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Abstract. Snow avalanches are one of the most impactful natural hazards in mountainous areas. Thus, the assessment and
forecasting of avalanche danger are of great importance for the protection of life and property. A changing climate may lead to
changes in avalanche danger although the manifestation is unclear. Since climate change is regionally different, an assessment
of potential avalanche-danger changes should be conducted on a regional basis. Here the focus is on avalanche danger in
the Troms region in northern Norway, i.e., a region in the Arctic. To estimate the linkage between avalanche danger and
weather conditions in this region, we utilise expert assessments of regional avalanche-danger level (ADL), the 3 km Norwegian
reanalysis (NORA3), and snow-cover information from the snow model seNorge. Random forest (RF) models are trained and
optimised for a binary case and for a 4-level case. The binary-case RF model exhibits a much higher overall accuracy (76
%) than the 4-level case RF model (57 %), which is due to the latter model often misclassifying ADL 1 as ADL 2 and ADL
4 as ADL 3. Still, the misclassification difference is seldom larger than one ADL and the distribution of the frequencies of
the different ADLs is reproduced. The most important predictive features are related to new snow and wind accumulated and
averaged over several days. The binary-case RF model is used to hindcast avalanche-day frequency (ADF) from 1970 to 2024.
In this period, the spring season (Mar-May) shows a small increase in ADF, whereas the winter season (Dec-Feb) exhibits
negative trends. Moreover, the ADF is found to be correlated with the Arctic Oscillation (AO) index especially in winter,
although this correlation appears to have deteriorated in recent years. Given recent advances in skill of representing the AO in
decadal prediction systems this is an encouraging result for the predictability of future avalanche danger tendencies in northern

Norway.

1 Introduction

Environmental and climate indicators associated with, e.g., natural hazards and human activities, both on land (e.g., the danger
of avalanches and landslides) and at sea (e.g., changes in nutrient concentration or stratification essential for fishery), represent
important information when it comes to society planning and policy-making, especially under changing conditions. Prediction
of such indicators, for instance avalanches that are a large risk to life and property, is of great importance, especially in densely
populated areas or tourism “hot-spots”. Other environmental indicators, such as nutrient concentration may be related more to

the conditions for industry, farming, and fishery and are thus strongly important for the planning of these industries and their
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infrastructure (e.g., agricultural and marine-spatial planning). However, because of the great complexity of the environment
in which these indicators emerge, they are often not directly modelled, implying a paucity of information and hampering of
planning for the present and especially the future. Nonetheless, some information may be inferred indirectly, i.e., from other
environmental properties that are directly modelled. This may be done using statistical methods that quantitatively relate the
indicator in question to the modelled properties. One type of such properties for which a rich pedigree of direct modelling
as well as observational monitoring exist are meteorological data. Thus, these data and their changes are often used to infer
knowledge about—and changes in—indicators that are not directly modelled. An important benefit of this is that a diverse set
of modelled future scenarios exists for meteorological data. This offers the opportunity to investigate potential future changes
of environmental parameters based on climate scenarios.

One environmental indicator that is associated with natural hazards and that is related to meteorological parameters is snow
avalanche danger or hazard (e.g., Statham et al., 2018). The terms danger and hazard are synonyms in this context (e.g.,
Statham, 2008; Engeset et al., 2018b), but according to Miiller et al. (2016a), the former is more often used in Europe, while
the latter is more typical in North America. In the following, avalanche danger is used.

Avalanche danger aggregates information about the likelihood of occurrence as well as the size of avalanches to a single
integer—the avalanche danger level (ADL; e.g., Miiller et al., 2016b). A standardised 5-level ADL scale was agreed upon by
the European Avalanche Warning Services (EAWS) in 1993 and subsequently (in 1994) adopted in North America as well
(e.g., Statham et al., 2010; Schweizer et al., 2020). However, the North American scale was later revised with a focus on risk
communication (Statham et al., 2010). The ADL is typically forecast regionally by a team of experts based on (1) snowpack
stability, (2) the frequency of snowpack stability, and (3) avalanche size (e.g., Miiller et al., 2023). As Pérez-Guillén et al. (2022)
noted, ADL forecasting still follows the experience-based approach already described by LaChapelle (1980). Nonetheless, in
recent years advances have been made in incorporating physical (snowpack) modelling in the forecast (Morin et al., 2020).
Moreover, in Switzerland an approach relying exclusively on machine-learning models (i.e., without expert input as, e.g., in
Schweizer and Fohn, 1996) to predict regional ADL with promising accuracy rivalling that of human experts (see, e.g., Techel
and Schweizer, 2017) has been developed for dry avalanches (Pérez-Guillén et al., 2022) and was implemented operationally
for the first time in the winter of 2021/22 (Pérez-Guillén et al., 2024b). Employing machine learning to robustly predict ADL
offers the possibility of (1) hindcasting and potentially connecting ADL to known climate patterns, (2) providing quicker
and more fine-resolution predictions of ADL based on numerical weather forecasts (e.g., van Herwijnen et al., 2023), and (3)
obtaining prediction of ADL based on numerically modelled future climate-change scenarios. The latter is highly important for
future planning for stakeholders (e.g., ski-tourism industry or infrastructure departments) as a changing climate likely impacts
avalanche occurrence and danger (e.g., Castebrunet et al., 2014; Laute and Beylich, 2018; Dyrrdal et al., 2020; Mayer et al.,
2024).

In this study we follow an approach similar to Pérez-Guillén et al. (2022) to train machine-learning models to predict ADL
in northern Norway. In northern Norway snow avalanches are among the most important natural hazards, causing road closures
and access disruptions to towns, and casualties associated with, e.g., skiing, riding snowmobile, driving cars, or even being

in houses. In an analysis of the Norwegian mass movement database (https://skredregistrering.no/) and records from Varsom
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(https://varsom.no/), Dyrrdal et al. (2020) found that between 1730 and January 2020 in Troms, 307 casualties were caused by
snow avalanches.

While deterministic prediction of avalanche release will likely remain out of reach for the time being (Schweizer et al.,
2003; Dkengne Sielenou et al., 2021), the possibility of using weather data to forecast avalanches was recognised decades ago
(e.g., Atwater, 1954; LaChapelle, 1966). In the years since, many studies have focused on statistical prediction of avalanche
occurrence from meteorological data (e.g., Judson and Erickson, 1973; Bakkehgi, 1987; Davis et al., 1999; Kronholm et al.,
2006; Jomelli et al., 2007; Jaedicke et al., 2008; Hendrikx et al., 2005, 2014; Gauthier et al., 2017; Mayer et al., 2023; Viallon-
Galinier et al., 2023; Hao et al., 2023). These studies are based on observational avalanche records and typically focus on small
regions with strong observational coverage. As observational records for larger regions are likely incomplete (e.g., Schweizer
et al., 2020), especially in the sparsely populated regions such as northern Norway (Jaedicke et al., 2008), direct forecasting of
the probability of avalanche occurrence for larger areas appears so far infeasible. Instead, as indicated above, the forecasting
of ADL is more promising. While there have long been attempts to forecast ADL with the help of statistical models (mostly
nearest-neighbour methods; Schweizer and Fohn, 1996; Brabec and Meister, 2001), this research has gained more momentum
only in recent years (Dekanova et al., 2018; Joshi et al., 2018, 2020; Fromm and Schonberger, 2022; Pérez-Guillén et al., 2022;
Blagovechshenskiy et al., 2023; Sharma et al., 2023; Pérez-Guillén et al., 2024b; Fromm and Schonberger, 2024; Maissen
et al., 2024). However, e.g., the nearest-neighbour model of Brabec and Meister (2001) based on data from 60 manual weather
stations in Switzerland yielded only a 52 % prediction accuracy. In contrast, the expert system of Schweizer and Fohn (1996),
tested in the Davos region in Switzerland, achieved up to 73 % accuracy, although only in the case where an expert was
allowed to interact with the forecast. Schirmer et al. (2009) compared several different machine-learning methods to forecast
avalanche danger. Notably, they also included snow-stratigraphy data from simulations with the physically-based snow-cover
model SNOWPACK (Bartelt and Lehning, 2002; Lehning et al., 2002a, b). They found the best method (73 % cross-validated
accuracy) to be a nearest-neighbour classifier, which, however, included the ADL from the previous day as input. While
this may improve the accuracy with respect to daily ADL it likely deteriorates the performance for days when the ADL
changes compared to the previous day (e.g., Pérez-Guillén et al., 2022). Recently, focussing on regional dry-snow avalanche
conditions in the Swiss Alps, Pérez-Guillén et al. (2022) achieved the best results of predicting ADL based on meteorological
and SNOWPACK-simulated snow stratigraphy data with a random forest (RF) classifier (about 75 %). Their approach is purely
data-driven and does not require expert inputs. The Pérez-Guillén et al. (2022) RF model has since been used in a test setting
for operational ADL forecasting in Switzerland with an agreement rate with human experts of about 70 % (Pérez-Guillén et al.,
2024b). It may be noted that the RF model has become a generally popular method in avalanche forecasting, however it appears
to be mostly used for forecasting avalanche activity (e.g., Mohle et al., 2014; Dkengne Sielenou et al., 2021; Mayer et al.,
2023, 2024; Viallon-Galinier et al., 2023) and not ADL. Contrarily, there has been a number of studies using an artificial neural
network (ANN) to predict ADL in different mountain regions. However they report considerably different accuracies. For
example, Dekanova et al. (2018), building on earlier work by Stephens et al. (1994), used an ANN to predict avalanche danger
in the Western Tatras (Slovakia) based on weather station data, obtaining accuracies of 59 to 66 %. A somewhat higher accuracy

