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Abstract. The advent of heterogeneous supercomputers with multi-core central processing units (CPUs) and graphics process-

ing units (GPUs) requires geoscientific codes to be adapted to these new architectures. Here we describe the porting of the

Meso-NH version 5.5 community weather research code to GPUs named MESONH-v55-OpenACC, with guaranteed bit re-

producibility thanks to its own MPPDB_CHECK library. This porting includes the use of OpenACC directives, specific memory

management, communications optimization, development of a geometric multigrid solver and creation of an in-house prepro-5

cessor. Performance on AMD MI250X GPU Adastra platform shows up to 6.0× speedup (4.6x on NVIDIA A100 Leonardo

platform), and achieves a gain of a factor 2.3 in energy efficiency compared to AMD Genoa CPU Adastra platform, using the

same configuration with 64 nodes. The code is even 17.8 faster by halving the precision and quadrupling the nodes with a gain

in energy efficiency of a factor 1.3. First scientific simulations of three representative storms using 128 GPUs nodes of Adastra

show successful cascade of scales for horizontal grid spacing down to 100 m and grid size up to 2.1 billion points. For one10

of these storms, Meso-NH is also successfully coupled to the WAVEWATCH III wave model via the OASIS3-MCT coupler

without any extra computational cost. This GPU porting paves the way for Meso-NH to be used on future European exascale

machines.

1 Introduction

Numerical simulation of the atmosphere plays a crucial role in understanding and anticipating extreme weather phenomena.15

The skill of numerical weather prediction (NWP) has continuously improved over the last few decades, thanks to a steady

accumulation of scientific knowledge and technological advances (Bauer et al., 2015). Increased computing power has enabled

numerical simulation to represent even greater complexity on a wider range of scales. Current operational NWP codes typically

achieve horizontal resolutions ofO(10 km) on a global scale andO(1 km) on a regional scale, which represent deep convection

in parameterized and explicit ways, respectively. Global storm-resolving models used in research can simulate the atmosphere20

globally with convection-permitting resolutions ofO(1 km) to seamlessly represent scales from local storms to planetary waves

(e.g., Tomita et al., 2005; Fuhrer et al., 2018; Stevens et al., 2019; Giorgetta et al., 2022; Donahue et al., 2024).
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The Meso-NH community weather research code (Lac et al., 2018) takes advantage of an efficient parallelization and from

increases in computing power to run large-eddy simulations (LES; horizontal resolution of O(10–100 m)) on very large com-

putational grids of the order of a billion grid points. These so-called giga-LES (Khairoutdinov et al., 2009) resolve most of25

the turbulent kinetic energy over the full extent of weather systems (O(100 km)). Such giga-LES runs with Meso-NH make

it possible to show, for example, the effect of small-scale surface heterogeneities and buildings on the radiation fog over an

airport (Bergot et al., 2015), turbulent mixing leading to stratospheric hydration by overshooting convection (Dauhut et al.,

2018), the multiscale modeling of coupled radiative and heat transfer in complex urban geometry (Villefranque et al., 2022),

and the downward transport of strong winds by roll vortices in a Mediterranean windstorm (Lfarh et al., 2023). Designed for30

studies of scale interactions between processes, these giga-LESs provide a unique research base for statistical or climate studies

in a scientific community beyond that of Meso-NH.

To benefit from technological advances, numerical codes of the atmosphere need to be adapted to current and future super-

computers based on hybrid architectures with both central processing units (CPUs) and graphical processing units (GPUs).

For instance, the most powerful system today is Frontier in the USA, a nearly 2 exaFLOPS machine (i.e., exceeding 2×101835

floating point operations per second) based on AMD MI250X GPUs. In Europe, while the most powerful systems are below

the exascale level (i.e., below 1 exaFLOPS), they are also built with GPUs, as for Leonardo in Italy with NVIDIA A100 GPUs

(0.3 exaFLOPS) and for Adastra in France with AMD MI250X GPUs (0.06 exaFLOPS). Running a model like Meso-NH on

these new supercomputers is a big challenge because the code must be ported to GPU. An abundant literature documents the

efforts made by the various modeling communities. For example, Fuhrer et al. (2018) have completely rewritten the dynamical40

core of the COSMO model using a domain-specific language. Giorgetta et al. (2022) have ported the ICON atmosphere model

to GPUs by introducing OpenACC directives. After 5 years of model development, Donahue et al. (2024) have fully rewritten

the Energy Exascale Earth System Model atmosphere model in C++ using the Kokkos library.

Here, we describe the porting of Meso-NH version 5.5 to GPU named MESONH-v55-OpenACC and illustrate applications

with giga-LES runs in the framework of a grand challenge on the Adastra supercomputer, ranked 10th in the June 2022 TOP50045

(TOP500.org, 2022b) and 3rd in the November 2022 GREEN500 (TOP500.org, 2022a). We choose the directive-based method

using OpenACC for the porting. First, this method of manually adding GPU directives has less impact on the code structure,

thus limiting the human effort involved in porting the code. Second, it preserves the readability of the original code. This

point is of particular importance for a research code developed and used by many different people and for many different

applications in the fields of meteorology, air quality and surface coupling. Third, this method allows the same source code to50

run on either CPU or GPU. This is another crucial point for Meso-NH, which runs on different computing architectures, from

personal computers to supercomputers in regional, national and international facilities. Fourth, this method enables step-by-step

verification of the addition of GPU modifications, and thus allows detection of any mistake in implementation or compiler bug.

This is of increased importance for the quality of Meso-NH, which is bit-reproducible on CPU. Indeed, Meso-NH provides the

same results whatever the number of CPUs, which is verified using our own MPPDB_CHECK library. This bit-reproducibility55

of Meso-NH has been extended here to the OpenACC GPU version, providing bit-reproducibility from CPU execution to GPU

execution, and even-more so to multi-GPU execution. To our knowledge, Meso-NH is the only atmospheric (or oceanic) model

2

https://doi.org/10.5194/egusphere-2024-2879
Preprint. Discussion started: 9 October 2024
c© Author(s) 2024. CC BY 4.0 License.



providing this outstanding capability, which guarantees bug-free implementation for massively parallel executions on CPU or

GPU supercomputers.

The remainder of the paper is organized as follows. Section 2 details the methodology with a brief overview of Meso-NH60

(Sect. 2.1), the inclusion of OpenACC directives (Sect. 2.2), checking bit-reproducibility between CPU and GPU (Sect. 2.3),

memory management replacing the use of automatic or allocatable arrays to reduce overhead (Sect. 2.4), the optimization of

communications with a GPU-aware MPI library (Sect. 2.5), the development of a geometric multigrid solver (Sect. 2.6) and the

creation of an in-house preprocessor to facilitate the support and optimization of Meso-NH on different architectures (Sect. 2.7).

Section 3 presents performance achieved on a single node and the scaling up to multiple nodes across multiple platforms.65

Section 4 describes several large-grid weather applications running on the Adastra supercomputer. Section 5 concludes the

paper.

2 Methodology

2.1 The Meso-NH community weather research code

Meso-NH is a community weather research code (Lac et al., 2018), initially developed by the Centre National de Recherches70

Météorologiques (CNRS and Météo-France) and the Laboratoire d’Aérologie (LAERO; UT3 and CNRS). It is a grid-point

limited-area model based on a non-hydrostatic system of equations to handle a wide range of atmospheric phenomena, from

synoptic to turbulent scales. The code includes fourth-order centered and odd-order WENO advection schemes for momentum

and monotonic advection schemes for scalar transport (Lunet et al., 2017). It has a complete set of physical parameterizations,

including clouds, turbulence and radiation. Meso-NH is coupled with the SURFEX surface model (Masson et al., 2013) and75

can be coupled with any ocean or wave models that includes OASIS code instructions (Voldoire et al., 2017). Since Meso-NH

is based on an anelastic continuity equation (Lafore et al., 1998), an elliptic equation must be solved with great precision to

determine the pressure perturbation. The current pressure solver consists on a conjugate-residual algorithm accelerated by a

flat fast Fourier transform (FFT) preconditioner.

Meso-NH is written mainly in Fortran 95 with the use of some more recent functionalities from Fortran 2003 and 2008. It is80

fully vectorized, i.e., it uses array syntax with almost no loops. Since 1999, most of the code is parallel (Jabouille et al., 1999).

The 3-D domain is split into horizontal subdomains in the x and y directions. Each subdomain is then assigned to one process

on the parallel computer, and an interface package based on the standard MPI (Message Passing Interface) library ensures

communications between the processes. In 2011, parallel capability was extended to petaFLOPS computers (i.e., exceeding

1015 floating point operations per second) by allowing the grid to be sliced during input/output (I/O) into horizontal planes and85

parallelizing the FFT preconditioner vertically and horizontally (Pantillon et al., 2011).

