameters, respectively. For RT simulations, N is generally much

less than M . There are three methods to obtain the K matrix: the finite difference method, the tangent linear method and the

adjoint method (Errico, 1997). In the finite difference method, the derivative can be computed by perturbing a single input
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parameter:140

∂I

∂xj
=

I(xj + δx)− I(xj)
δx

, (9)

where I =
[
I1 I2 ... IN

]
represents the vector of radiance values at each channel. δx is a perturbation term. By repeating

RT simulations M times and perturbing each input parameters, the K matrix can be calculated. The tangent linear module

is developed by computing derivatives for each step in the RT model. The K matrix is deduced through the chain rule. For

example, in RT simulations, an input parameter xj contribute to I alone the path:145

xj → d→ I (10)

where d represent the vector of optical depth at each channel. Correspondingly, the tangent linear module can be expressed as

xTL,j →
∂d

∂xj
·xTL,j →

∂I

∂d
· ∂d

∂xj
·xTL,j (11)

To obtain the K matrix, the tangent linear module also must be repeated M times. In contrast to the finite difference method, the

tangent linear method provides analytical results. The adjoint method further improves computational efficiency by reversing150

the order of calculations within the tangent linear module:

IAD,i →
∂Ii

∂d
· IAD,i →

∂Ii

∂d
· ∂d

∂x
· IAD,i (12)

where x =
[
x1 x2 ... xM

]
is a vector containing all input parameters. The adjoint method only requires repeating this

process N times to calculate the K matrix. In practice, we first develop the tangent linear module and then derive the adjoint

module from it.155

3 Accuracy Evaluation

In this section, we investigate the accuracy of ARMS-gb by comparing its results to that of MonoRTM. We also analyze the

impact of vertical interpolation on both forward simulations and Jacobian calculations. The evaluations are conducted using

two datasets: the ECMWF 83 dataset and the UMBC 48 dataset. Our analysis includes results at seven observed zenith angles:

0◦, 36◦, 48◦, 55◦, 60◦, 63◦, 70◦. ARMS-gb currently supports two types of GMRs: the Humidity And Temperature PROfiler160

(HATPRO) and the MP3000A. The HATPRO, developed by Radiometer Physics GmbH, has 7 K-band channels (channels 1-7)

and 7 V-band channels (channels 8-14). The center frequencies for each channel of the HATPRO are listed in Table 1. The

MP3000A, designed by Radiometrics, provides observations at 22 distinct channels. The center frequencies for each channel

of the MP3000A are presented in Table 2. Regarding bandwidths, the HATPRO has different values for its channels: 230 MHz

for channels 1-11, 600 MHz for channel 12, 1000 MHz for channel 13, and 2000 MHz for channel 14. In contrast, all channels165

of the MP3000A have a uniform bandwidth of 300 MHz.
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Table 1. Center frequencies of HATPRO.

Channel 1 2 3 4 5 6 7

Frequency

(GHz)
22.24 23.04 23.84 25.44 26.24 27.84 31.04

Channel 8 9 10 11 12 13 14

Frequency

(GHz)
51.26 52.28 53.86 54.94 56.66 57.30 58.00

Table 2. Center frequencies of MP3000A.

Channel 1 2 3 4 5 6 7 8

Frequency

(GHz)
22.234 22.500 23.034 23.834 25.000 26.234 28.000 30.000

Channel 9 10 11 12 13 14 15 16

Frequency

(GHz)
51.248 51.760 52.280 52.804 53.336 53.848 54.400 54.940

Channel 17 18 19 20 21 22

Frequency

(GHz)
55.500 56.020 56.660 57.288 57.964 58.800

To evaluate the accuracy of ARMS-gb, we use three metrics: mean bias (AVG), standard deviation (STD) and root mean

square error (RMS). These metrics are calculated as follows:

AVG =
∑N

i=1[BTben(i)−BTsim(i)]
N

, (13)

STD =

√∑N
i=1[BTben(i)−BTsim(i)−AVG]2

N
, (14)170

RMS =

√∑N
i=1[BTben(i)−BTsim(i)]2

N
, (15)

where N is the total number of samples. BTben are the benchmark values of BTs and BTsim are simulated BTs. The benchmark

values are calculated using MonoRTM as follows: (1) Calculate monochromatic radiance; (2) Integrate the monochromatic

radiance over the channel spectral range V to obtain the channel-averaged radiance:

Ich =

∫
V

I(v)dv∫
V

dv
. (16)175

where I(v) is the monochromatic radiance and Ich is the channel-averaged radiance.