of about 71 % was obtained by Joshi et al. (2020), who used an ANN-model chain first to predict snowpack information and
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subsequently ADLs. Conversely, Blagovechshenskiy et al. (2023) reported much higher accuracies of 77 to 91 % for an ANN
trained for the Ile Alatau Ridge in Kazakhstan. It is generally difficult to compare prediction accuracies across the different
studies as they concern contrasting topographies and climates as well as different kinds of warning regions (e.g., in Norway the
average warning-region size is about 9000 km?, as shown in Table S1 and Fig. S1 in the online supplementary material, while in
Switzerland it is 200 km?; Pérez-Guillén et al., 2024b). Moreover, the data quality and the chosen predictive features also differ
between studies. Thus, one reason for the discrepancies may be that, e.g., Blagovechshenskiy et al. (2023) used information
about the snow stratigraphy as predictive features while Dekanovd et al. (2018)’s information about snow was confined to
“actual snow depth” and “new snow depth”, and Joshi et al. (2020) used snowpack information predicted by an ANN based
on meteorological data. Furthermore, there are differences in the generation of the ADL data set, as Blagovechshenskiy et al.
(2023) had to reconstruct most of the ADLs based on actual avalanche observations while Dekanova et al. (2018) and Joshi
et al. (2020) were able to use a historical record of ADL forecasts. Sharma et al. (2023) who trained and optimised an ANN
using the same data as Pérez-Guillén et al. (2022) reported a best-case accuracy of about 77 % with respect to their validation
data. However, unfortunately no information about the split into training and validation data is provided. If the validation
data are chosen randomly, temporal correlations may cause severe overestimation of model accuracy. A further reason for the
comparatively high accuracy of Sharma et al. (2023) is likely that their data were confined to dry snow avalanches. These points
may explain the discrepancy in model performance with Fromm and Schonberger (2022) who obtained an accuracy of only 48
% for an ANN trained on meteorological and SNOWPACK-simulation data (i.e., similar to Sharma et al., 2023) for a ski-resort
in the Austrian and Swiss Alps. As test data they used one whole winter which was excluded from the training data and they
considered any type of avalanche. They also noted that in contrast to Pérez-Guillén et al. (2022) and Sharma et al. (2023), they
did not focus on regional ADL but instead on a much smaller region, i.e., a single ski resort. The resort is strongly influenced
by artificial and intentional avalanche triggering, potentially further hampering direct comparability to the other studies.

So far, the only study investigating statistically the relation between avalanches and weather data in northern Norway is
Jaedicke et al. (2008), although this aspect was not the main focus of that study and instead of ADL they predicted avalanche
activity. Moreover, Dyrrdal et al. (2020) investigated climate indices specifically related to avalanches in the Troms region
in northern Norway, but they did not statistically relate these indices to avalanche danger. Recently, van Herwijnen et al.
(2024) investigated the transferability of statistical models trained to predict Alpine snowpack stability to the Arctic snowpack,
in particular the snowpack on Kvalgya in the Troms county. Their findings indicate that, while there is some potential for
transferability, the unique characteristics of the Arctic snowpack deteriorate the accuracies of Alpine-trained models. This
suggests that statistical models that predict avalanche-related parameters such as snowpack stability and avalanche danger
should be trained on regional data representative of the specific regional conditions. A reason for the historically marginal
focus on statistical avalanche prediction in northern Norway may be due to the sparse avalanche observations in this region
(Jaedicke et al., 2008), implying that avalanche prediction models based on observational avalanche records are likely biased.
We note that the analysis in Jaedicke et al. (2008) may suffer from this problem. To circumvent this shortcoming, we here
instead rely on the expert ADL assessments published by the Norwegian Water Resources and Energy Directorate (NVE).

Our aim is to train and optimise random forest models to (1) predict avalanche danger and make progress towards operational
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Figure 1. Study region. The black square in the inset indicates the location of the study region in Norway. The topography information is

taken from NORA3.

data-driven avalanche danger forecasting, and (2) predict avalanche danger on an aggregated scale (“binary case”) to produce
hindcasts and future projections (in upcoming work) of the number of avalanche days in northern Norway.

The study is structured as follows: Section 2 first explains the expert ADL assessments (2.1), the NORA3 reanalysis (2.2),
and the seNorge model (2.3), and finally gives an overview of the avalanche-danger prediction features calculated from the
NORA3 data and the seNorge output (2.4). Section 3 describes the RF model (3.1) and the technique we use to balance the
training data (3.2). In section 4 the RF optimisation and feature selection procedure is presented, and in section 5 the 4-level
(5.1) and binary (5.2) RF models are evaluated. The binary-case RF model is used in section 6 to perform a hindcast of the
number of avalanche days, which is then connected to known climate patterns. Section 7 offers a summary and concluding

remarks.

2 Data
2.1 Avalanche danger

In northern Norway avalanche observations are sparse and many avalanches remain undetected. Thus, using avalanche ob-
servation catalogues as training data for statistical models to predict avalanches likely introduces biases leading to incorrect

or at least uncertain prediction. To avoid this potential bias, we here instead employ the daily avalanche danger level (ADL)
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assessment as described in section 1. In Norway the ADL assessment is produced under the scope of the Norwegian Avalanche
Warning Service (NAWS) which was established in January 2013 (Engeset, 2013; Miiller et al., 2013; Engeset et al., 2018b).
The NAWS is a member of the EAWS and the ADL assessment follows the EAWS standards (Engeset, 2013). The ADLs
are generated and published by a team of experts from the Norwegian Water Resources and Energy Directorate (NVE), the
Norwegian Meteorological Institute (MET), and the Norwegian Public Roads Administration (NPRA) at https://varsom.no/
(see Johnsen, 2013; Engeset et al., 2018a) aggregating knowledge from snow and weather observations as well as numerical
weather-prediction modelling output. Due to the sparse network of automatic weather stations in the Norwegian mountain ar-
eas, an important part of the information for the forecasters comes from the qualitative assessments of field observers (Kosberg
et al., 2013). For mainland Norway (i.e., excluding Svalbard), avalanche warnings are published daily from 1Ist of December
to 31st of May (Varsom, 2025b) for 23 warning regions with an average size of about 9000 km?. However, note that in spe-
cial cases avalanche warnings are sometimes published also in November and June. For 19 further warning regions (average
size about 11000 km?) avalanche warnings are published on days with ADL 4 or 5. (See Table S1 and Fig. S1 in the online
supplementary material for more detail on the Norwegian warning regions). The avalanche warnings are published before
16:00 (Varsom, 2025a) for three days at a time, with a nowcast for the day of production and a forecast for the next two days.
However, on days with ADL 4 or 5, warnings are typically published already before 12:00 (Engeset, 2013). We here use the
nowecast data available via NVE’s Regobs platform (https://www.regobs.no/, Engeset et al., 2018a), which is conveniently ac-
cessible with the Python library Regobslib (https://pypi.org/project/regobslib/). Even though the NAWS has published ADLs
since 2013, we here use ADL data from the avalanche seasons of only 2016/17 to 2023/24, since the warning-region setup was
changed in 2016 (K. Miiller, personal communication).

In describing the avalanche danger by a single value per region, the ADL constitutes a large reduction in complexity. In fact,
the avalanche forecaster considers several different “avalanche problems” (APs). In accordance with the the EAWS’s standards
the NAWS uses the following APs (EAWS, 2025): new snow (loose and slab), wind drifted snow (slab), persistent weak layer
(slab), wet snow (loose and slab), and gliding snow. Based on the estimated likelihood (based, in turn, on distribution and
sensitivity) and size of avalanches the forecaster determines a danger level per AP (Miiller et al., 2023). The final ADL in a
given region is taken as the highest danger level among the different APs. Hence, the ADL is a result of different APs that are
related to different meteorological conditions, complicating the relation between ADL and meteorological data, and thus the
modelling of this relation. However, considering only one AP reduces the amount of available data, making a robust training
of statistical models more difficult. Also, at least some of the APs may be related to similar meteorological conditions and we
thus believe it is still feasible to focus on the general ADL. In future work we will attempt a more detailed decomposition into
the different APs.