The standard Meso-NH benchmark is "Hector The Convector", a case of very deep convection that occurs over the Tiwi

Islands, North of Darwin, Australia (Dauhut et al., 2015). This test case is easy to run on any supercomputer, because it is

initialized in temperature, humidity and wind with a single sounding and applies open boundary conditions. In this paper, the

weather applications use initial and lateral boundary conditions provided either by the operational analyses of the European90
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Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting System (IFS), or the Météo-France Appli-

cations de la Recherche à l’Opérationnel à Méso-Echelle (AROME) code. The benchmark and weather application runs on

Adastra AMD MI250X GPUs nodes include the most commonly used transport schemes and physical parameterizations in

Meso-NH. Momentum variables are advected with a centred fourth-order scheme while scalar variables are advected with

the Piecewise Parabolic Method (PPM) advection scheme (Colella and Woodward, 1984). The physical parameterizations are95

a 1.5-order closure scheme for turbulence (Cuxart et al., 2000) and a one-moment bulk microphysics scheme named ICE3

(Pinty and Jabouille, 1998) including five water species (cloud droplets, raindrops, pristine ice crystals, snow / aggregates, and

graupel). The simulations also involve a radiation scheme, usually called every 30 or 60 time steps. The latter coming from the

ECMWF, no attempt of porting to GPU has been done.

Porting the complete code to GPU is a huge task, as Meso-NH contains several thousand source files totaling about a100

million lines of code. However, the Pareto principle holds for Meso-NH, so that 90% of the computation time comes from

10% of the code. Thus, the porting work mainly concerns the most computationally intensive parts of Meso-NH, that is

advection, turbulence, cloud microphysics and the pressure solver. This porting work is the result of a development initiated

in the early 2010s on a NVIDIA GPU using OpenACC directives with the PGI compiler (since then acquired by NVIDIA).

More recently, from late 2021, it has continued with the start of implementation on AMD GPUs using the Cray compiler. In105

the following, the changes made to port Meso-NH to NVIDIA and AMD GPUs are detailed. The overall impact that leads

to the MESONH-v55-OpenACC version is summarized in Table 1. The left column shows the changes made in Meso-NH

before the port to AMD GPUs (i.e., for the initial port to NVIDIA GPUs), and the right column the state after it (i.e., for the

port to both GPU types). This results in the inclusion of thousands of OpenACC directives. Memory management routines

are frequently used, among other things, to reduce the performance impact of allocations and deallocations. Calls to bit-110

reproducible mathematical functions appear wherever they are necessary. Moreover, loops in array syntax are replaced, in

some cases, by do concurrent constructs. For AMD GPUs, an in-house preprocessor was developed, leading to its use in

more than one thousand occurrences, and a reduction in the number of do concurrent loops.

2.2 Inclusion of OpenACC directives

The OpenACC paradigm offers a promising approach for Meso-NH. The developer only has to add directives (seen as com-115

ments) in the code to port it to GPUs. Moreover, since the Meso-NH code is mostly written in array syntax, supported by

OpenACC, this syntax, free of loops, is well suited to auto-parallelization and auto-vectorization. To limit the impact on the

source code and facilitate the porting work, the use of the auto-parallelization kernels directives is preferred. The code

largely resembles the one shown in Listing 1.

Listing 1 OpenACC kernels directives with array syntax

! $acc k e rn e l s
A ( : , : , : ) = B ( : , : , : ) + C ( : , : , : )
D ( : , : , : ) = E ( : , : , : ) + F ( : , : , : )
! $acc end ke rn e l s
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Table 1. Number of modified Meso-NH lines for the initial GPU porting on NVIDIA GPUs and after the porting on AMD GPUs. Other

changes (multigrid solver, memory manager (except calls to it), algorithmic modifications, code transformations, and optimizations) are not

accounted for.

OpenACC compute directives NVIDIA GPU AMD GPU

!$acc kernels 1917 1980

!$acc loop (collapse) independent 533 151

!$acc ... async 220 256

!$acc ... wait 78 79

!$acc loop seq 18 43

!$acc atomic 13 13

OpenACC data directives Number of lines

!$acc ... data 463 544

!$acc host_data use_device 16 80

Fortran Number of lines

Memory management routine calls 637 1776

Bit-reproducibility function calls 619 665

do concurrent 293 13

In-house preprocessor directives Number of lines

!$mnh_do_concurrent 502

!$mnh_expand_array 111

!$mnh_expand_where 19

!$acc ... present_cr 694

!$mnh_define / !$mnh_undef 45

The drawback of the OpenACC paradigm is the data location. Since the memory of the CPU and the GPU are usually120

separate, the developer must carefully manage data location and transfers between them by adding appropriate OpenACC

directives. It is easy to make mistakes and to introduce bugs, or have poor performance if unnecessary transfers are coded.

Adding OpenACC directives is not always sufficient because for optimization or to work around compiler bugs some loops

need to be explicitly written, which results in losing the compact array syntax. Array-returning functions are not parallelized on

GPU (at least in our early developments). They are replaced by subroutines and the use of temporary arrays to store intermediate125

results (Listing 2).
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Listing 2 Example of replacing an array-returning function by a subroutine using temporary arrays to store intermediate results.

Note that the original version is preserved and compiled if the preprocessor key MNH_OPENACC is not set.

# i f n d e f MNH OPENACC
PRUS ( : , : , : ) = PRUS ( : , : , : ) &

− DXM(MXF(PRUCT ( : , : , : ) ) &
∗ ZMEANX ( : , : , : ) )

# e l s e
c a l l MXF DEVICE (PRUCT , ZTEMP1 )
! $acc k e rn e l s
ZTEMP2 ( : , : , : ) = ZTEMP1 ( : , : , : ) &

∗ ZMEANX ( : , : , : )
! $acc end ke rn e l s
c a l l DXM DEVICE (ZTEMP2 , ZTEMP3 )
! $acc k e rn e l s
PRUS ( : , : , : ) = PRUS ( : , : , : ) &

− ZTEMP3 ( : , : , : )
! $acc end ke rn e l s
#en d i f

2.3 Verification of bit-reproducibility between CPUs and GPUs

The original CPU-only Meso-NH code, running in parallel on CPU clusters using the MPI library, is already bit-reproducible

when the number of MPI tasks varies. This guarantees that no parallelization bugs have been introduced in the CPU coding.

This is achieved using our own MPPDB_CHECK library (Fig. 1). The principle is to run two similar simulations concurrently.130

The primary simulation launches the replica one with a call to mpi_comm_spawn. At certain points, the MPPDB_CHECK

library checks on the fly that array values are exactly the same down to the bit. These two executions can have any number of

MPI processes.

Figure 1. Schematic of bit-reproducible verification between primary and replica simulations using the MPPDB_CHECK library.

The internal MPPDB_CHECK library has been ported to GPU, with the ability to compare values stored in CPU or GPU

memory. For NVIDIA GPUs, the Meso-NH code is compiled with the NVIDIA compiler by setting the -acc=host,gpu135

flag. In this way, the same executable can run on both CPUs and GPUs. The primary simulation runs on CPUs with

ACC_DEVICE_TYPE=HOST while the replica runs on GPUs with ACC_DEVICE_TYPE=NVIDIA. Validation of code

changes in Meso-NH for GPU porting is a step-by-step process. To validate the port, the results must be exactly the same
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on both sides. For AMD GPUs, it is not possible to compile a single executable that can run indifferently on CPU or GPU with

the Cray compiler. Therefore, two different executables are generated, one for CPU only and one that supports GPU offloading.140

To ensure bit reproducibility, options "-Kieee -Mnofma -gpu=nofm" are passed to the NVIDIA compiler to enforce

compliance with the IEEE 754 standard (IEEE, 2019) and to disable FMA (Fused Multiply-Add) instructions. For the Cray

compiler, options "-Ofp0 -hnofma" are provided.

Some operations are optional ("recommended" but not "required") in the IEEE 754 standard, such as sqrt, exp, log, . . . .

Several rounding modes are also possible. The sqrt standard implementation is available with NVIDIA and Cray compilers145

and architectures (if certain compiler options mentioned above are enabled) and gives exactly the same result on both CPU

and GPU. This is not true for other mathematical operations provided by the compiler-linked mathematical libraries that are

not bit-reproducible between CPU and GPU. It is therefore necessary to replace the intrinsic functions log, pow, sin, cos,

atan and atan2. They have all been replaced with equivalent operations based on reproducible standard operations. This

is achieved using the bitrep library (Spiros, 2014) written in C++. The performance of these functions tends to be lower,150

but in practice the impact on runtime is very limited (less than a few percent). As they are only used to check the correct

implementation of the port, their use could be disabled to restore performance. However, the bit-reproducible version is kept

even for the run tests presented in this paper.

The bitrep C++ functions have been ported to GPU (Listing 3). This is done by adding OpenACC directives for the NVIDIA

compiler. Since the Cray C++ compiler does not support OpenACC directives natively, OpenMP directives are used as an155

alternative. This implementation seamlessly integrates the OpenACC and OpenMP paradigms, allowing for efficient execution

on either NVIDIA or Cray environments. This hybrid approach enables us to leverage the strengths of each programming

model while ensuring compatibility with the targeted hardware.

