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Abstract.

A methodology for directly predicting the time evolution of the assumed parameters for the distribution densities based on

the Liouville equation, as proposed earlier, is extended to multi–dimensional cases as well as when the systems are constrained5

by integrals over a part of the variable range. The general formulation developed here is applicable to a wide range of the prob-

lems, including the frequency distributions of subgrid–scale variables, hydrometeor size distributions, as well as to probability

distributions characterizing data uncertainties. The extended methodology is tested against a convective energy cycle system

as well as the Lorenz’s stranger attractor. As a general tendency, the variance tends to collapse to a vanishing value over a finite

time regardless of the chosen assumed distribution form. This general tendency is likely due to a common cause as collapse of10

the variance commonly found in ensemble–based data assimilation due to the low dimensionality.

1 Introduction

A noble manner to characterize the nonlinear systems is by predicting evolution of the distributions of variables in space as

well as frequency distributions of variables at a single macroscopic point, but also as probabilities. The important applications

in geophysics include the subgrid–scale parameterizations based on the distribution density functions (DDFs: Sommeria and15

Deadorff 1977, Mellor 1977, Bougeault 1981, LeTreut and Li 1991, Bechtold et al. 1992, 1995, Richard and Royer 1993,

Bony and Emanuel 2001, Golaz et al. 2002, Tompkins 2002), the particle–size distributions in cloud microphysics (cf., Khain

et al. 2014, Khain and Pinsky 2018), and the characterizations of data and model uncertainties by the probability density

functions (PDFs) in data assimilations (Carrassi et al. 2018, Evensen et al. 2022). See Yano et al. (2018) for the contexts of

the numerical weather forecast. Yano, Larson, and Phillips (2024, YLP) have proposed a general methodology for evaluating20

the evolution of those distributions in efficient manner. The essence of their approach may be called the prognostic assumed–

PDF (DDF), as an extension of the classical assumed PDF approaches (cf., Golaz et al. 2002).
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The present study constitutes a sequel to this earlier study, YLP. Here, uniqueness of the present study is in performing

a very solid analysis of the performance by directly comparing the assumed–PDF results with direct numerical results with

the Liouville equation by taking some simple dynamical systems. A basic, but general, robust formulation provided by YLP25

enables this kind of comparisons: this is not possible with the current existing assumed–PDF schemes, as reviewed in the

introduction of YLP, because these are formulated only in a case–by–case manner with only specific applications in mind. Thus

the performance of those schemes cannot be tested by simple dynamical systems. The robustness of the proposed formulation

is already discussed extensively in YLP.

The goal of the present manuscript is to test this formulation for more advanced cases. In YLP, only one–variable cases30

under relatively simple constraints (i.e., output conditions) have been considered. The purpose of the present study is to

further generalize this methodology to the multi-dimensional systems with more general constraints, and to present further

demonstrative cases. The present study is considered one of the first steps for making this new novel approach for computing

the distributions prognostically into operations. Some difficulties encountered are also discussed for this ultimate goal.

The presentation will be developed in the following manner: Sec. 2 briefly summarizes the formulation presented in YLP,35

whose details as well as extensive references are to be consulted in the original paper, and generalizes it to the cases 1)

that constraints are defined over limited integral ranges, and 2) when different assumed distribution forms are assumed over

the different domains. Sec. 2 first generalizes those one–variable results for the assumed–PDF formulation into the multi–

variable systems in a general manner, without specifying a PDF form. Sec. 3 shows in a more concrete manner, how these

general formulations can be used, when a Gaussian distribution with two variables are assumed. This example also suggests40

how reductions with different assumed–PDF forms can be proceeded. The general formulations presented in Secs. 2 and 3

are applied to the two dynamical systems in Secs. 4 and 5: (i) the two–variable convective energy–cycle system introduced

by Yano and Plant (2012, Sec. 4), and (ii) the three–variable system of Lorenz’s strange attractor (Sec. 5). Three different

assumed–PDF forms are considered for each system, and results are discussed. Sec. 6 summarizes the results with further

discussions.45

2 General Formulation With One Variable

2.1 Basic Formulation

The basic formulation presented in YLP is summarized first, but with the details to be consulted in the original paper. Let

us assume a dynamical system with a single variable, φ, and that a distribution of φ can be approximately represented by an

assumed form,50

p= p(φ;λ0,λ1, . . . ,λN ), (2.1.1)
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which is characterized by N parameters, λj (j = 1, . . . ,N ). We also separately introduce a normalization factor, λ0, that

satisfies a relation of p∝ λ0. It follows that

∂p

∂λ0
=

p

λ0
. (2.1.2)

The distribution Eq. (2.1.1) is normalized by55 ∫
pdφ= 1. (2.1.3)

Here and in the following, an unspecified integral range may be taken from −∞ to +∞ with many of the physical variables,

but some physical variables are semi–positive definite (e.g., temperature, mixing ratios). In the latter case, the integral range

above must be from 0 to +∞.

Evolution of this distribution, p, is governed by the Liouville equation60

∂p

∂t
=−∂pS

∂φ
, (2.1.4)

when the dynamical system is defined by φ̇= S. From the time derivative of Eq. (2.1.3),

λ̇0

λ0
=−

N∑
i=1

[

∫
∂p

∂λi
dφ]λ̇i. (2.1.5)

Inserting Eq. (2.1.1) into Eq. (2.1.4), weighting it by σl (l = 1, . . . ,N ), and integrating it over the full variable range, we obtain

a final expression for the prognostic equation for the distribution parameters, {λj}:65

N∑
j=1

λ̇j [

∫
σl
∂p

∂λj
dφ−

∫
σlpdφ

∫
∂p

∂λj
dφ] =

∫
pS
∂σl
∂φ

dφ (2.1.6)

for l = 1, . . . ,N . We can see from Eq. (2.1.6) that the weights, σl, are most conveniently chosen in such a manner that

〈σl〉=

∫
pσldφ, l = 1, . . . ,N (2.1.7)

constitute the constraints for this distribution: YLP suggest to choose those constraints (2.1.7) to be the outputs that are required

in a host model, and call it the output–controlled distribution principle. Since the left–hand side is equal to d〈σl〉/dt, Eq. (2.1.6)70

can predict those constraints in self–consistent manner under an assumed form Eq. (2.1.1). The core part of derivation for this

formulation as well for more discussions on the meaning of the weight σl are presented fully in Sec. 5.1 of YLP.

In the following two subsections, this basic formulation is generalized into the two manners: first, the constraints are general-

ized to the cases that integral ranges are only over limited ranges of the distribution variable, φ; second, when the distributions

take different forms over those limited ranges, as a consequence. This generalization is important in many operational appli-75

cations: for example, in the cloud schemes, various conditional statistics, including the cloud fraction, must be evaluated by

restricting the integrals above the saturation in the total–water distribution.
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2.2 When the constraints are defined over limited integral ranges

Now, we generalize the above basic formulation to the cases that the different constraints are introduced over two different

ranges of the distribution variables. More specifically, we assume that the distribution variable, φ, is defined over [−∞,+∞],80

and the constraints are introduced in analogy with Eq. (2.1.6), but differently over the two ranges, [−∞,0] and [0,+∞]:

〈σl〉+ ≡
+∞∫
0

F+
l (p,φ)dφ= C+

l , l = 1, . . . ,N+ (2.2.1a)

〈σl〉− ≡
0∫

−∞

F−l (p,φ)dφ= C−l , l = 1, . . . ,N− (2.2.1b)

as a generalization of Eq. (2.1.7). Here, σ±l = F±l /p± by following the output–constrained distribution principle proposed in

YLP. Here, in the following abstract examples, there is no host model looking for outputs from a system defining a distribution.85

Thus, we will simply set those constraints to be the means and variances, as well as covariances, of the system, with a priority

given in defining the former under a given number of PDF parameters.

In this case, the variational principle to maximize the information entropy with the given constraints (cf., Sec. 3.1.1 of YLP)

is given by:

δ[−
+∞∫
−∞

p logpdφ−
N+∑
l=0

λ+′
l

+∞∫
0

F+
l (p,φ)dφ−

N−∑
l=0

λ−′l

0∫
−∞

F−l (p,φ)dφ] = 0. (2.2.2)90

It reduces to:
+∞∫
0

(logp+

N+∑
l=0

λ+
l

∂F+
l

∂p
)δpdφ+

0∫
−∞

(logp+

N−∑
l=0

λ−l
∂F−l
∂p

)δpdφ= 0.

Thus, the most–likley distribution under the constraints (2.2.1a, b) is:

p=


λ+

0 exp[−
N+∑
l=1

λ+
l

∂F+
l

∂p
], φ > 0

λ−0 exp[−
N−∑
l=1

λ−l
∂F−l
∂p

], φ < 0.

(2.2.3)

Note that λ+
0 = λ−0 , due to the continuity of p, when ∂F−l /∂p= 0 at φ= 0.95

2.3 When the distribution takes different forms in two different domains

In the last subsection, the constraints have been generalized to a case that those are defined over two limited ranges of the

distribution variable, φ: cf., Eqs. (2.2.1a, b). As it turns out, the most–likely distribution (Eq. 2.2.3) under these constraints

also take different forms over those two ranges. Consequently, the formulation for predicting the given PDF parameters must

also be generalized to such cases: this subsection addresses this issue.100
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By following the last subsection, we divide the variable range into the two subdomains, [−∞,0] and [0,+∞], and assume

that the distribution takes different forms over those two subdomains. Thus:

p=

p
+(φ,λ+

0 ,λ
+
1 , . . . ,λ

+
N ), φ > 0

p−(φ,λ−0 ,λ
−
1 , . . . ,λ

−
N ), φ < 0,

(2.3.1)

assuming N+ =N− =N for now. By continuity at φ= 0, p+ = p−. As before, we assume that the first parameters, λ±0 , are

the normalization factors, thus:105

∂p

∂λ+
0

=
p

λ+
0

, φ > 0 (2.3.2a)

∂p

∂λ−0
=

p

λ−0
, φ < 0, (2.3.2b)

Especially when p|φ=±0 = λ±0 , as the case with the result (2.2.3) it follows that λ+
0 = λ−0 (= λ0). Here, the assumed form

(2.3.1) follows from the constraints of the form (2.2.1a, b).