Here, the ADLs from the northern Norwegian A-type regions of Nord-Troms, Lyngen, Tromsg, Sgr-Troms and Indre Troms
are considered (average size about 6800 km?). The regions are depicted in Fig. 1. From Fig. 2a it is clear that there is consider-
able variation in the frequency of the different ADLs with 2 being the most frequent and 4 the least frequent, while level 5 was
never forecast in northern Norway. Hence, the ADL scale in this study is constrained to four levels. The figure also shows that

the frequency of the ADLs is similar across the different regions. Conversely, the ADL frequency varies across the different


https://varsom.no/
https://www.regobs.no/
https://pypi.org/project/regobslib/

180

185

190

195

(a) ADL per region (b) ADL per year (c) ADL for training and test data

800 ~ H = Indre Troms | ]| = 2017 ] T training | &
o Tromsg = 2018 [ test '
5 600 SgrTroms i - = 2019 L 0.4
g Nord-Troms & = 2020 -
3 = Lyngen - 2021 r0.3 o
S 4001 = i * 2022 g
k3 v t0.2 2
5 = . x 2023
_g 200 1 = - = 2024 0.1
2 ; X
0 = = = " 310 917 563 30 o 00
total[1017 3963 2221 164 0 707 3046 1658 134 0
1 2 3 4 5 2 3 4 5 1 2 3 4 5
ADL ADL ADL

Figure 2. Summary of the avalanche danger level (ADL) data in northern Norway from winter 2016/17 to 2023/24. In a) the number of days
per ADL per region is shown, b) shows the number of ADL-days per year (x markers indicate the test data), and c) depicts the fraction of
winter days on which a given ADL was determined separated into (red) test (winters ending in 2021, 2023) and (black) training (remaining

years) data.

recorded years (Fig. 2b), especially between levels 1 and 2. For example, in 2020 there were almost no days with level 1 but
many more days with level 2 than in the other years. In contrast, in 2018 and 2021 there were much fewer days with level 2
and many more with level 1 compared to the other years. The distribution of ADLs per year is important information when it
comes to the splitting of training and test data for the statistical models. Figure 2c shows the distribution of ADLs for the test
data (winters ending in 2021 and 2023) and the training data (remaining years) used in this study.

As Pérez-Guillén et al. (2022) discussed, one source of noise in the ADL data is forecast error, i.e., incorrect labels. For
example Techel and Schweizer (2017) found that the regional forecasts match local nowcasts in only 71 % of the time. Pérez-
Guillén et al. (2022) thus attempted to generate a refined subset of their ADL data by including additional information such
as observational data and the outcomes of several verification studies. For northern Norway, no such verification studies exist,
although there is one study that compared remote-sensing-derived avalanche activity with forecast ADLs, which indicated
that ADL forecasts are conservative (Eckerstorfer et al., 2017). Attempts are currently under way to increase remote-sensing
coverage and detection algorithm quality, but the probability of detection has been found to depend on the type of avalanche
and is overall only about 57 % (Miiller et al., 2021). Furthermore, while there are in situ observational avalanche records
in northern Norway these are very sparse due to the comparatively large area and the low population density. Even using a
combination of in situ and remote-sensing observations to “tidy up” our ADL data would strongly reduce our available data so
as to make robust training of a statistical model infeasible. With these reservations in mind we are here bound to use the raw
ADL forecast data.

In this study, we consider two types of avalanche-danger scales. First, we employ the full ADL scale (henceforth “4-level
case”). Second, we generate a binary scale (henceforth “binary case”) where the ADLs 1 and 2 are combined to “non-avalanche
day” (non-AvD) and the ADLs 3 and 4 are combined to “avalanche day” (AvD). We call the number of avalanche days per

winter season the avalanche-day frequency (ADF). Due to its higher accuracy compared to the 4-level case (see section 5), the
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binary-case model will give a more robust, albeit rougher, estimate of the general tendency of avalanche danger. Furthermore,
the ADF appears related to avalanche activity, since, e.g., Pérez-Guillén et al. (2024a) in a case study in the Swiss Alps using
an automated seismic avalanche detection system found that on days with no avalanche, the mean ADL was 1.9 4 0.8, while on
days with at least one avalanche, it was 3.2 &= 0.5, hence providing a clearly binary appearance. Similarly, in an investigation of
Swiss backcountry GPX tracks as a proxy for non-avalanche events, Techel et al. (2024) found that for non-events the median
probability of ADL > 3 was only 0.14 while for events it was 0.58. Hence, on a day with ADL 3 or 4, avalanche events are
likely, while they are unlikely on days with ADL 1 or 2, justifying our definition of AvD and non-AvD. We use the binary-case

model in a hindcast of the ADF to find potential linkages to known climate patterns/modes (see section 6).
2.2 NORA3

The meteorological data used in this study are taken from the 3 km Norwegian Reanalysis (NORA3). NORA3 is an atmospheric
hindcast for the North Sea, the Norwegian Sea, and the Barents Sea as well as the Scandinavian Peninsula, including further
parts of northern and western Europe and north-west Russia (Haakenstad et al., 2021). More precisely, it may be viewed
as falling somewhere between a hindcast and a full reanalysis as it includes data assimilation only for surface parameters
(Haakenstad et al., 2021; Haakenstad and Breivik, 2022). NORA3 provides a regional downscaling to a 3 km horizontal
resolution of the latest version of the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis, ERAS,
with a 31 km horizontal resolution (Hersbach et al., 2020). To produce NORA3, the non-hydrostatic convection-permitting
numerical weather model HARMONIE-AROME (Bengtsson et al., 2017) was run on a 3 km horizontal resolution and with 65
vertical layers, using ERAS fields as initial and boundary conditions. At the time of writing, data availability covers the period
from January 1970 to September 2024 and is constantly updated with a few months lag.

Pertinent to the present study, NORA3 has been found to significantly improve the representation of 2 m temperature, 10
m wind, and daily precipitation, particularly regarding extremes and in coastal and mountainous areas compared to its host
reanalysis (ERAS) and its predecessor (NORA10; Reistad et al., 2011). These improvements appear mostly due to the higher
resolution as well as the resolved deep convection (Haakenstad et al., 2021; Haakenstad and Breivik, 2022). Still, Haakenstad
and Breivik (2022) reported at least two biases that may be important for the present study, namely a significant underestimation
of spring temperatures as well as too long-lasting snow cover in regions with few observations.

Previous studies that attempted to relate weather data to avalanches note that meteorological parameters above a certain
elevation are most important regarding avalanche release (e.g. Kronholm et al., 2006; Laute and Beylich, 2018; Dyrrdal et al.,
2020). We have conducted our analysis using several different elevation thresholds, selecting grid cells between 400 and 900
m a.s.l., 500 and 1000 m, 600 and 1100 m, as well as 300 and 1300 m. However, the choice of elevation threshold had little
impact on the final results. The results presented here are based on the elevation interval 400 to 900 m and the number of grid

cells selected per region is shown in Table 1.
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Table 1. Number of selected grid cells between elevation levels 400 and 900 m a.s.l. for the NORA3 grid cell selection.

Region Number of cells
Indre Troms 461
Lyngen 136
Nord-Troms 594
Sgr-Troms 146
Tromsg 41

2.3 seNorge

The NORA3 reanalysis lacks data on the snow conditions at the surface. Thus, in order to obtain information about, e.g., the
snow depth and density and snow water equivalent (SWE), we employ the snow model seNorge (Saloranta, 2012) version 1.1.1
(Saloranta, 2014, 2016). Due to a lack of both in situ and satellite observational data on snow, seNorge is the main tool used to
provide information on snow for the avalanche warning system in Norway (Saloranta, 2012; Morin et al., 2020). Daily gridded
(1 km resolution) snow maps are generated with seNorge and published on https://www.senorge.no/.

The tool seNorge is a simple process-based single-layer snowpack model demanding little computational resources, thus
being convenient for application to large high-resolution grids (Saloranta, 2016; Morin et al., 2020). The model consists of
two sub-modules for (1) snowpack water balance and (2) snow compaction and density, calculating the snow water equivalent,
the melt/refreeze rate, and run-off as well as snow depth and density, respectively. As input data seNorge only requires daily
temperature and precipitation.