Fig. 1(a) shows AVG, STD and RMS of each channel of MP3000A under the 101L ECMWF 83 dataset. The results show

high accuracy for ARMS-gb in this case, with RMS values less than 0.12 K for all observed channels. Notably, biases for

7
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MP 3000A Channel Index

HATPRO Channel Index
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Figure 1. (a): AVGs, STDs and RMSs of simulated BTs at 7 observed zenith angles in MP3000A channels under the 101L ECMWF 83

dataset. Results of MonoRTM serve as the benchmark values. (b): Same as (a) but RT simulations are performed under the 101L UMBC 48

dataset. (c) and (d): Same as (a) and (b), but show the situations in HATPRO channels.

channels between 51 GHz and 54 GHz are larger than those for other channels, with a maximum RMS of 0.11 K at channel 9.

This is attributed to the combined influence of temperature and water vapor, which decreases the correlation of layer opacity180

(De Angelis et al., 2016). Fig. 1(b) shows the case under the 101L UMBC 48 dataset. The results show slightly larger biases

than those under the 101L ECMWF 83 dataset, as most profiles in the 101L UMBC 48 dataset are not included in the ODPS

training process. Specifically, biases at water vapor channels (22.234 GHz - 30 GHz) change most obviously, with RMS values

increasing from 0.04 K to 0.06 K at channel 1. This reflects the high sensitivity of BTs at these channels to humidity. Fig.

1(c) and 1(d) show metrics at each channels of HATPRO. The results show similar trends to those for MP3000A. Under the185

101L ECMWF 83 dataset, AVGs, STDs, and RMSs are less than 0.019 K, 0.037 K, and 0.04 K, respectively, for the 7 K-band

channels. Biases in channels 8-10 are larger than those in other channels, with RMS values of 0.11 K, 0.1 K, and 0.04 K. In

contrast, results of ARMS-gb agrees well with MonoRTM for channels 11-14, with a maximum RMS of 0.01 K. Under the

101L UMBC 48 dataset, biases are slightly larger than those under the 101L ECMWF 83 dataset.
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3.1 Effect of Vertical Interpolation190

To apply ODPS in RT simulations with profiles having different kinds of vertical coordinates, twice vertical interpolations are

required. Previous studies have investigated the impact of different vertical interpolation modes on RT simulations and Jacobian

calculations for the satellite perspective. For instance, Hocking (2014) compared 5 vertical interpolation modes within RTTOV.

They found that using various vertical interpolation modes not only affects the simulated BTs, but also impacts Jacobian

calculations. This study aims to compare BTs and Jacobians calculated by two different vertical interpolation modes for the195

GMR perspective. Detailed setups in these modes are summarized as follows:

Mode 1 is the default setting in RTTOV-gb (De Angelis et al., 2016; Cimini et al., 2019). The RTTOV-gb User Guide also

strongly recommends not to change the mode. In mode 1, both atmospheric parameters and optical depth are interpolated using

the Rochon interpolation (Rochon et al., 2007).

Mode 2 which is employed by ARMS-gb has been previously introduced (see Section 2.2). In mode 2, atmospheric param-200

eters are interpolated using the Rochon interpolation, similar to mode 1. However, for optical depth, the nearest-neighbour

log-linear interpolation is used instead. Additionally, before interpolating water vapor, its unit is converted to partial pressure,

which allows for more accurate calculations.