Listing 3 Extract of the porting of the log function of the bitrep library. OpenMP and OpenACC directives are used.

n ame s p a c e b i t r e p {
# i f d e f MNH BITREP OMP
#pragma omp d e c l a r e t a r g e t
# e l s e
#pragma a c c r o u t i n e s e q
#e n d i f
d o u b l e l o g ( d o u b l e x )
{ . . . }
}
// Implement C i n t e r f a c e
e x t e r n ”C”
{
# i f d e f MNH BITREP OMP
#pragma omp d e c l a r e t a r g e t
# e l s e
#pragma a c c r o u t i n e s e q
#e n d i f
d o u b l e b r l o g ( d o u b l e x ) \

{ r e t u r n b i t r e p : : l o g ( x ) ; }
}
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To call these C/C++ functions from Meso-NH, a C-Fortran interface has been written (Listing 4). All the new bit-reproducible

math functions are prefixed with BR_. An example of using the logarithm function is shown in Listing 5.160

Listing 4 Extract of the C-Fortran interface for the br_log function.

ELEMENTAL FUNCTION BR LOG (PVAL)
! $acc rou t in e seq
REAL , INTENT ( IN ) : : PVAL
REAL : : BR LOG
INTERFACE

PURE FUNCTION BR LOG C ( PIN ) BIND (C ,NAME=” b r l o g ” )
! $acc rou t in e seq

IMPORT C DOUBLE
REAL(KIND=C DOUBLE ) : : BR LOG C
REAL(KIND=C DOUBLE ) , VALUE , INTENT ( IN ) : : PIN

END FUNCTION
END INTERFACE
BR LOG = BR LOG C (REAL(PVAL , KIND=C DOUBLE ) )
END FUNCTION

Listing 5 An example of using the logarithm function. The MNH_BITREP preprocessor key is used to choose between the

original and bit-reproducible versions.

! $acc k e rn e l s
DO CONCURRENT( J I = 1 : JIU )
# i f n d e f MNH BITREP

ZZW( J I ) = LOG(PT( J I ) )
# e l s e

ZZW( J I ) = BR LOG (PT( J I ) )
# e n d i f
END DO
! $acc end ke rn e l s

2.4 Memory management

In Meso-NH, memory management for arrays consists mainly of automatic or allocatable arrays. Due to various compiler

bugs and the very poor performance of memory allocation on GPUs, this management has been redesigned for use on the

GPU. A relatively simple approach is adopted. In the initialization phase, a large 1D array is allocated once in both CPU and

GPU memory spaces. This operation is done for each main intrinsic data type (real, integer and logical). These arrays are165

used as a memory pool in which the different variable arrays are stored. Therefore, no more array allocation is needed during

calculations. The size of these arrays must be carefully chosen to be large enough to contain all the required data, but not so

large as to waste memory. Their dimensions can be selected using a parameter read from a standard Meso-NH namelist at

simulation start, without the need to recompile the model.

When necessary, usually at the beginning of a subroutine (Listing 6), and instead of relying on automatic or dynamic allo-170

cation, allocations are replaced by calls that provide pointers to unique portions of the memory pool with MNH_MEM_GET. To

keep memory management as simple as possible, before a series of "allocations", the positions of the pointers within the pools
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are stored using MNH_MEM_POSITION_PIN. When the memory is no longer needed (usually at the end of the subroutine),

the pointers are reset to these values with MNH_MEM_RELEASE. This is a LIFO (Last-In-First-Out) approach, which is ensured

by providing the same dummy argument before the block of "allocations" and the "release" of the corresponding data. In this175

way, no deallocation or clean-up is required and no memory fragmentation is possible.

Listing 6 Example of code structure for memory management.

! Var iab l e d e c l a r a t i o n
# i f n d e f MNH OPENACC
INTEGER , DIMENSION ( : ) , ALLOCATABLE : : I 1
LOGICAL , DIMENSION ( : , : , : ) , ALLOCATABLE : : GMICRO
REAL , DIMENSION ( : , : , : ) , ALLOCATABLE : : ZRR
# e l s e
INTEGER , DIMENSION ( : ) , POINTER , CONTIGUOUS : : I 1
LOGICAL , DIMENSION ( : , : , : ) , POINTER , CONTIGUOUS : : GMICRO
REAL , DIMENSION ( : , : , : ) , POINTER , CONTIGUOUS : : ZRR
#e n d i f

! Data a l l o c a t i o n ( beg inn ing o f the subrout ine )
# i f n d e f MNH OPENACC
ALLOCATE( I 1 ( I IJKU ) )
ALLOCATE( GMICRO( I IU , IJU , IKU ) )
ALLOCATE( ZRR ( I IU , IJU , IKU ) )
# e l s e
! Pin p o s i t i o n s in the poo l s o f MNH memory
CALL MNH MEM POSITION PIN ( ’ RAIN ICE ’ )
. . .
CALL MNH MEM GET( I1 , I IJKU )
CALL MNH MEM GET( GMICRO , I IU , IJU , IKU )
CALL MNH MEM GET( ZRR , I IU , IJU , IKU )
# e n d i f

! Data r e l e a s e ( end o f the subrout ine )
# i f n d e f MNH OPENACC
DEALLOCATE( I1 , GMICRO , ZRR )
# e l s e
! Re lease a l l memory
CALL MNH MEM RELEASE ( ’ RAIN ICE ’ )
# e n d i f

To reduce the number of memory pools to just one per intrinsic data type, pointer bounds remapping (a Fortran 2003 func-

tionality) is used to map multidimensional arrays onto 1D pools. A possible optimization is to align the memory addresses of

the beginning of each returned pointer to GPU memory segments, but tests on NVIDIA and AMD GPUs show no performance

improvement. The use of pointers instead of automatic or allocated arrays may prevent the compiler to do some optimizations180

because it must assume that aliasing is possible between different pointers. This behavior has a significant impact on the per-

formance with the Cray compiler used for the porting to AMD GPUs. To restore good performance, it is necessary to pass the

"-halias=none" option to this compiler.
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2.5 Communications with a GPU-aware MPI library

When run on a supercomputer with multiple CPUs and GPUs, Meso-NH uses the MPI library and domain decomposition with185

additional halo points at grid boundaries in horizontal directions to maintain computational consistency. For halo exchange

communications on the GPU, the data is already in GPU memory, as it is computed there. It is therefore more efficient to

transfer data directly between GPUs, or within a given GPU if the processes run on the same GPU. Otherwise, the data is

copied to CPU memory, transferred between CPUs, and finally copied to the memory of the target GPU. On some architectures,

such as Adastra, network cards are physically connected to GPUs rather than CPUs, and the available MPI library is GPU-190

aware, allowing direct transfer between GPUs. On other architectures, even if the network is not directly connected to the

GPUs, direct transfers between processes running on GPUs inside a machine node are possible if the MPI library supports

them. For OpenACC coding, this is implemented by the directive !$acc host_data use_device. An extract from the

GET_HALO_START_D and GET_HALO_STOP_D subroutines is shown in Listing 7. It details how this GPU-aware capability

is combined with MPI non-blocking communications and OpenACC asynchronous kernels.195

In the GET_HALO_START_D routine, halo communication is initiated. First, a non-blocking receive (MPI_IRECV)

is posted in advance for the output halo buffer (PZSOUTH_OUT), indicating that the data is stored in GPU mem-

ory (!$acc host_data use_device(PZSOUTH_OUT) directive). Then, in an asynchronous OpenACC kernel

(!$acc kernels async(IS_NORTH)), the input halo buffer (PZNORTH_IN) is filled from the boundary of the field

PSRC. The same operation (not shown) is done for the south, east and west boundaries. To ensure completion of the four200

kernels filling the north, south, east and west buffers, an OpenACC synchronization is performed with !$acc wait. At the

end of the routine, the input halo buffer PZNORTH_IN is sent with a non-blocking MPI_ISEND call, encapsulated by the Ope-

nACC directive indicating again that the data is on the GPU with !$acc host_data use_device(PZNORTH_IN). In

the GET_HALO_STOP_D routine, halo communication is finalized. First, the completion of the previous non-blocking MPI

communication is ensured with a MPI_WAITALL call. Next, the output halo buffer PZSOUTH_OUT is copied to the south-205

ern boundary of the field PSRC in an asynchronous OpenACC kernel (!$acc kernels async(IS_SOUTH)). The same

operation is repeated for the three other boundaries in three other asynchronous kernels (not shown). Finally, the subrou-

tine ends by waiting for the completion of these kernels (!$acc wait). Between calls to the GET_HALO_START_D and

GET_HALO_STOP_D routines, operations not dependent on the field involved in the halo exchange can be interspersed. This

allows calculations to overlap with communications.210

2.6 Development of a multigrid pressure solver

A critical point for GPU porting is the pressure solver needed for the elliptic equation inversion. In the original version of

Meso-NH, this solver consists of an FFT pre-conditioner associated with the conjugate-residual algorithm. The FFT algorithm

requires all-to-all communications between MPI processes and therefore between GPUs when several GPUs are used. These

data transfers are very bandwidth-intensive, and their cost increases rapidly with the number of GPUs. As the local FFT215
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Listing 7 Extract of MPI GPU-aware usage for north-south halo exchange (west-east removed) with MPI non-blocking com-

munications and OpenACC asynchronous kernels

SUBROUTINE GET HALO START D (PSRC , . . . )
. . .
IF ( . NOT . GSOUTH) THEN

! $acc ho s t da ta u s e dev i c e (PZSOUTH OUT)
CALL MPI IRECV (PZSOUTH OUT , SIZE (PZSOUTH OUT ) , MNHREAL MPI , NP SOUTH−1 , &

