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Abstract. This paper addresses a major challenge in assimilating 3D radar reflectivity data with a Localized Ensemble Trans-

form Kalman Filter (LETKF). In the case of observations with significant reflectivity and small or zero corresponding simulated

reflectivities for all ensemble members, i.e., when the ensemble spread is vanishing, the filter ignores the observations based on

its low variance estimate for the background uncertainty. For such low variance cases the LETKF is insensitive to observations

and their contribution to the analysis increment is effectively zero. Targeted covariance inflation (TCI) has been suggested to5

deal with the ensemble spread deficiency (Yokota et al., 2018; Dowell and Wicker, 2009; Vobig et al., 2021). To actually make

TCI work in a fully cycled convective-scale data assimilation framework, here we will introduce a process-oriented approach

to TCI in combination with a conditional approach formulating criteria under which targeted covariance inflation is efficient.

The process-oriented conditional TCI addresses the challenge of underrepresented reflectivity in the prior by constructing

artificial simulated reflectivities for each ensemble member based on current observations and typical convective processes.10

Furthermore, certain conditions are used to restrict this spread inflation process to a carefully selected minimal set of eligible

observations, reducing the noise introduced into the system.

We will describe the theoretical basis of the new TCI approach. Furthermore, we will present numerical results of a case study

in an operational framework, for which the TCI is applied to radar observations at each hourly assimilation step throughout a

data assimilation cycle. We are able to demonstrate that the TCI is able to clearly improve the assimilation of radar reflectivities,15

making the system dynamically generate reflectivity that would otherwise be missing. Related to this, we are able to show that

the fractional skill score of radar reflectivity forecasts over lead times of up to six hours is significantly improved by up to

10 %. All results are based on the German radar network and the model ICON-D2 covering central Europe.

1 Introduction

Data assimilation techniques (Lorenc et al., 2000; Rabier et al., 2000; Lorenc, 2003; Liu et al., 2008; Evensen, 2009; Van Leeuwen,20

2009; Kleist et al., 2009; Nakamura and Potthast, 2015; Houtekamer and Zhang, 2016; Bannister, 2017; Gustafsson et al.,

2018) are employed for the estimation of initial conditions that are used for the initialization of dynamical forecast models.

For that purpose, data assimilation techniques combine information from newly measured meteorological observations and

previous model forecasts. Considering the special class of ensemble data assimilation techniques (Evensen, 1994; Houtekamer
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and Mitchell, 1998; Evensen and van Leeuwen, 2000; Houtekamer and Mitchell, 2001; Anderson, 2001; Houtekamer and25

Mitchell, 2005; Houtekamer et al., 2005; Houtekamer and Zhang, 2016; Potthast et al., 2019; Schenk et al., 2022), an ensem-

ble of atmospheric model states is used for representing uncertainties and correlations among model variables. The usage of

such an ensemble of states also allows the calculation of correlations between model variables and atmospheric observations

as well as weighting the information contained in observations and model variables. Belonging to this group of ensemble data

assimilation techniques are the many versions of the particularly popular Ensemble Kalman Filter (Evensen, 2009) of which30

the Localized Ensemble Transform Kalman Filter (LETKF) (Hunt et al., 2007) is most relevant for this present work.

Predicting convective events with numerical weather prediction (NWP) models is challenging due to errors in initial condi-

tions and the atmosphere’s chaotic behavior. Weather radar observations, such as reflectivity and radial winds, can significantly

reduce these errors by capturing the three-dimensional evolution of convective systems with high spatio-temporal resolution.

The use of radar data to improve convective initiation and forecasting dates back to Lin et al. (1993), who developed a method35

to initialize convective models by adding humidity in areas with radar echoes. More recently, radar observations have been suc-

cessfully applied in convective-scale data assimilation, significantly enhancing convective storm predictions in NWP models

(Gustafsson et al., 2018), with the Ensemble Kalman Filter—known for its flow-dependent covariances—being widely used in

this context. The potential of assimilating radar observations at convective scales was demonstrated in idealized setups (Snyder

and Zhang, 2003; Caya et al., 2005; Tong and Xue, 2005; Xue et al., 2006; Gao and Xue, 2008; Sobash and Stensrud, 2013;40

Lange and Craig, 2014; Thompson et al., 2015; Gao et al., 2016; Lange et al., 2017; Potvin et al., 2017; Bachmann et al.,

2019, 2020; Zeng et al., 2021) as well as in real-data assimilation (Bick et al., 2016; Gastaldo et al., 2018; Zeng et al., 2018;

Duda et al., 2019; Zeng et al., 2019; Ruckstuhl and Janjić, 2020; Zeng et al., 2020; Shen et al., 2020).

In this study, we employ the data assimilation framework KENDA (Kilometere-scale ENsemble Data Assimilation) (Schraff

et al., 2016) which combines an implementation of the LETKF that closely follows Hunt et al. (2007) and the regional ICON-45

D2 model, a limited area mode configuration of the ICON (ICOsahedral Nonhydrostatic) model (Zängl et al., 2015; Prill

et al., 2024) that covers central Europe. Considering the assimilation of radar data, KENDA operationally assimilates radar

data by employing 3D radar observations obtained from the C-Band radar network of the German Weather service and model

equivalents computed by means of the radar forward operator EMVORADO (Efficient Modular VOlume scan RADar Operator)

(Zeng et al., 2016). In addition to the assimilation of 3D radar data, KENDA also includes the Latent Heat Nudging (LHN)50

mechanism (Stephan et al., 2008; Schraff et al., 2016) which is based on radar composites of radar precipitation scans.

One of the main challenges of assimilating radar reflectivities with an ensemble data assimilation system like the LETKF

is dealing with observations whose corresponding background reflectivity spread vanishes. This vanishing ensemble spread

leads to an over-confidence in the background system state and, as a result, the LETKF is unable to adequately employ the

information given through such observations and effectively rejects them—even in the presence of large discrepancies between55

observed and simulated reflectivities. In practical applications it may then happen that the LETKF effectively ignores the

information given through the observation of even very large reflectivity cells and fails to synchronize the true system state,

i.e. nature, with the model state.
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The purpose of the TCI approach (Yokota et al., 2018; Dowell and Wicker, 2009; Vobig et al., 2021) employed in this work

is to overcome the just mentioned issue, i.e., to address the issue of missing ensemble variability and, thus, make the LETKF60

more sensitive to observations in cases where observations show that the ensemble does not capture the processes adequately.