Comparisons are performed in HATPRO channels. Atmospheric parameters are taken from the 54L ECMWF 83 dataset and

UMBC 48 dataset. In the benchmark calculation, we directly input 54L temperatures and water vapor profiles into MonoRTM205

without any interpolation. Both mode 1 and mode 2 interpolate profiles into 101L first and then interpolate optical depth back

to 54L. Fig. 2(a) and 2(b) show situations under the 54L ECMWF 83 dataset. In this case, mode 2 is generally more accurate

than mode 1. In K-band channels, both AVGs and STDs of mode 2 are much less than that of mode 1. In channel 4, bias drops

can reach up to 0.19 K for AVG and 0.15 K for STD. In channel 8 and 9, AVG of mode 1 is about 0.45 K while AVG of mode 2

is less than 0.01 K. STDs of these channels are slightly reduced when we replace mode 1 with mode 2. The slightly reduction210

of STD is mainly due to ODPS regression error whose STD reaches up to 0.1 K in these two channels. Comparisons are also

performed under the 54L UMBC 48 dataset, which contains some profiles with rich water vapor. In channel 3, both AVG and

STD of mode 1 are 0.27 K while AVG and STD of mode 2 are only 0.04 K and 0.03 K, respectively. In channel 8, AVG of mode

1 can be as high as 0.55 K while mode 2 reduces these biases to 0.03 K. Overall, the results show that mode 2 is generally more

accurate than mode 1, especially in channels with strong water vapor absorption.215

Jacobian calculated by two interpolation modes are also different. To evaluate this difference, we use the 6-th profile in the

54L UMBC 48 dataset. The profile is selected because it produces significant BT differences between the two modes. The

difference reaches up to 0.59 K at observed zenith angle 0◦ in channel 1. Fig. 3(a), 3(b) and 3(c) show water vapor Jacobian

at channel 3, 6 and 10, respectively. Jacobian differences between mode 1 and mode 2 are also shown. The results indicate

that simulated BTs at channel 3 are very sensitive to water vapor located between 800 hPa and 1000 hPa. The values of220

water vapor Jacobian in this height range can exceed 5 K/log(g/kg). The maximum value of water vapor Jacobian can reach

7.06 K/log(g/kg) in channel 3 while it is only 1.32 K/log(g/kg) in channel 10. The maximum value of difference between

two modes occurs at the first level above ground surface and reaches up to 0.61 K/log(g/kg) in channel 3, 0.55 K/log(g/kg) in

9
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Figure 2. (a) and (b): AVGs and STDs of simulated BTs at 7 observed zenith angles in HATPRO channels. RT simulations for both inter-

polation mode 1 and 2 performed under the 54L ECMWF 83 dataset. MonoRTM serves as a benchmark to provide reference values for

comparison. (c) and (d): Same as (a) and (b), but with RT simulations performed under the 54L UMBC 48 dataset.

channel 6 and 0.14 K/log(g/kg) in channel 10. Situations of temperature Jacobian on channel 11, channel 12 and channel 14 are

shown in Fig. 3(d), 3(e) and 3(f), respectively. The simulated BTs at these channels are sensitive to near-surface temperatures225

below 900 hPa. The maximum values of temperature Jacobian occur at 1033 hPa and can reach up to 0.14 K/K in channel 11,

0.24 K/K in channel 12 and 0.28 K/K in channel 14. Comparing mode 1 with mode 2, we find that, mode 2 reduces temperature

Jacobian of channel 14 by 0.007 K/K at 1013 hPa but gives an increase of 0.01 K/K at 1050 hPa. Similar results are also found

in channels 11 and 12, but with smaller amplitudes.

Due to its similarity to that for the HATPRO channels, analysis for the MP3000A channels is not presented in the paper.230
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Figure 3. (a), (b) and (c): Water vapor Jacobian analysis for channel 3, 6 and 10 of HATPRO. Water vapor Jacobian based on mode 2 is

presented as black lines and Jacobian differences between two interpolation modes (mode 2 minus mode 1) are presented as red lines. (d),

(e) and (f): Same as (a), (b) and (c) but for temperature Jacobian analysis in different channels. The focus is on channel 11, channel 12, and

channel 14 of HATPRO. RT simulations are performed under the 6-th profile in 54L UMBC 48 dataset. Observed zenith angle is set to 0◦.
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4 Applications in Simulating Real Observations

In this section, we employ ARMS-gb to simulate real observations from GMRs in China. Three GMRs are selected: two are

used to provide true reference values for comparing the accuracy of ARMS-gb and RTTOV-gb, while the third is utilized to

demonstrate the ability of ARMS-gb to monitor observational quality. The temperature and water vapor profiles, required as

input for RT simulations, are derived from the 137L ERA5 reanalysis dataset. Additionally, direct observations of pressure,235

temperature, and humidity near the surface, provided by the meteorological sensor onboard GMRs, are also utilized in the RT

simulations in this study.