By applying the time derivative to the normalization condition,110

+∞∫
−∞

pdφ= 1,

we find:

∂

∂t

+∞∫
0

pdφ+
∂

∂t

0∫
−∞

pdφ= 0, (2.3.3)

which reduces to:

λ̇0

λ0
=−

N∑
i=1

[λ̇+
i

+∞∫
0

∂p

∂λ+
i

dφ+ λ̇−i

0∫
−∞

∂p

∂λ−i
dφ] (2.3.4)115

noting that λ+
0 = λ−0 ≡ λ0 and p+ + p− = 1, where

p+ =

+∞∫
0

pdφ, p− =

0∫
−∞

pdφ.

After substituting the assumed PDF form (2.3.1), and applying the chain rules on the time derivative in the Liouville equation

(2.1.4), it reduces to:

p
λ̇0

λ0
+

N∑
i=1

∂p

∂λ+
i

λ̇
+

i +
∂

∂φ
(pS) = 0, φ > 0 (2.3.5a)120

p
λ̇0

λ0
+

N∑
i=1

∂p

∂λ−i
λ̇
−
i +

∂

∂φ
(pS) = 0, φ < 0. (2.3.5b)
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By applying weighted intergrals on both, and further substituting Eq. (2.3.4) into the above, we obtain a pair of equations for

predicting the PDF parameters:

N∑
i=1

{λ̇
+

i [

+∞∫
0

σ+
l

∂p

∂λ+
i

dφ−
+∞∫
0

σ+
l pdφ

+∞∫
0

∂p

∂λ+
i

dφ]− λ̇
−
i

+∞∫
0

σ+
l pdφ

0∫
−∞

∂p

∂λ−i
dφ}+

+∞∫
0

σ+
l

∂

∂φ
(pS)dφ= 0, (2.3.6a)

N∑
i=1

{−λ̇
+

i

0∫
−∞

σ−l pdφ

+∞∫
0

∂p

∂λ+
i

dφ+ λ̇
−
i [

0∫
−∞

σ−l
∂p

∂λ−i
dφ−

0∫
−∞

σ−l pdφ

0∫
−∞

∂p

∂λ−i
dφ]}+

0∫
−∞

σ−l
∂

∂φ
(pS)dφ= 0 (2.3.6b)125

for l = 1, . . . ,N .

2.4 Multidimensional Case (I)

The formulations introduced over the last subsections are now further generalized into the multidimensional case, in which the

distribution depends on more than one variable. This variable set is treated as a vector, x, with the first component corresponds

to x. Here, note a change of the notation for the distribution variable from φ to x from now on.130

As in the last two subsections, we assume that a given system is constrained differently depending on the sign of x. More

precisely, we assume that there are N constraints that are defined differently for the different sign of x, and M additional

constraints that are defined independent of the sign of x. Consequently, the weights to be introduced are: σ±l = F±l /p± for

l = 1, . . . ,N , and σl = Fl/p for l =N + 1, . . . ,N +M , by following the notations in Eqs. (2.2.1a, b). It also follows that the

corresponding distribution is defined differently depending on the sign of x in the following manner:135

p=

p
+(x,λ+

0 ,λ
+
1 , . . . , ,λ

+
N ,λN+1, . . . ,λN+M ), x > 0

p−(x,λ−0 ,λ
−
1 , . . . , ,λ

−
N ,λN+1, . . . ,λN+M ) x < 0

Here, the first N parameters, {λ±l } (l = 1, . . . ,N ), take different definitions for positive and negative sides of x, whereas the

last M parameters, {λN+l} (l = 1, . . . ,M ), are assumed to be common.

However, we drop the superscript ± on p for now for simplicity. Thus, repeating the same procedure as the last subsection,

we obtain a pair of prognostic equations for the PDF parameters:140

N∑
i=1

{λ̇
+

i [

∫
+

σl
∂p

∂λ+
i

dx−
∫
+

σlpdx

∫
+

∂p

∂λ+
i

dx]− λ̇
−
i

∫
+

σlpdx

∫
−

∂p

∂λ−i
dx}

+

M∑
i=1

λ̇N+i[

∫
+

σl
∂p

∂λN+i
dx−

∫
+

σlpdx

∫
∂p

∂λN+i
dx] +

∫
+

σl
∂

∂x
(pS)dx = 0, (2.4.1a)

N∑
i=1

{−λ̇
+

i

∫
−

σlpdx

∫
+

∂p

∂λ+
i

dx+ λ̇
−
i [

∫
−

σl
∂p

∂λ−i
dx−

∫
−

σlpdx

∫
−

∂p

∂λ−i
dx]}

+

M∑
i=1

λ̇N+i[

∫
−

σl
∂p

∂λN+i
dx−

∫
−

σlpdx

∫
∂p

∂λN+i
dx] +

∫
−

σl
∂

∂x
(pS)dx = 0 (2.4.1b)
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where
∫
± suggest integrals over x > 0 and x < 0, respectively, depending on the sign.145

Taking the sum of the two, we obtain:

N∑
i=1

{λ̇
+

i [

∫
+

σl
∂p

∂λ+
i

dx−
∫
σlpdx

∫
+

∂p

∂λ+
i

dx] + λ̇
−
i [

∫
−

σl
∂p

∂λ−i
dx−

∫
σlpdx

∫
−

∂p

∂λ−i
dx]}

+

M∑
i=1

λ̇N+i[

∫
σl

∂p

∂λN+i
dx−

∫
σlpdx

∫
∂p

∂λN+i
dx] +

∫
σl
∂

∂φ
(pS)dx = 0 (2.4.2a)

Especially when σl does not depend on the sign of x (i.e., for l =N + 1, . . . ,N +M ), and the distribution is separable with

those two distributions variables, then the first N–sum disappears in Eq. (2.4.2a), and150

M∑
i=1

λ̇N+i[

∫
σl

∂p

∂λN+i
dx−

∫
σlpdx

∫
∂p

∂λN+i
dx] +

∫
σl
∂

∂φ
(pS)dx = 0. (2.4.2b)

Thus, the last M parameters, λN+l (l = 1, . . . ,M ), can be predicted by a single set of equations (2.4.2b). Note also that the

prognostic equations for the PDF parameters reduce to Eq. (2.4.2b) when all the constraints are defined over the full range so

that N = 0.

2.5 Multidimensional Case (II)155

In this subsection, we further divide the y–direction into the two subdomains depending on the sign of y. In this case, the

weights to be introduced are: σ±±l = F±±l /p±± for l = 1, . . . ,N , and σl = Fl/p for l =N + 1, . . . ,N +M , by following

similar notations as in Eqs. (2.2.1a, b). Here, the double superscripts ±± are introduced to indicate the sides in both x and y

directions. Otherwise, the conventions for the definitions of the N +M PDF parameters remain the same. Thus, the first N

weights take four different definitions depending on the signs of x and y. It also follows that we further subdivide the domain160

in y direction, thus:

p=



p++(x,λ++
0 ,λ++

1 , . . . ,λ++
N ,λN+1, . . . ,λN+M ), x > 0,y > 0

p+−(x,λ+−
0 ,λ+−

1 , . . . ,λ+−
N ,λN+1, . . . ,λN+M ), x > 0,y < 0

p−+(x,λ−+
0 ,λ−+

1 , . . . ,λ−+
N ,λN+1, . . . ,λN+M ) x < 0,y > 0

p−−(x,λ−−0 ,λ−−1 , . . . ,λ−−N ,λN+1, . . . ,λN+M ) x < 0,y < 0
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These PDF parameters can be predicted by the equations:

N∑
i=1

{λ̇
++

i [

∫
++

σ
∂p

∂λ++
i

dx−
∫

++

σpdx

∫
++

∂p

∂λ++
i

dx]

− λ̇
+−
i

∫
++

σpdx

∫
+−

∂p

∂λ+−
i

dx− λ̇
−+

i

∫
++

σpdx

∫
−+

∂p

∂λ−+
i

dx− λ̇
−−
i

∫
++

σpdx

∫
−−

∂p

∂λ−−i
dx}165

+

M∑
i=1

λ̇N+i[

∫
++

σ
∂p

∂λN+i
dx−

∫
++

σpdx

∫
∂p

∂λN+i
dx] +

∫
++

σ
∂

∂φ
(pS)dx = 0, (2.5.1a)

N∑
i=1

{−λ̇
++

i

∫
+−

σpdx

∫
++

∂p

∂λ++
i

dx+ λ̇
+−
i [

∫
+−

σ
∂p

∂λ+−
i

dx−
∫

+−

σpdx

∫
+−

∂p

∂λ+−
i

dx]

− λ̇
−+

i

∫
+−

σpdx

∫
−+

∂p

∂λ−+
i

dx− λ̇
−−
i

∫
+−

σpdx

∫
−−

∂p

∂λ−−i
dx}

+

M∑
i=1

λ̇N+i[

∫
+−

σ
∂p

∂λN+i
dx−

∫
+−

σpdx

∫
∂p

∂λN+i
dx] +

∫
+−

σ
∂

∂φ
(pS)dx = 0, (2.5.1b)