To this end, artificially simulated reflectivities are constructed and assimilated. The studies Yokota et al. (2018), Dowell and

Wicker (2009), and Vobig et al. (2021) suggest that adding spread in a targeted way can help to make the LETKF take up

the observations and draw the fields into the right direction. However, it turns out that applying the scheme in a naive way to

the whole domain in a cycled convective-scale framework generates a lot of noise in the system and, even though it helps in65

selected situations, worsens the overall scores of both reflectivity forecasts and conventional variables.

To overcome the above problems with the TCI scheme, we will introduce two key techniques into the system. Firstly, the

construction is accomplished by means of a specifically designed model that employs selected model variables as indepen-

dent variables and has been trained on data exclusively found in the nearest spatio-temporal vicinity of early-stage convective

events—defined as regions where the model has just begun to generate significant reflectivity. This algorithm is therefore de-70

signed to capture those empirically observed correlations that are most relevant to convective events and the involved physical

processes related to their initiation. Using this algorithm for the construction of artificially simulated reflectivities and assim-

ilating those, we expect the system to be pulled towards an overall state that is related to a (pre-)convective environment and

more likely to dynamically produce reflectivity.

Secondly, we employ a particular set of observation selection rules to ensure that the TCI is only applied to the most relevant75

observations, which usually represent only a very small percentage of the total number of observations. We found out that these

observations selection rules are essential for minimizing negative effects on the system state. This is particularly relevant in the

context of TCI being potentially applied to all radar data at multiple time steps throughout long-term cycled data assimilation

experiments, as this could lead to “accumulation effects”, such as the gradual build-up of errors or biases over time due to

periodic changes to the assimilation process introduced by the TCI algorithm.80

Regarding an earlier implementation and study of the TCI approach (Vobig et al., 2021), we could already demonstrate that,

in the context of non-cycled single-observation experiments assimilating only single isolated observations at single time steps,

positive effects are introduced into the system in the form of newly emerging simulated reflectivity cells. While this earlier

TCI implementation is based on the same general idea, there are several substantial differences between the current version

presented here and its predecessor, not only regarding methodological aspects but also regarding the type of assimilation85

experiments. Firstly, we completely redesigned the algorithm the TCI approach is relying on for the calculation of artificially

simulated reflectivities, using pre-convective situations only. Secondly, we have established observation selection rules for

applying TCI only to carefully selected observations where a set of criteria is satisfied. Thirdly, we are processing all 3D radar

observations available to our system. Lastly, we are studying longer-term NWP data assimilation cycles in an operational setup

for which the TCI is applied at each hourly assimilation step—allowing accumulation effects to build up.90

Our implementation of the LETKF in the KENDA system is described in section 2.1, the ICON-D2 model setup is summa-

rized in section 2.2, the radar forward operator EMVORADO is explained in section 2.3, and a brief explanation of the Latent

3



Heat Nudging approach is given in section 2.4. We will introduce and describe the process-oriented TCI in section 3.1, the

conditional approach in section 3.2, and more details on the implementation are provided in section 3.3.

The case study, upon which the numerical results presented in this work are based, and its particular setup is described in95

section 4.1. In section 4.2 we will demonstrate the positive effects of TCI on the basis of studies of individual cases at single

times. In section 4.3 we will discuss the statistical evaluation of longer-term NWP experiments showing that the Fractional

Skill Score (FSS) (Roberts and Lean, 2008) w.r.t. the reflectivity prediction of free forecast model runs is clearly improved

through the TCI by up to 10 %, while keeping the negative impact on observation error statistics at a minimum.

2 ICON-KENDA Ensemble Data Assimilation System100

2.1 Data Assimilation: LETKF

The KENDA system (Schraff et al., 2016) employs the Localized Ensemble Transform Kalman Filter (LETKF) as suggested by

Hunt et al. (2007). This formulation allows to easily add new observations to the assimilation, while the core implementation

can be kept once it is implemented. In the KENDA data assimilation system, the deterministic member represents the best

estimate of the atmospheric state, while the ensemble members capture the range of possible states and uncertainties are used105

to generate corrections to improve the deterministic member.

The formulation of Hunt et al. (2007), see also Nakamura and Potthast (2015, chapter 5), solves the Kalman filter equations

in ensemble space defined by the ensemble members x(b,ℓ) for ℓ= 1, ...,L minus ensemble mean

x̄(b) :=
1

L

L∑
ℓ=1

x(b,ℓ). (1)

We use the notation110

Xb :=
(
x(b,1) − x̄(b), ...,x(b,L) − x̄(b)

)
(2)

for the matrix of ensemble differences from the mean and (for the case of linear H)

Yb :=HXb (3)

for the ensemble differences in observation space, yo the observation vector and ȳb the mean of observations simulated from

the ensemble. The observation error covariance matrix is denoted by R. Now, we employ equations (20) and (21) of Hunt et al.115

(2007), i.e.,

wa = P̃a(Yb)T R−1(yo −yb) (4)

for calculating the mean of the analysis ensemble and P̃a given by

P̃a = [(L− 1)I+(Yb)T R−1Yb]−1, (5)
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where we use the letter L for the number of ensemble members, the notation wa for the linear coefficients of the analysis mean120

and I for the identity matrix. P̃a denotes the L×L analysis covariance in the space of ensemble coefficients. Equation (2) in

model space lead to (22) and (23) of Hunt et al. (2007),

xa = xb +Xbwa, (6)

Pa =XbP̃a(Xb)T , (7)

where xa is the analysis mean and Pa the analysis covariance matrix. With W calculated by125

W = [(L− 1)P̃a]1/2 (8)

as in (24) of Hunt et al. (2007) the analysis ensemble is calculated by

Xa =XbW, (9)

where the power 1/2 denotes the symmetric square root of the symmetric matrix P̃a given through eq. (5).

It is obvious that in the case where the ensemble of simulated reflectivities has small or zero spread, the matrix Yb (see130

eq. (3)) has small or zero entries and in that case both Pa (see eq. (7)) and the transform matrix W (see eq. (8)) are small, such

that the ensemble analysis increments given by Xa (see eq. (9)) are small as well. The goal of targeted covariance inflation is

to change Yb in a way that the reflectivity observations lead to appropriate increments in the humidity and further variables.