The ERA5 reanalysis dataset (Hersbach et al., 2020) provides an exceptionally detailed representation of the atmosphere,

with its 137 vertical levels extending from the surface up to 0.01 hPa. These levels are not uniformly spaced and are more

densely packed near the Earth’s surface, allowing for a high vertical resolution that accurately captures atmospheric conditions240

in this height range. This configuration is particularly well-suited for simulating GMRs’ observations, as it enables accurate

modeling of the PBL. In this study, ERA5 is used with a temporal resolution of 1 hour and a horizontal resolution of 0.25◦×
0.25◦.

Prior to analyzing Observation Minus Background (OMB) based on RT simulations, two essential steps are performed: strict

collocation and cloud detection. Collocation involves ensuring that the time and spatial matches between ERA5 reanalysis data245

and GMR observations are precise. To mitigate biases caused by temporal differences, only observations from GMRs on the

hour are selected for analysis. A bilinear interpolation technique is applied to convert atmospheric profiles from the four nearest

ERA5 grid points to the specific location of a GMR, using Euclidean-distance-based interpolation weights. Cloud detection

involves rejecting observations that meet certain criteria: (1) Observations during rain which are flagged by rain sensors (Cimini

et al., 2019); (2) Observations with high sky infrared temperature (>-30◦C) (Martinet et al., 2015; De Angelis et al., 2016);250

(3) Observations with a standard deviation of OMB in the window channel (near 31 GHz) exceeding 0.2 K over a 10-minute

period (Turner et al., 2007; Cimini et al., 2019). Finally, RT simulations are performed only under atmospheric profiles where

total column cloud liquid water content and ice water content are both less than 100 g/m2 (Moradi et al., 2020).

4.1 Compared to RTTOV-gb

RTTOV-gb is a fast RT model developed at the Center of Excellence in Telesensing of Environment and Model Prediction of255

Severe Events (CETEMPS). It accounts gaseous absorption by ODPS which is trained by AMSUTRAN (Turner et al., 2019).

Additionally, the effects of clouds on observed microwave BTs are also included in RTTOV-gb. A detailed description of the

model can be found in De Angelis et al. (2016); Cimini et al. (2019). For a comprehensive comparison between ARMS-gb and

RTTOV-gb, please refer to Table 3, which summarizes their similarities and differences.

The intercomparison period spans from November 1, 2023 to April 30, 2024, covering both winter and spring seasons. Two260

GMR stations are selected for this study: Karamay, Xinjiang (84.85◦E, 45.61◦N) and Tanggu, Tianjing (117.79◦E, 35.16◦N).

The climate at these two locations is distinct. Karamay has a dry continental climate with low humidity. In contrast, Tanggu ex-

periences a temperate semi-humid monsoon climate with higher humidity. These two stations serve as representative examples
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Table 3. The similarities and differences between ARMS-gb and RTTOV-gb.

ARMS-gb RTTOV-gb

Training

Dataset

101L ECMWF 83 plus 7 profiles

from 101L UMBC 48
101L ECMWF 83

LBL Model MonoRTM AMSUTRAN

Overlap

Absorption
Effective Transmittance

Channel

Transmittance
Taking mean of LBL transmittance within channel bandwidth

Input Atmospheric

Parameters
Temperatures and humidity at each input pressure levels

Input Near Surface

Parameters

Temperature, humidity

and pressure at 2 m

Temperature and

pressure at 2 m

Interpolation

Mode

Mode 2 in

Section 3.2

Mode 1 in

Section 3.2

Predictors 19 for Γmixed
ch ; 15 for ΓH2O,∗

ch 10 for Γmixed
ch ; 15 for ΓH2O,∗

ch

Vertical Distribution

of Planck Function
Linear in tau approximation

of dry and relatively moist environments. The GMRs at both stations provide vertical measurements with an observed zenith

angle of 0◦. The selection of both time period and station makes it suitable for comparing the performance of ARMS-gb and265

RTTOV-gb in different atmospheric conditions. Due to the stability of the OMB trend during this period, it is assumed that the

quality of the observations is good enough to be used as reference true values for comparison purposes. Due to differences of

simulated BTs between two RT models, STD of both ARMS-gb and RTTOV-gb at the window channel are used in the cloud

detection process.

