
Review of "Porting the Meso-NH atmospheric model on
different GPU architectures for the next generation of
supercomputers (version MESONH-v55-OpenACC)"
In this article, the author discuss their successful porting of the Meso-NH model, a mesoscale
atmospheric model, from CPU to GPU architecture. The reason is to make use of the faster and
more efficient running of certain types of calculations on GPU. The authors indeed report
significant improvements in speed and energy efficiency using their new GPU code, and in their
article discuss the technical details of the code porting, technical choices that need to be made,
bit reproducibility efforts, and at the end a set of demonstrative simulations.

First of all, I would like to congratulate the authors with their new GPU-accelerated code, which
no doubt was a big effort. I also like the bit-reproducibility work, which appears crucial in getting
reliable results across different hardwares. In reading the article, I came across a few themes
that I think need to be clarified, which relate mostly to validation and reproducibility, and a
handful of small comments that I list at the end of this review. As my technical knowledge of
OpenACC/MPI, compilers, and writing custom libraries is limited I will focus a bit more on the
practical side, interpretation, and overal validation.

Major comments

Section 4 shortcomings
After demonstrating technical side of the porting process and the hardware / performance
scaling of the model on various architectures using the author's standard validation case,
section 4 is set to demonstrate the "physical realism" and even aims to "better understand the
mechanisms involved in the formation of small-scale wind gusts" (lines 433-434). However, the
discussion of the simulations is limited to qualitative descriptions which ultimately demonstrate
little in terms of new understanding or physical realism. At the very least, I would expect
comparison to observations here and quantitative measures of skill, for example compared to
what is achievable using the same amount of computing power (in time or energy) on CPU-only
simulations (which would demonstrate the benefit). Furthermore, to substantiate the claims of
"successful cascade of scales" (e.g. line 10), I would expect a power density spectrum of wind
and specific humidity at certain levels.

Reproducibility
In light of the previous comment, I thought I'd try and run the code myself on one of the NVIDIA
GPU workstations we have available. I use these to run similar GPU-accelerated LES code.
After close to an hour, I was not able to compile the library with the documentation supplied in
https://zenodo.org/doi/10.5281/zenodo.13759713. Some error code was in French (when you

https://zenodo.org/doi/10.5281/zenodo.13759713

run ./configure twice after changing a setting). The top-level README did not guide me
through the installation process for a Linux PC, it seemed to be optimized for supercomputer,
which is the main purpose, of course. I came across a url for instructions for Linux PCs in the
README in the MESONH-v55-OpenACC folder, but that url does not work. The compilation
seemed almost done, but there were no clear errors at the end - though I suspect an unlinked
NetCDF library was the culprit. I don't doubt the compilation process will ultimately be
straightforward, but for a user who has never worked with this model before, the instruction for
a model as complex as this were too limited given the time I can spend on a review. I don't have
access to the supercomputers used by the authors.

Scaling with radiation
Given that this model runs mesoscale domains at LES resolution, I would expected that details
in physics parameterizations will start to matter. One example is radiative transfer calculations,
see:

Maier, R., Jakub, F., Emde, C., Manev, M., Voigt, A., and Mayer, B.: A dynamic approach to
three-dimensional radiative transfer in subkilometer-scale numerical weather prediction models:
the dynamic TenStream solver v1.0, Geosci. Model Dev., 17, 3357–3383,
https://doi.org/10.5194/gmd-17-3357-2024, 2024.

Veerman, M. A., van Stratum, B. J. H., & van Heerwaarden, C. C. (2022). A case study of
cumulus convection over land in cloud-resolving simulations with a coupled ray tracer.
Geophysical Research Letters, 49, e2022GL100808. https://doi.org/10.1029/2022GL100808

Ukkonen, P., & Hogan, R. J. (2024). Twelve times faster yet accurate: A new state-of-the-art in
radiation schemes via performance and spectral optimization. Journal of Advances in Modeling
Earth Systems, 16, e2023MS003932. https://doi.org/10.1029/2023MS003932

Please clarify:

Minor comments

Readability of the overal manuscript
As mentioned, I lack the technical know-how of the porting process, and so, feel free to not
attribute too much value to this comment. However, if your goal is for the article to be readable
to a broader audience, I would advice an approach where the logic and decision making of all
steps is written in plain language, with the specific syntax/code not in-line but separate. I
understand this may be unavoidable given the topic of the article.

What scheme do you use and is it GPU-accelerated? Line 98 should be more specific
here. I suspect ecRAD.

How does the radiation scheme affect the scaling performance of CPU vs GPU code? Line
287 says you call it only every 900s.

https://doi.org/10.5194/gmd-17-3357-2024
https://doi.org/10.1029/2022GL100808
https://doi.org/10.1029/2023MS003932

For example, in much of the article, command line options, compiler flags, and run modes are
included in parenthesis or in-line in such a way that, for me, the readability of the overal text is
challenging and sometimes I lose track of what the purpose of a specific section or paragraph
is. In section 4.2, meant to showcase the practical application of the model code, various new
technical concepts and run flags are introduced in the first paragraph, and then again at the end
of the second paragraph. Lines 106 to 114 may also better be placed in section 2.2? Also the
concept of bit-reproducibility can, I think, be explained without the use of inline compiler flags.

Line 58: No code is bug-free, unfortunately. Do you mean that at least single to multi CPU vs
GPU will give the same results, and so there are no bugs related to which architecture it runs
on?
Line 427: "the use of single precision"