To keep our snow and weather data consistent, we rerun the seNorge model using NORA3 daily 2 m air temperature and
total precipitation amount as input. To obtain reasonable initialisation data for seNorge, the model was first run for the years
1970 through 1975 with the initial values being zero everywhere. The final simulation outputs from 1975 were then used as

model initialisation data for 1970, and the model was run from 1970 through 2024 to produce the snow-cover data.
2.4 Avalanche-danger prediction features

Based on the NORA3 weather data several parameters are constructed to be used as potential predictors of ADL, partly follow-
ing earlier studies (e.g., Hendrikx et al., 2014; Gauthier et al., 2017; Pérez-Guillén et al., 2022). An overview of these potential
predictors is presented in Table 2. They include the accumulated new liquid precipitation r1 on the day of the publication of
the ADL nowcast (see section 2.1), as well as the new liquid precipitation accumulated during one to six days before and in-
cluding the day of the nowcast (12, ..., r7). Equivalently, solid precipitation is represented by the features s, ..., s7. The hourly
precipitation-amount values from NORA3 were classified as liquid or solid based on the hourly 2 m air temperature being

larger or smaller than 0 °C, respectively. The daily total precipitation sum, including both rain and snow, is represented by Ptot.
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The parameters rh, th2, ..., th7 correspond to the daily and 2-day to 7-day averages of the relative humidity. The maximum and
minimum of 2 m air temperature (tmax, tmin) and 10 m wind speed (wmax) represent the daily maximum and minimum of
hourly values from NORA3, respectively. The diurnal cycles dtr, dtrl, dtr2, dtr3 represent the difference between the maximum
and minimum hourly 2 m air temperatures on the day of and up to three days before the ADL nowcast. The thermal amplitudes
dtrdl, dtrd2, dtrd3 represent the largest thermal range of hourly 2 m air temperatures between the day of and one to three days
before the nowcast. The ftc is a boolean flag indicating if a freeze-thaw cycle was present on the day of the nowcast, i.e., if the
daily tmax was larger than 0 °C and the daily tmin was smaller than 0 °C. The positive-degree days (pdd) are calculated as
the seven-day sum (including the day of the nowcast) of the daily mean 2 m air temperature (t1) for days with t1 > 0 °C. The
drift index (wdrift) combines precipitation and wind (see Table 2) to represent the effect of snow drift (Hendrikx et al., 2005).
The cubed drift index (wdrift3) is also included as this is more in line with the current understanding of snow transport by
wind (Hendrikx et al., 2014). Further parameters include the net short-wave and long-wave radiation at surface (nsw and nlw,
respectively) averaged over one to seven days. As described in section 2.3, we also use parameters generated with the seNorge
snow model. These are the snow water equivalent (SWE), snow depth (SDP), snow density (SD), and melt/refreeze rate (MR).
The parameters are included as daily and 2-day to up to 7-day means.

The predictive features are calculated for all days for which ADLSs are available, covering the period of winter 2016/17 to
2023/24. The avalanche period is considered as lasting from December to May, including these months, although in a few
cases, there are ADLs for days in late November and early June. The data are split into a training and a test dataset. To avoid
a potential overestimation of model skill due to intra-seasonal correlation, we use the two full avalanche seasons of 2020/21
and 2022/23 as test data and the remaining seasons as training data. The two test seasons are rather different in terms of ADL
frequencies (see Fig. 2), thus covering at least some interseasonal variation. When training the statistical models we average the
predictive features for each of the five avalanche regions separately (Fig. 1). However, we train one model for all five regions
combined because there is not enough data to robustly train a statistical model per region (especially for level 4 with only 164
cases for all regions combined; see Fig. 2a). We note that we have tested taking the 90th percentile of the grid cells per region

instead of the average, but this had no impact on our final results.

3 Methods

In the following we introduce the random forest (RF) model used to predict avalanche danger based on meteorological data

and then give a brief description of the over-sampling method used to balance the data.
3.1 Random forest

The random forest (RF; Breiman, 2001) model is a non-linear supervised classifier based on an aggregation of weaker classi-
fiers (the decision tree). The decision tree (DT; Breiman et al., 1984) establishes “splitting rules” for the continuous features

to predict the discrete target variable (i.e., the ADL). The splitting rules are here obtained by minimising the Gini index of
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Table 2. Potential predictors constructed from NORA3 meteorological data. The “nowcast day” refers to the day of publication of the

avalanche danger nowcast (see section 2.1 for details). The capitalised abbreviations indicate that the parameter in question was derived with

the seNorge model. See the text for more details on the parameter definition.

285 diversity (e.g., Breiman et al., 1984):

N

Feature name

Description

Ptot

rl, .., r7

sl, ..., s7

rh, rh2, ..., rh7

tl, ..., t7

tmin

tmax, tmax2, ..., 7
dtr

dtrl, dtr2, dtr3
dtrdl1, dtrd2, dtrd3
ftc

pdd

wl, ..., 7

wmax, wmax2, ..., 7

w_dir

wdrift

wdrift3

wdrift_2, 3
wdrift3_2, 3

nsw, nsw2, ..., nsw7

nlw, nlw2, ..., nlw7

SWE, SWE2, ..., SWE7
SDP, SDP2, ..., SDP7

SD, SD2, ..., SD7
MR, MR2, ..., MR7

Daily total accumulated new precipitation (mm)

Daily to 7-day accumulated new liquid precipitation (mm)
Daily to 7-day accumulated new solid precipitation (mm)
Daily to 7-day mean of relative humidity
Daily to 7-day mean temperature (K)

Daily minimum temperature (K)

Daily to 7-day maximum temperature (K)

Daily temperature range (K)

Diurnal cycle one to three days before nowcast day (K)
Thermal amplitude between one to three days before and nowcast day (K)
Daily freeze-thaw cycle (ftc = 1)
Positive-degree days (7-day sum of t1 for days with t1 > 0 °C)
Daily to 7-day mean wind speed (ms ™)

Daily to 7-day maximum wind speed (ms™?')

Daily wind direction

Drift index (w1 x s1) (ms™!

X mm)
Cubed drift index (w13 x s1) (ms™3 x mm)

As wdrift but mean wind and precipitation sum over two and three days
As wdrift3 but mean wind and precipitation sum over two and three days
Daily to 7-day mean of net short-wave radiation at surface (Wm™?)
Daily to 7-day mean of net long-wave radiation at surface (Wm™?)
Daily to 7-day mean of snow water equivalent (mm)

Daily to 7-day mean of snow depth (mm)

Daily to 7-day mean of snow density (kg/L)

Daily to 7-day mean of melt/refreeze rate (mm/d)

Gini =Y (pi (1 -py)),

i=1

6]
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where N is the number of classes in the data and p; is the probability of correctly classifying item i. Higher and lower Gini
indices correspond to greater and smaller misclassification, respectively. The user may determine both the number of splitting
rules setting the “depth” of the DT, and the minimum number of data samples that must remain after a split.

The RF grows multiple DTs, and the final outcome (i.e., the ADL based on a specific set of predictive feature values) is
obtained by the majority vote of the outcome of the individual DTs. Using a large number of DTs typically helps to prevent
overfitting. As another measure to prevent overfitting, the individual DTs are trained on bootstrapped subsets of the data.

The RF method offers the possibility to gauge the importance of the individual predictive features in the prediction of
the target variable. This is done by calculating the average impurity decrease computed across all DTs in the RF due to the
respective predictive feature.

Note that while an individual DT may be humanly understandable (given it is not too large), the RF typically consists of
hundreds of DTs, hereby becoming a “black box”. However, due to the large number of features (up to 109 features are consid-
ered as potential predictors here), a “black box” model is likely unavoidable when it comes to ADL prediction. Furthermore,
promising efforts have recently been undertaken employing explanation models to explain the role of the individual predictive
features in the ADL predictions of an RF model (Pérez-Guillén et al., 2024b).

In the context of the prediction of snow avalanches, the RF method has become quite popular. However, it seems to be mostly
used for the prediction of avalanche activity based on avalanche observations (e.g., Mohle et al., 2014; Dkengne Sielenou et al.,
2021; Mayer et al., 2023, 2024; Viallon-Galinier et al., 2023) and Pérez-Guillén et al. (2022) appear to be the first applying an
RF to ADL prediction.

Here we use the RF implementation in the Python library scikit-learn version 1.5.1 (https://scikit-learn.org/).
3.2 Class balancing — Synthetic minority over-sampling

Since our avalanche danger data are highly imbalanced, i.e., the different ADLs have different frequencies (section 2.1, Fig.
2), we employ the widely used (e.g., Garcia et al., 2016; Fernandéz et al., 2018) synthetic minority over-sampling technique
(SMOTE; Chawla et al., 2002; Fernandéz et al., 2018) to oversample the minority classes. The SMOTE algorithm selects
a random instance from the minority class and searches for the k nearest neighbours (k£ =10 in the present study). Then
one of these neighbours is randomly chosen and the synthetic instance is generated by interpolating in the feature space
between the original instance and the selected neighbour. The new synthetic instance may be visualised as a random point
along a “line segment” between the original instance and the selected neighbour (Fernandéz et al., 2018, see their Fig. 1).
We here use the implementation of the SMOTE algorithm in the Python library imbalanced-learn version 0.12.3 (https://
imbalanced-learn.org/). In this implementation the SMOTE algorithm is applied to each minority class separately, oversampling
to the same frequency as the majority class. We note that we have tested several other methods to balance the class frequency
(SVMSMOTE, ADASYN; see, e.g., Fernandéz et al., 2018, for a brief review), but this did not improve the overall accuracy

or the distribution of the predicted results.
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(a) 4-level case (b) Binary case
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MR wmax2

wmax tmax4
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w_dir wdrift3

wdrift3 wl

wdrift_2 MR7

3 rh7

s2 w2

r7 w7

wmax2 wdrift

wl MR

2 wmax3

rha Ptot

dtrd2 r:7

SDP4 tr;ii

MR3

w7 wmax6

tmin SDP3

MR3
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nlw7

w7 s1

dtrd1 tmax

rh7 dtrd1

wdrift niws

tmax h2

w3 rh3

r4 h

wmax3 niw3

w4 wa

wmax5 niw2

r3 nlw

niws dtr2

rh2 dtr3

w2 w3

dtr w_dir

ftc dtr

nlw dtrd2

dtrd3 dtrl

dtrl dtrd3
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dtr2 r4

nlw2 r3
niw3 total: 53 features 2 total: 54 features
dtr3 —— cut at 30 features ftc —— cut at 20 features

0.00 0.02 0.04 0.06 0.00 0.01 0.02 0.03 0.04
Importance Importance

Figure 3. Feature importances for the random forest models trained for (a) the 4-level case and (b) the binary case. The black horizontal lines

indicate the cut-off point determined in the optimal feature number test described in the text. For a description of the features see Table 2.