1000+ IS NORTH , NMNH COMM WORLD, KREQ(NB REQ ) , IERR )
! $acc end hos t da ta

ENDIF
. . .
IF ( . NOT .GNORTH) THEN

! $acc k e rn e l s async (IS NORTH)
PZNORTH IN ( KIIB : KIIE , KIJE−KIHALO 1 : KIJE , : ) = PSRC ( KIIB : KIIE , KIJE−KIHALO 1 : KIJE , : )
! $acc end ke rn e l s

ENDIF
. . .
! $acc wait
. . .
IF ( . NOT .GNORTH) THEN

! $acc ho s t da ta u s e dev i c e (PZNORTH IN)
CALL MPI ISEND ( PZNORTH IN , SIZE ( PZNORTH IN ) , MNHREAL MPI , NP NORTH−1 , &

1000+ IS NORTH , NMNH COMM WORLD, KREQ(NB REQ ) , IERR )
! $acc end hos t da ta

ENDIF
END SUBROUTINE GET HALO START D

SUBROUTINE GET HALO STOP D (PSRC , . . . )
. . .
CALL MPI WAITALL (NB REQ ,KREQ , MPI STATUSES IGNORE , IERR )
. . .
IF ( . NOT . GSOUTH) THEN

! $acc k e rn e l s async (IS SOUTH)
PSRC ( KIIB : KIIE , 1 : KIJB − 1 , : ) = PZSOUTH OUT ( KIIB : KIIE , 1 : KIJB − 1 , : )
! $acc end ke rn e l s

ENDIF
. . .
! $acc wait

END SUBROUTINE GET HALO STOP D

calculations run faster on GPU than on CPU, the fraction of time consumed by these communications is not negligible and can

become very high, especially when multiple GPUs distributed across multiple nodes are used.

As the FFT solver tends to be inefficient as the number of GPUs increases, a more efficient algorithm is required. The

most promising alternative for solving this type of elliptic equation is the use of a geometric multigrid solver for regular

structured grids (Fig. 2). To our knowledge, there is no Fortran numerical library ported with OpenACC that provides such220

tool. Consequently, the Fortran version of the TensorProductMultiGrid solver developed by Müller and Scheichl (2014) was

selected. This multigrid (MG) solver developed for the UK Met Office is well-suited to NWP models with a highly vertically

stretched grid. The original code is a standalone benchmark version, and many modifications have been made to integrate it

into Meso-NH.
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Figure 2. Schematic of the V-cycle of the geometric multigrid pressure solver on the horizontal grid. Starting from the finest grid at level k

with 2k cells in the x and y directions, the restriction phase is performed on the coarse grid at level k− 1, which is obtained by halving the

number of cells in each direction. The process proceeds from top to bottom until the grid contains only one cell. Then, in the prolongation

phase, the grids are refined in the reverse process upward, multiplying the grid cells in each direction by 2 (blue points figuring edges

added/removed in this process).

The MG code was first adapted for the CPU version of Meso-NH. On the Meso-NH part, interface routines were introduced.225

On the MG part, the tensor-product coefficients were fitted to meet the needs of Meso-NH; new Neumann boundary conditions

specific to Meso-NH were added. For debugging and bit-reproducibility purposes, calls to our MPPDB_CHECK library were

incorporated into the MG code. This revealed a bug in the original parallel code (a missing MPI halo exchange). After fixing,

a fully bit-reproducible on multiple CPUs version of Meso-NH with this new solver was obtained. Extensive performance and

scalability tests were performed to set optimal parameters for the solver, such as the iterative method, the convergence rate, the230

smoother, the number of grid levels, the restriction and prolongation phases and the coarsest-grid solver.

Due to the characteristics and the original implementation of the MG solver, its use imposes some constraints. First, the

grid size must be of the form 2N for both horizontal axes, as shown in Fig. 2. At each level of coarsening, from k to k− 1,

the number of cells is halved in each direction until the last level which contains only one cell. Second, the grid size on the

vertical axis is free, since no downsizing is done in this direction due to strong stretching that makes it unfit. In this direction,235

since the matrix to be inverted has a tridiagonal form, a Thomas algorithm (simplified form of Gaussian elimination) is used

instead. Finally, as the original solver does not allow for load imbalance, the number of MPI processes must be 2(2×P) because

the size of the solver grids must be halved in each direction at each coarsening. This limitation has been relaxed somewhat.

The number of MPI processes can be of the form 2P, but the MG must use one less grid level. In that case, the last coarse level

can have 2×2 or 2×1 cells, and two iterations are needed in this last level.240

To port this multigrid pressure solver on GPUs, the MG code has been refactored to change the original layout of the arrays

from KJI to IJK indexing (as in Meso-NH) to optimize memory accesses on GPUs, and OpenACC kernels directives have

been added. The same recipes as for Meso-NH have been applied: memory management with a preallocated memory pool,

replacement of array syntax with do concurrent constructs where necessary, and MPI communications with GPU-aware

OpenACC directives to avoid unnecessary data transfers between CPUs and GPUs. A new optimization is also introduced245
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specifically for the MG solver for hybrid executions on CPUs and GPUs: a new parameter, configurable at runtime, is added to

select the coarse grid level at which the MG solver switches calculations from GPUs to CPUs. This parameter is useful when

the local sub-grid is too small to provide performance gains on GPUs. Bit-reproducibility is again ensured between CPU and

GPU executions.

Despite the limitations of the FFT pressure solver, it is also ported on GPUs for comparison with the new multigrid solver.250

The FFT solver has also the advantage of fewer restrictions on grid dimensions and the number of MPI processes. Test results

(Section 3) show that it remains a good choice for simulations with a limited number of GPUs.

2.7 Creation of an in-house preprocessor

Loop performance optimizations for AMD or NVIDIA GPUs are often incompatible and cannot be mixed. To avoid having two

different versions of the Meso-NH code, and to avoid degrading readability by multiplying preprocessing keys (i.e., #ifdef255

keywords), a small preprocessor named mnh_expand has been developed. It uses filepp (Miller, 2008), an enhanced pro-

grammable preprocessor, compatible and similar to cpp, with powerful user-defined macros, all written in Perl. With this tool,

different transformations can be applied on different architectures allowing customized optimizations on different CPUs, GPUs

and compilers.

For NVIDIA GPUs, it is necessary to rewrite some loops originally in array syntax as nested loops or with260

do concurrent constructs. This approach works very well and generates parallel and collapsed loops that are optimal

for the GPU. For AMD GPUs, the do concurrent syntax is not managed efficiently by the Cray compiler, which gener-

ates poor parallel uncollapsed loops. In addition, inclusion of the OpenACC directives which collapses and parallelizes loops

(!$acc loop collapse(X) independent directive) generates compiler errors or serializes kernels. However, this

directive leads to good parallelization if used in conjunction with nested loops instead of a do concurrent construct. The265

exception is when our bit-reproducible mathematical functions are present in the loop. In the latter case, it is necessary to

inhibit the transformation of array syntax into nested loops and not to supply the collapse OpenACC directive (Listing 8).

Optimization choices are made via preprocessor keys. For example, the MNH_EXPAND_OPENACC key generates loop col-

lapse and independent OpenACC directives and the MNH_EXPAND_LOOP transforms the code into nested loops. If the latter

is omitted, the do concurrent instructions are added instead. To manage all these different and contradictory situations,270

three different macros are introduced (Listing 9). At the preprocessing stage, they generate the most efficient form of expression

according to the architecture and compiler targeted.

Loops in Fortran array syntax requiring transformation are enclosed by the !$mnh_expand_array and

!$mnh_end_expand_array directives (Listing 10). They allow automatic rewriting of the loop index in array expres-

sions and generate the appropriate nested loops or do concurrent constructs depending on the activated keys (Listings 11275

and 12). For expressions already transformed into the do concurrent form, the macro !$mnh_do_concurrent is used.

For where constructs in array syntax, the !$mnh_expand_where directive is implemented.

Another preprocessor directive is necessary to circumvent the frequent erroneous detection of recurrences between loop

iterations by the Cray compiler. These recurrences prevent the parallelization of these loops and lead to the generation of
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Listing 8 Example of using the !$mnh_expand_array macro for the not-bit-reproducible math functions exp and power.

For the Cray compiler, expansion to nested loops and the addition of OpenACC directives are first inhibited around bit-

reproducible procedures, then reactivated for the remaining of the code with the mnh_undef and mnh_define macros.