The GMR at Karamay is Airda-HTG4. It operates with center frequencies and bandwidths identical to those of HATPRO.270

Following the collocation and cloud detection steps, a total of 1922 samples remain for analysis. Fig. 4(a-c) present the OMB

results obtained from both RTTOV-gb and ARMS-gb. Additionally, we calculate the daily STD using OMB over each individ-

ual day. The mean relative differences in daily STD between RTTOV-gb and ARMS-gb are depicted in Fig. 4(d-f). To assess

the statistical significance of these differences, a student’s T-test is performed, and the corresponding 95 % confidence interval

is indicated. This allows for a more rigorous evaluation between the two RT models.275

The results of Fig. 4 indicate significant differences in the behavior of ARMS-gb and RTTOV-gb across various channels of

Airda-HTG4 at Karamay. In channel 1-8, ARMS-gb tends to overestimate BTs. In contrast, the OMB median values of RTTOV-

gb are much closer to 0 K in these channels. For instance, in channel 1, the OMB median value of ARMS-gb is -0.98 K, while

that of RTTOV-gb is only -0.05 K. In channel 9 and 10, absolute values of AVGs of ARMS-gb exceed 2 K. RTTOV-gb also
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Figure 4. (a-c): OMB of RTTOV-gb and ARMS-gb during the period from November 1, 2023 to April 30, 2024. Observations are from

Airda-HTG4 at Karamay. RT simulations are performed under the 137L ERA5 reanalysis dataset. White markers indicate the median values

of each distribution. (d-f) Mean relative differences in daily STD between RTTOV-gb and ARMS-gb. Daily STD values are calculated using

OMB within each single day. Black bars represent the 95 % confidence range, indicating the statistical significance of these differences.

overestimate BTs in these two channels, with AVGs of -1.93 K in channel 9 and -1.34 K in channel 10. Both ARMS-gb and280

RTTOV-gb demonstrate high accuracy in channels 11-14, with the OMB median values of both the two models are less than

0.3 K. In terms of daily STD, significant differences between the two RT models occur in four K-band channels (channel 4-7)

and three V-band channels (channel 11, 13, 14). Specifically, compared to RTTOV-gb, the daily STD of ARMS-gb is reduced
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Figure 5. Same as Fig. 4, but show.the situation of YKW3 at Tanggu.

by 0.75 % in channel 5 and 6. The OMBs of RTTOV-gb are more stable than those of ARMS-gb in three V-band channels. The

mean relative difference of daily STD between the two models is 1.52 % in channel 14.285

The GMR at Tanggu, YKW3, shares the same center frequencies and bandwidths as MP3000A. Fig. 5(a-c) present OMB

results of the two RT models based on 1845 statistical data. Notably, BTs simulated by ARMS-gb are more closely aligned with

observations than those of RTTOV-gb in channel 1-8. In particular, the OMB median values of RTTOV-gb show significant

deviations from 0 K, with values reaching 3.28 K in channel 1 and 0.69 K in channel 8. In contrast, ARMS-gb exhibits more

accurate results, with OMB median values of only 2.44 K and 0.26 K in channel 1 and 8, respectively. In channel 12, 13, and 14,290
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the AVG of RTTOV-gb are more closely aligned with 0 K than those of ARMS-gb. ARMS-gb and RTTOV-gb display similar

accuracy in channel 16-22, with differences in median values between the two models being less than 0.1 K. Fig. 5(d-f) show

the mean relative differences in daily STD between ARMS-gb and RTTOV-gb. In channel 2, the daily STD of RTTOV-gb is

0.98 % less than that of ARMS-gb. Conversely, in channel 9-16, the daily STD of ARMS-gb is significantly less than that of

RTTOV-gb, with a maximum relative difference occurring in channel 12 and reaching 2.59 %. The minimum value of relative295

difference occurs in channel 16, at 0.22 %. OMB of ARMS-gb are also slightly more stable than that of RTTOV-gb in channel

17-22.