4 Random forest optimisation and feature selection

As mentioned above, our focus in this study is the random forest (RF) model, and the model optimisation and feature selection
procedure mostly follows Pérez-Guillén et al. (2022). However, note that we here consider both the 4-level case and the binary

case (see section 2.1). Consequently, the optimisation and feature selection procedure is conducted separately for these cases.

13



325

330

335

340

345

350

355

The RF model is a complex machine-learning method incorporating several hyperparameters which may be tuned to optimise
the model. We start by performing a randomised grid search over several hyperparameters using the full set of 109 features (see
section 2.4). During the grid search, a 3-fold cross-validation is performed employing the F1-macro score (i.e., the unweighted
mean of F1 scores for each class; see Appendix A) to gauge model performance. Since our training data comprise six winter
seasons, the folds are constructed such that in each fold four winters are used to train the model and the remaining two winters
for validation. As described in section 3.2, we use the SMOTE algorithm to oversample the minority classes and balance the
data before optimising the RF model. Note that in the binary case the balancing was undertaken affer the aggregation from ADL
to AvD and non-AvD. The RF with the set of hyperparameters achieving the best (i.e., highest) F1-macro score is then used
to gauge the importance of the individual predictive features as described in section 3.1. In a next step, the cross-correlation
(Pearson R) between all the predictive features is calculated. Those features which exhibit R% > 0.9 with another feature of
greater importance are then removed. This leaves 53 and 54 features in the 4-level and the binary case, respectively. Their
feature importances are shown in Fig. 3. Employing only the remaining 53 and 54 features, we perform another grid search
around the best hyperparameters found in the first step. This yields the final set of hyperparameters as shown in Table B1 in
Appendix B. Finally, we test the optimal number of features to be included. As can be seen in Fig. 4a, for the 4-level case
median performance is highest for 30 features, although the improvement from 20 to 30 is only marginal. However, in an
analysis of the confusion matrices (not shown) we find that including 30 features improves the prediction of instances with
ADL 4. Thus, we choose 30 features for the 4-level case. For the binary case there is a considerable increase in median model
performance from 10 to 20 features, while including more than 20 features improves the performance only very little (Fig. 4b).
Hence, we choose 20 features in the binary case. The features above the black lines in Fig. 3 constitute the final sets of features
used in the further analysis. Figure 4 shows the RF performance derived from a 3-fold cross-validation (i.e., using four winters
as training and two winters as test data). The same optimal feature numbers are obtained in a 6-fold cross-validation (i.e., using
five winters as training and one winter as test data, which essentially corresponds to a leave-one-out cross-validation; see Fig.
S2 in the online supplementary material). Note that Pérez-Guillén et al. (2022) similarly found 30 to be the optimum number
of predictive features, although they used different features (including SNOWPACK-derived snow-stratigraphy parameters;
compare their Fig. 5 with our Fig. 3a).

Generally, the most important parameters in both the 4-level and the binary case are related to new snow accumulating over
several days (e.g., s4, s5, s6) together with snow density (SD5, SD7) and wind drift (e.g., wdrift3_2, wdrift_3). This is expected
and broadly consistent with Pérez-Guillén et al. (2022, 2024b) as well as other studies which, however, investigate avalanche
activity instead of ADL (e.g., Gauthier et al., 2017; Jaedicke et al., 2008; Bakkehgi, 1987; Kronholm et al., 2006; Hao et al.,
2023), since both new snow and wind, especially associated with storms (e.g., Davis et al., 1999), are prominent avalanche
triggers (see e.g., Jaedicke et al., 2008; Dyrrdal et al., 2020, specifically for northern Norway). A parameter associated with
the net short-wave radiation (nsw7) is among the most important features in both the 4-level and the binary case. This is
remarkable, since for most of the northern Norwegian winter polar-night conditions obtain, meaning the sun does not rise and
there is no short-wave radiation. Indeed, while nsw7 never exceeds 2 Wm™? in winter (December through February), in spring

(March through May) typical values are between 30 and 50 Wm ™2 (see Fig. S3). Accordingly, the importance of nsw7 should
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Figure 4. The F1-macro skill score of the random forest dependent on the number of included features based on a 3-fold cross-validation for
(a) the 4-level case and (b) the binary case. Note the different y-axis scales. See Fig. S2 in the online supplementary material for the results

of a 6-fold cross-validation.

be concentrated in the spring months. This parameter is likely related directly to melting and refreezing (e.g., nsw7 and MR7
are highly correlated, see Fig. S4) but also to clouds. As clouds are linked to precipitation and wind, this partly explains its
comparatively high importance. Furthermore, as documented by, e.g., Conway et al. (1988), on southerly slopes, avalanches are
often released after the snow has been warmed by solar radiation. A few features directly related to temperature are among the
most important features, mostly as longer averages (t7). However, it is unclear how these temperature features impact avalanche
danger since, as noted by e.g. Kronholm et al. (2006), higher temperatures can have both stabilising and destabilising effects on
the snowpack. Higher temperatures may, e.g., lead to more meltwater that can percolate through the snowpack (destabilising),
while they may also decrease the time during which weak layers are present in the snowpack (stabilising). The features related
to temperature change (e.g., dtrd2 etc.) are of minor importance in the 4-level case and are not among the variables used the
binary case at all, indicating that short-term temperature changes (up to three days) are not important for the ADL in our
analysis. For the 4-level case, some rain-related features (e.g., rl, r7) are used in the final model. However, their importance is
generally lower than that of snow and total precipitation. This indicates that wet-snow avalanches, which are often caused by
rain-on-snow events (e.g., Conway et al., 1988; Heywood, 1988), mostly do not determine the general ADL. As described in
section 2.1, we here consider only the general ADL. Focusing instead on individual avalanche problems would likely lead to a
different set of most important predictive features used in the RF model, being more directly connected to the specific type of

avalanche (wind slab, wet snow, etc.).

5 Model evaluation

The model performance is evaluated with respect to both the original unbalanced test data and the balanced test data. For the

latter, the minority classes were oversampled using the SMOTE technique (section 3.2) to equalise class frequencies in the
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same manner as for the training data. Summaries of the model performance with respect to the unbalanced test data (i.e., the
winter seasons 2020/21 and 2022/23) for the 4-level and binary cases are presented in Tables 3 and 5, respectively. Heat maps
of the corresponding confusion matrices are shown in Fig. 5, and Table 4 gives the difference of the forecast to the true ADL
and AvD/non-AvD. The performance with respect to the balanced test data is shown in the online supplementary material (see
Tables S2 and S3 for the 4-level and binary case, respectively, as well as Fig. S5 for the confusion matrices). Our following
discussion is focussed on the 4-level case (section 5.1), including a comparison of our results to previous studies. The results

of the binary case are presented only briefly (section 5.2), as the authors are unaware of previous similar work.
5.1 4-level case

The overall accuracy in the 4-level case is 57 % (see Table 3). Considering the confusion matrix (Fig. 5a) it is evident that while
most of the ADL-2 and ADL-3 cases are classified correctly, ADL 1 is most often misclassified as ADL 2. Most ADL-4 cases
are also misclassified as ADL 3. Thus, a large part of the misclassification is due to the confounding of levels 1 and 2 and levels
3 and 4. While this means that a large fraction of instances is misclassified, the misclassification difference exceeds one ADL
only in about 2 % of cases (see Table 4). The leftmost column in Table 4 based on the unbalanced test data shows that more
cases have a classification difference of +1 than a difference of -1, indicating that our RF model has a tendency to over-predict
the ADL. However this is likely due to most cases being either ADL 1 or 2 (Fig. 6) and most ADL-1 cases are misclassified
as ADL 2 (Fig. 5a). Accordingly, for the balanced test data (Table 4, second column) the situation is reversed, exhibiting an
under-prediction of ADL (see also the confusion matrix for the balanced test data in Fig. S5a in the online supplementary
material). From Fig. 6 it appears that the overall frequencies of the individual ADLs are reproduced for the unbalanced test
data. However, this is not true for the balanced test data, where a severe over-representation of ADLs 2 and 3 is evident while
ADLs 1 and 4 are strongly under-represented. The confusion matrix based on the balanced test data (Fig. S5a) shows that about
half of the ADL-1 and 4 cases are misclassified as ADL 2 and 3, respectively. This indicates that many of the synthetically
generated cases for ADLs 1 and 4 are interpreted by the RF model as ADL-2 and ADL-4 days, respectively.

