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S1 Artificial neural network

The artificial neural network (ANN; e.g., LeCun et al., 2015) is essentially a generalisation of the logistic regression (e.g.,

Dreiseitl and Ohno-Machado, 2002). ANNs consist of an input layer, an output layer, and an arbitrary number of hidden layers

in between. The layers are made up of so-called perceptrons whose activation is regulated by a specific activation function

(e.g., the sigmoid function as in Eq. 2). Note that in the case of no hidden layer and if the sigmoid function is used as the5

activation function, the neural network is equivalent to a logistic regression (e.g., Dreiseitl and Ohno-Machado, 2002). The

weights of the individual perceptrons and layers are determined during training via the minimisation of the cross-entropy error.

The activation function of the hidden layer used here is the rectified linear unit (ReLU):

f(z) = max(z,0), (1)

which has become the most popular choice as it accelerates the learning process compared to other methods (e.g., LeCun et al.,10

2015). The activation function for the output layer depends on the number of classes in the target variable. In the case of a

binary classification, the sigmoid function is used. It predicts the probability p(x) of the binary outcome for a set of predictors

xi (i.e., the probability that the outcome is 1 or true)

p(xi) =
1

1+ e−z
, (2)

where z is a linear combination of the predictor values xi and the model’s predicted coefficients βi (for i > 0) and intercept β0:15

z = β0 +β1x1 +β2x2 + ...+βrxr. (3)

The βi are obtained by maximum likelihood estimation, maximising the log-likelihood function. Solving Eq. 2 for z, one may

interpret z as the logarithm of the odds of outcome 1 (i.e., the probability of success over the probability of failure):

z = log
(

p(x)

1− p(x)

)
. (4)20

Eq. 2 gives a probability between 0 and 1, and values ≤ 0.5 are categorised as 0 and values > 0.5 as 1 for our binary case.
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If the target variable consists of multiple classes the number of nodes in the output layer must equal the number of classes.

In this case we follow Sharma et al. (2023) in using the SoftMax function as the activation function for the output layer:

SoftMax(cj) =
eci∑
j e

cj ,
(5)

where SoftMax(cj) corresponds to the probability of the class cj of the target variable. Hence, in our 4-level case, we need an25

output layer with four nodes and j ranges from 1 to 4. Since our focus here is on the full integer danger levels, the ADL with

the highest predicted probability is considered the predicted ADL.

A weakness of the ANN is that the weights are difficult to interpret, making it a “black-box” model (e.g., Dreiseitl and

Ohno-Machado, 2002), similar to the RF. An advantage of the ANN is that it may find and represent structures in the data that

simpler linear models are missing. Several studies have applied ANNs to predict ADL (Schirmer et al., 2009; Dekanová et al.,30

2018; Fromm and Schönberger, 2022; Sharma et al., 2023; Blagovechshenskiy et al., 2023), however with varying success, as

discussed in section 1.

Here we apply the ANN structure suggested by Sharma et al. (2023) (see their Table 4). Note that in contrast to the RF, the

data were zero-transformed by subtracting the mean and dividing by the standard deviation for their usage with the ANN. The

ANN is generated using the implementation in the Python library Keras version 2.15.0 (https://keras.io/) built on Tensorflow35

version 2.15.0 (https://www.tensorflow.org/).

S2 Artificial neural network − Evaluation

The ANN exhibits a performance similar to the random forest (RF) for both the 4-level case and the binary case. Because of

the inherent randomness of an ANN we trained 500 realisations on our training dataset for both cases, respectively.

Focussing on the 4-level case, the accuracies vary between 0.54 and 0.64, with a mean and median of 0.59 and a 1-σ standard40

deviation of ±0.015 (2.5 %; see Fig. S1a for a histogram of the accuracies). However, the best overall accuracy does not imply

the best accuracy per individual avalanche danger level (ADL). In fact, considering the confusion matrices of the “best” and

“worst” of the 500 trained ANNs in terms of overall accuracy shown in Fig. S2a and b, it appears that the “worst” model

performs much better in predicting ADL 4, while the higher accuracy of the “best” model results from better prediction of

ADLs 2 and 3. The better performance of the “worst” model in predicting ADL 4 is accompanied by a much higher tendency45

to misclassifying ADL 3 as ADL 4 (Fig. S2a, b). Moreover, the misclassification difference (i.e., the difference between true

and predicted ADL) by the “worst” model is considerably larger than by the “best” model (Table S1).

