
| 1  | Measurement report: Crustal materials play an increasing role in elevating                                                                            |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2  | particle pH: Insights from 12-year records in a typical inland city of China.                                                                         |
| 3  | Hongyu Zhang <sup>1, 2</sup> , Shenbo Wang <sup>2, 3</sup> *, Zhangsen Dong <sup>1, 2</sup> *, Xiao Li <sup>2, 3</sup> , Ruiqin Zhang <sup>2, 3</sup> |
| 4  |                                                                                                                                                       |
| 5  | <sup>1</sup> Collage of Chemistry, Zhengzhou University, Zhengzhou, 450000, China                                                                     |
| 6  | <sup>2</sup> Research Institute of Environmental Sciences, Zhengzhou University, Zhengzhou                                                            |
| 7  | 450000, China                                                                                                                                         |
| 8  | <sup>3</sup> School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450000,                                                              |
| 9  | China                                                                                                                                                 |
| 10 |                                                                                                                                                       |
| 11 | * Corresponding authors: Shenbo Wang and Zhangsen Dong                                                                                                |
| 12 | E-mail address: shbwang@zzu.edu.cn and dzszzu1990@163.com                                                                                             |
| 13 |                                                                                                                                                       |

## **Figures**



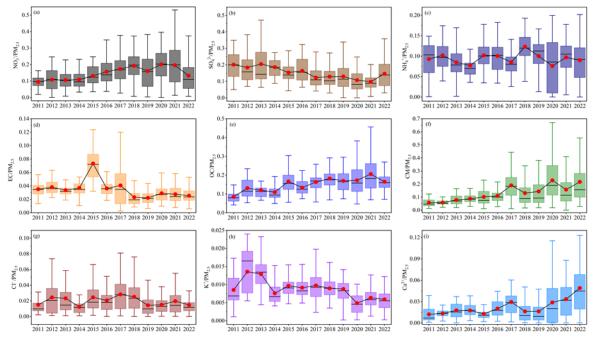



Figure S2. Trends in the proportions of chemical components in PM<sub>2.5</sub> from 2011 to 2022.

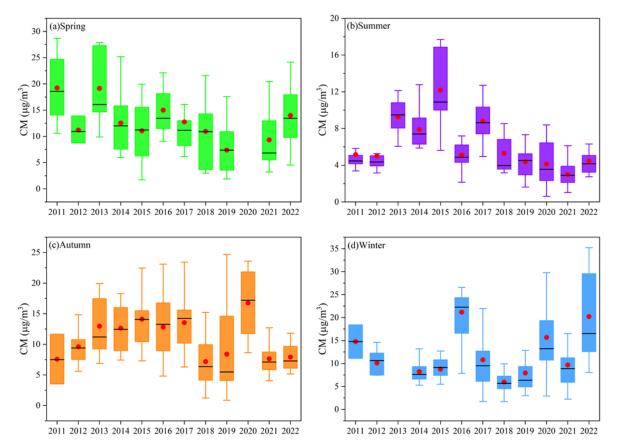



Figure S3. Trends in the CM concentrations in different seasons from 2011 to 2022.

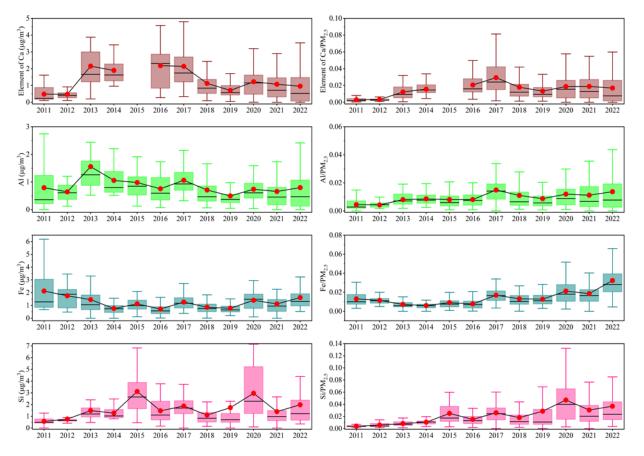



Figure S4. Trends in the concentrations of crustal elements and their proportions in PM<sub>2.5</sub> from 2011 to 2022.

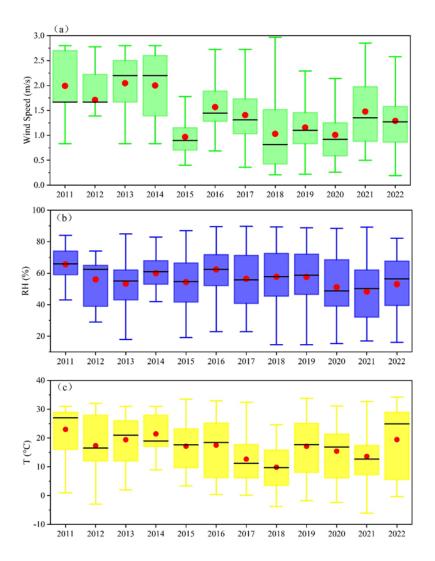



Figure S5. Trends in the meteorological parameters from 2011 to 2022.