# i f d e f i n e d (MNH COMPILER CCE ) && d e f i n e d (MNH BITREP OMP )
! $mnh undef (LOOP)
! $mnh undef (OPENACC)
#en d i f
! $mnh expand array ( JI=IIB : IIE , JJ=IJB : IJE ,JK=1:JKU)

ZCFLU ( I I B : I IE , IJB : IJE , : ) = ZCFLU ( I I B : I IE , IJB : IJE , : ) &
∗ ( 1 . − B r e x p (−Br pow ( XIBM LS ( I I B : I IE , IJB : IJE , : , 2 ) &
/ Br pow (XRHODJ( I I B : I IE , IJB : IJE , : ) &
/ XRHODREF( I I B : I IE , IJB : IJE , : ) , 1 . / 3 . ) , 2 . ) ) )

! $mnh end expand array ( )
# i f d e f i n e d (MNH COMPILER CCE ) && d e f i n e d (MNH BITREP OMP )
! $mnh def ine (LOOP)
! $mnh def ine (OPENACC)
#en d i f

Listing 9 Synthetic example of the three main in-house preprocessing directives.

! For array syntax . I nd i c e s are r ep l a ced in the same order
! ( i i i s f o r the 1 s t dimension , i j f o r the 2nd and ik f o r the 3 rd )
! $mnh expand array ( i i=i i b : i i e : i i s , i j=i j b : i j e : i j s , i k=ikb : i k e : i k s )
a ( : , : , : ) = b ( : , : , : ) * c ( : , : , : )

! $mnh end expand array ( comment )

! For where
! $mnh expand where ( i i=i i b : i i e : ip , i j=i j b : i j e : i j s , i k=ikb : i k e : i k s )

whe r e ( d ( : , : , : ) < 0 . 0 )
d ( : , : , : ) = 0 . 0

end wh e r e
! $mnh end expand where ( comment )

! For nested l oops
! $mnh do concurrent ( i i=i i b : i i e : ip , i j=i j b : i j e : i j s , i k=ikb : i k e : i k s )

a ( i i , i j , i k )=b ( i i , i j , i k , . . . )
! $mnh end do ( comment )

serial code. The bypass found is to add extra OpenACC present clauses with loop or kernels directives for certain280

variables, even if they are already in a block where they have been declared as present. Since, in some cases, the NVIDIA

compiler reports errors if a variable is declared present twice, different behaviors are necessary for these two compilers. The

present_cr macro (Listing 10) generates the OpenACC present clause only by activating the MNH_COMPILER_CCE

preprocessor key (set for the Cray compiler).

3 Computational performance285

The computational performance is estimated for the "Hector The Convector" test case, the standard Meso-NH benchmark.

The test case uses advection, turbulence, cloud microphysics, pressure solver and other components. These include radiation,

which is called every 900 s only. The vertical grid has 128 levels. The horizontal grid covers a square of 204.8 km side centered
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Listing 10 Example of the use of the !$mnh_expand_array and present_cr macros

! dyn sources . f 90
. . .
! $acc data pre sent (ZWORK1,ZWORK2)
. . .
! $acc k e rn e l s p r e s en t c r (ZWORK1,ZWORK2)

! $mnh expand array ( JI=1:JIU , JJ=1:JJU , JK=1:JKU)
ZWORK1 ( : , : , : ) = PCURVX ( : , : ) / XRADIUS
ZWORK2 ( : , : , : ) = PCURVY ( : , : ) / XRADIUS

! $mnh end expand array ( )
! $acc end ke rn e l s
. . .
! $acc end data
. . .

Listing 11 Example of transformed sources after preprocessing the !$mnh_expand_array and present_cr macros for

the NVIDIA compiler. Note that the present_cr clause has vanished; otherwise, the NVIDIA compiler will issue an error

for the double present declaration of ZWORK arrays.

! dyn sources . f 90
. . .
! $acc data pre sent (ZWORK1,ZWORK2)
. . .
! $acc k e rn e l s

! $acc loop c o l l a p s e (3 ) independent
DO CONCURRENT ( JK=1 : JKU , JJ =1 : JJU , J I =1 : JIU )

ZWORK1( JI , JJ , JK ) = PCURVX( JI , JJ ) / XRADIUS
ZWORK2( JI , JJ , JK ) = PCURVY( JI , JJ ) / XRADIUS

ENDDO
! $acc end ke rn e l s
. . .
! $acc end data
. . .

over the Tiwi islands. Results are shown here for two grids, 256×256×128 with an horizontal grid spacing of 800 m and

4096×4096×128 with an horizontal grid spacing of 50 m. It is run during 100 time steps using a time step of 10 s for the small290

grid and 4 s for the large one. For this benchmark, I/O is disabled (except for reading the initial state). Executions start from a

situation in which convection has already been initiated and clouds cover a significant portion of the domain. Running times

are given without the initialisation phase, unless otherwise stated and are per model time step.

3.1 Computer systems

The software versions of essential packages for building and running the Meso-NH executable are listed in Table 2. Computer295

systems on which the computational performance is measured are detailed in Table 3.

3.2 Performance on a single node

All results for a single node are for the 256×256×128 grid. Binding on CPU cores and GPUs is carefully chosen to take into

account the fact that Meso-NH is memory-bound (i.e., its runtime is dominated by memory access rather than computation), the
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Listing 12 Example of transformed sources after preprocessing the !$mnh_expand_array and present_cr macros for

the Cray compiler. In this case, the second present clause is needed for parallelization and to avoid false recurrence detection

by the Cray compiler.

! dyn sources . f 90
. . .
! $acc data pre sent (ZWORK1,ZWORK2)
. . .
! $acc k e rn e l s pre sent (ZWORK1, ZWORK2)

! $acc loop c o l l a p s e (3 ) independent
DO JK=1 ,JKU
DO JJ =1 , JJU
DO J I =1 , JIU
ZWORK1( JI , JJ , JK ) = PCURVX( JI , JJ ) / XRADIUS
ZWORK2( JI , JJ , JK ) = PCURVY( JI , JJ ) / XRADIUS
ENDDO

ENDDO
ENDDO

! $acc end ke rn e l s
. . .
! $acc end data
. . .

Table 2. Software used for compiling Meso-NH.

Software Jean-Zay Adastra Leonardo

Compiler nvidia-compilers/23.11 cce/17.0.0 nvhpc/23.1

MPI communication openmpi/4.1.5-cuda cray-mpich/8.1.28 openmpi/4.1.4

CUDA toolkit or rocm cuda/12.2 rocm/5.7.1 cuda/11.8

interconnection between cores on different NUMA (Non Uniform Memory Access) zones, between cores, between CPUs and300

GPUs and between GPUs and also the way the domain is distributed onto the MPI processes. If several binding configurations

have been tested, only the one giving the fastest results is kept. On NVIDIA GPUs, if several MPI processes are started on each

one, the NVIDIA Multi-Process Service (MPS) is launched. If this is not the case, performance is severely impacted.

The performance is first detailed on a routine-by-routine basis for a single Adastra node (see its characteristics in Table 3).

The best performance obtained for the 256×256×128 configuration using the FFT solver is shown, that is, using 64 MPI305

processes for the CPU-only version of Meso-NH and 8 GPUs times 2 MPI processes for the GPU version (Fig. 3).

Overall, Meso-NH is ∼12x faster on GPUs than when using only the CPUs of the same node on Adastra. This reduces the

mean time per time step from 8988 ms to 761 ms. This speedup is mainly due to the advection running ∼23x faster on GPUs.

The result is a time reduction from 5494 to 241 ms. The second and third biggest time reductions concern cloud microphysics

(from 1358 to 105 ms, ∼13x faster) and turbulence (from 1329 to 119 ms, ∼11x faster). Time is also reduced from 643 to310

142 ms for the pressure solver. This∼4x acceleration is, however, lower than for the previous subroutines. This could be due to

the numerous MPI inter-process communications required for global pressure solving. No reduction is achieved for the other
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Table 3. Main characteristics of the supercomputer nodes used for the porting and performance tests. Note that each AMD MI250X contains

2 GCD (Graphics Compute Die) seen as 2 GPUs by the system.

Machine Jean-Zay GPU A100 Adastra GPU MI250X Leonardo GPU A100 Adastra CPU Genoa

CPU 2 x AMD Milan EPYC 1 x AMD Trento EPYC 1 x Intel Ice Lake 2 x AMD Genoa EPYC

7543 32 cores 2.8 GHz 7A53 64 cores 2.0 GHz 8358 32 cores 2.6 GHz 9654 96 cores 2.4 GHz

Memory capacity 512 GiB DDR4-3200 256 GiB DDR4-3200 512 GiB DDR4-3200 768 GiB of DDR5-4800

Memory bandwidth 409.6 GB/s 204.8 GB/s 204.8 GB/s 900 GB/s

GPU 8 x NVIDIA A100 4 x AMD MI250X 4 x NVIDIA/A100

Memory capacity 8 x 80 GiB 8 x 64 GiB 4 x 64 GiB

Memory bandwidth 8 x 1.52 TB/s 8 x 1.6 TB/s 4 x 1.52 TB/s

TFLOP/s (64 bit) 8 x 9.7 8 x 23.9 4 x 9.7

Bandwidth CPU/GPU 8 x 64 GB/s 4 x 72 GB/s 4 x 64 GB/s

Bandwidth GPU/GPU 600 GB/s (with switch) 100 GB/s to 400 GB/s 200 GB/s

Inter-node bandwidth 4 x 25 GB/s 4 x 50 GB/s 2 x 25 GB/s 1 x 50 GB/s

subroutines. These mainly consist of subroutines not ported to GPU. As the number of processes is 16 for the fastest GPU run

versus 64 for the fastest CPU one, and a small fraction of subroutines are ported to GPU, two opposing effects compete and no

gain is expected on this side.315

Results on Jean-Zay (see its characteristics in Table 3) show similar performance for the GPU run (553 ms instead of 761 ms

per time step (Sankey diagram not shown). As Meso-NH is a memory-bound code, and the memory bandwidths on the NVIDIA

A100 and AMD MI250X are relatively similar, this result is expected. The GPU speedup on Jean-Zay compared to the fastest

results on the CPUs of the same node is only a factor of 6.2. This difference with an Adastra node (speedup of 11.8) can be

attributed to the fact that the memory bandwidth available to the CPU is higher on Jean-Zay nodes compared to Adastra nodes,320

leading to a performance increase of around 2 between the two different node types.