N∑
i=1

{−λ̇
++

i

∫
−+

σpdx

∫
++

∂p

∂λ++
i

dx− λ̇
+−
i

∫
−+

σpdx

∫
+−

∂p

∂λ+−
i

dx170

+ λ̇
−+

i [

∫
−+

σ
∂p

∂λ−+
i

dx−
∫
−+

σpdx

∫
−+

∂p

∂λ−+
i

dx]− λ̇
−−
i

∫
−+

σpdx

∫
−−

∂p

∂λ−−i
dx}

+

M∑
i=1

λ̇N+i[

∫
−+

σ
∂p

∂λN+i
dx−

∫
−+

σpdx

∫
∂p

∂λN+i
dx] +

∫
−+

σ
∂

∂φ
(pS)dx = 0, (2.5.1c)

N∑
i=1

{−λ̇
++

i

∫
−−

σpdx

∫
++

∂p

∂λ++
i

dx− λ̇
+−
i

∫
−−

σpdx

∫
+−

∂p

∂λ+−
i

dx− λ̇
−+

i

∫
−−

σpdx

∫
−+

∂p

∂λ−+
i

dx

+ λ̇
−−
i [

∫
−−

σ
∂p

∂λ−−i
dx−

∫
−−

σpdx

∫
−−

∂p

∂λ−−i
dx]}+

M∑
i=1

λ̇N+i[

∫
−−

σ
∂p

∂λN+i
dx−

∫
−−

σpdx

∫
∂p

∂λN+i
dx] +

∫
−−

σ
∂

∂φ
(pS)dx = 0,

(2.5.1d)

By further taking the sum of the four, we again obtain extra constraints:175

N∑
i=1

{λ̇
+

i [

∫
++

σ
∂p

∂λ++
i

dx−
∫
σpdx

∫
++

∂p

∂λ++
i

dx] + [

∫
+−

σ
∂p

∂λ+−
i

dx−
∫
σpdx

∫
+−

∂p

∂λ+−
i

dx]

+λ̇
−+

i [

∫
−+

σ
∂p

∂λ−+
i

dx−
∫
σpdx

∫
−+

∂p

∂λ−+
i

dx] + λ̇
−−
i [

∫
−−

σ
∂p

∂λ−−i
dx−

∫
σpdx

∫
−−

∂p

∂λ−−i
dx]}

+

M∑
i=1

λ̇N+i[

∫
σ

∂p

∂λN+i
dx−

∫
σpdx

∫
∂p

∂λN+i
dx] +

∫
σ
∂

∂φ
(pS)dx = 0 (2.5.2a)
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Especially when σ does not depend on the direction distinguishing the subscripts ± in integrals above, the first N–sum disap-

pears in (2.5.2a) for the separable distributions, and we obtain:180

M∑
i=1

λ̇N+i[

∫
σ

∂p

∂λN+i
dx−

∫
σpdx

∫
∂p

∂λN+i
dx] +

∫
σ
∂

∂φ
(pS)dx = 0 (2.5.2b)

The formulations in these two last subsections will be applied in more specific cases considered in Secs. 4 and 5.

3 Example: Gauss Distribution with Two Variables

As a specific example of multi–dimensional case, in this section, we consider a two–dimensional Gaussian distribution, setting

x = (x,y) and S = (Sx,Sy):185

p= p0 exp[−λ1(x− x̄)2−λ2(y− ȳ)2−λ3(x− x̄)(y− ȳ)] (3.1)

(cf., Golaz et al. 2002, Larson and Golaz 2005). From the normalization condition,

p0 =
(λ1λ2 +λ2

3/4)1/2

π
(3.2)

as derived in the Appendix A.1.

For the distribution (3.1), Eq. (2.4.2b) reduces to:190

3∑
i=1

[

∫ ∫
σ
∂p

∂λi
dxdy−

∫ ∫
σpdxdy

∫ ∫
∂p

∂λi
dxdy]λ̇i +

2∑
i=1

[

∫ ∫
σ
∂p

∂x̄i
dxdy−

∫ ∫
σpdxdy

∫ ∫
∂p

∂x̄i
dxdy] ˙̄xi

+

∫ ∫
σ∇ · pSdxdy = 0 (3.3)

Here, the integral range is kept implicit, and weight σ is given without a subscript for simplicity. By noting the relations:

∂p

∂λ1
=−(x− x̄)2p,

∂p

∂λ2
=−(y− ȳ)2p,195

∂p

∂λ3
=−(x− x̄)(y− ȳ)p,

∂p

∂x̄
= [2λ1(x− x̄) +λ3(y− ȳ)]p,

∂p

∂ȳ
= [2λ2(y− ȳ) +λ3(x− x̄)]p,

Eq. (3.3) further reduces to:

λ̇1[−〈(x− x̄)2σ〉+ 〈σ〉〈(x− x̄)2〉] + λ̇2[−〈(y− ȳ)2σ〉+ 〈σ〉〈(y− ȳ)2〉] + λ̇3[−〈(x− x̄)(y− ȳ)σ〉+ 〈σ〉〈(x− x̄)(y− ȳ)〉200

+ ˙̄x[2λ1〈(x− x̄)σ〉+λ3〈(y− ȳ)σ〉] + ˙̄y[2λ2〈(y− ȳ)σ〉+λ3〈(x− x̄)σ〉] = 〈S · ∇σ〉, (3.4)

9



where 〈 〉 suggests the phase–space average.

For proceeding further, we note that the moments are given by

〈x− x̄〉= 〈y− ȳ〉= 0 (3.5a)

〈(x− x̄)2〉=
1

2λ1
(1− λ2

3

4λ1λ2
)−1 (3.5b)205

〈(y− ȳ)2〉=
1

2λ2
(1− λ2

3

4λ1λ2
)−1 (3.5c)

〈(x− x̄)(y− ȳ)〉=− λ3

4λ1λ2
(1− λ2

3

4λ1λ2
)−1 (3.5d)

〈(x− x̄)3〉= 〈(y− ȳ)3〉= 〈(x− x̄)2(y− ȳ)〉= 〈(x− x̄)(y− ȳ)2〉= 0 (3.5e)

〈(x− x̄)4〉=
3

4λ2
1

(1− κ

4
)−2 (3.5f)

〈(y− ȳ)4〉=
3

4λ2
2

(1− κ

4
)−2 (3.5g)210

〈(x− x̄)2(y− ȳ)2〉=
1

4λ1λ2
(1 +

κ

2
)(1− κ

4
)−2 (3.5h)

〈(x− x̄)3(y− ȳ)〉=− 3λ3

8λ2
1λ2

(1− κ

4
)−2 (3.5i)

〈(x− x̄)(y− ȳ)3〉=− 3λ3

8λ1λ2
2

(1− κ

4
)−2 (3.5j)

as derived in the Appendix A.2, where

κ=
λ2

3

λ1λ2
(3.5k)215

and the condition 4> κ is required to ensure positive variances. To obtain the results for the third moments, we also need to

assume λ1λ2(4λ1λ2− 3λ2
3)2−λ6

3 6= 0. See the Appendix for the derivations.

By using these expressions (3.5a–j) for the moments, we apply varying weights, σ, on Eq. (3.4), focusing on the means, as

already remarked. By setting σ = x− x̄ and σ = y− ȳ, respectively, we obtain

˙̄x= 〈Sx〉, (3.6a)220

˙̄y = 〈Sy〉. (3.6b)

The physical meaning of the results are clear: we recover the mean equations for the evolution.

Next, we set σ = (x− x̄)2, σ = (y− ȳ)2, and σ = (x− x̄)(y− ȳ) in Eq. (3.4). These leads to:

− λ̇1

λ1
− κ

4

λ̇2

λ2
+
κ

2

λ̇3

λ3
= 4λ1(1− κ

4
)2〈(x− x̄)Sx〉 (3.7a)

−κ
4

λ̇1

λ1
− λ̇2

λ2
+
κ

2

λ̇3

λ3
= 4λ2(1− κ

4
)2〈(y− ȳ)Sy〉 (3.7b)225

λ̇1

λ1
+
λ̇2

λ2
− (1 +

κ

4
)
λ̇3

λ3
=

4λ3

κ
(1− κ

4
)2〈(y− ȳ)Sx + (x− x̄)Sy〉 (3.7c)
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where κ has been defined by Eq. (3.5k). Eqs. (3.7a, b, c) can be re-written into three separate prognostic equations for λj

(j = 1,2,3) by a matrix inversion of the left hand side.

To see this last procedure, we may re–write Eqs. (3.7a, b, c) as

α11
λ̇1

λ1
+α12

λ̇2

λ2
+α13

λ̇3

λ3
= f1,230

α21
λ̇1

λ1
+α22

λ̇2

λ2
+α23

λ̇3

λ3
= f2,

α31
λ̇1

λ1
+α32

λ̇2

λ2
+α33

λ̇3

λ3
= f3.

The matrix inversion of the above leads to:

λ̇1

λ1
=

1

D
[(α22α33−α23α32)f1 + (−α12α33 +α13α32)f2 + (α12α23−α13α22)f3], (3.8a)235

λ̇2

λ2
=

1

D
[(α23α31−α21α33)f1 + (−α13α31 +α11α33)f2 + (α13α21−α11α23)f3], (3.8b)

λ̇3

λ3
=

1

D
[(α21α32−α22α31)f1 + (−α11α32 +α12α31)f2 + (α11α22−α12α21)f3], (3.8c)

where

D = α11(α22α33−α23α32) +α12(−α21α33 +α23α31) +α13(α21α32−α22α31)

= α21(α32α13−α33α12) +α22(−α31α13 +α33α11) +α23(α31α12−α32α11)240

= α31(α12α23−α13α22) +α32(−α11α23 +α13α21) +α33(α11α22−α12α21). (3.8d)

In the following two sections, we apply those general formulations developed over these last two sections to the two specific

systems: (i) the convective energy–cycle system introduced by Yano and Plant (2012) in Sec. 4, and (ii) the Lorenz’s (1963)

strange–attractor system in Sec. 5. The derived prognostic equations for the PDF parameters are integrated by the 4th–order

Runge–Kutta method with a time step depending the assumed–PDF model.245

4 Convective Energy-Cycle System (Yano and Plant 2012)

The convective energy–cycle system introduced by Yano and Plant (2012) is presented in a nondimensional form by:

ẋ= xy, (4.1a)

ẏ =−x+ 1, (4.1b)

where x is the convective kinetic energy (mass flux), and y the cloud work function (a measure of potential energy). The250

equilibrium is at (x,y) = (1,0), and x > 0 always.
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Figure 1. Snap shots of evolution of PDF with the convective energy cycle by a direct numerical integration of the Liouville equation.