In the binary case, the overall accuracies across the 500 ANNs vary slightly less than in the 4-level case (0.74 to 0.80) with

a mean and median of 0.78 and a 1-σ standard deviation of ± 0.01 (1.3 %; see Fig. S1b for a histogram of the accuracies). In

contrast to the 4-level case, the “best” binary case model performs better than the “worst” model for both binary-case levels50

(BCLs), although the higher overall accuracy mostly results from a higher accuracy in predicting BCL 0 (Fig. S2c, d).

In summary, our optimised RF and the ANN of the structure suggested by Sharma et al. (2023) perform similarly when

comes to predicting both ADL and BCL.
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Figure S1. Histogram for the accuracies of 500 artificial neural networks (ANNs) trained for the (a) 4-level case and (b) binary case. The

black and red vertical lines indicate the mean and median accuracy, respectively. The vertical dashed gray lines indicate the 1-σ standard

deviation.

Table S1. Misclassification difference for the “best” and “worst” of 500 trained artificial neural networks (ANNs) in the 4-level case. See

text S2 for details.

difference best worst

-3 0.0 0.0

-2 0.33 1.04

-1 16.7 20.11

0 63.57 53.79

1 18.57 23.57

2 0.77 1.48

3 0.05 0.0

S3 Artificial neural network − Hindcast

Like the RF (section 6), we employ the binary-case ANN to perform a hindcast of the BCL for the NORA3 period (1970-2024).55

The “best” ANN in terms of overall accuracy of the 500 trained binary-case ANNs is employed to perform the hindcast. We

define the binary-case frequency (BCF) as the number of days with BCL 1 per season.

The general results are consistent with the results from the RF: There is no trend in the full-season BCF with partly significant

weak negative and positive trends in winter (December through February) and spring (March through May), respectively (not
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Figure S2. Confusion matrices for the (a, c) “best” and (b, d) “worst” of 500 trained artificial neural networks (ANNs) in the (a, b) 4-level

case and (c, d) binary case. See text S2 for details.

shown). The BCF peak in the 1990s (especially in winter) is also evident in the results from the ANN (Fig. S3). However, there60

are some differences. For example, the ANN generally hindcasts a higher BCF (compare Figs. S3 and S11), which is mainly

due to higher winter BCF. Notably, the correlation of the Arctic Oscillation (AO) with the ANN-derived BCF is even stronger

than with the RF-derived BCF on an annual basis (Pearson R = 0.35-0.55) and similar on for 7-year rolling means (compare

Figs. 8b, d and S4b, d). Finally, it appears that the ANN-based BCF hindcast exhibits more of an increasing trend in the decade

2010-2020 than the RF-based hindcast, being more consistent with the AO trend (compare Figs. 8c and S4c). This may be65

connected to the ANN-based BCF following more closely the accumulated snow than the RF-based BCF (compare Figs. 9 and

S5).

In summary, the ANN-based BCF hindcast is similar to the RF-based hindcast and appears to confirm the impact of the AO

on northern Norwegian avalanche activity. However, given the differences especially in the decade 2010-2020, the robustness
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Figure S3. As Fig. 7, but for all regions and based on the artificial neural network (ANN) instead of the random forest (RF).

of this relationship remains uncertain. Decomposing the ADLs and BCLs according to the different avalanche problems may70

provide more clarity regarding the connection between northern Norwegian BCF and the AO, since some types of avalanches

are likely more strongly determined by conditions related to, e.g., a high AO index than other types.
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Figure S4. As Fig. 8, but for the artificial neural network (ANN) instead of the random forest (RF).
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Figure S5. As Fig. 9, but for the artificial neural network (ANN) instead of the random forest (RF).
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Table S2: List of the Norwegian avalanche warning regions (excluding Svalbard). For type-A regions daily warnings are issued,

while for type-B regions warnings are only issued if the danger level exceeds 3. The area is given in km2. See Fig. S6 for a

map of the individual regions.