The basic challenge of different approaches to TCI is how to construct the inflated matrix Yb such that the increments avoid

spurious noise and generated meaningful convective processes in the model propagations following the analysis steps in a135

cycled data assimilation framework. We will develop the process-oriented and conditional approaches in section 3.

2.2 NWP Model: ICON-D2

The ICON modeling framework (Zängl et al., 2015; Prill et al., 2024) is the numerical weather prediction and climate modeling

system collaboratively developed by various institutions and weather services where the Deutscher Wetterdienst (DWD) and

the Max-Planck-Institut for Meteorology (MPI-M) are major contributors here. At DWD the ICON system runs operationally140

on a global scale, within the European subdomain known as ICON-EU, and in a convection-permitting local-area mode ICON-

D2. The model domain of ICON-D2 covers all of Germany, Switzerland, Austria, and parts of the other neighboring countries,

see fig. 1. Therefore, the model of ICON-D2 is very similar to that of the former operational COSMO-D2 model1 (Baldauf

et al., 2011) which it replaced in 2021. In this work we are mainly employing the ICON-D2 configuration for our model

simulations which has a model resolution of 2.1 km, 65 vertical levels, and lateral boundary conditions provided by ICON-EU145

simulations.

Horizontally, the ICON model uses an unstructured triangular grid, while in the vertical dimension a distinct set of levels

{li |1≥ i≥N} is defined. See fig. 1 for a rough estimate of the height of each ICON level. Furthermore, the ICON model

1COSMO refers to the Consortium for Small-Scale Modeling.
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Figure 1. Left: Depiction of the ICON-D2 model domain covering central Europe. Colors indicate the height above mean sea level (AMSL)

of the lowest ICON level that coincides with the ground level. Right: Taking the horizontal mean over the complete model domain, the mean

of the AMSL heights of each ICON level is shown. Shaded areas indicate the related standard deviation.

solves an equation system based on a distinct set of prognostic variables. Generally speaking, a two-component system is

assumed involving dry air and water as variables where the latter may appear in all three phases. For a more in-depth discussion150

of the ICON model see Prill et al. (2024).

2.3 Radar Forward Operator: EMVORADO

In the convective-scale ICON-D2 configuration of the ICON model 3D radar observations obtained from the German radar

network are employed (Bick et al., 2016). The German radar network consists of 17 dual-polarization C-band Doppler radar

stations that comprehensively cover Germany (see fig. 2). The scanning procedure for 3D volume scans at each radar station155

involves a complete 360 ◦ azimuthal sweep with a 1 ◦ resolution at ten elevation angles ranging from 0.5 ◦ to 25 ◦. Radially, the

distance reaches up to 180 km for each station with a resolution of 1 km.

To assimilate 3D radar observations, synthetic 3D radar data is derived from model variables utilizing the forward operator

EMVORADO (Zeng et al., 2016) where, considering solely its single-polarization implementation in this study, Doppler ve-

locities and reflectivities are computed. Note that simulated radar observations are produced in observation space, i.e., for each160

observation an associated model equivalent is computed. Furthermore, EMVORADO accounts for various intricate physical

factors related to the simulation of radar measurements like, e.g., beam bending, beam broadening, beam shielding, Doppler

velocity with fall speed and reflectivity weighting, attenuated reflectivity, and detectable signal. The EMVORADO operator

also allows superobbing, i.e. the local spatial averaging of observations and corresponding observation equivalents as a stan-
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Figure 2. Left: Depiction of the German radar network covering the area of Germany. Each radar station is depicted as an individual circle

and has a range of 150 km. Right: Scanning strategy of each radar station of the German radar network. Each of the 10 fixed elevations as

well as the terrain-following precipitation scan is shown.

dard technique for assimilating spatially high-resolution observations. For more comprehensive information and specifics that165

are beyond the required scope of this work, please refer to Zeng et al. (2016).

2.4 Latent Heat Nudging

The Latent Heat Nudging (LHN) mechanism is a feature of KENDA that enables the assimilation of radar-derived precipitation

rates, independent of the assimilation of volume radar data. Note that these precipitation rates are derived from radar data

supplied through the OPERA network (including the precipitation scan of the German radar network). For further details on170

the LHN approach and its integration into KENDA, refer to Stephan et al. (2008); Schraff et al. (2016).

3 Targeted Covariance Inflation

In the following, we discuss the basic elements of the targeted covariance inflation approach (TCI) aiming for an improve-

ment of the LETKF assimilation of 3D radar reflectivity data. This approach is motivated by the fact that the LETKF has a

fundamental deficit assimilating observations whose associated simulated ensemble spread vanishes. In numerical applications175

such observations are effectively discarded by the LETKF algorithm and have no practical impact on the generated increments,

which can also directly be seen through eqs. (5) to (9). The TCI approach specifically aims to resolve this issue by inflating the

ensemble spread for such observations.

We would like to note that the opposite of the previously described scenario—spurious convection in the model background

when observations show no convection—is not directly addressed in this study. This issue is generally handled by the standard180

mechanisms of the LETKF data assimilation and is not related to the ensemble spread problem that TCI specifically targets.
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The spread inflation is achieved by employing a specifically designed model for computing artificially simulated reflectivities

for all ensemble members. This model is based on empirically observed correlations found in the nearest spatio-temporal

vicinity of convective events. Note that the particular design of the model for the construction of artificial reflectivities is driven

by the intention to make the LETKF produce additional increments that make convective initiation and the dynamic generation185

of reflectivity in the nearest vicinity of spread inflated observations throughout a subsequent NWP run more likely to occur.

See section 3.1 for an in-depth discussion of the construction of this model.

The overall TCI algorithm only computes and assigns artificially simulated reflectivities for observations fulfilling a certain

set of conditions. As a consequence, the TCI usually only makes modifications to a very small subset of the most relevant

radar observations and the negative effects (like a potential negative impact on observation error statistics, see section 4.3.1)190

on the system state are kept at a minimum. See section 3.2 for a discussion of those conditions and a concise formulation of

the overall TCI algorithm.

Finally, the TCI algorithm has to be implemented and integrated into the KENDA system for performing numerical experi-

ments which is briefly discussed in section 3.3.