GPU performance depends on the number of MPI processes per GPU. Overload performance results are shown using 1, 2,

4 and 8 GPUs of a single node of Adastra and Jean-Zay (Fig. 4). Runtimes for the 256×256×128 configuration using the FFT

pressure solver are presented for up to 4 processes per GPU for Adastra and 16 for Jean-Zay. Overloading the Adastra GPU

with more than 4 processes leads to very deteriorated performance and is therefore not shown. On Jean-Zay, due to constraints325

imposed by the supercomputing center, it is not possible to run jobs with more than 32 processes per node.

The more GPUs, the faster the code. An exception is the similar elapsed time obtained for 4 and 8 GPUs on Jean-Zay,

particularly as the number of MPI processes per GPU increases. Two possible explanations should be investigated: the inter-

connection between GPUs and/or between CPUs and GPUs is saturated, or the workload by process becomes too low due to

the decreasing size of the MPI subdomains. Increasing the number of MPI processes while maintaining the same number of330

GPUs generally reduces the total elapsed time. The greatest time reduction is achieved by doubling the number of processes
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Figure 3. Sankey diagram showing the mean runtime per time step achieved on a single Adastra node for the code running on CPU on the

left and running on GPU on the right. Results are shown for the 256×256×128 configuration using the FFT pressure solver.

from 1 to 2 for 1, 2 and 4 GPUs. This reduction is most dramatic for the other components, i.e., those parts of the code that are

very partially ported to GPU. By increasing the number of processes, the workload of the other components can be distributed

over a greater number of CPU cores, reducing the total elapsed time. This reduction with MPI overloading is also found for

the pressure solver, and only on Jean-Zay for cloud and turbulence. Advection is also accelerated when using 2 processes per335

GPU instead of 1 on Jean-Zay for 1, 2 or 4 GPUs and only for 1 GPU on Adastra. Otherwise, the cost is higher. Using 4 or

more processes per GPU does not significantly reduce elapsed time. It even increases it by doubling their number on Jean-Zay,

from 8 to 16 for 1 and 2 GPUs, from 4 to 8 for 4 GPUs and from 2 to 4 for 8 GPUs. On Adastra (not shown in Fig. 4), using

8 processes per GPU multiplies running time several times. In summary, this result suggests recommending an overload of 2

MPI processes per GPU when running on a full node.340

GPUs of Adastra have 2.5 times the peak computing power of those of Jean-Zay, but their memory bandwidth is very close

(see Table 3). As Meso-NH is memory-bound, similar results are expected. For a relatively low number of GPUs, performance

without the other components (and therefore with only the GPU part of the code) shows runs on Adastra 2 times slower than on
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Figure 4. Mean runtime per model time step of Meso-NH as function of the number of GPUs for (a) Adastra and (b) Jean-Zay. The

abbreviation "prc" stands for MPI process. Results are shown for the 256×256×128 configuration using the FFT pressure solver.

Jean-Zay. But as the number of processes and GPUs increases, elapsed times on the two systems come closer together. These

differences likely come from the different architectures, GPUs and software environments.345

The dependence of GPU performance on the number of MPI processes per GPU is examined in more details for the results

of the FFT and MG pressure solvers (Fig. 5). As expected, the results for the FFT pressure solver are similar to those obtained

above: (i) the more GPUs, the faster the FFT pressure solver (with the exception of 4 and 8 GPUs on Jean-Zay); (ii) doubling

the number of processes from 1 to 2 for 1, 2 and 4 GPUs significantly reduces elapsed time (with the exception of 1 GPU on

Adastra). In other words, overloading GPUs with at least 2 MPI processes makes the FFT pressure solver faster.350

Alternatively, overloading GPUs with 2 MPI processes does not greatly affect the speed of the MG pressure solver. Elapsed

time increases slightly using up to 4 MPI processes per GPU (with the exception of 8 GPUs on Jean-Zay) and becomes much

longer with 8 or 16 MPI processes per GPU (not shown, but also true and much worse with 8 GPUs on Adastra). It is therefore

not recommended to overload GPUs with MPI processes for the MG pressure solver, especially as the number of GPUs

increases. The MG pressure solver is faster than the FFT solver when the number of MPI processes is low. The scalability of355

the MG solver seems lower. As the number of MPI processes increases, the performance of the FFT solver improves faster

than the MG one, until it overtakes it. Note that this conclusion is different for the 4096×4096×128 configuration run over a

large number of nodes (see Section 3.3). Finally, the performance on 8 GPUs of Jean-Zay is, as seen for the model as a whole,

not better than on 4 GPUs.

The energy efficiency of the GPU port is also examined (Fig. 6). The results are shown for the 256×256×128 configuration360

using the FFT solver on one Adastra node. The energy consumption measurement is returned by the job scheduling software,

here the Simple Linux Utility for Resource Management (SLURM), and corresponds to the aggregated node consumption.

It does not include network and storage energy consumption. These can be neglected here, as the runs are done on a single
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Figure 5. Mean runtime per time step of the FFT and MG pressure solvers as a function of the number of GPUs for (a) Adastra and (b)

Jean-Zay. Numbers indicate the numbers of MPI processes per GPU and the star symbol represents 16 MPI processes per GPU. Results are

shown for the 256×256×128 configuration.

computer node and I/O is limited to reading data in the initialization phase. The results compare the CPU and GPU versions

of Meso-NH. They are detailed according to the number of MPI processes. The results for the GPU version use all the 8365

GPUs available on the node. Results for the GPU version running with 64 MPI processes are not shown, as overloading AMD

MI250X GPUs with 8 MPI processes reduces performance by significantly increasing execution time. Nor are they shown for

the CPU version run with 16 MPI processes (or even less), as this configuration partially loads the computing node, leading to

almost equivalent power use for double the run time compared with the CPU version running with 32 MPI processes. To obtain

a fair comparison between CPU and GPU energy use, all running on the same node configurations, the CPU measurements370

have to be corrected to remove GPU energy use in idle mode. This is estimated by taking the power usage reported by the

rocm-smi command when the GPUs are idle. An average power usage of 90 W is found for each Graphics Compute Die

(GCD; a GCD contains 2 GPUs). Note that, unlike the results presented elsewhere, the initialization phase is included in the

measurements.

Overall, the GPU version is 3 times more energy-efficient than the CPU-only version. Although GPUs need more power375

than CPUs and significantly increase the energy requirements of compute nodes, running on GPUs leads to very important

gains in terms of energy use. Here, the instantaneous power is around 4 times higher with GPUs, but running time is 12 times

shorter. This perfectly illustrates the benefits of using GPUs: shorter running times combined with greater energy efficiency.

The number of MPI processes per GPU has an impact on energy consumption. As it increases, so does power draw (power is

energy divided by the running time). However, as seen before, the optimum situation in terms of running time is to put 2 MPI380

processes per GPU for this test case on Adastra. Here, the fastest GPU run is also the most energy-efficient. If the MG pressure

solver is used instead of the FFT solver, the fastest run also corresponds to 2 MPI processes per GPU, but the run with a single
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Figure 6. Energy use of Meso-NH on a single Adastra node for the CPU and GPU versions. Results are shown for the 256×256×128

configuration using the FFT pressure solver.

process per GPU is slightly more energy-efficient (needing 110 kJ instead of 116 kJ). For CPU-only runs, using all node cores

(64 cores per node) is the fastest, but not necessarily the most energy-efficient. For runs with the FFT pressure solver, energy

use increases by 9% compared to a depopulated run with just 32 processes. However, the opposite is found when the MG385

pressure solver is used (reduction of 11% in energy need).

3.3 Scaling

The results of the scaling study on Adastra and Leonardo (see their characteristics in Table 3) are shown for the

4096×4096×128 configuration (Fig. 7). The x-axis corresponds to the number of nodes used by the model. Four curves

are shown for the two computer systems: one using the FFT pressure solver ("OpenACC R8I4 FFT") and three using the MG390

pressure solver. The managed memory version ("Managed R8I4 MG") enables the system to implicitly manage data transfers

between CPUs and GPUs. The "OpenACC R4I4 MG" version is compiled with simple precision for floating point numbers.