The overall accuracy of 57 % in the 4-level case appears low compared to other studies (Schweizer and Fohn, 1996; Schirmer
et al., 2009; Dekanova et al., 2018; Joshi et al., 2020; Pérez-Guillén et al., 2022; Sharma et al., 2023; Blagovechshenskiy et al.,
2023) although it is slightly higher than in Fromm and Schonberger (2022) and Brabec and Meister (2001). Most of these
studies used meteorological station data as well as sophisticated information on snow and/or SNOWPACK simulations, which
may partly explain their better performance. As previously mentioned, e.g., Sharma et al. (2023) did not clarify if they selected
their validation data randomly or used whole winters. We note that this has an immense influence on the purported model
performance: When we randomly select 33 % of the data as test data, accuracies exceeding 85 % are obtained (both for
the 4-level and the binary case; not shown). This indicates that strong temporal correlations exist, confounding the model
performance when test/validation data are chosen randomly. A further reason for the lower model performance here than, e.g.,
in Pérez-Guillén et al. (2022) is that they had 20 years of data available and focussed only on dry-snow avalanches while we
are restricted to eight years of data and use the general ADL including all avalanche types/problems (see section 2.1). Here we

acquiesce to the noisier ADL data to have more training data available for our model, given that our training dataset covers only
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six seasons. However, in future work we will attempt a more detailed analysis with respect to the different avalanche problems.
Further reasons may explain (at least in part) the higher accuracies in most of the other studies. For example, Schweizer and
Fohn (1996) let a human expert interact with their system, likely increasing the accuracy. Schirmer et al. (2009) used the ADL
from the previous day, which increased the model performance. However, Pérez-Guillén et al. (2022) found that this strongly
reduced the model accuracy for days where the ADL changes from the previous day. Thus, we here refrain from using the
previous-day ADL as predictive feature. Another reason for not including the previous-day ADL in our statistical model is that
our aim is to apply the model in a hindcast setting (section 6) as well as to future climate change projections (in upcoming work)
of avalanche danger for which previous-day ADL does not exist. As discussed by Fromm and Schonberger (2022), the extent
and scale of the investigated region likely also impacts the results. They concentrated on a much smaller region which is more
strongly affected by accidental and intentional avalanche release, potentially confounding their results compared to studies
focussing, like here, on larger areas (e.g., Pérez-Guillén et al., 2022; Sharma et al., 2023; Schirmer et al., 2009). Notably,
our warning regions in northern Norway have an average size of about 6800 km? (see Table S1 in the online supplementary
material), while in Switzerland the average size is about 200 km? (Pérez-Guillén et al., 2024b). The smaller warning regions
potentially imply a clearer connection of avalanche danger to meteorological conditions and thus generally less noisy data,
which may explain part of the higher prediction accuracies of the Swiss models. More fundamentally, the different climates
and topographies of the different study regions generally complicate comparisons among studies. Much of the cited work was
conducted in Central Europe (i.e., in the mid-latitudes) while our study area is in northern Norway and thus in the Arctic. The
mountains in the Alps are often higher and the climate is more continental than in the fjord landscape of northern Norway. This
leads to different snow and avalanche characteristics (e.g., van Herwijnen et al., 2024) and potentially implies differences in
predictability, thus hampering comparability across studies.

Despite the relatively low overall accuracy, the fraction of misclassification larger than one ADL is similar to that found by
Pérez-Guillén et al. (2022). However, Pérez-Guillén et al. (2022) generally obtained smaller differences in misclassification
across the different classes, leading to their higher overall accuracy. Misclassifying ADL 4 as ADL 3 is especially undesirable
since most avalanche accidents occur when the published ADL is 3 (see Fig. 4 in SLF, 2024; McClung, 2000). We have tested
different class weights with a focus on ADLs 3 and 4 during the model training process, but this did not significantly reduce
the misclassification. This indicates that our data are too noisy to effectively distinguish between ADLs 3 and 4, likely due to
the considerable size of the warning regions (see Fig. S1 and Table S1 in the online supplementary material).

Judging from the comparison of the model performance with respect to the unbalanced and balanced test data our RF
model has a tendency to over-predict the occurrence of the most frequent classes despite the efforts undertaken to balance the
training and cross-validation test data (see section 4). Another interpretation is that the model over-predicts the frequency of
the “medium”-classes (ADLs 2 and 3) at the expense of the more “extreme” classes (ADLs 1 and 4), which may be, at least
in part, due to our decision of averaging over multiple grid-cells to generate the predictive features (see section 2.2). However,
we have tested taking the 90th percentile instead of the average over the grid cells, but this led to similar frequencies being
predicted for ADLs 2 and 3 (not shown). More fundamentally, we again point to the large warning regions in Norway. Various

meteorological conditions may simultaneously be prevalent within a given region, implying a noisy relationship between the
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Table 3. Classification report for the 4-level case with unbalanced test data. The ADL is the avalanche danger level. Precision (Prec.), recall
(Rec.), F1 score, and overall accuracy (Acc.) are defined in Appendix A. Support corresponds to the number of occurrences of the ADL in
question. The macro avg indicates the unweighted average over all ADLs and the weighted avg the average weighted with respect to the

support of each ADLs. See Table S2 in the online supplementary material for the classification report with respect to the balanced test data.

ADL Prec. Rec. Fl Support

1 044 038 041 310
2 0.60 0.63 0.61 917
3 0.59 058 0.58 563
4 026 030 0.28 30

Acc. 0.57 1820
Macro avg 047 047 047 1820
Weighted avg  0.56  0.57 0.56 1820

Table 4. Difference between true and predicted danger level for the 4-level and binary cases. The numbers are the percentages of days with
the given danger level difference between predicted and true level. The columns Unbal. and Bal. refer to the performance with respect to the

unbalanced and balanced test data, respectively.

4-level case Binary case

Difference  Unbal. Bal. Unbal. Bal.

-3 0.0 0.0
-2 0.77 0.63
-1 19.89 2628 14.02 11.1
0 56.59 5354 76777 7648
1 2225 18.87 9.21 12.42
2 0.49 0.68
3 0.0 0.0

weather data and the ADLs, likely contributing to the high rates of misclassification. A decrease of warning region size may
be necessary for a clearer relationship between weather data and ADLs to substantially reduce misclassification and increase
prediction accuracy.

We note that we have trained an artificial neural network (ANN) with the structure suggested in Sharma et al. (2023) on
the training-test data setup presented here. The performance of the ANN was found to be similar to that of the RF model (not

shown).
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Confusion matrices — unbalanced test data
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Figure 5. Confusion matrices for the random forest classification with respect to the unbalanced test data for (a) the 4-level case with
avalanche danger levels (ADL) and (b) the binary case with non-avalanche days (non-AvD) and avalanche days (AvD). The values on the
diagonals correspond to the recall scores shown in Tables 3 and 5, respectively. For the confusion matrices with respect to the balanced test

data see Fig. S5 in the online supplementary material.

Table S. As Table 3 but for the binary case. The rows non-AvD and AvD represent non-avalanche days and avalanche days, respectively. See

Table S3 in the online supplementary material for the balanced test data.

Prec. Rec. Fl Support

non-AvD 0.83 0.82 0.82 1227
AvD 0.63 0.66 0.65 593
Acc. 0.76 1820

Macro avg 0.73 074 0.74 1820
Weightedavg 0.77 0.76  0.77 1820

5.2 Binary case

For the binary case the overall accuracy is 0.76 (see Table 5), being much higher than in the 4-level case. The higher accuracy
is explained by the frequent confounding of ADLs 1 and 2 and ADLs 3 and 4, which in the binary case are aggregated into
non-AvD and AvD, respectively. From Table 5 and Fig. 5b it appears that our binary-case RF model is better at predicting
non-AvDs than AvDs. This concurs with the results from the 4-level case, showing a better performance in predicting ADLs
1 and 2 than ADLs 3 and 4 (Fig. 5a and Table 3). Moreover, as expected from the results of the 4-level case, the binary-case
model to some degree tends to under-predict the AvDs with respect to the unbalanced test data, while for the balanced test data
the AvDs are slightly over-predicted (Table 4). The authors are unaware of previous work similarly aggregating ADLs to AvDs

and non-AvDs.
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Figure 6. Frequencies of occurrence of (squares) predicted and (circles) true test-data danger levels for the (left) 4-level case with avalanche
danger levels (ADL) and the (right) binary case with non-avalanche days (non-AvD) and avalanche days (AvD). Shown are both the (black)

unbalanced and (gray) balanced test data.