Performance of fast RT models is influenced by several factors. A detailed description of channel characteristics and the

accuracy of the LBL model used for training are crucial in achieving accurate RT simulations. Moreover, the quality of the

input profiles themselves can be a significant limitation. For instance, temperatures from ERA5 reanalysis data have been300

shown to have large systematic errors at altitudes between 2000-3000 m and relative humidity errors ranging from 40 % to

100 % over the range of 500-2500 m (Wei et al., 2024). This highlights the challenge in relying on current reanalysis data

for accurate thermal variables, particularly in the PBL. Furthermore, channel characteristics play a significant role in RT

simulations, especially when considering the SRF information. Studies have demonstrated that incorporating SRF information

can lead to substantial improvements in RT simulations from a satellite perspective (Moradi et al., 2020; Chen et al., 2021;305

Kan et al., 2024). We believe that incorporating SRF information could also enhance the accuracy of both RTTOV-gb and

ARMS-gb.

4.2 Monitoring Observational Qualities

ARMS-gb offers real-time OMB information, which provides valuable guidance for evaluating observational qualities. This

is particularly important in assimilating GMR data in NWP. In this study, ARMS-gb is applied to monitor the quality of310

observations from Airda-HTG4 located at Minfeng, Xinjiang (82.69◦E, 37.07◦N). The time period examined is September 1,

2023, to November 30, 2023. After collocation and cloud detection, 1922 samples are retained for analysis.

The observational BTs as well as OMB of ARMS-gb in channel 1, 8 and 14 are presented in Fig. 6. Channel 1 and 14 serve

as representatives of water vapor and temperature channels, respectively, while channel 8 is influenced by both water vapor and

temperature. Insights from the OMB results for channel 1 indicate that STD can be significantly reduced through calibration,315

decreasing from 2.03 K to 0.98 K. The calibration time can also be clearly identified in the OMB series of channel 8. Both

AVG and STD values change noticeably before and after the calibration time. Specifically, AVG and STD reach 4.60 K and

0.61 K in September, respectively, but are reduced to -0.52 K and 0.33 K after calibration. In contrast, observational BTs of

channel 14 show little sensitivity to calibration. Both AVG and STD values for this channel remain largely unchanged, with

only some negative OMB values occurring during a short time period around the calibration time. The observation series of320

these three channels highlights that it is challenging to evaluate the quality of observations without access to OMB information.

The results from ARMS-gb provide valuable insights into observational qualities.
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Figure 6. (a) and (b): Observations for channel 1 from Airda-HTG4 at Minfeng during September 1, 2023 to November 30, 2023 along with

the corresponding OMB series of ARMS-gb. (c) and (d): Same as (a) and (b) but show situations of channel 8. (e) and (f): Same as (a) and

(b) but show situations of channel 14. The green dashed line indicates the calibration time.
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5 Summary and Conclusions

GMRs can provide continuous observations with high temporal resolution. These observations are particularly useful for mon-

itoring rapid changes of temperature and humidity within the PBL. As a result, direct assimilation of GMR observations has325

great potential in improving the performance of NWP, especially for the lowest few kilometres of the atmosphere. In this

study, we propose a RTM, ARMS-gb, capable of simulating BTs observed by GMRs. ARMS-gb can be used as an observation

operator to map atmospheric parameters into observations in a data assimilation system.