region code region name type area

3005 Øst-Finnmark B 17954

3006 Finnmarkskysten A 19964

3007 Vest-Finnmark A 13728

3008 Finnmarksvidda B 15062

3009 Nord-Troms A 9392

3010 Lyngen A 2842

3011 Tromsø A 6195

3012 Sør-Troms A 8203

3013 Indre Troms A 7372

3014 Lofoten og Vesterålen A 12105

3015 Ofoten A 7580

3016 Salten A 10279

3017 Svartisen A 13718

3018 Helgeland A 18111

3019 Nord-Trøndelag B 27304

3020 Sor-Trøndelag B 21009

3021 Ytre Nordmøre B 4566

3022 Trollheimen A 8099

3023 Romsdal A 6312

3024 Sunnmøre A 7970

3025 Nord-Gudbrandsdalen B 6036

3026 Ytre Fjordane B 6253

3027 Indre Fjordane A 5716

3028 Jotunheimen A 6586

3029 Indre Sogn A 6679

3030 Ytre Sogn B 2703

3031 Voss A 7779

3032 Hallingdal A 4241

3033 Hordalandskysten B 8161

Continued on next page
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Table S2 continued from previous page

region code region name type area

3034 Hardanger A 7134

3035 Vest-Telemark A 8083

3036 Rogalandskysten B 8526

3037 Heiane A 8636

3038 Agder sør B 13343

3039 Telemark sør B 8600

3040 Vestfold B 3132

3041 Buskerud sør B 10535

3042 Oppland sør B 13078

3043 Hedmark B 26999

3044 Akershus B 4989

3045 Oslo B 474

3046 Østfold B 4802

average study region A 6801

average type-A regions A 8988

average type-B regions B 10712

average Norway A & B 9850
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Figure S6. Map of the Norwegian avalanche warning regions. The thick black regions correspond to type A (warnings are issued daily) and

the thinner gray regions correspond to type B (warnings only issued when the danger level exceeds 3). The black rectangle indicates our

study region in northern Norway. The colour corresponds to the region code (see Table S2).

Table S3. As Table 3 but with the balanced data.

level precision recall f1-score support

1 0.74 0.49 0.59 917

2 0.44 0.63 0.52 917

3 0.42 0.60 0.50 917

4 0.88 0.42 0.57 917

accuracy 0.54 3668

macro avg 0.62 0.54 0.54 3668

weighted avg 0.62 0.54 0.54 3668

9



Table S4. As Table 5 but with the balanced data.

level precision recall f1-score support

0 0.74 0.82 0.78 1227

1 0.80 0.72 0.76 1227

accuracy 0.77 2454

macro avg 0.77 0.77 0.77 2454

weighted avg 0.77 0.77 0.77 2454
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Figure S7. As Fig. 4, but with 6-fold cross-validation.
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Table S5. Slope, Pearson correlation R, and p value (Wald test with a t distribution) of linear regressions from of avalanche activity hindcast

with the random forest model from 1970 to 2023 for all regions.

full winter spring

Nord-Troms

slope -0.04 ± 0.11 -0.14 ± 0.08 0.10 ± 0.08

R -0.05 -0.24 0.18

p 0.69 0.07 0.20

Lyngen

slope -0.03 ± 0.11 -0.17 ± 0.08 0.16 ± 0.07

R -0.03 -0.29 0.29

p 0.80 0.03 0.03

Tromsø

slope -0.09 ± 0.10 -0.21 ± 0.07 0.15 ± 0.07

R -0.13 -0.39 0.28

p 0.36 0.00 0.04

Sør-Troms

slope -0.10 ± 0.11 -0.17 ± 0.08 0.11 ± 0.07

R 0.12 -0.28 0.22

p 0.38 0.04 0.11

Indre Troms

slope 0.09 ± 0.11 -0.03 ± 0.08 0.16 ± 0.07

R 0.11 -0.06 0.30

p 0.41 0.66 0.03
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Figure S10. As Fig. 5, but for the balanced data.
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Figure S13. As Fig. 8, but for the North Atlantic Oscillation (NAO) instead of the Arctic Oscillation (AO).
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Figure S16. Polar/Eurasian pattern index for full season (continuous), winter (dashed), and spring (dotted). Shown are annual means (thin)

and 7-year rolling means (thick). The index was downloaded from https://www.cpc.ncep.noaa.gov/data/teledoc/poleur.shtml.
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Figure S17. Scandinavian pattern index for full season (continuous), winter (dashed), and spring (dotted). Shown are annual means (thin)

and 7-year rolling means (thick). The index was downloaded from https://psl.noaa.gov/data/timeseries/month/SCAND/.
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