The "OpenACC R8I4 MG" version corresponds to double precision floating point numbers. In addition, performance on the

CPU AMD Genoa partition of Adastra is shown and its run time with 64 nodes is used as a reference for speedup calculation.

Table 4 and Table 5 list the data corresponding to the "OpenACC R8I4 MG" and "Managed R8I4 MG" curves, respectively,395

and detail the speedup routine-by-routine.

The speedup of GPUs compared to CPUs using 64 nodes is between 2.1 and 19.0, depending on the number of nodes and

compiled versions of Meso-NH. This demonstrates the benefits of porting. With the same "OpenACC R8I4 MG" version, the

code is 5.6x faster on Adastra using 64 nodes, with 9.9x faster advection. Performance is a little lower on Leonardo, with a

speedup of 4.4 for the model and 8.7 for advection. This is not completely unexpected, as Leonardo nodes have 4 GPUs instead400

of 8 for Adastra. The "Managed R8I4 MG" version mainly shows a higher speedup than the "OpenACC R8I4 MG" version,
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Figure 7. Results for the 4096×4096×128 configuration run on Adastra GPU AMD MI250X, Leonardo GPU NVIDIA A100 and Adastra

CPU AMD Genoa. The black dashed line is the reference for the perfect scaling. The speedup is calculated with respect to the elapsed time

for the Adastra CPU AMD Genoa partition using 64 nodes.

with the exception of Leonardo with 128 and 256 nodes. Although transfers are better optimized by manual management and

have less overhead than managed memory, current developments still incorporate some unnecessary transfers. This explains

why "Managed R8I4 MG" tends to be better. The Meso-NH "OpenACC R8I4 FFT" version is slower than the "OpenACC

R8I4 MG" version. The difference in speedup is greatest for 256 nodes, by 50% on Leonardo (12.0 versus 8.3). The speedup405

in pressure solver is indeed 7.0 for MG and 3.2 for FFT. This clearly shows the benefit of introducing a MG pressure solver for

GPU porting when the number of GPUs is high.
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Table 4. Data, in speedup, corresponding to the "OpenACC R8I4 MG" curve in Fig. 7

Machine Nodes Model Adv. Turb. Cloud Solver

Adastra 64 5.6 9.9 6.2 6.3 4.6

128 8.9 16.8 10.3 11.3 6.3

256 12.6 23.8 16.5 17.3 7.0

Leonardo 32 2.4 4.8 2.1 2.5 3.7

64 4.4 8.7 4.2 4.9 5.3

128 7.4 14.0 8.0 9.3 6.1

256 12.0 23.6 15.0 17.7 7.1

Table 5. Data, in speedup, corresponding to the "Managed R8I4 MG" curve in Fig. 7

Machine Nodes Model Adv. Turb. Cloud Solver

Adastra 64 6.0 12.1 6.7 6.9 4.9

128 9.5 18.4 11.7 12.6 5.9

256 12.9 26.1 19.4 18.6 6.4

Leonardo 32 2.6 5.4 2.9 14.0 2.6

64 4.6 8.9 5.3 25.0 4.0

128 7.1 14.1 9.6 27.0 4.7

256 10.0 21.7 15.1 65.1 4.9

The "OpenACC R4I4 MG" version offers greater acceleration than other versions, for a given number of nodes. This results

in the highest speedup with 256 nodes, 17.8 and 19.0 for Leonardo and Adastra, respectively. This is expected because Meso-

NH is memory bound. Reducing the size of floating point numbers by a factor of 2 also reduces the amount of data that has to410

be read from or written to memory by almost 2. This also has the benefit of reducing the memory footprint. The benefit of a

reduced precision is higher on Leonardo probably because NVIDIA A100s have twice the computing performance with 32-bit

floats than with 64-bit floats unlike AMD MI250Xs which have the same computing power for 32-bit and 64-bit floats. This

reduction in precision does not significantly reduce the convergence time of the pressure solver for this test case.

Scaling is almost perfect with CPUs: doubling the number of nodes doubles the speed. The same applies to GPUs, up to 64415

nodes only. By using more nodes, the code still runs faster, but at a lower rate than expected, i.e., 13.4 against 16 expected with

128 nodes and 19.0 against 32 expected with 256 nodes with the "OpenACC R4I4 MG" version on Adastra.

The energy gain factor of Meso-NH on Adastra using the GPU AMD MI250X and CPU AMD Genoa partitions is shown for

the 4096×4096×128 configuration run (Fig. 8). Four curves are shown for the GPU partition: one using the FFT pressure solver

("OpenACC R8I4 FFT") and three using the MG pressure solver, compiled with managed memory ("Managed R8I4 MG") or420
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using OpenACC directives with simple or double precision ("OpenACC R4I4 MG" and "OpenACC R8I4 MG", respectively).

The value for the CPU AMD Genoa partition using 64 nodes is taken as reference.

Figure 8. Energy gain factor of Meso-NH on Adastra, using the GPU AMD MI250X and CPU AMD Genoa partitions, for the

4096×4096×128 configuration run. The energy gain factor is calculated with respect to the value for the CPU AMD Genoa partition

using 64 nodes.

When using the CPU partition, the energy gain is around 1, regardless of the number of nodes used. In other words, energy

cost with CPUs remains the same. This illustrates the perfect scaling of Meso-NH on CPUs seen above. This contrasts with

energy gain obtained using GPUs by a factor 1.3 to 3.6 compared with the CPU reference, whatever the Meso-NH version425

and number of nodes (up to the limit of 256 here). With the OpenACC R8I4 MG version, using GPUs gains energy use to a

factor of 2.3, 2.0 and 1.5 for 64, 128 and 256 nodes, respectively. As expected, the use of simple precision instead of double
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precision offers an even greater reduction, with gain factor of 3.6, 3.1 and 2.1 for 64, 128 and 256 nodes, respectively. Gain

in energy consumption is increased by up to 0.1 with automatic managed memory from the standard version values. Finally,

using the FFT pressure solver results in higher energy use compared to the version with the MG pressure solver. This results430

in the lowest gain factor with respect to the CPU reference, that is 1.8 and 1.3 for 128 and 256 nodes, respectively.

4 Weather applications

The physical realism and numerical efficiency of the Meso-NH code ported to GPU are exploited here to better understand

the mechanisms involved in the formation of small-scale wind gusts in storms. Wind gusts are responsible for major damage,

but remain poorly understood due to their local and intermittent nature (∼ 1 s), which is inaccessible to standard atmospheric435

simulations. As part of a grand challenge on the GPU partition of Adastra, simulations at hectometric resolution were carried

out for recent storms leading to extreme wind gusts. This resolution makes it possible to explicitly represent the scale cascade

from the core of the storms (>100 km) to the deep and shallow convective circulations at the origin of the gusts (<1 km). Table 6

summarizes the set-up of these hectometric simulations that all use the same transport schemes and physical parameterizations

as those used in the benchmark.440

Table 6. Summary of the simulations undertaken for the grand challenge Adastra

Simulation ∆x Grid size # grid points Initial time Duration # GPU nodes

Atlantic storm Alex 100 m 4096×4096×90 1.5 Gpts 18:00 UTC 01 October 2020 6 h 128

Mediterranean storm 250 m 2048×2048×90 0.4 Gpts 04:00 UTC 18 August 2022 6 h 16

Amazonian storm 200 m 4096×4096×128 2.1 Gpts 00:00 UTC 18 January 2023 24 h 128

Wave coupled Alex 200 m 2048×2048×90 0.4 Gpts 18:00 UTC 01 October 2020 6 h 16

4.1 Storms across scales and latitudes simulated by Meso-NH

Two weather events representative of the major types of storms that hit Europe are first simulated (Fig. 9): a North Atlantic

storm associated with the midlatitude cyclone Alex typical of the winter season (windstorm, top panels), and a Mediterranean

storm associated with intense convection and characterized as as derecho, more typical of the summer season (thunderstorm,

middle panels). In both cases, the weather event extends over several hundred km and quickly propagates at a pace of nearly445

100 km h−1, which requires a large simulation domain to capture the life cycle of several hours (left panels). However, the

formation of gusts occurs at scales of a few km at most, which requires high resolution to be accurately represented (right

panels). The wind acceleration involves both deep and shallow convections but contrasts between the two storms, as exemplified

by the clear spatial separation between strong winds and rain in the Atlantic cyclonic storm (top right panel) and their close

proximity in the Mediterranean convective storm (middle right panel).450
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To complement the study of midlatitude storms, a third event representative of tropical weather is also simulated: a convective

storm that spreads over the Amazonian forest during the recent field campaign CAFE-Brazil (Fig. 9, bottom panels). In this

case, the event extends again over several hundred km (the domain is 800-km large) but propagates much more slowly due to

the weak easterly ambient wind in the tropics compared to the midlatitudes. Also, the surface wind is much weaker and does

not lead to severe gusts or related damages. However, the moderate gusts play a crucial role in continuously triggering new455

convective cells and ensuring the organization and maintenance of the convective storm as a whole. This upscale effect starts

at scales of a few km at most—contrarily to the downscale effect of gust formation in midlatitude storms described above—but

also requires high resolution to be accurately represented. While the detailed processes involved are currently investigated in

separate studies, the results illustrate that different types of storms are realistically simulated by Meso-NH and benefit from the

combination of large domain and high resolution.460

4.2 Surface winds simulated by Meso-NH coupled to WW3

In order to better represent ocean-atmosphere exchanges, which can be crucial for the formation of wind gusts, Meso-NH can

be coupled to a wave and/or an oceanic model thanks to the OASIS3-MCT coupler (Craig et al., 2017; Voldoire et al., 2017;

Pianezze et al., 2018). This kind of coupled system has been widely used on the CPU partitions of various supercomputers.