3.1 A Process-Oriented Regression Model for TCI195

The computation of artificially simulated reflectivities Z of the TCI approach is based on an application of a specifically

constructed model M. Considering the general functional form of this model, we assume a linear relationship between the

simulated reflectivity perturbation δZ (restricted to heights h above mean sea level of 3000 m to 4000 m) and the simulated

specific humidity perturbation δqv at a certain ICON level L. Formally, this may also be written as follows

δZi(λ,ϕ,h) =M
(
δqv

i(λ,ϕ,L)
)
= αL · δqvi(λ,ϕ,L) , (10)200

with the ensemble member index i, longitude λ, and latitude ϕ. We would like to point out that, firstly, this model lives within

the ensemble perturbation space as only ensemble perturbations δZ and δqv are used as variables and, secondly, that this is a

height-based approach, i.e., the algorithm only differentiates the height of radar observations and does not explicitly take the

actual radar elevation angle into account.

For determining the coefficients αL we are performing a linear regression for each available value for the parameter L, i.e.,205

the specific ICON level used for the independent variable qv . The definite value for the parameter L is then selected by finding

the maximum position of the corresponding correlation coefficient ρL. As shown in fig. 3, there is a clear maximum for this

correlation coefficient of ρ= 0.8 at L= 30 (with α= 16000 dB(Z) kg kg−1).

The data set used for each linear regression is constructed as follows:

1. All simulated reflectivity data (from all elevation angles of the volume scan) and specific humidity data from all ensemble210

forecasts are collected. The forecasts provide data every 10 minutes and start hourly for the first 24 hours of an ICON-D2

assimilation cycle with 40 ensemble members. This cycle is initialized at 2019-06-03T00:00:00 which coincides with

the beginning of the period studied in section 4.

2. All data are interpolated to a regular grid with a 2 km resolution.
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Figure 3. Performing a fit of eq. (10) to data that is exclusively related to early-stage convective events (see text for more information on data

preparation steps), this plot depicts the resulting correlation coefficient ρL over the ICON level L of the specific humidity variable qv for

each of those fits. For studying the effect of spatio-temporal displacements between reflectivities and specific humidities, a moving average

with strength β is applied to the 2D input fields for qv (see eq. (11)).

3. The volume radar data are binned w.r.t. height above mean sea level, using bin edges at {1000m,2000m, . . . ,10000m},215

and the mean value is calculated for all data points within each bin.

A filter is then applied to this initial, large data set to include only data representative of early-stage convective events, i.e.,

data from spatial and temporal points near newly emerging convective cells. For each assimilation date d0 and lead time t0,

this filter includes only those horizontal positions (x0,y0) in the final data set that satisfy the following conditions:

1. At time t= t0 − 10min, within a 20 km radius of (x0,y0), the ensemble mean of the lowest available radar data bin is220

below 1 dBZ.

2. At time t= t0, the ensemble mean of the lowest available radar data bin at (x0,y0) is above 10 dBZ.

We found that these specific conditions (based on ensemble mean data) are fairly robust at identifying spatial positions where

at least one of the ensemble members is associated with convective initiation and convection in the growing process.
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By only including data associated with convective processes we intend to capture the most relevant correlations associated225

with convection and, therefore, construct a more process-oriented approach which is eventually more capable to pull the system

state towards an environment that is likely to initiate convection and which helps the model to dynamically produce reflectivity.

Finally, it is important to note that the algorithm we just discussed for constructing and selecting a TCI model, used to

compute artificial reflectivities, is only loosely related to the overall algorithm that applies this selected TCI model based on

specific observation selection rules, as discussed in section 3.2. However, as we will demonstrate, both algorithms follow the230

same general principles and ideas.

3.2 Conditional TCI based on Observation and Ensemble Characteristics

Another important advancement compared to earlier versions of the TCI approach (Vobig et al., 2021) is that multiple specific

conditions are required to be fulfilled before the TCI is applied for a specific observation. We found that this restriction of an

application of the TCI to only a small subset of all available observations and, as a consequence, keeping the overall impact on235

the system state at a minimum is essential for keeping the negative effects of the TCI under control.

Some of the following operations involve the calculation of a moving average acting solely on the two horizontal dimensions.

This is implemented as a centered convolution employing a normalized rectangular function of width β (given in kilometers)

in both horizontal dimensions λ, ϕ as kernel. Denoting such a kernel as fβ(λ,ϕ), the processing of an arbitrary field X can be

formally written as240

X̃β(λ,ϕ,h) =

∞∫
−∞

∞∫
−∞

dλ′dϕ′ fβ(λ−λ′,ϕ−ϕ′)X (λ′,ϕ′,h) . (11)

In the following, we are employing the boolean field B(λ,ϕ,h) to specify for each spatial position if the TCI should either

be active (value is “true” or “1”) and simulated reflectivity values should be modified, or if the TCI should be inactive (“false”

or “0”) and simulated values should be left unmodified. Furthermore, this field is defined as the result of a logical conjunction

of several auxiliary boolean fields Bi(λ,ϕ,h)245

B(λ,ϕ,h) =
∏
i

Bi(λ,ϕ,h) , (12)

where each of these boolean fields Bi(λ,ϕ,h) is the result of an individual condition check

Spread-Check: B1(λ,ϕ,h)≡

1 if σi[Z
(i)(λ,ϕ,h)]< 0.1 dB(Z)

0 otherwise
(13)

Deterministic-Check: B2(λ,ϕ,h)≡

1 if Z̃det
β=10(λ,ϕ,h)< 1 dBZ

0 otherwise
(14)

Ensemble-Mean-Check: B3(λ,ϕ,h)≡

1 if µi[Z̃
(i)
β=10(λ,ϕ,h)]< 1 dBZ

0 otherwise
(15)250
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Observation-Check: B4(λ,ϕ,h)≡

1 if Zobs(λ,ϕ,h)]> 15 dBZ

0 otherwise
(16)

Height-Check: B5(λ,ϕ,h)≡

1 if 3000 m ≤ h≤ 4000 m

0 otherwise
(17)

Note that we are employing σi[X
(i)] and µi[X

(i)] for denoting the spread and mean, respectively, of a variable X .