6 Hindcasting avalanche danger (1970-2024)

Figure 7 shows the 1970-2024 hindcast of the avalanche-day frequency (ADF) in the Nord-Troms region. The figures for the
other regions are presented in the online supplementary material (Fig. S6). The ADF here refers to the number of avalanche
days (AvD; i.e., days with ADL 3 or 4) per season. While the evolution of ADF is not the same in the different regions,
there are strong similarities regarding certain features which may be observed in Fig. 7 and which are briefly summarised
in the following. There is little to no trend in the full-season avalanche data from 1970 to 2024 (see Table S4 in the online
supplementary material for linear trends). However, there is a phase of high ADF in the 1990s, mostly due to high ADF
in winter (December through February) since the spring (March through May) ADF generally varies less. We note that the
increase in ADF in the 1990 is consistent with a simultaneous rise in avalanche activity in Iceland (Keylock, 2003) and it
coincides with high values of avalanche indicators for western Norway (Saloranta et al., 2024, see their Fig. 2). The phase of
high ADF in the 1990s is accompanied by an increase in ADF variance (full season), with a considerable subsequent decrease
in variance in 2000-2010, increasing slightly again after 2010. The ADF variance before 1990 is mostly due to spring ADF, as
little variance is evident for winter ADF in this period. In the 1990s the variance in winter and spring appears to be in phase,
causing the strong full-season ADF variance. However, in general, spring and winter ADF change in opposite ways over time.
In spring there is a small overall increasing trend in ADF, while there is a small decrease in winter. However, the statistical
significance of these trends is only moderate with p values of about 0.1 + 0.05 (see Table S4 in the online supplementary
material). These results appear broadly consistent with the recent analysis of avalanche indicators in Norway by Saloranta
et al. (2024) who found only few significant trends for the period 1961 to 2020.

One of the most prevalent features of the ADF hindcast is the peak of winter ADF around 1990 in the 7-year rolling mean
which is due to a phase of exclusively high ADF in these years. This is remarkable, since this period is known for exhibiting
exceptionally high index values of the North Atlantic Oscillation (NAO; see, e.g., Hurrell, 1995; Wanner et al., 2001) as well as
of the Arctic Oscillation (AO; see, e.g., Thompson and Wallace, 1998). The NAO is a measure of the sea-level pressure (SLP)

difference between the Icelandic Low and the Azores High and is one of the most well-established and pronounced climate
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(b) Correlation coefficients of full-season, winter, and spring ADF with AO index for all regions. (c) and (d) are the same as (a) and (b),
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on a Wald test with a ¢ distribution. See Fig. S8 for a comparison of ADF and the North Atlantic Oscillation (NAO) index.

patterns influencing European climate (e.g., Hurrell, 1995; Wanner et al., 2001). The NAO index used here corresponds to the

485 index by Hurrell (1995), which can be obtained from the National Center for Atmospheric Research’s website (NCAR, 2024).
The AO may be viewed as an extension of the NAO to the whole Northern Hemisphere and interpreted as the surface signature
of modulations of the polar vortex at higher elevation (Wanner et al., 2001; Thompson and Wallace, 1998, 2001). The AO data
were obtained from the website of the National Oceanic and Atmospheric Administration (NOAA, 2024).
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Many studies have investigated and found a linkage between the NAO/AO and the weather conditions in Europe, especially
in winter (see, e.g., the review by Wanner et al., 2001). The NAO has also been related specifically to precipitation in northern
Europe, including northern Norway, e.g., by Uvo (2003). This study found that winter precipitation in the Troms region exhibits
correlation coefficients with the NAO index of up to 0.5-0.6 (see her Fig. 4). Uvo (2003) also notes that changes in precipitation
due to NAO changes are connected to wind and topography. That is, stronger westerly winds induced by a higher NAO index
are intercepted by the mountains in the proximity of the Norwegian cost, inducing precipitation there. However, she observes
that since the westerly winds generated by the Icelandic Low and the Azores High do not reach northern Norway directly,
this region is only “intermediately influenced” by the NAO. Consistently, Rogers (1997) found that North Atlantic storm
activity (see also Alexandersson et al., 2000), which likely impacts wind and precipitation in northern Europe, is more strongly
influenced by low-frequency SLP anomalies in the extreme north-eastern Atlantic than by the NAO. This appears to agree
with the findings of Thompson and Wallace (2001), who showed that there is an increase in variance of the North Atlantic
storm track associated with a high AO index, meaning that more storms reach the far north, inducing stronger winds and more
precipitation there. At low AO index, conditions correspond more to blocking events, preventing storms from reaching further
north. Note that the AO index is better correlated with Arctic SLP than the NAO index (see Fig. S7).

To the authors’ knowledge, the only studies trying to relate the NAO directly to avalanches in Europe are Keylock (2003),
Jomelli et al. (2007), Garcia et al. (2009), Garcia-Sellés et al. (2010), and recently Bee et al. (2024). Garcia et al. (2009)
and Garcia-Sellés et al. (2010) investigated avalanche activity in the Pyrenees (north-eastern Spain) and found a negative
correlation. Conversely, Jomelli et al. (2007) found no correlation of avalanche activity and NAO in the French Alps. Bee et al.
(2024) studied two regions in the western and eastern Italian Alps. Similar to the French Alps, no correlation was found for the
western region, while the eastern region exhibited a negative correlation, consistent with the results from the Pyrenees. Finally,
Keylock (2003), investigated avalanche activity in Iceland, hence in a location more closely related to our region of interest
than those in the other studies. He tentatively concluded that while the NAO may not affect avalanche size distribution, a
positive phase of the NAO likely increases avalanche activity. We note that Laute and Beylich (2018) also pointed to a potential
linkage between avalanche activity and the NAO in western Norway, as a positive NAO index corresponds with higher winter
precipitation there. However, they do not investigate the linkage directly.

Consistent with Keylock (2003) and the discussion above regarding the influence of the NAO and AO on northern Norwegian
weather, we find that the northern Norwegian ADF is correlated with both NAO and AO, but more so with the latter (compare
Figs. 8 and S7). The correlation is particularly strong for 7-year rolling means of both quantities, indicating a stronger linkage at
decadal than annual scales, although there is considerable variation across the five different regions (Figs. 8d and S9). Notably,
Figs. 8b, d, S9, and S10 reveal that while the correlations for annual means are not particularly strong (R=0.3-0.5), they are
more consistent across regions than for the 7-year rolling means (R=0.2-0.8), at least in the winter months (December through
February). Furthermore, comparing the lead-lag correlations in Figs. S9 and S10 it appears that the clearest correlation between
ADF and AO is in the winter months, with a singular peak at AO-lag year O for both annual and 7-year rolling means. In the

spring months (March through May) there is more variation across regions and while there are correlation peaks at AO-lag
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Figure 9. Avalanche-day frequency (ADF, red), 3-day mean wind speed (w3, orange), and 3-day sum of new snow (s3, blue) in Nord-Troms

and Arctic Oscillation (AO) index (black). The values correspond to 7-year rolling means.

year 0, there are further peaks at lead-year 3 and lag-year 4 in the annual means. Thus, we concentrate our further correlation
analysis on the winter months.

The 7-year rolling mean time series of winter ADF and AO index show the strong peak in both quantities in the 1990s. Both
ADF and AO index decrease subsequently, but while the AO index increases again quite strongly after about 2010, the ADF
shows only a small increase. This development obtains in all regions except Indre Troms, where the ADF corresponds more
strongly to the AO index (see also the high correlation of ADF and AO index in this region shown in Fig. 8d).

Since the ADF is here fully determined by the meteorological conditions, we investigate the predictive features and their
correspondence with the AO index in the winter months. Figure 9 shows 7-year rolling means of ADF, AO index, and w3 and
s3 for Nord-Troms. Note that the most important predictive feature in the binary case is wdrift3_3, which is a combination
of w3 and s3. We decided here to show both components, as the single parameter wdrift3_3 is more difficult to interpret and
may obscure compensating variance of s3 and w3. It is evident that both features follow the AO index quite closely, but while
s3 increases with the AO index (with a slight lag) after 2010, w3 shows little change. The discrepancy in the development
after 2010 in s3 and w3 likely causes the slower increase in ADF predicted by the RF model. Thus, there is an apparent
“decoupling” of wind speed from the AO index after 2010, causing a weakening of the correspondence of ADF and the AO
index in most regions. We note that the “decoupling” after 2010 is even stronger for the correspondence of ADF with the NAO
index (see Fig. S8c). So far, we have no compelling explanation for this. However, it must be remembered that the AO index
is not the only climate mode influencing Scandinavian weather. We have investigated several more climate indices that are
important for northern European wind and precipitation and we find that the 7-year rolling mean of the Polar/Eurasian (PE)
pattern index shows apparently unprecedented low values in the decade 2010-2020, especially in winter (see Fig. S11). This is
remarkable since, as Panagiotopoulos et al. (2002) pointed out, the PE has a structure similar to the AO. The index representing
another important climate mode, the Scandinavian (SCA) pattern, exhibits consistently high values in winter around 2010
with a subsequent decrease (Fig. S12). A low PE pattern index and a high SCA pattern index have been associated with a

weaker polar vortex, likely weakening the westerly winds in the Arctic (e.g., Gao et al., 2017; Panagiotopoulos et al., 2002).
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Consistently, a higher SCA index has also been associated with weakened storm-track activity over Northern Europe (Bueh
and Nakamura, 2007). Hence, the anomalous states of other climate modes may cause the recent apparent “decoupling” of
the AO and northern Norwegian wind speed, and thus, the weakening of the correspondence of the AO index with northern
Norwegian ADF.