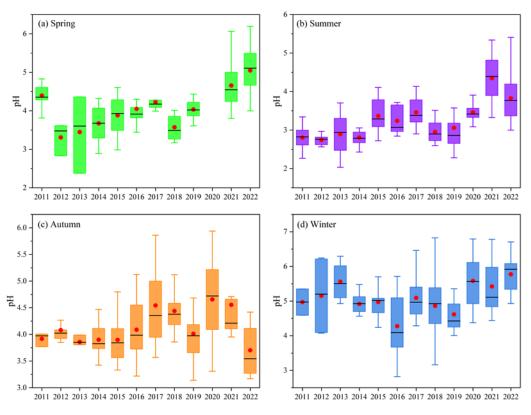



Figure S6. Trends in the particle pH in different seasons from 2011 to 2022.

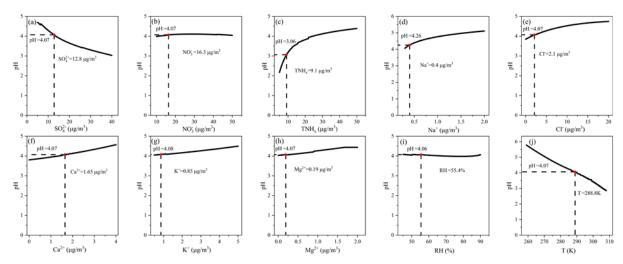



Figure S7. Sensitivity analysis of input parameters to particle pH. The dashed line represents the average of the observational data from 2011 to 2022.

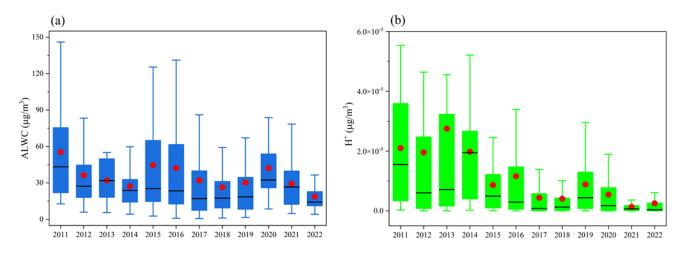



Figure S8. Trends in aerosol liquid water content (ALWC) and H<sup>+</sup> concentrations from 2011 to 2022
 42

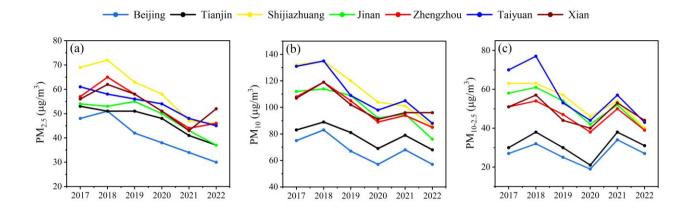



Figure S9. Trends in the annual average concentrations of PM<sub>2.5</sub>, PM<sub>10</sub>, and PM<sub>10-2.5</sub> in provincial
 capitals in the North China Plain.

## 49 Tables

| Years | Sampling date                                                                                         | The effective number of samples |
|-------|-------------------------------------------------------------------------------------------------------|---------------------------------|
| 2011  | April 7–20<br>July 1–31<br>October 28–December 2<br>December 11–November 23                           | 188                             |
| 2012  | February 25–26<br>April 21–May 6<br>July 22–August 2<br>October 17–November 1<br>December 8–25        | 140                             |
| 2013  | February 25–March 6<br>April 1–May 1<br>June 5–July 30<br>September 20–October 13<br>December 2–18    | 184                             |
| 2014  | April 1–May 5<br>June 18–July 20<br>October 7–24<br>December 30–31                                    | 180                             |
| 2015  | January 1–15<br>April 1–20<br>July 1–20<br>October 9–24                                               | 248                             |
| 2016  | January 6–22<br>April 8–30<br>July 9–31<br>October 1–20<br>December 29–31                             | 252                             |
| 2017  | January 1–20<br>April 18–May 4<br>July 1–26<br>October 14–December 31                                 | 480                             |
| 2018  | January 1–31<br>April 1–30<br>July 1–31<br>October 9–December 31                                      | 600                             |
| 2019  | January 1–31<br>April 1–30<br>July 1–31<br>September 2–October 31<br>November 12–30<br>December 21–31 | 592                             |