With B1 we ensure that we only make changes for observations whose associated ensemble spread is too small. The fields B2,

B3, and B4 take care that the deterministic member as well as the ensemble mean have to vanish while, simultaneously, there255

has to be a sizeable observed reflectivity, i.e., there has to be a large discrepancy between observed and simulated values. Note

that the calculation of B2 and B3 relies on simulated fields that have been pre-processed by means of a moving average (defined

in eq. (11)). This is done for taking eventual spatio-temporal displacements between observed and simulated reflectivity cells

into account. Finally, B5 ensures that the TCI is only applied for radar observations whose height falls into a certain height

range. This is important as the previously constructed TCI model (see section 3.1) is based on observations falling into this260

specific height range.

We conducted sensitivity tests on the parameters in eqs. (13) to (17), varying them within a defined range to assess their

impact on DA performance and short-term NWP forecasts. The results showed that small changes had minimal impact, and

the final parameters were chosen to balance effective TCI application while minimizing noise.

The TCI modifies the simulated reflectivity of all ensemble members employing the linear model M (see eq. (10)) defined265

in section 3.1 but only for a specific subset of all observations which is specified by means of the logical field B. Formally, the

inflated reflectivities Z ′(i) of the i-th ensemble member are then computed via the following rule

Z ′(i)(λ,ϕ,h) =


µi[Z

(i)(λ,ϕ,h)] +M
(
δ̃qv

(i)

β=10(λ,ϕ, l = 30)

)
if B(λ,ϕ,h) is true

Z(i)(λ,ϕ,h) otherwise
, (18)

where λ, ϕ, and h loop over all discrete spatial points for which a reflectivity is measured. Note that in eq. (18) the field for

qv that is entering the TCI algorithm is pre-processed by means of a moving average for taking spatio-temporal displacements270

into account.

Overall, eqs. (10) and (18) demonstrate that reflectivity perturbations are deterministically derived from specific humidity

perturbations using a linear model—without the involvement of any random perturbations—and are then conditionally applied.

Additionally, we also modify the observation error for each observation for which the ensemble gets inflated. Usually, we use

a global observation error of 10 dB(Z) for all radar observations in our quasi-operational setup. However, if the TCI gets applied275

for a specific observation Zobs(λ,ϕ,h) which means that B(λ,ϕ,h) is true, then the observation error is reduced to 2 dB(Z).

This results in much more pronounced increments and the system is pulled significantly stronger towards those observations.

Note that we performed the same sensitivity checks on the reflectivity observation error as in our previous TCI study (Vobig

et al., 2021), and the results were consistent. These findings confirm that the observation error significantly influences the
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size of the increments, underscoring its importance in the TCI process. The chosen value for the observation error of 2 dB(Z)280

strikes a balance, ensuring that no excessively large increments are introduced while maintaining the effectiveness of the TCI

application.

3.3 Implementation

For integrating the TCI approach into the KENDA system (see section 2.1) the input data that is eventually entering the LETKF

system is pre-processed. Usually, this input data is supplied in the form of feedback files (containing all to be assimilated285

superobbed2 reflectivity observations and model equivalents) and model field files (containing, e.g., the model fields for qv)

where there is one file per ensemble member and radar station. Processing each radar station and radar elevation separately, the

TCI is implemented by performing the following steps sequentially:

1. Reading all required ICON qv model fields for all ensemble members from the model field files.

2. Reading all required observed and simulated radar reflectivity data Z for all ensemble members and all radar stations290

from the radar feedback files.

3. Interpolation of Z and qv onto a common regular two-dimensional horizontal grid (using a resolution of 2 km).

4. Construction of the logical field B, see eq. (12).

5. Calculation of modified simulated reflectivities for all ensemble members via the TCI algorithm, see eq. (18).

6. Writing modified simulated reflectivities back to their corresponding radar feedback files. This step involves an inverse295

map from the regular grid internally used by the TCI algorithm to the irregular grid internally used by the radar feedback

files.

7. Modification of observation errors (within the radar feedback files) for observations whose related ensemble spread got

inflated.

Based on the observations and model equivalents the LETKF calculates a transform vector for the mean and a transform matrix300

for the ensemble perturbations (i.e. the ensemble where its mean is subtracted), which is applied to the first guess ensemble to

calculate the analysis ensemble. In the KENDA (Schraff et al., 2016) implementation, the calculation of the model equivalents

are carried out during the model run and saved in the so-called feedback files. The calculation of the transform matrices and

the execution of the transform is performed in a subsequent step by the core KENDA module.

4 Numerical Results305

4.1 Case Study Setup

For studying the effects of the TCI, we performed data assimilation cycles for ICON-D2 over the period from 2019-06-

03T00:00 to 2019-06-20T00:00 with an hourly data assimilation frequency. This specific time frame extends several days for
2Superobbing refers to the process of “thinning out” radar data via spatial means.
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which individual case studies have been selected by the RealPEP (Near-Realtime Quantitative Precipitation Estimation and

Prediction) research group, it includes many typical convective events. The general meteorological situation and its temporal310

development over the course of the chosen time period is shown in fig. 4 by means of the spatial fraction of reflectivities above

a certain threshold over time.

Figure 4. Using all available radar observations from the radar composite at 1.5 ◦, the lower panel depicts the fraction of all radar reflectivities

whose value is above the threshold of 15 dBZ over time. For three exemplary point in times, that are also indicated via black circles in the

lower plot, the upper three plots show the associated radar reflectivity composite.

For studying the intrinsic effects of the TCI approach, we performed two assimilation cycles3: A reference cycle and a

TCI cycle which differ from each other solely by the fact that TCI is either inactive or active, respectively. The TCI cycle

applies the TCI algorithm at each assimilation step, i.e., hourly to all radar data entering the LETKF assimilation algorithm.315

For both assimilation cycles, we performed free forecasts every three hours with six hour lead time. During these forecasts no

assimilation and, therefore, also no TCI is taking place.

Overall, the configuration of these two assimilation cycles is basically the operational configuration. This includes the as-

similation of all conventional data, the assimilation of 3D radar data from the German DWD radar network, the assimilation of

radar data obtained from radar precipitation scans via the LHN mechanism, and the usage of an ensemble with 40 members.320

3Note that the terms “cycle” and “experiment” are used as synonyms here.
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In contrast to the operational assimilation we did not include the all-sky assimilation of satellite data in our experiments, since

the operationalization of these was carried out during the project execution.