An explicit calculation of the evolution of the initial uncertainty distribution with this system by the Liouville equation has

already been peformed by Yano and Ouchter (2017). Their result is reproduced in a different format than in the original paper

in Fig. 1. Here, the initial condition is a very localized Gaussian distribution as shown in Fig. 1(a). Note that the characteristics

of the subsequent evolution are qualitatively different from those of the assumed PDF forms introduced in the following. The255

main challenge of the assumed–PDF approach is, nevertheless, to predict the bulk statistics of the system fairly accurately.

4.1 Combination of the Gamma and the Gauss distributions (Model I)

Sine the system is semi–infinite in the x direction, whereas y extends to infinity to both sides (cf., Yano and Plant 2012), thus

by following the argument in YLP, the most natural choice for the assumed form of PDF for this system is to adopt the gamma

distribution in the x direction and the Gaussian in y direction, which is referred as the model I in the following. Thus,260

p(x,y) = p1(x)p2(y), (4.1.1)

12



where

p1(x) = p10x
µ exp(−λ1x), p10 =

λµ+1
1

Γ(µ+ 1)
, (4.1.2a)

p2(y) = p20 exp[−λ2(y− ȳ)2], p20 = (λ2/π)1/2 (4.1.2b)

(cf., Appendix A.1). In general, the Liouville equation leads to Eq. (2.1.6), which in this case, reduces to:265

µ̇[

∫ ∫
σ
∂p

∂µ
dxdy−

∫ ∫
σpdxdy

∫ ∫
∂p

∂µ
dxdy] + ˙̄y[

∫ ∫
σ
∂p

∂ȳ
dxdy−

∫ ∫
σpdxdy

∫ ∫
∂p

∂ȳ
dxdy]

+

2∑
i=1

λ̇i[

∫ ∫
σ
∂p

∂λi
dxdy−

∫ ∫
σpdxdy

∫ ∫
∂p

∂λi
dxdy] =

∫ ∫
pS · ∇σdxdy, (4.1.3)

where

∂p

∂µ
= p logx, (4.1.4a)

∂p

∂ȳ
= 2λ2(y− ȳ)p, (4.1.4b)270

∂p

∂λ1
=−px, (4.1.4c)

∂p

∂λ2
=−(y− ȳ)2p (4.1.4d)

By substituting Eqs. (4.1.4a, b, c, d) into Eq. (4.1.3), we obtain:

µ̇[〈σ logx〉− 〈σ〉〈logx〉] + 2λ2 ˙̄y[〈σ(y− ȳ)〉− 〈σ〉〈y− ȳ〉]

− λ̇1[〈σx〉− 〈σ〉〈x〉]− λ̇2[〈σ(y− ȳ)2〉− 〈σ〉〈(y− ȳ)2〉] = 〈S · ∇σ〉 (4.1.5)275

Recall that 〈 〉 suggests the phase–space average.

We are going to derive prognostic equations for the four parameters, µ, ȳ, λi (i= 1,2) from Eq. (4.1.5) by choosing four

different weights, σ. Here, the first two only depend on x, and the last two only on y. The first two choices are σ = x and

σ = x2. Substitutions of these weights into Eq. (4.1.5) lead to:

µ̇

λ1
− (µ+ 1)

λ̇1

λ2
1

= 〈Sx〉 (4.1.6a)280

2µ+ 3

λ2
1

µ̇− 2(µ+ 2)(µ+ 1)

λ3
1

λ̇1 = 2〈xSx〉 (4.1.6b)

noting 〈σ(y− ȳ)〉− 〈σ〉〈y− ȳ〉= 0 and 〈σ(y− ȳ)2〉= 〈σ〉〈(y− ȳ)2〉= 0 for both σ = x and σ = x2. We have also noted the

relations:

〈x logx〉=
1

λ1
[(µ+ 1)〈logx〉+ 1],

〈x2 logx〉=
1

λ2
1

[(µ+ 1)(µ+ 2)〈logx〉+ 2µ+ 3].285
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By combining Eqs. (4.1.6a, b), we further obtain stand-alone prognostic equations for these two individual parameters:

µ̇= 2[(µ+ 2)〈Sx〉−λ1〈xSx〉], (4.1.6c)

λ̇1 =
λ2

1

µ+ 1
[(2µ+ 3)〈Sx〉− 2λ1〈xSx〉]. (4.1.6d)

Here,290

Sx = xy (4.1.7a)

〈Sx〉= 〈xy〉= 〈x〉〈y〉=
µ+ 1

λ1
ȳ (4.1.7b)

〈xSx〉= 〈x2y〉= 〈x2〉〈y〉=
(µ+ 2)(µ+ 1)

λ2
1

ȳ (4.1.7c)

In deriving these three results (4.1.7a, b, c), we have used the relaions

〈x〉=
µ+ 1

λ1
, 〈x2〉=

(µ+ 2)(µ+ 1)

λ2
1

, 〈y〉= ȳ.295

Using these three relations (4.1.7a, b, c), the right hand side of Eq. (4.1.6c) vanishes, and

µ̇= 0, (4.1.8a)

wherreas Eq. (4.1.6d) reduces to:

λ̇1 =−λ1ȳ. (4.1.8b)

As for the other two weights depending only on y, we choose σ = y− ȳ and σ = (y− ȳ)2. In reductions, we invoke the300

relations

〈y− ȳ〉= 〈(y− ȳ)3〉= 0, 〈(y− ȳ)2〉=
1

2λ2
, 〈(y− ȳ)4〉=

3

4λ2
2

.

The final results are:

˙̄y = 1− µ+ 1

λ1
, (4.1.8c)

λ̇2 = 0. (4.1.8d)305

Thus, Eqs. (4.1.8a, b, c, d) dictate the evolution of the distribution (4.1.1), in which the two parameters, µ and λ2, turn out to

be constants of time. On the other hand, by combining Eqs. (4.1.8b) and (4.1.8c), we find

−dλ1

λ1ȳ
=

dȳ

1− µ+ 1

λ1

= dt

The first two terms can be re-arranged to:

− 1

λ1
(1− µ+ 1

λ1
)dλ1 = ȳdȳ,310
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Figure 2. Trajectory of (x̄, ȳ): as directly obtained from the Liouville equation (black solid) and by the assumed PDF (Eqs. 4.1.1, 4.1.2a, b)a

model I (green dash) results. Here, µ= 10.2271805 and R= 2.19206810 in Eq. (4.1.9). This assumed PDF solution simply takes a closed

orbit, failing to re–produce a damping tendency of the actual PDF evolution.

which can readily be integrated, and the trajectory (x̄, ȳ) of the system is, noting also that x̄= (µ+ 1)/λ1, found as:

2x̄− 2log x̄+ ȳ2 =R (4.1.9)

where R is a constant, noting that µ is constant with time by Eq. (4.1.8a). By comparing this final expression with Eq. (25) of

Yano and Plant (2012), we find that the mean trajectory is identical to that of the solution of the system (4.1a, b). Note that

this is not necessarily the case. In fact, the numerical result in Fig. 2 shows that a full solution presents a damping circular315

trajectory in the phase space of (x̄, ȳ) towards the equilibrium (1,0). This aspect is simply not captured by the given assumed

PDF. Thus, a remedy to it is to be sought.

Fig. 3 shows further statistical quantifications on the performance of the model I. Here, the adopted time step is ∆t=

1× 10−2. As already remarked, this model predicts a simple periodic cycle for the mean values, and fails to re–produce a

damping tendency of the actual PDF evolution (Fig. 3(a)). The same follows with x–variance (Fig. 3(b)), whereas the model I320

does not predict the evolution of the y–variance, being constant with time by Eq. (4.1.8d).

An obvious defect of this assumed form is traced to the lack of correlation between the two variables, and the key nonlinear

contribution, 〈x′y′〉, drops out from the set of evolution equations, where x′ = x−〈x〉 and y′ = y−〈y〉.
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Figure 3. Comparisons of the statistics of the convective energy cycle between results with a direct computation of the Liouville equation

(black) and that based on the assumed–PDF method (model I: green): (a) Means, x̄ (solid) and ȳ (long dash), (b) Variances, 〈(x−x̄)2〉 (solid)

and 〈(y− ȳ)2〉 (long dash).

4.2 Two–Dimensional Gaussian Distribution (Model II)

The model I (Eq. 4.1.1) in the last subsection fails to predict a dissipating tendency of mean and amplifying tendency of the325

variance, as seen in Figs. 2 and 3. This reason is traced to lack of correlation between the two dependent variables, x and y, in

distribution, thus the problem of the prediction of the mean becomes identical of that of the original dynamical system.

The most straightforward modification to overcome this issue is to modify the distribution into:

p(x,y) = p0x
µ exp[−λ1x−λ2(y− ȳ)2−λ3x(y− ȳ)].

However, this assumed PDF has an unfavorable feature that the resulting integrals become not possible to be performed ana-330

lytically any more. Need for numerical integrals add up a computation cost, and effectively kills an advantage of the assumed

PDF approach: an integral over an infinite domain at each time step, as required, is substantially more expensive numerically

than just predicting a few PDF parameters.