|                 | January 1–20                                                 |                                 |
|-----------------|--------------------------------------------------------------|---------------------------------|
| 2020            | June 5–July 31                                               | 332                             |
|                 | October 6–November 13                                        |                                 |
|                 | December 15–31                                               |                                 |
|                 | January 1–31                                                 |                                 |
| 2021            | March 16–April 30                                            | 540                             |
|                 | July 1–August 8                                              |                                 |
|                 | October 17–December 31                                       |                                 |
|                 | January 1–4                                                  |                                 |
| 2022            | April 1–May 3                                                | 492                             |
|                 | July 1–August 11                                             |                                 |
|                 | September 5–October 11                                       |                                 |
|                 | December 10–31                                               |                                 |
| Total           |                                                              | 4228                            |
|                 |                                                              |                                 |
|                 |                                                              |                                 |
|                 |                                                              |                                 |
|                 |                                                              |                                 |
|                 |                                                              |                                 |
|                 |                                                              |                                 |
|                 |                                                              |                                 |
| Table S2.       | Control measures for dust implemented by Henan Pr            | rovince and Zhengzhou governmen |
| Release<br>time | Policies                                                     | Regulatory focus                |
| 2013.9          | Regulations on Reducing Pollutant Emissions in H<br>Province | Ienan Road, Construction        |
|                 | Townswary Regulations on Dust Control Manage                 | and and                         |

| 2014.8 | Temporary Regulations on Dust Control Management<br>at Construction Sites in Henan Province                                          | Construction              |
|--------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| 2016.7 | Implementation Plan for Controlling Dust Pollution in Henan Province                                                                 | Road, Construction        |
| 2018.2 | Regulations on the Prevention and Control of Atmospheric Pollution in Henan Province                                                 | Road, Construction, Piles |
| 2019.4 | Special Action Plan for Fine Management of Dust<br>Pollution Prevention and Control at Construction Sites<br>in Zhengzhou City, 2019 | Construction              |
| 2019.8 | Enhanced Action Plan for Intensive Dust Control at<br>Construction Sites in 2019                                                     | Construction              |
| 2021.1 | Special Governance Plan for Key Project Dust Pollution in Zhengzhou                                                                  | Road, Construction, Piles |

| Dust source       | City         | Ca/Si | Reference               |
|-------------------|--------------|-------|-------------------------|
| Road dust         | Xi'an        | 2.04  | http://www.klacp.ac.cn/ |
|                   | Yinchuan     | 2.48  | wgPMzypfypk/ycy/2017    |
|                   | Lanzhou      | 1.67  | 06/t20170610_375562.h   |
|                   | Beijing      | 1.25  | ml                      |
|                   | Tianjin      | 1.03  |                         |
|                   | Baoding      | 1.16  |                         |
|                   | Shijiazhuang | 1.98  |                         |
|                   | Handan       | 1.83  |                         |
|                   | Shenyang     | 1.81  |                         |
|                   | Changsha     | 1.92  |                         |
|                   | Chongqing    | 1.38  |                         |
|                   | Chengdu      | 1.17  |                         |
|                   | Kunming      | 1.94  |                         |
|                   | Taiyuan      | 1.55  |                         |
|                   | Nanjing      | 1.28  |                         |
| Construction dust | Xi'an        | 1.69  | http://www.klacp.ac.cn/ |
|                   | Yinchuan     | 1.84  | wgPMzypfypk/ycy/201     |
|                   | Lanzhou      | 2.33  | 06/t20170610_375562.h   |
|                   | Beijing      | 2.65  | ml                      |
|                   | Tianjin      | 1.46  |                         |
|                   | Baoding      | 1.58  |                         |
|                   | Shijiazhuang | 1.38  |                         |
|                   | Handan       | 1.86  |                         |
|                   | Shenyang     | 1.92  |                         |
|                   | Changsha     | 2.30  |                         |
|                   | Chongqing    | 2.52  |                         |
|                   | Chengdu      | 2.15  |                         |
|                   | Kunming      | 1.60  |                         |
|                   | Taiyuan      | 1.92  |                         |
|                   | Nanjing      | 2.26  |                         |
| Piles dust        | Xi'an        | 0.72  | (Yang, 2016)            |
|                   | Tianjin      | 0.57  | (Zhang et al., 2018)    |
|                   | Taiyuan      | 0.61  | (Bi et al., 2007)       |
|                   | Jinan        | 1.01  | (Bi et al., 2007)       |
|                   | /            | 0.65  | http://www.nkspap.com   |
|                   |              |       | 9091/Index.aspx         |
| Soil dust         | Nanchang     | 0.37  | (Xu et al., 2019)       |
|                   | Xi'an        | 0.27  | (Yang, 2016)            |
|                   | Jincheng     | 0.13  | (Wang et al., 2016)     |
|                   | Wuhan        | 0.52  | (Gong and Luo, 2018)    |
|                   | /            | 0.53  | http://www.nkspap.com   |
|                   |              |       | 9091/Index.aspx         |