ARMS-gb is developed based on a clear-sky RT solver that accounts for atmospheric thermal emissions from TOA to the

ground surface, as well as the effects of gaseous absorption. An accurate description of gaseous absorption is critical for the330

performance of RT simulations. To address this issue, we employ ODPS, which utilizes 101L ECMWF 83 profiles as its pri-

mary training dataset. This dataset is augmented with seven additional profiles from UMBC 48 to improve simulation accuracy,

particularly in moist environments. In ODPS, MonoRTM is employed to calculate the LBL transmittance at 7 observed zenith

angles. To apply ODPS in RT simulations with profiles having different types of vertical coordinates, twice vertical interpola-

tions are required. In ARMS-gb, temperatures and water vapors from input pressure levels are remapped onto the 101 levels335

using the Rochon interpolation for calculating predictors. The resulting optical depth values are interpolated back to the orig-

inal input pressure levels via a nearest-neighbour log-linear interpolation. Additionally, before interpolating water vapor, its

unit is converted to partial pressure, which allows for more accurate calculations. To satisfy the requirements of its applications

in remote sensing and data assimilation, we also develop the tangent linear as well as adjoint module of ARMS-gb and derive

the analytical Jacobian matrix.340

ARMS-gb currently supports two types of GMRs: the HATPRO and the MP3000A. The accuracy of ARMS-gb is evaluated

by comparing its results to those obtained from MonoRTM. Profiles from the ECMWF 83 dataset and the UMBC 48 dataset

are used as input for RT simulations. In the 101L case, ARMS-gb shows high accuracy with RMS values less than 0.12 K for

all observed channels of MP3000A. Biases for channels between 51 GHz and 54 GHz are larger than those for other channels,

with a maximum RMS of 0.11 K at channel 9. The results in HATPRO channels show similar trends to those for MP3000A.345

Simulated BTs and Jacobian calculated by two different vertical interpolation modes are compared to each other from the

perspective of HATRPO channels. Mode 1 is the default setting in RTTOV-gb while mode 2 is employed by ARMS-gb. Under

the 54L ECMWF 83 dataset, mode 2 is generally more accurate than mode 1, especially in channels with strong water vapor

absorption. In channel 4, bias drops can reach up to 0.19 K for AVG and 0.15 K for STD. In channel 8 and 9, AVG of mode 1 is

about 0.45 K while AVG of mode 2 is less than 0.01 K. STDs of these channels are slightly reduced when we replace mode 1350

with mode 2. Jacobian calculated by two interpolation modes are also different. Comparing mode 1 with mode 2, we find that

mode 2 reduces temperature Jacobian of channel 14 by 0.007 K/K at 1013 hPa but gives an increase of 0.01 K/K at 1050 hPa.

In terms of water vapor Jacobian, the maximum value of difference between two modes occurs at the first level above ground

surface. The difference can reach up to 0.61 K/log(g/kg) in channel 3 while it is only 0.14 K/log(g/kg) in channel 10.

To further validate the performance of ARMS-gb, we apply it in simulating real observations from GMRs and compares355

its results to that of RTTOV-gb. Input atmospheric parameters, such as temperature and water vapor profiles, are derived from
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the 137L ERA5 reanalysis dataset. The intercomparison period spans from November 1, 2023 to April 30, 2024 and we select

observations from Airda-HTG4 located at Karamay, Xinjiang (84.85◦E, 45.61◦N) and YKW3 located at Tanggu, Tianjing

(117.79◦E, 35.16◦N) as true reference values. Significant differences are shown in the behavior of ARMS-gb and RTTOV-gb

across various channels of Airda-HTG4 at Karamay. In channel 1-8, ARMS-gb tends to overestimate BTs, whereas the OMB360

median values of RTTOV-gb are much closer to 0 K in these channels. Both two RTM demonstrate high accuracy in channels

11-14. In terms of daily STD, compared to RTTOV-gb, the daily STD of ARMS-gb is reduced by 0.75 % in channel 5 and 6

but is increased by 1.52 % in channel 14. In the case of Tanggu, BTs simulated by ARMS-gb are more closely aligned with

observations than those of RTTOV-gb in channel 1-8. The daily STD of ARMS-gb is less than that of RTTOV-gb in channel

9-22 with a maximum relative difference occurring in channel 12 and reaching 2.59 %. We also utilize observations from365

Airda-HTG4 located at Minfeng, Xinjiang (82.69◦E, 37.07◦N) to demonstrate the ability of ARMS-gb to monitor observational

quality. The calibration time can be clearly identified in the OMB series of channel 1 and 8. In contrast, observational BTs of

channel 14 show little sensitivity to calibration. Compared to observation series, OMB information from ARMS-gb provides

more valuable insights into observational qualities of GMRs.