At each data assimilation step the LETKF generates increments for several model variables, particularly for the temperature

T and the specific humidity qv , which by incremental analysis update (IAU) (Bloom et al., 1996) are fed into the system

propagation throughout a certain time window centered around the assimilation time. However, it is important to note that for325

our operational setup there are no increments for other hydrometeors than qv like, e.g., qr, qi, qc.

Figure 5. Illustration of the boolean fields Bi and their associated input fields, the total field B, and the resulting inflated reflectivities (see

eqs. (12) to (18)) at t0 = 2019-06-05T15:00:00. Note that solely radar reflectivity data of one single radar station (Prötzel) at one single radar

elevation angle of 1.5 ◦ is employed here. Each of the first four columns is related to a certain necessary condition of the TCI and depicts

the result of the computation of a certain Bi field (bottom row) together with its related input fields (top row). The last column shows the

total field B resulting from a logical conjunction of all Bi (bottom row) and the computed reflectivity ensemble spread after the TCI has been

applied to all members (top row).

4.2 Study of Individual Cases

Let us now look more closely at the TCI effects by exemplarily studying the details of an assimilation at t0 = 2019-06-05T15:00:00

and its impact on a subsequent model run up to 1 h after t0.

Let us begin with an illustration of certain internal details and immediate effects of the TCI algorithm, in particular, the con-330

struction of the total boolean field B and the computation of final inflated reflectivities (see section 3.2 for more information).

For that purpose, fig. 5 depicts selected Bi fields as well as their corresponding input fields, the total boolean field B, and the

final inflated reflectivities obtained from the TCI. Note that we are only visualizing radar data of one single exemplarily chosen

radar station at a single radar elevation angle here for improving the clarity of this illustration.

Two things become apparent here: Firstly, there are only very few spatially connected regions for which B is true and,335

secondly, the TCI is successfully able to increase the reflectivity ensemble spread within these regions. Directly related to
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fig. 5, an aggregation (taking the mean) over all radar stations and all elevation angles of the boolean field B and the difference

in ensemble spread is depicted in fig. 6, allowing an overview over the complete model domain. Similar to before, it becomes

evident that there are only very few spatially connected regions within the complete domain that are compatible with the

imposed conditions for an application of the TCI. Looking at the depicted difference between the reflectivity ensemble spread340

with and without TCI, it becomes also directly clear that the TCI is able to increase the reflectivity ensemble spread if B is true,

however, the ensemble spread is always kept unmodified for observations for which B is false.

Figure 6. Depiction of the total boolean field B (first column) and the difference of the reflectivity ensemble spread with and without TCI

(second column) at t0 = 2019-06-05T15:00:00. While this figure is closely related to fig. 5, the 2D fields shown here are the result of an

aggregation (taking the mean) over all available radar stations and radar elevation angles, allowing for an overview over the complete model

domain. Red contours are used here for indicating regions for which the aggregated boolean field B is true, i.e., areas for which the TCI

algorithm is potentially active.

As the TCI increases the spread by modifying all ensemble members of only a few carefully selected observations for which

the spread would be vanishing otherwise, we enable the LETKF to include those otherwise discarded observations. This leads

to altered increments that are produced by the LETKF and we expect these increments to modify our system in a way that345

makes the generation of reflectivity more likely. It is important to note that, firstly, reflectivity is not a prognostic but merely

a diagnostic variable and, secondly, we are not updating hydrometeor variables that are directly connected to the simulation

of reflectivity (e.g., qr). Therefore, increments do not directly affect reflectivities but the model has to dynamically respond to

increments for other variables like, e.g., temperature and specific humidity and may, eventually after a short period of time,

dynamically generate reflectivity through the generation of, e.g., qr and qg .350

To observe how the TCI is able to let new reflectivity cells emerge, let us consider fig. 7. By considering the depicted

reflectivity composite at a lead time of one hour, it becomes clear that the TCI is very often able to produce new simulated
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reflectivity cells that are consistent with observed reflectivities cells and that are not produced (or at least not as pronounced)

without an application of the TCI. Thus, we can already observe a positive impact of the TCI here.

It is important to note that fig. 7 illustrates the general trend observed for other assimilation dates and lead times not shown.355

For regions for which the TCI is active, the simulation of the TCI cycle is very often able to produce new reflectivity that are not

present in the reference cycle. However, for very large observed values, the corresponding simulated values of TCI cycle are

usually smaller than the observed ones—which is, however, plausible as the model merely had one hour here for dynamically

responding to the additional increments introduced by the TCI and the production of reflectivity. Note that two other possible

explanations for this general trend are that TCI is applied only over a small height range of 3 to 4 km, limiting the region that360

can be convectively destabilized, and that the relatively sluggish model begins its convection later than in reality, preventing it

from evolve as quickly.

Furthermore, we would like to note that the source for eventual differences between the two simulated reflectivity composites

may be two-fold: Firstly, the TCI has an effect through the very last assimilation step and, secondly, the TCI has also been

hourly applied at many assimilations steps before the very last one at t0 such that there is also an accumulation of its effects365

and, therefore, a substantial divergence of the background states of the TCI and reference cycle at t0.

The direct impact of TCI on convective initiation (without any possible accumulation effects) was investigated in Vobig

et al. (2021) where TCI was applied at single-time steps in the context of non-cycled experiments. These “cold-start scenarios”

demonstrated that TCI is effective even when applied only once. In the current study, we confirmed that TCI produces similar

results in cold-start scenarios, generating reflectivity even when applied at a single time instead of through cycling.370

Let us now further formalize and quantify the verification of reflectivities at a single time step as shown in fig. 7

by employing a special version of the fractional skill score (FSS) designed by (Roberts and Lean, 2008) to deal with highly

structured fields such as reflectivity that are particularly susceptible to double penalty (Rossa et al., 2008).