To avoid this difficulty, we instead adopt a Gaussian distribution with two variables considered in Sec. II.1 (Eq. 3.1): this

model is referred as the model II. A minor disadvantage with this assumed PDF is that a distribution can spread to x < 0.335
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Figure 4. Comparisons of the statistics of the convective energy cycle between results with a direct computation of the Liouville equation

(black) and that based on the assumed–PDF method (model II: green): (a) Mean, x̄ (solid) and ȳ (long dash), (b) Variance, 〈(x− x̄)2〉 (solid)

and 〈(y− ȳ)2〉 (long dash).

However, this disadvantage has no serious consequence so long as we focus our attentions to the basic statistics, mean and

variance (and also correlation), and the mean of x remains positive, i.e., x̄ > 0.

By applying the expression of the source term for this system (4.1a, b) to general formulas in Sec. II.1, we obtain the

following prognostic equation set for the assumed–PDF parameters:

˙̄x= x̄ȳ− κ

4λ3
(1− κ

4
)−1 (4.2.1a)340

˙̄y =−x̄+ 1 (4.2.1b)

− λ̇1

λ1
− κ

4

λ̇2

λ2
+
κ

2

λ̇3

λ3
= (1− κ

4
)(−λ3

λ2
x̄+ 2ȳ) (4.2.1c)

−κ
4

λ̇1

λ1
− λ̇2

λ2
+
κ

2

λ̇3

λ3
= (1− κ

4
)
λ3

λ1
(4.2.1d)

λ̇1

λ1
+
λ̇2

λ2
− (1 +

κ

4
)
λ̇3

λ3
= (1− κ

4
)(−2λ2

λ3
+

2λ1

λ3
x̄− ȳ) (4.2.1e)

17



Recall that κ is defined by Eq. (3.5k):345

κ=
λ2

3

λ1λ2
(4.2.2)

The initial condition in this case is set equal to that of the full Liouville run, which is also initialized with a Gaussian.

Characteristics of the evolution of the system with this model II obtained with the time step of ∆t= 1× 10−4 are shown in

Fig. 4: the mean values (a) damp as the case with the explicit Liouville run. The agreements are almost perfect up to the end of

the third cycle, but then a difference gradually becomes noticeable. A periodic increase of variances (b) are also predicted up to350

the second cycle. However, after the end of the third cycle, the variances predicted by the model II rapidly decrease with time.

The model is numerically unstable, and blows up after t= 60 with ∆t= 10−2. Euler time stepping is also attempted: it crushes

at t= 23.5. Those behaviors can be understood, to a good extent, simply by inspecting the obtained prediction equations. Even

under the model II, the evolution of ȳ (Eq. 4.2.1b) still follows that of y replacing the terms by the averages as also the case

with the model I. However, an extra term is found for the evolution equation for x̄ (Eq. 4.2.1a), which can work as a damping355

term whenever 1−κ/4> 0 is satisfied, as expected from the full Liouville simulation. Due to this dissipating tendency of x̄, ȳ

also dissipates with time to the extent that the former dissipates, as seen in the long–dash curves in Fig. 4(a).

The condition with 1−κ/4> 0 is indeed satisfied initially with a Gaussian distribution leading to κ= 0, with λ3 = 0.

However, the distribution evolves associated with the increasing κ with time, approaching towards κ= 4. Thus, this dissipative

term also becomes smaller with time, and at a certain point, x̄ no longer dissipates as effectively as seen in the full Liouville360

solution, as seen in the solid curves in Fig. 4(a). The variances also grow with time so long as 1−κ/4> 0 by following

Eqs. (4.2.1c, d, e). However, as remarked, due to the tendency of κ→ 4, this growing tendency only continues over the first

three convective cycles, and then the variances begin to diminish with time, as seen in Fig. 4(b). These result suggests that

adding a cross term (i.e., λ3 6= 0) in the distribution is not sufficient to reproduce statistical tendencies for an extensive duration

of the simulation, especially because the variances tend to collapse after initial realistic tendencies of the growths.365

4.3 Alternative possibility

As an alternative possibility of distributions to Sec. 4.2, the form,

p(x,y) =

p0x
µ exp(−λ1x−λ+

2 y) y > 0

p0x
µ exp(−λ1x+λ−2 y) y < 0,

is also considered. As it turns out, evolution of the mean values, x̄ and ȳ, remains identical to that of the model I without any

damping tendency. A slight improvement is that the standard deviation in y, in this case, evolves with:370

d

dt
〈y′2〉= 〈y〉〈Sy〉

Due to these only limited improvements expected, this case is not actually attempted. It transpires that it is crucial to include

a dependence on xy in the distribution for successfully predicting a damping tendency of mean values as the case with the

model II.
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Figure 5. Time evolution of PDF for the Lorenz system on y–z plane as directly predicted by the Liouville equation

5 Lorenz (1963) System375

The system proposed by Lorenz (1963) is given by:

ẋ=−Px+Py, (5.1a)

ẏ =−xz+ rx− y, (5.1b)

ż = xy− bz, (5.1c)

in which we assume the standard parameters: b= 8/3, the Rayleigh number, r = 28, and Prandtl number, P = 10. The system380

consists of three unstable steady solutions (i.e., fixed points): two of them corresponding to steady convection are found at

(x,y,z) = (±6
√

2,±6
√

2,27), and another is found at (x,y,z) = (0,0,0).

First, as a reference, the evolution of PDF is computed by directly integrating the Liouville equation. Here, the adopted

numerics are identical to those adopted in Yano and Phillips (2016) for the Fokker–Planck equation, except for a treatment

for the diffusion term raises from stochasticity is missing in the present case. The initial condition is a Gaussian distribution385

centered at (0,1,0) with the variance, 12.5, in all three directions. The initial center point is the identical to the initial condition

adopted by Lorenz (1963). An identical run has also been repeated by replacing the initial center of the Gaussian distribution

of the origin, (0,0,0), of the system. Some remarks will be also added in the following on this latter case.

Figs. 5 and 6 show that evolution of PDF is highly non–Gaussian both on y–z and x–y planes, respectively. On both

planes, the distribution splits into two peaks over time upto t= 1, corresponding to two unstable fixed points of the system.390

Distributions around these two peaks gradually diffuse with time as the stranger attractor fully develops. Recall that the Lorenz
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Figure 6. The same as Fig. 5 but on x–y plane.

system is chaotic, thus the individual trajectories of solutions remain nonstationary throughout their evolutions. However, as

expected from the evolution of the distribution, the statistics of the system converge to a stationary state after an initial transient

period gradually. Note that this is a major difference from a fully turbulent system to a low–dimensional chaotic system: in the

former case, the statistics can also remain nonstationary throughout the evolution of the system. As going to be demonstrated395

in the following, this aspect turns out to be the hardest to reproduce by an assumed–PDF form only with a few parameters,

because a governing equation system predicting those PDF parameters itself can become a nonlinear chaotic system. This

tendency most clearly emerges with the model I in the following. In the following assumed–PDF demonstrations, the time step

is by default ∆t= 10−4 is adopted. Runs have also been repeated with ∆t= 2× 10−4 to find no modification in results.

5.1 Lorenz (1963) System: Gaussian Distribution (Model I)400

As a first model (model I), we consider a three–dimensional Gaussian distribution, but without correlations between the de-

pendent variables, x, y, and z:

p(x,y,z) = p1(x)p2(y)p3(z), (5.1.1)

where

p1(x) = p10 exp[−λ1(x− x̄)2], (5.1.2a)405

p2(y) = p20 exp[−λ2(y− ȳ)2], (5.1.2b)

p3(z) = p30 exp[−λ3(z− z̄)2], (5.1.2c)
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Figure 7. Statistics of the Lorenz system with the model I: model results (black), and those by direct prediction with the Liouville equation

(green):(a) mean and (b) the variance. Here, and in the following plots, the curves are defined for the x–, y–, and z–components are in solid,

long dash, and short dash.

in which normalization conditions are:

pj0 = (λj/π)1/2 (5.1.3)

with j = 1, 2, 3.410

From the general formulation (2.1.6), we obtain:

3∑
j=1

{λ̇j [
∫
σ
∂p

∂λj
dx−

∫
σpdx

∫
∂p

∂λj
dx] + ˙̄xj [

∫
σ
∂p

∂x̄j
dx−

∫
σpdx

∫
∂p

∂x̄j
dx]}=

∫
pS · ∂σ

∂x
dx, (5.1.4)

whrere x = (x1,x2,x3) = (x,y,z), σ is a weight, and we find the relations:

∂p/∂λj =−(xj − x̄j)2p, (5.1.5a)

∂p/∂x̄j = 2λj(xj − x̄j)p. (5.1.5b)415
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By substituting them into Eq. (5.1.4):

3∑
j=1

{λ̇j [−〈σ(xj − x̄j)2〉+ 〈σ〉〈(xj − x̄j)2〉] + 2λj ˙̄xj〈σ(xj − x̄j)〉}= 〈S · ∂σ
∂x
〉. (5.1.6)

We choose the weights as σ = xj − x̄j and σ = (xj − x̄j)2 (j = 1,2,3), then (5.1.6) recudes to:

˙̄xj = 〈Sj〉, (5.1.7a)

d

dt

(
1

λj

)
= 4〈(xj − x̄j)Sj〉 (5.1.7b)420

for j = 1, 2, 3. From Eq. (5.1a, b, c), the source terms are defined by

Sx =−Px+Py,

Sy =−xz+ rx− y,

Sz = xy− bz.

Here,425

〈Sj〉= Sj(x̄), (5.1.8)

and we also find by direct manipulations:

〈(x− x̄)Sx〉=−P/2λ1, (5.1.9a)

〈(y− ȳ)Sy〉=−1/2λ2, (5.1.9b)

〈(z− z̄)Sz〉=−b/2λ3. (5.1.9c)430

The model I predicts the evolution of z̄ (short dash) reasonably, but x̄ (solid) and ȳ (long dash), somehow, settle to one of

two unstable fixed points (to the negative side: in black), without suggesting an alternative possibility: equal probability among

these two fixed points makes the mean values, x̄ and ȳ, close to zero in the explicit simulation (green: Fig. 7(a)). The model I

also fails to predict an increase of the variances at an initial phase seen in the explicit simulation (green), but they simply decay

rapidly (black: Fig. 7(b)). The latter behavior with the variances is already seen in Eq. (5.1.7b), along with the definitions435

(5.1.9a, b, c) of the right–hand side forcing term: since the parameters, λj (j = 1,2,3), are defined to be positive definite, the

variance can only decay with time.