7 Summary and conclusions

In this study we implement a machine-learning approach for purely data-driven statistical prediction of avalanche danger level
(ADL) based on gridded meteorological (NORA3) and snow (seNorge) information in northern Norway. Two avalanche danger
scales are considered: (1) the original ADLs (“4-level case”) and (2) the “binary-case” where ADLs 1 and 2 and ADLs 3 and
4 are aggregated to “non-avalanche day” (non-AvD) and “avalanche day” (AvD), respectively. For each case a random forest
(RF) classifier is optimised and predictive features are selected. The RF model accuracy is considerably higher for the binary
case (76 %) than for the 4-level case (57 %), consistent with the frequent misclassification of ADL 1 as ADL 2 and ADL
4 as ADL 3 in the latter case. The accuracy in the 4-level case is comparable to or even higher than in some earlier studies
(Brabec and Meister, 2001; Fromm and Schonberger, 2022), but lower than in many others (Schirmer et al., 2009; Dekanova
et al., 2018; Joshi et al., 2020; Pérez-Guillén et al., 2022; Sharma et al., 2023; Blagovechshenskiy et al., 2023). However, these
studies, including our work, differ in type and quality of data, in background climate and topography, as well as warning-
region size. Thus, the comparison of accuracies between different studies should be regarded with care. We exploit the whole
available NORA3 record to perform a hindcast of the avalanche-day frequency (ADF), which we define as the number of
AvDs per season and which we interpret as a measure of avalanche activity. While there appears to be no general trend there
is noticeable variation over time, with a conspicuous peak in ADF in the 1990s, especially in the winter months (December
through February). We connect this peak with a well-known Northern Hemispheric climate mode that has been shown to impact
European climate, the Arctic Oscillation (AO). The ADF exhibits significant correlation with the AO, especially as a 7-year
rolling mean.

Within the last decade, decadal prediction systems have shown an improvement of skill in representing and predicting AO
and European winters (e.g., Riddle et al., 2013; Scaife et al., 2014; Kang et al., 2014; Stockdale et al., 2015; Athanasiadis
et al., 2017, 2020). Given the here-found connection between ADF and AO, this is encouraging with respect to potential
predictability of at least the decadal tendency of avalanche activity in northern Norway. However, the indication that the
strength of the connection between the ADF and the AO has weakened in recent years, potentially due to the influence of other
climate modes and/or as a direct effect of climate change, means that the value of AO predictability for avalanche forecasting
remains uncertain.

An important advantage of a fully data-driven approach to predict avalanche danger and activity based on gridded weath-
er/snow data is the potential to generate future projections of those metrics based on climate change scenario simulations (see,
e.g., Castebrunet et al., 2014; Mayer et al., 2024). Such simulations are mostly conducted by global climate models (GCMs)

with too coarse resolutions to be usable for avalanche prediction. Thus, regional downscalings are required to produce appro-
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priate data. For Norway such data are available via the Nordic Convection Permitting Climate Projections (NorCP; Lind et al.,
2023). In future work we plan to apply our machine-learning model to the NorCP data and generate ADF and ADL projections
for northern Norway. However, the likely importance of (regional) climate modes for the development of avalanche activity,
as described above, must be taken into account when considering future climate projections. It is not guaranteed that climate
modes such as the AO are sufficiently represented in the GCMs and/or NorCP. Even if present, their variability will likely be
out of phase with actual future development.

As of now the snowpack information for Norway is confined to data based on the simple snow model seNorge. Efforts
are currently under way in cooperation with the Norwegian Water Resources and Energy Directorate (NVE) to implement
the much more detailed model SNOWPACK to be run based on gridded meteorological data (Herla et al., 2024). In future
research we plan to use the snow-stratigraphy information from SNOWPACK in our machine-learning approach to predict
ADL and ADF. However, we note that results appear to deviate when it comes to the impact of including SNOWPACK output
in ADL prediction machine-learning models: While Schirmer et al. (2009) found an improvement due to the inclusion of
SNOWPACK data, the results of Fromm and Schonberger (2022) suggested no improvement, and in later work they used
simpler snow information (similar to the seNorge data used here; Schonberger and Fromm, 2024; Fromm and Schonberger,
2024). Furthermore, e.g., Pérez-Guillén et al. (2024b) found that predictions were mostly driven by precipitation variables
and only to a lesser extent by snowpack-stability variables. Hence, the impact of the SNOWPACK information on our model
performance in Norway remains to be seen.

Finally, the ADLs as used here do not distinguish between the different avalanche problems. This likely makes the ADL-
data noisy with respect to their relation to meteorological and snow data because different avalanche problems are caused by
different weather and snow conditions. Here we opt for the general ADL as it guarantees a larger data set and it aggregates
avalanche problems that may be related to similar weather conditions. However, in upcoming research we aim to disentangle
the different avalanche problems. The most feasible approach appears to be to select the most frequent avalanche problem to
ensure data availability to robustly train a statistical model, and at the same time filter some of the “noise” due to the other, less
frequent avalanche problems.

High-quality information on avalanche danger is of great importance as it enables stakeholders and people in general to make
well-informed decisions affecting their life and property. Our study represents an initial step towards automated avalanche-
danger prediction in northern Norway that may be used to support and improve expert forecasts. As ongoing and future climate
change likely impacts avalanche characteristics, knowledge about potential future changes of these characteristics is valuable.
Our methodology can be used to study future changes in avalanche danger and activity based on future-scenario climate-model
projections. This information may assist governments and stakeholders in planning of future infrastructure and organisation to

prepare for and adapt to environmental conditions in a changing climate.
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Table A1. Structure of the binary confusion matrix (see e.g., Sokolova and Lapalme, 2009; Wilks, 2011).

Obs. positive  Obs. negative
Forecast positive a b

Forecast negative c d

Appendix A: Model evaluation metrics

To evaluate and compare model performance, several performance metrics (e.g., Sokolova and Lapalme, 2009) are employed,
similar to earlier studies (e.g., Fromm and Schonberger, 2022; Pérez-Guillén et al., 2022). We use hits (a), false alarms (b),
misses (c), and correct non-events (d) (see Table A1) to calculate the following performance metrics:

a+d

= TThrerd the accuracy or percentage of correctly classified samples, (A1)

P= aL—H)’ the precison score, (A2)

representing the fraction of hits among the positive forecasts (i.e., hits and false alarms),

R= L, the recall score, (A3)
a-+c

representing the fraction of hits among the positive observations (i.e., hits and misses), as well as

PxR
Fl = 2%, the F1 score, (A4)

which corresponds to the harmonic mean of precision and recall. Following Pérez-Guillén et al. (2022) we use the F1-macro
score in the cross-validation during the model optimisation procedure (section 4). A macro score represents the unweighted
mean of the score over all classes, thus treating all classes equally (e.g., Sokolova and Lapalme, 2009). As noted by Sokolova

and Lapalme (2009), precision, recall, and hence the F1 score are invariant to changes in the classification of correct non-events.

Appendix B: Random forest hyperparameter set

Table B1 lists the hyperparameters found to optimise the performance of the random forest model during the grid-search proce-
dures. However, we note that we found little variation of the model performance when testing several different hyperparameter

combinations.
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Table B1. The sets of hyperparameters used in the random forest models. The row “Maximum number of features” refers to the number of

features considered at each split in the decision trees. “sqrt” indicates the square root of the number of all features.

Hyperparameter Binary  4-level
Number of trees 850 350
Maximum depth of the tree 55 40
Maximum number of features sqrt sqrt
Minimum number of samples at leaf node 2 2
Minimum number of samples for each split 13 5
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Code and data availability. The programming language Python was used to perform the data analysis and generate the figures. The random
forest model was generated using the Python library scikit-learn (Pedregosa et al., 2011). The neural network was generated with the help of
the library Keras (Chollet et al., 2015). The maps were produced with the library Cartopy (Met Office, 2010 - 2024). The code for running the
seNorge model (based on NORA3 input), for producing the NORA3-based predictive features, and for generating the random forest and neu-
ral network models is available on Zenodo (https://doi.org/10.5281/zenodo.14871372). The random forest and neural network models are also

available on Zenodo (https://doi.org/10.5281/zenodo.14529772), as are the predictive features (https://doi.org/10.5281/zenodo.14528579).
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