Table S3. The ratios of Ca/Si in the source spectrum of different dust sources in China

| Years      | $NO_3^-$ | $SO_4^{2-}$ | $TNH_X$ | $Na^+$ | Cl   | $\mathrm{K}^+$ | Ca <sup>2+</sup> | $Mg^{2+}$ | RH (%) | T (°C) |
|------------|----------|-------------|---------|--------|------|----------------|------------------|-----------|--------|--------|
| 2012VS2011 | 4.0      | -4.6        | 1.3     | 0.02   | 2.0  | 0.9            | -0.2             | 0.04      | -9.6   | -5.7   |
| 2013VS2012 | 2.6      | 13.0        | 2.1     | 0.2    | 0.4  | 0.3            | 1.4              | 0.1       | -2.6   | 2.1    |
| 2014VS2013 | -7.3     | -14.6       | -6.9    | -0.4   | -3.4 | -1.6           | -1.1             | -0.2      | 6.6    | 2.0    |
| 2015VS2014 | 5.2      | -1.8        | 5.5     | 0.1    | 2.1  | 0.4            | -0.6             | 0.6       | -5.6   | -4.2   |
| 2016VS2015 | -0.2     | -4.5        | -3.7    | -0.03  | -0.1 | -0.4           | 0.5              | -0.7      | 8.0    | 0.3    |
| 2017VS2016 | -2.9     | -5.3        | -3.6    | -0.2   | -0.3 | -0.2           | -0.1             | 0.1       | -6.0   | -4.9   |
| 2018VS2017 | -0.8     | -2.4        | 1.3     | -0.1   | -0.8 | -0.2           | -0.1             | -0.1      | 1.4    | -2.8   |
| 2019VS2018 | -3.0     | -0.8        | -2.2    | -0.04  | -0.7 | -0.03          | -0.1             | -0.01     | -0.1   | 7.3    |
| 2020VS2019 | 4.9      | -0.3        | -0.9    | 0.1    | 0.1  | -0.2           | 0.7              | 0.02      | -6.6   | -2.1   |
| 2021VS2020 | -3.6     | -2.3        | 0.2     | -0.01  | 0.03 | 0.01           | 0.1              | 0.04      | -2.8   | -1.5   |
| 2022VS2021 | -5.1     | 1.9         | -1.4    | 0.03   | -0.3 | 0.01           | 0.5              | 0.04      | 4.7    | 5.8    |

Table S4. The difference between component concentrations ( $\mu g/m^3$ ) and meteorological parameters between adjacent years.

## 63 **References**

- Bi, X., Feng, Y., Wu, J., Wang, Y., and Zhu, T.: Source apportionment of PM<sub>10</sub> in six cities of northern
  China, Atmospheric Environment., 41, 903–912, <u>https://doi.org/10.1016/j.atmosenv.2006.09.033</u>,
  2007.
- Gong, P. and Luo, Y.: Study on the characteristics of source profiles in Wuhan, Journal of Nanjing
   University of Information Science & Technology., 10, 579–589,
   <u>https://doi.org/10.13878/j.cnki.jnuist.2018.05.008</u>, 2018.
- Wang, Y., Peng, L., Li, L., Wang, Y., Zhang, T., Liu, H., and Mu, L.: Chemical compositions and
   sources apportionment of re-suspended dust in Jincheng, Environmental Science., 37, 82–87,
   https://doi.org/10.13227/j.hjkx.2016.01.012, 2016.
- Xu, Y., Gong, X., and Zhang, W.: Construction and characteristic analysis of PM<sub>2.5</sub> source profiles of
   typical emissions in Nanchang City, Chemical Engineer., 33, 41–43,
   https://doi.org/10.16247/j.cnki.23-1171/tq.20190841, 2019.
- Yang, Y.: The Chemical Compositions and Source Apportionment of Particulate matter of Open
  Sources in Xi'an, 42–43, <u>https://doi.org/10.27393/d.cnki.gxazu.2016.000073</u>, 2016.
- Zhang, J., Wei, E., Wu, L., Fang, X., Li, F., Yang, Z., Wang, T., and Mao, H.: Elemental composition
  and health risk assessment of PM<sub>10</sub> and PM<sub>2.5</sub> in the roadside microenvironment in Tianjin, China,
  Aerosol and Air Quality Research., 18, 1817–1827, <u>https://doi.org/10.4209/aaqr.2017.10.0383</u>,
  2017.
- 82