Over the longer time, the aforementioned chaotic nature of the system emerges, as shown in Fig. 8. Note especially that the

equation set for the means is identical to the original Lorenz’s attractor system, thus the means never converge to a statistical

equilibrium, as realized in a direct computation of the Liouville equation. Instead, after t= 5, the means gradually begin to440

oscillate around the tentatively–settled unstable fixed points. A first transition happens a little after t= 16, over which x̄ and ȳ

transit to a nonperiodic oscillation around the origin.
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Figure 8. The same as Fig. 7 but for a longer duration.

5.2 Lorenz (1963) System: Semi–Exponential in y–Direction (Model II)

The attempt of the last subsection, constraining the system in terms of the domain–averaged statistics, has failed to capture a

tendency of the system to settle around two unstable fixed points, but the assumed PDF tends to settle only to one of those two445

fixed points. As a measure of alleviating this tendency, in this subsection, we constrain the PDF in terms of the averages over

subdomains of the system. As the model II, we now more specifically constraint the system by:

ȳ+ = 〈y〉+ ≡
+∞∫
0

yp2dy/

+∞∫
0

p2dy,

ȳ− = 〈y〉− ≡
0∫

−∞

yp2dy/

0∫
−∞

p2dy.

These constraints suggest the semi–exponential distribution form in y–direction:450

p2 =

p
+
20 exp(−λ+

2 y), y > 0

p−20 exp(λ−2 y), y < 0
(5.2.1)
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and at y = 0,

p+
20 = p−20 = p20. (5.2.2)

Here, p1 and p3 in Eq. (5.1.1) remains the same as in model I of Sec. 5.1.

From the normalization condition455

∞∫
−∞

p2dy = 1,

we find

p20 = (1/λ+
2 + 1/λ−2 )−1. (5.2.3)

Also let:

p+ ≡
+∞∫
0

pdy =
p20

λ+
2

(5.2.4a)460

p− ≡
0∫

−∞

pdy =
p20

λ−2
(5.2.4b)

Note further,

∂p

∂λ+
2

=−yp, y > 0, (5.2.5a)

∂p

∂λ−2
= yp, y < 0, (5.2.5b)

and465

ȳ+ =

+∞∫
0

ypdy

+∞∫
0

pdy =
1

λ+
2

, (5.2.6a)

ȳ− =

0∫
−∞

ypdy

0∫
−∞

pdy =− 1

λ−2
, (5.2.6b)

ȳ ≡
+∞∫
−∞

ypdy =
1

λ+
2

− 1

λ−2
. (5.2.6c)
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The prognostic equations for λ1, λ±2 , λ3, and x̄j (j = 1,3) are:∑
j=1,3

{λ̇j [
∫
+

σ
∂p

∂λj
dx−

∫
+

σpdx

∫
∂p

∂λj
dx] + ˙̄xj [

∫
+

σ
∂p

∂x̄j
dx−

∫
+

σpdx

∫
∂p

∂x̄j
dx]}470

+ λ̇+
2 [

∫
+

σ
∂p

∂λ+
2

dx−
∫
+

σpdx

∫
+

∂p

∂λ+
2

dx]− λ̇−2
∫
+

σpdx

∫
−

∂p

∂λ−2
dx+

∫
+

σ
∂

∂x
(pS)dx = 0, (5.2.7a)

∑
j=1,3

{λ̇j [
∫
−

σ
∂p

∂λj
dx−

∫
−

σpdx

∫
∂p

∂λj
dx] + ˙̄xj [

∫
−

σ
∂p

∂x̄j
dx−

∫
−

σpdx

∫
∂p

∂x̄j
dx]}

− λ̇+
2

∫
−

σpdx

∫
+

∂p

∂λ+
2

dx+ λ̇−2 [

∫
−

σ
∂p

∂λ−2
dx−

∫
−

σpdx

∫
−

∂p

∂λ−2
dx] +

∫
−

σ
∂

∂x
(pS)dx = 0. (5.2.7b)

Also recall that:

∂p

∂λj
=−(xj − x̄j)2p,475

∂p

∂x̄j
= 2λj(xj − x̄j)p

for j = 1, 3, and Eq. (5.2.5a, b). By substituting them into Eq. (5.2.7a, b):∑
j=1,3

{λ̇j [−〈σ(xj − x̄j)2〉+ + 〈σ〉+〈(xj − x̄j)2〉] + 2λj ˙̄xj [〈σ(xj − x̄j)〉+−〈σ〉+〈xj − x̄j〉]}

+ λ̇+
2 [−〈σy〉+ + p+〈σ〉+〈y〉+]− p−λ̇−2 〈σ〉+〈y〉− = 〈S · ∇σ〉+ +

∫ ∫
σpSy

∣∣∣
y=0

dxdz/p+, (5.2.8a)∑
j=1,3

{λ̇j [−〈σ(xj − x̄j)2〉−+ 〈σ〉−〈(xj − x̄j)2〉] + 2λj ˙̄xj [〈σ(xj − x̄j)〉−−〈σ〉−〈xj − x̄j〉]}480

+ p+λ̇
+
2 〈σ〉−〈y〉+ + λ̇−2 [〈σy〉−− p−〈σ〉−〈y〉−] = 〈S · ∇σ〉−−

∫ ∫
σpSy

∣∣∣
y=0

dxdz/p−. (5.2.8b)

When σ depends only on x or z, then

〈σy〉±− p±〈σ〉±〈y〉± = 0.

(i) σ = xi− x̄i (j = 1,3):

Here, we note 〈σ〉+ = 〈σ〉− = 〈σ〉 as well as485

〈xi− x̄i〉= 〈(xi− x̄i)3〉= 0,

〈(xi− x̄i)2〉− 〈xi− x̄i〉2 = 〈(xi− x̄i)2〉= 1/2λi,

〈(xi− x̄i)4〉= 3/4λ2
i

for i= 1 and 3. Then, we obtain

˙̄xi = 〈Si〉+ +

∫ ∫
σpSy

∣∣∣
y=0

dxdz/p+, (5.2.9a)490

˙̄xi = 〈Si〉−−
∫ ∫

σpSy

∣∣∣
y=0

dxdz/p−. (5.2.9b)
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By taking a weighted sume of them:

˙̄xi = 〈Si〉. (5.2.9c)

Eq. (5.2.9c) predicts the evolution of x̄i with i= 1, 3.

(ii) σ = (xi− x̄i)2 (j = 1,3): Noting495

〈(xi− x̄i)4〉− 〈(xi− x̄i)2〉2 = 1/2λ2
i ,

we obtain

d

dt

(
1

λi

)
− p−
λi

(ȳ+λ̇
+
2 + ȳ−λ̇

−
2 )

= 4〈(x− x̄i)Si〉+ + 2

∫ ∫
σpSy

∣∣∣
y=0

dxdz/p+, (5.2.10a)

d

dt

(
1

λi

)
+
p+

λi
(ȳ+λ̇

+
2 + ȳ−λ̇

−
2 )500

= 4〈(x− x̄i)Si〉−− 2

∫ ∫
σpSy

∣∣∣
y=0

dxdz/p− (5.2.10b)

for i= 1, 3. By taking the weighted sum of the two:

d

dt

(
1

λi

)
= 4〈(x− x̄i)Si〉. (5.2.10c)

Eq. (5.2.10c) predicts the evolution of λi with i= 1, 3.

Next, note that when σ depends only on y, the sum over j = 1, 3 drops out.505

(iii) σ = 1: Both Eqs. (5.2.8a, b) reduce to

λ̇+
2 /λ

+
2 − λ̇

−
2 /λ

−
2 =−(λ+

2 +λ−2 )〈S′y〉, (5.2.11)

where

〈S′y〉= (r− z̄)x̄.

Note that the system is over–constrained, when the condition with σ = 1 (i.e., Eq. 3.13) is used along with the results with510

σ = y (i.e., Eq. 3.14c, d). Thus, probably Eq. (5.2.11) is better not counted.

(iv) σ = y:

(2− p+)ȳ2
+λ̇

+
2 + p−ȳ−ȳ+λ̇

−
2 =−〈S′y〉+ ȳ+, (5.2.12a)

p+ȳ−ȳ+λ̇
+
2 + (2− p−)ȳ2

−λ̇
−
2 = 〈S′y〉− ȳ−. (5.2.12b)

From Eqs. (3.14a, b), we further obtain:515

d

dt
(

1

λ+
2

) =− 1

λ+
2

+
〈S′y〉

2
, (5.2.12c)

d

dt
(

1

λ−2
) =− 1

λ−2
−
〈S′y〉

2
. (5.2.12d)
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Figure 9. Statistics of the Lorenz system with the model II: model results (black), and those by direct prediction with the Liouville equation

(green): (a) the means, (b) the variances, (c) ȳ+ (solid), and ȳ− (long dash). In the frames (a) and (b), the solid, long–dashed, and short–dashed

curves are for x–, y–, and z–components.

For a better numerical stability, the time integration is performed in terms of 1/λ±2 rather than λ±2 . Note that both 1/λ±2 present

a damping tendency due to the first terms in the right–hand side. Note moreover that asymmetry arising from the second

terms, thus when 1/λ+
2 tends to grow, 1/λ−2 tends to decay, and vice versa: the general tendency with this pair is qualitatively520

consistent with a case that the probability to be in positive and negative sides of y, p±, follow the evolution tendency of the
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individual phase–space particle. The governing equations for the parameters for the distribution in x and z directions remain

unchanged, being constrained by the conditions (i) and (ii) above.