We believe that the performance of ARMS-gb can be further improved by incorporating SRF information into ODPS. Select-370

ing a reliable and accurate LBL model for training is also considered essential for enhancing the accuracy of RT simulations.

In addition, we plan to integrate a particle scattering module in the near future to extend its capabilities and enable simulations

under all-sky conditions. With the development of ARMS-gb, research about direct assimilation of GMRs’ observations will

be carried out soon.

Code and data availability. RTTOV-gb can be downloaded from the EUMETSAT NWP SAF website https://nwp-saf.eumetsat.int/site/375

software/rttov-gb/ and MonoRTM is available at https://github.com/AER-RC/monoRTM/. The 137-level ERA5 reanalysis data is available

from Copernicus Climate Data Store https://climate.copernicus.eu/climate-reanalysis. Observations from GMRs at Karamay, Tanggu and

Minfeng used in this study can be obtained from China Meteorological Administration Data As A Service (CMADaaS) under an available

license. Codes of ARMS-gb are available at https://zenodo.org/records/14032776.

Appendix A: Predictors for Optical Depth Regression380

In this section, predictors for optical depth regression are specified. These predictors also refer to Matricardi et al. (2004);

De Angelis et al. (2016).

As mentioned in section 2, the predictors calculation is performed on the fixed 101 levels. Correspondingly, in Table A1, j

varys from 1 to 100 and refers to the j-th atmospheric layer. T prof (unit: K) and Qprof (unit: g/kg) are input temperature and

water vapor mass mixing ratio. Both of them have been interpolated into the fixed 101 levels before the predictors calculation.385

T ref and Qref are same as T prof and Qprof but from the reference profile. The reference profile is usually obtained by taking

mean over the training dataset. We note that, Tw(100) is set to 0 (De Angelis et al., 2016).
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Table A1. Variables used in the predictors calculation.

PδP (j) = P (j +1)[P (j + 1)−P (j)]

T (j) = (T prof(j)+ T prof(j +1))/2 T ∗(j) = (T ref(j)+ T ref(j +1))/2

Q(j) = (Qprof(j)+ Qprof(j +1))/2 Q∗(j) = (Qref(j)+ Qref(j +1))/2

Tr(j) = T (j)/T ∗(j) Tw(j) = PδP (j)Tr(j)

Tzp(j) =
∑j

k=N PδP (k)T (k)/
∑j

k=1 PδP (k)T ∗(k)

dT (j) = T (j)−T ∗(j) dT2(j) = dT (j) |dT (j)|
Qr(j) = Q(j)/Q∗(j)

Qzp(j) =
∑j

k=N PδP (k)Q(k)/
∑j

k=N PδP (k)Q∗(k)

Table A2. The predictors pool used for optical depth regression.

Predictor Mixed Gas Water Vapor

1 sec(θ) [sec(θ)Qr]
2

2 sec(θ)Tr [sec(θ)Qzp]2

3 sec(θ)[Tr]
2 [sec(θ)Qzp]4

4 Tr sec(θ)QrdT

5 sec2(θ)
√

sec(θ)Qr

6 [Tr]
2 [sec(θ)Qr]

0.25

7 sec(θ)Tzp sec(θ)Qr

8 sec(θ)[Tr]
3 [sec(θ)Qr]

3

9 sec(θ)
√

sec(θ)Tr [sec(θ)Qr]
4

10 sec(θ)Tw sec(θ)QrdT2

11 sec(θ)Tw/Tr

√
sec(θ)QrdT

12
√

sec(θ) [sec(θ)Qr]
2/Qzp

13
√

sec(θ)[Tw]0.25
√

sec(θ)QrQr/Qzp

14 sec(θ)dT/[Tr]
2 sec(θ)[Qr]

2/Tr

15 sec(θ)dT2/[Tr]
2 sec(θ)[Qr]

2/[Tr]
4

16 sec(θ)dT/Tr

17 sec(θ)dT2/Tr

18 sec(θ)dT

19 sec(θ)dT2

In Table A2, θ is the local zenith angle. In the optical depth calculation, θ varys with height and then the Earth curvature

effect is taken into account (Chen et al., 2012).
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