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Abstract. Snow cover has an important role in permafrost processes and dynamics, creating cooling and warming systems,

impacting the aggradation and degradation of frozen soil. Despite theoretical, experimental, and remote sensing-based research,

comprehensive understanding of small-scaled snow distribution at palsas remains limited. This studycompares two approaches5

to generate spatially continuous, small-scale snow distribution models in palsa mires in northwestern Finland based on Digital

Surface Models: a machine learning approach using the Random Forest (RF) algorithm with in-situ measured snow depth data

and an
:
In

::::
this

:::::
study,

:::
we

::::
used Unmanned Aerial System (UAS) equipped with a Light Detection and Ranging (LiDAR) sensor

::
to

:::::::
generate

:::::::::::::
high-resolution

::::::
Digital

::::::
Terrain

:::::::
Models

:::::::
(DTMs)

::::
and

:::::
derive

::::::::
spatially

:::::::::
continuous

:::::
snow

:::::
depth

:::::
maps

::::
over

:::::
palsa

:::::
mires

::
in

:::::::::::
northwestern

::::::
Finland. For the first time, snow distribution was recorded over a palsa using UAS LiDARdata. The aim is to10

review which approach is more accurate overall and which snow distribution patterns can be identified. In comparison .
::::
The

:::::::
resulting

:::::
snow

:::::
depth

::::
maps

:::::::
showed

::::::::
sufficient

::::::::
accuracy,

::::
with

:
a
::::
root

:::::
mean

::::::
square

::::
error

:::::::
(RMSE)

::
of

:::::
23.49

:::
cm

::::
and

::
an

:::
R2

:::::
value

::
of

:::::
0.691

::::
when

:::::::::
compared to in-situ collected validation data, both the RF results and UAS LiDAR data show sufficient

::::::::
measured

::::
snow

:::::
depth

:::::::::
validation

:::::
data.

::
To

::::::::
enhance

:::
the

:::::::::::
interpretation

:::
of

::::
snow

::::::::::
distribution

::::::::
patterns,

:::
we

::::::
applied

::
a
::::::::
Random

:::::
Forest

:::::
(RF)

:::::::
machine

:::::::
learning

:::::
model

:::::::
trained

::::
with

:::::
in-situ

::::
snow

:::::
depth

::::::::::::
measurements

::::
and

:::::
terrain

::::::::::
parameters

::::::
derived

:::::
from

:::
the

::::
UAS

:::::::
LiDAR15

::::::
DTMs.

::::
This

::::::::
approach

::::::
resulted

::
in

::::::::
improved

:
accuracy, with a

::
an RMSE of 18.33 cm (RF) and 23.49 cm (LiDAR) and

:::
and an R2

::::
value

:
of 0.77respectively 0.691. RF performs particularly well in modeling snow distribution over open water

:::::::::
thermokarst

:
and

vegetated areas, demonstrating the potential of machine learning to capture small-scale patterns based on field observations.

The UAS LiDAR also enables a very detailed analysis of the interactions between snow and permafrost. Both approaches

reveal snow accumulation zones, especially at steep palsa margins and within cracks, where insulation limits frost penetration20

and contributes to degradation processes such as block erosion. In contrast, a thinner snow depth on exposed palsa surfaces

allows deeper frost penetration, which initially stabilizes the ice core but leads to the formation of steep edges and further

degradation.
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1 Introduction

Snow cover plays an important role in permafrost processes and dynamics. Its physical characteristics impact the aggradation25

and degradation of frozen soil (Barry, 2002). In March 2023, around 39.26 million km2 of the northern hemisphere
:::::::
Northern

::::::::::
Hemisphere were permanently or partly covered by

:::
with

:
snow (NOAA, 2023), affecting around 14.77 million km2 permafrost

area (Ran et al., 2022). This includes the discontinuous permafrost areas in northern parts of Sweden, Norway and Finland,

known as Fennoscandia. Due to changes in climate, a reduction in snow cover duration is expected (Quante et al., 2021), leading

to changes of air and soil temperature interactions and resulting in negative impacts for permafrost soils (Chen et al., 2021).30

This has a direct impact on ecological processes, such as a reduced albedo in winter that leads to a higher energy uptake by

soils (Thackeray and Fletcher, 2016) and longer growing seasons (Madani et al., 2023). In addition, Wang et al. (2024) showed

that snow cover – in combination with landscape heterogeneity - plays an important role in controlling soil temperatures

throughout the year. The Intergovernmental Panel on Climate Change (IPCC) already highlighted in their latest report that

a loss of permafrost within this century is expected in these regions (IPCC, 2023). In northern Fennoscandia, particularly in35

northern Finnish Lapland - the main focus of this study - specific periglacial permafrost landforms known as palsas are at risk

of disappearing within this century (Leppiniemi et al., 2023).