The FSS is a popular spatial verification metric that is also used in this work for the spatial verification of reflectivities for

longer-term experiments in section 4.3 and, thus, is particularly important for the overall evaluation of the TCI approach. We375

are denoting 2D fields for observations and associated predictions as Y (i, j) and X(i, j), respectively, where i and j are indices

for the two horizontal dimensions. Considering an arbitrary 2D field A(i, j), we are using the notation Âβ,τ (i, j) to refer to

the so-called fraction of occurrences field. The fraction of occurrences field is defined for each spatial point as the fraction of

spatial points whose value is above the threshold τ w.r.t. all spatial points lying within a certain spatial neighborhood around

this point—defined through a 2D box with box length β. The FSS w.r.t. these two input fields X and Y , the box length β, and380

the dBZ threshold τ may now be written as follows

FSSX,Y,β,τ = 1−
∑
i,j

(
X̂β,τ (i, j)− Ŷβ,τ (i, j)

)2

∑
k,l X̂β,τ (k, l)2 +

∑
k,l Ŷβ,τ (k, l)2

. (19)
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Figure 7. Visualization of radar reflectivity composites at 1.5 ◦ for observed values (lower left panel), simulated values of the reference

assimilation cycle (upper left panel), and simulated values of the TCI assimilation cycle (upper right panel). The lead time here is 60 min

w.r.t. the last assimilation at t0 = 2019-06-05T15:00:00. The lower right panel shows the field ∆fss computed from reflectivity data of the

three other panels for β = 20 km and τ = 15 dBZ (see eqs. (19) and (20)). Similar to fig. 6, red contours in all four plots are indicating

regions for which the TCI was active during the last assimilation at t0. Each red contour is also assigned a number for better visibility and

identification and, additionally, the color of each number indicates if there is an overall positive (green) or neutral (gray) impact of the TCI

on the related region.
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By comparing two different predictions X and X ′ by means of the difference of their corresponding FSS with each other, we

obtain

FSSX′,Y,β,τ −FSSX,Y,β,τ =
∑
i,j

∆fssX′,X,Y,β,τ (i, j) , (20)385

where we inserted eq. (19), combined both sums in the resulting expression, and then implicitly defined the 2D field ∆fssX′,X,Y,β,τ (i, j)

as the argument of this combined sum. Evidently, from the sign and magnitude of ∆fssX′,X,Y,β,τ (i, j) we may assess how much

the prediction X ′(i, j) improves (positive values) or worsens (negative values) the overall FSS w.r.t. the reference prediction

X(i, j) and observation Y (i, j).

Following these considerations, the lower right panel in fig. 7 is showing the aforementioned 2D field ∆fssX′,X,Y,β,τ (i, j)390

based on simulated reflectivities of the TCI cycle for X ′, simulated reflectivities of the reference cycle for X , observed reflec-

tivities for Y , β = 20 km, and τ = 15 dBZ. Observing that most of the values are positive, it becomes evident that the TCI is

predominantly improving the FSS. This qualitative first impression is confirmed by computing the FSS related to the refer-

ence cycle reflectivity composite and the FSS related to TCI cycle reflectivity composite which amount to 0.796 and 0.826,

respectively. Therefore, we obtain a relative improvement of the FSS of the TCI cycle by about 3.69 %.4395

Interestingly, fig. 7 demonstrates that the TCI not only improves the reflectivity in the near vicinity of regions for which the

TCI gets applied in the very last assimilation step (indicated via red contours) but also for many other spatial regions, hinting

at an accumulated impact of the TCI on the background state dating back to assimilations steps before the very last one.

4.3 Statistical Evaluation of Long-Term Experiments

Let us now proceed to a more statistical view on the TCI effects by studying different statistics and scores of longer-term NWP400

experiments covering a period of about 17 days. Note that the specific configuration of these experiments, including the setup

of their assimilation cycles and free forecasts, has already been discussed in section 4.1.

4.3.1 Observation Error Statistics

Figure 8 shows selected observations error statistics for the TEMP5 relative humidity, TEMP temperature, and radar reflec-

tivities. It becomes evident that there is a slight negative impact of the TCI on the mean error of the TEMP relative humidity405

w.r.t. both the analysis and the first guess especially at heights around 500 hPa to 600 hPa which can be interpreted as the

TCI introducing additional humidity into the simulation at those heights. However, this kind of impact is—at least to some

extent—to be expected and does not necessarily have to be regarded as a negative effect. By considering that the TCI modifies

reflectivities only within a certain height range (see section 3.2 and eq. (17)) and employs an algorithm that is based on cor-

relations with the specific humidity at a certain ICON level (see section 3.1) it is plausible that—by taking cross correlations410

into account—the LETKF pulls the ensemble mean towards those ensemble members with more specific humidity. Therefore,

4Note that we are only evaluating a single point in time here.
5The term TEMP refers to observations obtained from radiosondes.
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Figure 8. Observation error statistics for the TCI (label “tci-1”) and the reference (label “tci-0”) assimilation cycle over a period from

2019-06-03T00:00 to 2019-06-20T00:00. From top to bottom statistics for the different observation types TEMP relative humidity, TEMP

temperature, and radar reflectivity are shown. From left to right the number of observations, mean error, and root mean square error (RMSE)

are depicted. Note that the mean error and RMSE statistics are based on the difference of observations with their corresponding first guess

values (“o-f” included in label) or analysis values (“o-a” included in label).
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the LETKF increases the specific humidity of the ensemble mean and the deterministic member but—taking vertical localiza-

tion into account—only within a certain height band. Considering the root-mean-square error (RMSE) of the TEMP relative

humidity, only a very small and negligible impact of the TCI becomes evident.

To better understand the additional humidity bias introduced by TCI, we examined the mean error of TEMP relative humidi-415

ties on an hourly basis, rather than aggregating over the entire study period. Our findings reveal that the additional humidity

bias does not simply increase over time and saturate after a certain number of TCI applications. Instead, it fluctuates erratically,

alternating between negative and positive values on an hourly scale. One possible explanation for this behavior is that any

TCI effect on simulated relative humidities contributing to these statistics likely already evolved through space and time and

is influenced by the model’s highly non-linear dynamics, given that it is statistically uncommon for the locations where TCI is420

applied to overlap with those where TEMP measurements are taken. Additionally, it is worth noting that the ensemble spread

and spread-skill ratio of relative humidity remain practically unchanged upon the application of TCI.

Similar to TEMP relative humidity, the TCI has a slight effect on the mean error of the TEMP temperature which can

be interpreted as the TCI increasing the temperature especially near the ground at lower altitudes. The RMSE of TEMP

temperatures, however, does not exhibit any relevant effects of the TCI.425

Finally, it is demonstrated that both the mean error and the RMSE of radar reflectivities are reduced through the TCI.