For the first time and thanks to the grand challenge, coupled simulations between Meso-NH and the version 7.02 of the465

WAVEWATCH III (WW3) spectral wave model (WW3DG, 2019) have been successfully performed on the Adastra GPU

partition. The method consists of launching the Meso-NH model on CPUs and GPUs in stand-alone mode, and WW3 on

CPUs. OASIS3-MCT version 5.0 is used and exchanges are made using the CPUs of both models. Concerning computational

cost, as discussed in Sect. 3, for performance reasons, the Meso-NH model uses only 16 CPUs out of the 64 available per GPU

node, but nodes are fully reserved (#SBATCH --exclusive option). The vacant CPUs are therefore used by the WW3470

model using the #SBATCH -m plane option. Since WW3 runs faster than Meso-NH for the same horizontal resolution,

and since parallel exchanges between models via OASIS are very efficient, the computational cost of the coupled simulation is

equal to the computational cost of the Meso-NH simulation. No additional cost is found for the coupling component.

Figure 10 shows an example of the benefit of using high resolution and coupled simulation for Atlantic storm Alex (Table 6).

The simulated 10 m wind speed and wave height for wind sea from the state-of-the-art 9 km operational ECMWF forecast475

(Fig. 10a) are compared to the 200 m simulated fields from the coupled Meso-NH/WW3 simulation on Adastra’s GPU partition

(Fig. 10b). The effect of a high horizontal resolution on the 10 m wind speed is clearly visible, with higher variability and

magnitude. Maximum wind speed is 40% higher in the simulation at 200 m than at 9 km. It can also be noticed that a high

horizontal resolution has a significant effect on the simulated significant wave height for wind sea, with the spatial extension

of the 3 m wave height reduced by tens of km due to a reduced fetch for the 200 m simulation. In that Meso-NH/WW3480

coupled simulation, Meso-NH uses 256 processes distributed over 16 nodes with 8 GPUs per node. WW3 uses 16 processes

distributed over the same 16 nodes. The 6 simulated hours are realized in 14 elapsed hours. Quantifying the importance of

wave-atmosphere feedbacks on the life cycle of the Atlantic storm Alex using this coupled 200 m simulation will be the

subject of future studies.
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5 Conclusions485

Porting Meso-NH to GPUs is achieved by including OpenACC directives to the most computationally expensive parts of

the code: advection, turbulence, cloud microphysics and pressure solver. This approach allows the same code to be run on

CPUs and on hybrid CPU-GPU architectures. Using our own MPPDB_CHECK library, the bit reproducibility of Meso-NH has

already been ensured on CPUs. This property is extended to GPUs, thus guaranteeing accuracy of the porting and the absence

of bugs. A critical point lies in the atmospheric pressure solver, which requires the inversion of an elliptic equation. A multigrid490

pressure solver is integrated, because the fast Fourier transforms approach used in the original version of the code becomes

expensive with a high number of GPUs. Currently, the code runs on different NVIDIA GPU and AMD GPU platforms and

scales efficiently up to at least 1,024 GPUs (256 nodes on Adastra and Leonardo). Using the same configuration with 64 nodes

on Adastra, Meso-NH is 5.6x faster on GPUs, with 9.9x faster advection, and achieves a 2.3x energy efficiency gain compared

to CPUs only.495

Porting of other functionalities of the code to GPU is in progress. This includes grid nesting capabilities, the ability of

using other grid configurations than those imposed by the multigrid pressure solver, and other components such as the two-

moment cloud microphysics scheme. Moreover, the current porting concerns version 5.5 while the latest version of Meso-NH

is version 5.7. An update of the latest version with MESONH-V55-OpenACC is therefore necessary. In particular, in version

5.7, the physical parameterizations have been externalized to create PHYEX (PHYsique EXternalisée). This library shared500

with the operational NWP code AROME of Météo-France aims to provide greater modularity, enable coherent management

of developments in physics and facilitate adaptation to different computing architectures. This also opens up possibilities for

use in other models. Thus the next version of PHYEX will include the GPU modifications from MESONH-V55-OpenACC as

well as domain-specific language development in order to integrate the operational constraints inherent to AROME. Finally,

it is expected that the MESONH-V55-OpenACC version will work as such on the new machines equipped with Accelerated505

Processing Unit (APU), with the advantages of automatic data transfer for memory and I/O (Tandon et al., 2024; Fusco et al.,

2024).

First scientific applications focus on the simulation of extreme weather events across scales as part of a grand challenge

pilot project on the GPU-based Adastra supercomputer, ranked 3rd in the November 2022 GREEN500 (TOP500.org, 2022a).

Three representative storms are simulated: a North Atlantic windstorm associated with a midlatitude cyclone, a Mediterranean510

convective storm characterized as a derecho, and a mesoscale convective system over the Amazon rainforest. Representation of

the North Atlantic storm requires downscaling from the synoptic cyclone scale (>100 km) down to local wind gust formation

(<1 km). Inversely, the representation of the Amazon storm requires upscaling from the local triggering of convective cells

(<1 km), which organize and maintain the system at the mesoscale (>100 km). Finally, the Mediterranean storm involves both

up- and downscaling. We show that Meso-NH successfully represents the cascade of scales for the three representative storms515

for horizontal grid spacing down to 100 m and grid size up to 4096×4096×128 points (2.1 Gpts). On the Adastra GPU partition

and for one of the three storms, coupled simulations between Meso-NH and the WW3 spectral wave model are successfully
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carried out using the OASIS3-MCT coupler. It should be noted that the additional cost of the coupling is negligible compared

with the cost of Meso-NH, since WW3 and OASIS use the free CPUs of the GPU nodes.

Porting Meso-NH to GPUs opens up new opportunities for simulating extreme weather events across scales. These oppor-520

tunities are all the greater in a context where artificial intelligence (AI) is experiencing rapid development in meteorology.

Meso-NH simulations, on a fine scale, over very large domains and integrating various couplings, constitute a unique source of

data for the development of AI emulators. A strong need for giga-LESs (large-eddy simulations on a billion grid points) already

exists for variables that are very little measured, such as the vertical speed of the cloud envelope or in storms that the C3IEL

(Cluster for Cloud Evolution, ClImatE and Lightning) and C2OMODO (Convective Core Observations trOugh Microwave525

Derivatives in the trOpics) satellite projects aim to retrieve (Auguste and Chaboureau, 2022; Brogniez et al., 2022; Dandini

et al., 2022). This need is also expressed for near real-time simulations of natural hazards for urgent decision-making (Flatken

et al., 2023). Finally, this GPU porting paves the way for future European exascale supercomputers. The upcoming arrival of

such machines will enable the creation of tera-LES (over a trillion grid points) and a better understanding of the upscaling and

dowscaling processes occurring during extreme weather events.530

Code and data availability. Since version 5.1 was released in 2014, Meso-NH has been freely available under the CeCILL-C license

agreement. CeCILL is a free software license, explicitly compatible with GNU GPL. The CeCILL-C license agreement grants users

the right to modify and re-use the covered software. The Meso-NH version MESONH-v55-OpenACC is available at http://mesonh.aero.

obs-mip.fr/gitweb/?p=MNH-git_open_source-lfs.git;a=commit;h=498cd0cb968041038ff6c5b0f2a76d5066c55bfd (last access: 16 Septem-

ber 2024) as well as at https://zenodo.org/doi/10.5281/zenodo.13759713, (Escobar et al., 2024). This repository also contains namelists to535

run the test cases and python scripts to reproduce the figures of this manuscript. The MNH_Expand_Array preprocessor is available at

https://github.com/JuanEscobarMunoz/MNH_Expand_Array (last access: 16 September 2024).
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Figure 9. Illustrations of Meso-NH simulations for (top panels) Atlantic storm Alex on 01 October 2020, (middle panels) a Mediterranean

storm on 18 August 2022 and (bottom panels) Amazonian storms on 18 January 2023. Light shadings show the integrated content of

hydrometeors, blue shadings show the precipitation rate above 20 mm h−1 and red shadings show the 10-m wind speed. Left panels illustrate

composites of different times (in UTC) on the whole domain, while right panels illustrate zooms at specific times in the red boxes.
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Figure 10. Illustrations of coupled simulations of Atlantic storm Alex on 01 October 2020: 10 m wind speed (vectors for direction and color

for amplitude) and significant wave height for wind sea (isolines) simulated (a) by ECMWF operational forecast and (b) by Meso-NH /

WW3 on Adastra.
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