The model II improves from the model I in predicting the y–variance (long dash) reasonably (Fig. 9(b)): it grows but with

a delay of about 0.5 compared to the actual evolution directly predicted from the Liouville equation. However, as expected,525

behavior of the variances of the x– and z–components are as unsuccessful as the case of the model I. The performances of x

(solid) and y (long dash) for the mean (Fig. 9(a)) remain the same as for the model I. The failure to predict ȳ correctly in spite

of a modification of the distribution in y direction is attributed to the fact that the prediction of ȳ+ (solid), which decays to zero

fairly rapidly after a relatively successful initial prediction until t' 1 (Fig. 9 (c)). On the other hand, the prediction of ȳ− (long

dash) is reasonable. Here, recall the asymmetry in the initial condition.530

When the run is initiated from the origin, the model behavior is even worse: both ȳ+ and ȳ− monotoneously decay towards

zero with a time scale of t' 2 (not shown). Thus, the initial condition symmetric to y = 0 somehow worsens the model

behavior than improves it, presumaly because the first term in the right–hand sides of Eq. (5.2.12c, d) dominante througout the

experiment.

5.3 Lorenz (1963) System (Model III)535

As a further extension of the model II in the last subsection, we now also constrain the system by x̄±. In this case, p1 furthermore

takes the form:

p1 =

p10 exp(−λ+
1 x), x > 0

p10 exp(λ−1 x), x < 0
(5.3.1)

Derivation of the equations for the assumed–PDF coefficients also proceeds in a similar manner as in the last subsection, and

an only change is that now λ±1 are predicated by540

d

dt
(

1

λ+
1

) =− P

λ+
1

+
P

2
ȳ, (5.3.2a)

d

dt
(

1

λ−1
) =− P

λ−1
− P

2
ȳ. (5.3.2b)

The major improvement by this modification is a better performance with the x–variance (solid: Fig. 10 (b)): it no longer

decays out rapidly, but remains about a half of the actual value. On the other hand, the performance of the z–variance (short

dash: Fig. 10 (b)) does not change. As a rather intriguing modification, both x̄ (solid) and ȳ (long dash) somehow decided to545

settle to a positive unstable fixed point this case (Fig. 10(a)).

Even after the attempts with these three assumed PDFs, a key remaining challenge is still to successfully represent the

statistics associated with a split of distribution into two peaks. However, as it stands for now, it is not clear what parameter

should be added to satisfy this challenge.
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Figure 10. Statistics of the Lorenz system with the model III: model results (black), and those by direct prediction with the Liouville equation

(green): mean and variance

6 Summary and Discussions550

A general methodology for solving the time evolution of assumed–PDF parameters based on the Liouville equation has been

proposed by Yano et al. (2024, YLP). The present paper extends this study in several aspects: first, it has been generalized

(Sec. 2.2) for the cases that the constraints are defined by limited integral ranges. This generalization is a critical first step, for

example, for developing a cloud scheme based on this formulation. As a result, the assumed–PDF forms also take different

forms over different subdomains, and henceforth, the formulation for the prognostic equations for the PDF parameters has also555

been generalized accordingly (Sec. 2.3). Finally, the formulation has been explicitly generalized into multidimensional cases

(Secs. 2.4 and 2.5). These further generalized formulations have been applied to two simple dynamical systems (Secs. 4 and

5, respectively): a convective–energy cycle system proposed by Yano and Plant (2012) as well as Lorenz’s (1963) strange–

attractor system.

Here, it may be worthwhile to re–iterate the originality of the present study: there are already extensive work under the560

framework of the so–called assumed PDF approach. In fact, as emphasized in YLP, more or less all the existing formulatinos for

the distribution problems fall into this category. Yet, this work is original in attempting to predict the evolution of a distribution

in a self–consistent manner, and verify the performance taking simply dynamical systems. Such an effort does not exist in
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the literature, because the existing assumed–PDF schemes both in subgrid–scale representations and cloud microphysics are

developed case by case with ad hoc closures, without a generality. Thus, it is simply not possible to perform the verifications565

of those schemes by taking simple dynamical systems.

The performance of the assumed–PDF formulations has been directly compared with the results from the direct time–

integration of the Liouville equation for both systems. By adopting simple dynamics systems with up to three dependent

variables, such a direct time integration becomes feasible. Unfortunately, both testing cases tend to suffer with the same

tendencies: regardless of a specific choice, statistics (means and variances) predicted by an assumed–PDF approach gradually570

deviate from the exact results predicted by the Liouville equation noticeably. Furthermore, some statistics, for example, the

sign–dependent conditional averages, x̄± and ȳ±, in the Lorenz system turn out to be rather difficult to predict properly: in

general, only one of the sign–dependent mean pair, (x̄±, ȳ±), is predicted properly, and the other of the pair simply settles to a

vanishing value. In this respect, the assumed–PDF approach hardly provide a magic receipt.

One may judge that the obtained results are not quite promising, and even a failure. However, it should be emphasized575

that rather difficult cases are taken as test cases: with both systems, the initial Gaussian distribution rapidly evolves into

a qualitatively totally different form. One must also count on a more basic fact that the assumed PDF attempts something

almost impossible: to perform an accurate prediction of a distribution only by using a limited number of parameters. For this

reason, one should consider the obtained results are important demonstration of the fundamental difficulties with the assumed–

PDF methods in general, not only with a particular approach adopted herein. Arguably, performances are rather impressive580

considering the fact that the PDF forms assumed are also qualitatively very different from the actual distributions predicted

by the Liouville equation. The real question still to be to answered is: how well the more standard assumed–PDF approaches

perform with the same systems. In that manner, advantage of the present assumed–PDF approach may be better established.

The study has also suggested that the output–constrained distribution principle, proposed by YLP, may not be sufficient to

decide an assumed–PDF form: to ensure a good performance of a prediction of the distribution statistics, assumed–PDF forms585

must be constrained by something more than just those required as outputs for host models. In the present study, we have

assumed that those constraints are to be averages and variances. The present exploratory study has suggested that it is crucial to

evaluate the mean evolution of actual forcing terms of a system also accurately, thus they must also be added as a constraint. In

both models considered herein, the term xy is crucial in prediction, thus this correlation term must also be properly predicted.

It has been shown that adding a constraint of 〈xy〉 can improve the predictions by assumed–PDF forms, but not necessarily in590

a satisfactory manner.

Prediction of the PDF of the Lorenz system is inherently difficult due the fact that the solution tends to be clustered around

the two unstable fixed points. The assumed–PDF, with all the cases considered so far, have always failed to predict one of those

two tendencies under conditional averages, x̄± and ȳ±. A further possibility to be pursued is to re–initialize a prediction at a

middle point, under a spirit of data assimilation, and to examine whether this difficulty is overcome by this procedure.595

Some numerical issues have also been revealed by the present study. In some cases, exponential parameters in distribution

can vary to extremes that cause overflow and underflow problems in computations. To avoid this issue, some exponential

parameters have been predicted in their logarithmic form to ensure better numerical stabilities. However, those basic procedures
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have turned out not to always resolve the stability issues: in the case with the model III for the Lorenz system (Sec. 5.3), a rather

small nondimensional time step of 10−4 has been necessary to run a prediction long enough, but it still ultimately crushes. The600

numerical stability of this case must more closely be investigated in its own right.

As a whole, the present study reveals inherent difficulties of predicting a distribution accurately only with a limited number

of distribution parameters. Especially, we have faced a universal tendency of the variance of the distribution decays with time,

when it must increase, regardless of the choice of an assumed distribution form. This behavior is reminiscence of the variance

collapse identified as a major problem in data assimilation when it is performed with an ensemble. In the latter case, it is often605

found that the probability weight assigned to each ensemble member collapses close to zero saved for a single member close

to the average (i.e., weight collapse: van Leeuwen 2003, Poterjoy 2016), and henceforth, the prior estimate of the variance

also collapses as a consequence (cf., Snyder et al. 2008): see van Leeuwen (2009) for more backgrounds. Though the cause

of this problem is usually attributed to a relatively small ensemble size and their tendency to collapse into a “stable” state, the

present study suggests that this tendency is more universal, and it can happen whenever a highly truncated representation of a610

distribution is adopted, even with an approach of considering a full dimension of the phase space as in the present case.

Those ensemble–based assimilation studies, in turn, attempt various remedies to alleviate this tendency: the simplest is to

inflate the variance by a certain factor with time to prevent its collapse (Anderson and Anderson 1999, Anderson 2001). More

generally, resampling approaches can, at least, partially delay the collapse of the weights (Snyder et al. 2008, Anderson 2001).

However, it appears that neither of the approaches is directly applicable to the assumed–PDF formulation in the present study.615

First, the inflation is nothing other than adding an extra adjustable parameter, which can be chosen only when an exact PDF

evolution is known a priori. Resampling approaches do not work simply by not adopting an ensemble formulation.

The most feasible solution to solve the variance collapse under the assume–PDF approaches would be to include a feedback

of the truncated distribution parameters in a form of a parameterization, in a similar manner as effects of higher moments

are represented by certain hypothesis in the turbulence–closure models (Mellor 1973, Mellor and Yamada 1974). However,620

parameterizations of the higher–order assumed PDF parameters are completely new frontiers, to which much investments are

required before we can propose any specific solution.

Code availability. The fotran codes used in the present study are available by request to the author.

Appendix: Integrals of Two–Dimensional Gaussian Distribution

A.1 Normalization625

The normalization condition for a distribution with two variables, (x,y), is given by

+∞∫
−∞

+∞∫
−∞

pdxdy = 1.
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Recall a Gaussian integral formula:

+∞∫
−∞

e−λξ
2

dξ =
(π
λ

)1/2

.