Overall, the largest negative impact of the TCI on observation error statistics is seen for the mean error of the TEMP relative

humidity, however, the magnitude of this effect is still acceptable and for the most part to be expected. Note that a major problem

of a further advancement of an earlier version of our TCI approach as presented in Vobig et al. (2021) was—when applied to

all radar and not employed within a single-observation context—a significant negative impact on observation error statistics430

especially on the statistics for the TEMP relative humidity. The reduction of this negative impact—while still maintaining the

positive effects of the TCI—was therefore one of the main objectives that decisively guided the further advancement of the

TCI towards the current version presented in this work.

4.3.2 Fractional Skill Score

The positive impact of the TCI is demonstrated by means of fig. 9 which depicts the fractional skill score (FSS) of radar435

reflectivity composites of free forecasts w.r.t. their lead time.6 It should be noted that this verification is conducted w.r.t. the

complete model domain and not only for regions for which the TCI has been active. Furthermore, the following analysis is

based on full-scale data assimilation and forecasting experiments covering a period of more than two weeks and employing a

quasi-operational configuration—which especially includes an active LHN mechanism—as already discussed in section 4.1.

Let us begin our analysis with the top and middle row of fig. 9 depicting FSS statistics based on reflectivity data of all440

available free forecasts, i.e., there are no further restrictions on the initialization time of these forecasts. Regarding the threshold

15 dBZ, it becomes evident that the TCI is consistently improving the FSS for all depicted box lengths and lead times. It is

especially remarkable that this positive effect is still clearly visible even after 6 h. The positive effect of the TCI on the FSS

6Note that compared to the previous usage of the FSS in section 4.2 an additional temporal aggregation of the input fraction of occurrences fields has to be

carried out.
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Figure 9. Fractional skill score (FSS) of reflectivity composites of free forecasts over lead time. The FSS calculation is based on forecasts

branching off the TCI assimilation cycle (label “tci on”) or the reference assimilation cycle (label “tci off”). For further details on the setup of

this case study over the period of more than two weeks see section 4.1. Each panel within the upper row depicts the FSS for both experiments.

Directly related to the upper row, the middle row depicts the relative FSS improvement (in percent) of the “tci on” experiment w.r.t. the “tci

off” experiment. Similar to the middle row, the bottom row also depicts the relative FSS improvement but exclusively employs data from

free forecasts starting at 12 UTC. For all rows the threshold used for the FSS calculation is varied column-wise and each panel shows results

for several box sizes (given in pixel where 1 pixel amounts to 2.2 km).21



tends to decrease with box length and the relative improvement amounts to up to 2.7 % for the box length of 1 pixel and

up to 1.6 % for the largest box length of 35 pixel. Considering the plots for the threshold of 25 dBZ, a similar conclusion as445

before can be drawn, i.e., a positive impact of the TCI is clearly visible and amounts to up to 4.3 % for the box length of 1

pixel. Regarding the two largest thresholds of 37 dBZ and 46 dBZ the curves of the FSS w.r.t. lead time becomes more erratic,

however, the overall effect (averaged over lead times) of the TCI still ranges from neutral to clearly positive when taking all

lead times into account.

Furthermore, the bottom panel of fig. 9 also depicts fractional skill score improvements based solely on radar reflectivity450

data of model runs initialized at 12 UTC, i.e., forecasts for the time frame between 12 and 18 UTC. During these afternoon

hours7 the positive effect of the TCI on the FSS is even more pronounced: For the threshold of 15 dBZ the FSS is improved

by up to about 6 % and for the threshold of 25 dBZ there is even an improvement by up to about 10 %. Consistent with our

previous findings, the FSS for the 37 dBZ and 46 dBZ thresholds is rather erratic with respect to lead time. However, when

considering all lead times, the overall averaged effect ranges from neutral to clearly positive, with occasional improvements of455

up to 20 %.

A possible explanation for the more consistent improvement of TCI at the two lower thresholds of 15 dBZ and 25 dBZ,

compared to the two higher thresholds, is that higher reflectivities are simply much rarer. Additionally, we generally observe

in our NWP system that the LHN mechanism already generates most of the large reflectivity cells and, statistically, our current

NWP system tends to simulate too many large reflectivities and too few small ones. Given that TCI can only add reflectivity460

at each assimilation step, while reducing reflectivity requires indirect accumulation effects (i.e., longer-term changes to the

background system state), it is also plausible that TCI is better at improving the representation of the lower reflectivity band

than that of the higher one.

Overall, fig. 9 demonstrates a clear positive impact of the TCI on the FSS of radar reflectivity composites by up to 10 %.

The fact that this effect is still apparent even after 6 h hints at a more profound influence of the TCI on the background system465

state accumulated throughout several assimilations—which is also consistent with some of the conclusions already drawn in

section 4.2.

5 Summary and Outlook

We have introduced and studied new process-oriented and conditional approaches to targeted covariance inflation (TCI). For

particular cases as well as for full-scale data assimilation and forecasting experiments over a period of more than two weeks470

we have shown that the approaches can improve the representation of convective processes in the forecasts and lead to clearly

improved fractional skill scores for radar reflectivity by up to 10 %.

Details of the evaluation for different dBZ thresholds show that TCI successfully initializes convection in the range of 15 dBZ

to 25 dBZ, and has also a positive effect on stronger precipitation cells which fall into the 37 dBZ and 46 dBZ threshold scores.

7We refer to the local time in Germany here, where this time period corresponds to the typical afternoon hours.

22



TCI as implemented through eqs. (10) and (18) currently is not dependent on the strength of the observed reflectivity, though475

LETKF will of course use the difference of observed and simulated reflectivity when calculating its increments.

Looking into refinement of the scheme to further improve scores for all reflectivity bands and lead times will be a topic of

future research. The sophisticated interplay of convective processes with the broader atmospheric state has the potential to be

taken into account in a much deeper way. Here, machine learning techniques provide a set of very flexible non-linear tools

which can help to model more sophisticated dependencies and use them for developing a AI/ML based TCI.480

The approach to construct appropriate targeted covariances in an ensemble Kalman filter is very generic and could also be

employed to other types of observations. It can also be applied to other ensemble data assimilation methods such as the EnVAR

(Buehner et al., 2013; Meng et al., 2019), where the observations based covariance matrix enters the scheme in the form of

HBHT =HXXTHT = Y Y T or the Localized Adaptive Particle Filter (LAPF) (Potthast et al., 2019; Schenk et al., 2022).
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