For casting the integral in x in this form, we re-arrange a part of the exponent as follows:630

λ1(x− x̄)2 +λ3(x− x̄)(y− ȳ)

=λ1[x−{x̄− λ3

2λ1
(y− ȳ)}]2−λ1[x̄− λ3

2λ1
(y− ȳ)]2 +λ1x̄

2−λ3(y− ȳ)x̄

Thus,

+∞∫
−∞

p

p0
dx=

(
π

λ1

)1/2

exp[−λ2(y− ȳ)2 +λ1{x̄−
λ3

2λ1
(y− ȳ)}2−λ1x̄

2 +λ3(y− ȳ)x̄] (A.1)

The remaining exponent can be re-arranged as635

λ2(y− ȳ)2−λ1[x̄− λ3

2λ1
(y− ȳ)]2 +λ1x̄

2−λ3(y− ȳ)x̄= (λ2 +
λ2

3

4λ1
)(y− ȳ)2

Thus a further integral of (A.1) in y leads to

+∞∫
−∞

+∞∫
−∞

p

p0
dxdy =

(
π

λ1

)1/2(
π

λ2 +λ2
3/4λ1

)1/2

=
π

(λ1λ2 +λ2
3/4)1/2

The final expression proves Eq. (4.1.2a, b, c).

A.2 Moments640

The moments given by Eq. (3.5a–j) are derived by using relationships obtained by taking the differentiation of the Gaussian

distribution in recursive manner:

∂

∂x
[e−{λ1(x−x̄)2+λ3(x−x̄)(y−ȳ)}] = [2λ1(x− x̄) +λ3(y− ȳ)]e−[λ1(x−x̄)2+λ3(x−x̄)(y−ȳ)].

The integral of the right hand side leads to

+∞∫
−∞

[2λ1(x− x̄) +λ3(y− ȳ)]e−[λ1(x−x̄)2+λ3(x−x̄)(y−ȳ)]dx645

=− e−[λ1(x−x̄)2+λ3(x−x̄)(y−ȳ)]|+∞−∞ = 0. (A.2)

This relation immediately finds:

2λ1〈x− x̄〉+λ3〈y− ȳ〉= 0. (A.3a)
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Same wise, by symmetry:

2λ2〈y− ȳ〉+λ3〈x− x̄〉= 0. (A.3b)650

Solving them together leads to Eq. (3.5a) provided 4λ1λ2−λ2
3 6= 0.

To generalize a type of relations like (A.3a, b), we note that Eq. (A.2) is still valid by multiplying a weight, σ, with any

function of y. Letting σ = y− ȳ:

2λ1〈(x− x̄)(y− ȳ)〉+λ3〈(y− ȳ)2〉= 0, (A.4a)

and by symmetry,655

2λ2〈(x− x̄)(y− ȳ)〉+λ3〈(x− x̄)2〉= 0. (A.4b)

By combining them together, we obtain the relations:

〈(x− x̄)(y− ȳ)〉=− λ3

2λ2
〈(x− x̄)2〉=− λ3

2λ1
〈(y− ȳ)2〉, (A.5a)

〈(x− x̄)2〉=−2λ2

λ3
〈(x− x̄)(y− ȳ)〉, (A.5b)

〈(y− ȳ)2〉=−2λ1

λ3
〈(x− x̄)(y− ȳ)〉. (A.5c)660

Eq. (A.2) can further be used for deriving similar expressions for higher-moment integrals

+∞∫
−∞

[2λ1(x− x̄) +λ3(y− ȳ)]ne−[λ1(x−x̄)2+λ3(x−x̄)(y−ȳ)]dx (A.6)

with n an arbitrary integral. We first set n= 2, and obtain by a partial integral:

+∞∫
−∞

[2λ1(x− x̄) +λ3(y− ȳ)]2e−[λ1(x−x̄)2+λ3(x−x̄)(y−ȳ)]dx

=− [2λ1(x− x̄) +λ3(y− ȳ)]e−[λ1(x−x̄)2+λ3(x−x̄)(y−ȳ)]|+∞−∞665

+ 2λ1

+∞∫
−∞

e−[λ1(x−x̄)2+λ3(x−x̄)(y−ȳ)]dx,

thus

〈[2λ1(x− x̄) +λ3(y− ȳ)]2〉=−
+∞∫
−∞

[2λ1(x− x̄) +λ3(y− ȳ)]p|+∞−∞dy+ 2λ1.

Since the partial integral vanishes, by expanding the left-hand side, we obtain

4λ2
1〈(x− x̄)2〉+λ2

3〈(y− ȳ)2〉+ 4λ1λ3〈(x− x̄)(y− ȳ)〉= 2λ1. (A.7a)670
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By symmetry, we also obtain

4λ2
2〈(y− ȳ)2〉+λ2

3〈(x− x̄)2〉+ 4λ2λ3〈(x− x̄)(y− ȳ)〉= 2λ2. (A.7b)

By substituting Eqs. (A.5b, c) into the above, we obtain Eq. (3.5d). Its substitution back to Eqs. (A.5b, c), respectively, lead to

Eqs. (3.5b, c).

To obtain the expressions for the third moments, we now set n= 3 in Eq. (A.6). Since this whole integral vanishes, by675

expanding this integral, we obtain:

8λ3
1〈(x− x̄)3〉+λ3

3〈(y− ȳ)3〉+ 12λ2
1λ3〈(x− x̄)2(y− ȳ)〉+ 6λ1λ

2
3〈(x− x̄)(y− ȳ)2〉= 0, (A.8a)

and also by symmetry,

8λ3
2〈(y− ȳ)3〉+λ3

3〈(x− x̄)3〉+ 12λ2
2λ3〈(x− x̄)(y− ȳ)2〉+ 6λ2λ

2
3〈(x− x̄)2(y− ȳ)〉= 0. (A.8b)

As an extension of (A.3a, b), we obtain:680

2λ1〈(x− x̄)(y− ȳ)2〉+λ3〈(y− ȳ)3〉= 0,

2λ2〈(x− x̄)2(y− ȳ)〉+λ3〈(x− x̄)3〉= 0.

They lead to:

〈(x− x̄)3〉=−2λ2

λ3
〈(x− x̄)2(y− ȳ)〉, (A.9a)

〈(y− ȳ)3〉=−2λ1

λ3
〈(x− x̄)(y− ȳ)2〉. (A.9b)685

By substituting Eqs. (A.9a, b) into Eqs. (A.8a, b), we obtain

λ1(4λ1λ2− 3λ2
3)〈(x− x̄)2(y− ȳ)〉−λ3

3〈(x− x̄)(y− ȳ)2〉= 0

λ2(4λ1λ2− 3λ3)〈(x− x̄)(y− ȳ)2〉−λ3
3〈(x− x̄)2(y− ȳ)〉= 0

By solving them for 〈(x−x̄)2(y−ȳ)〉 and 〈(x−x̄)(y−ȳ)2〉, and also substituting this result into (A.9a, b), we obtain Eq. (3.5e).

Finally, for obtaining the results for the fourth moments, we set n= 4 in Eq. (A.6), which leads to:690

16λ4
1〈(x− x̄)4〉+λ4

3〈(y− ȳ)4〉+ 32λ3
1λ3〈(x− x̄)3(y− ȳ)〉

+8λ1λ
3
3〈(x− x̄)(y− ȳ)3〉+ 24λ2

1λ
2
3〈(x− x̄)2(y− ȳ)2〉= 12λ2

1,

(A.10a)

and also by symmetry,

16λ4
2〈(y− ȳ)4〉+λ4

3〈(x− x̄)4〉+ 32λ3
2λ3〈(x− x̄)(y− ȳ)3〉695

+8λ2λ
3
3〈(x− x̄)3(y− ȳ)〉+ 24λ2

2λ
2
3〈(x− x̄)2(y− ȳ)2〉= 12λ2

2.

(A.10b)
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As an extension of Eqs. (A.3a, b), we obtain

2λ1〈(x− x̄)(y− ȳ)3〉+λ3〈(y− ȳ)4〉= 0,

2λ2〈(x− x̄)3(y− ȳ)〉+λ3〈(x− x̄)4〉= 0,700

which lead to

〈(x− x̄)(y− ȳ)3〉=− λ3

2λ1
〈(y− ȳ)4〉, (A.11a)

〈(x− x̄)3(y− ȳ)〉=− λ3

2λ2
〈(x− x̄)4〉. (A.11b)

The results of Eqs. (A.7a, b) are extended by applying weights of (y− ȳ)2 and (x− x̄)2, respectively, and we obtain:

4λ2
1〈(x− x̄)2(y− ȳ)2〉+λ2

3〈(y− ȳ)4〉+ 4λ1λ3〈(x− x̄)(y− ȳ)3〉=
λ1

λ2
(1− κ

4
)−1705

4λ2
2〈(x− x̄)2(y− ȳ)2〉+λ2

3〈(x− x̄)4〉+ 4λ2λ3〈(x− x̄)3(y− ȳ)〉=
λ2

λ1
(1− κ

4
)−1

By substituting Eqs. (A.11a, b) into the above, we obtain

〈(x− x̄)4〉=
4λ2

2

λ2
3

〈(x− x̄)2(y− ȳ)2〉− λ2

λ1λ2
3

(1− κ

4
)−1, (A.12a)

〈(y− ȳ)4〉=
4λ2

1

λ2
3

〈(x− x̄)2(y− ȳ)2〉− λ1

λ2λ2
3

(1− κ

4
)−1, (A.12b)

We first substitute Eqs. (A.11a, b) into Eqs. (A.10a, b), then substitute Eqs. (A.12a, b) into the latter. This gives Eq. (3.5h).710

Substituting back Eq. (3.5h) into (A.12a, b) gives Eqs. (3.5f, g), and further substitutions of them into Eqs. (A.11a, b) lead to

Eqs. (3.5i, j).
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