The occurrence of palsas, small mounds up to 4 - 7 m height with a frozen core, is bound mainly to the presence of peatlands

and driven by climatic parameters (Meier, 2015; Seppälä, 2011). Palsas serve as indicators of climate warming, as their degra-

dation and disappearance reflect rising temperatures (Leppiniemi et al., 2023). Additionally, they provide important habitats40

for various animal species (Luoto et al., 2004) and hold significant cultural and societal value for indigenous and local com-

munities, particularly in the context of traditional reindeer herding (Markkula et al., 2019). Given their ecological and cultural

importance, monitoring their changes is essential. Palsas are highly sensitive to temperature insulation shifts induced by snow

during winter. Their development is directly influenced by variations in snow depth, which regulate thermal insulation in win-

ter and protect against warm air and sunlight in spring, ultimately affecting Active Layer Thickness (ALT) and soil warming45

(Park et al., 2015; Verdonen et al., 2023, 2024). In winter, deep snow cover insulates the ground, reducing the penetration of

cold temperatures and keeping the underlying soil comparatively warmer. In summer, this accumulated snow delays ground

warming and slows permafrost thawing, resulting in a shallower ALT. These areas are defined as warming areas throughout

this article. They are typically found in depressions, concave terrain, or wind-sheltered locations where snowdrifts accumulate.

Conversely, thin snow cover allows for more intensive winter cooling due to reduced insulation, leading to greater heat loss50

from the ground. In summer, these areas warm up earlier, causing a deeper ALT. Such locations are defined as cooling areas.

They are commonly found in elevated or wind-exposed areas of the palsa, where snow accumulation is naturally limited (Sep-

pälä, 1982; Olvmo et al., 2020). This influence on palsas has been empirically demonstrated by Seppälä (2011), who described

the impact of variable snow cover on palsa thermal dynamics during subsequent thawing periods. Moreover, experiments show

that mainly the depth of snow cover influences the development of palsas (Seppälä, 1982). Deviations from the usual thick-55

ness of snow cover, whether thinner or thicker, induce varying conditions for palsa dynamics. For example, at the steep edges

of palsas, the accumulation of snow can pose a risk by destabilizing the frozen core due to increased thermal insulation at
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these specific areas leading to a higher risk of block erosion (Olvmo et al., 2020; Seppälä, 1994). Despite theoretical, exper-

imental, and remote sensing-based research, comprehensive understanding of actual snow distribution conditions within and

around palsas remains limited (Seppälä, 2011; Verdonen et al., 2023). Although they have high potential for accurate mapping,60

Unmanned Aerial Systems (UAS) have not yet been used to measure snow depth in palsa mires.

Consequently, detailed data on snow distribution in palsa mires is not available. Even if sufficient climate data is made available

through official weather stations, it is the microclimate inside these mires that impacts the snow distribution in various ways,

especially by snow drifts due to strong winds, as monitored by Zuidhoff (2002). Since palsa mires occur mostly in remote

areas, simple interpolation of climatic observations from weather stations within the same region does not provide data on the65

actual state within these mire complexes, which does not allow to monitor
:::::::::
monitoring the exact snow distribution (Verdonen

et al., 2023). Only in-situ measured snow depth data can provide clear insights into these conditions. However, to date and to

our knowledge, no small-scale mapping of snow depth in palsa mires has yet been carried out.

Measuring snow depth manually demands a relatively high workload in time and effort under mostly harsh climatic conditions.

Thus, measurements of snow depth over a long time span without technical help have been undertaken in Finnish Lapland by70

only a few researchers, e.g. by Leppänen et al. (2016), who describe the snow survey program by the Finnish Meteorological

Institute (FMI) that was established in 1909 in Sodankylä. Statistical evaluations of collected data at weather stations were

published for whole Finnish Lapland (Merkouriadi et al., 2017).

The use of remote sensing data and methods to monitor snow depth has become increasingly important in snow research.

Optical and radar satellite data have been widely utilized to map snow distribution (Marti et al., 2016; Hu et al., 2023), but their75

coarse resolution limits their effectiveness, particularly in capturing small-scale variations in ground surface conditions. Small-

scale structures, such as palsas, exhibit substantial snow depth heterogeneity, making satellite-derived datasets unsuitable for

analyzing these localized processes. To improve spatial resolution, UAS RGB-derived photogrammetry has been increasingly

used for high-resolution snow depth mapping. With small grid sizes (10 cm × 10 cm or 5 cm × 5 cm), these methods provide

detailed snow depth estimates. Bühler et al. (2016) and Michele et al. (2016) successfully applied this approach to directly map80

snow depth in alpine terrain, while Rauhala et al. (2023) and Meriö et al. (2023) evaluated the accuracy of UAS RGB surveys

in Finnish Lapland, showing that they can produce spatially representative snow depth estimates. However, RGB-derived

approaches face challenges in capturing the ground surface, particularly in environments with dense vegetation as suggested

by Walker et al. (2021), who explored the accuracy of UAS RGB-derived snow depth mapping and suggested that an approach

that better filters out vegetation could improve the mapping results. Recently, UAS equipped with Light Detection and Ranging85

(LiDAR) sensors have been introduced as an alternative for snow depth monitoring. Unlike RGB sensors, which passively

capture optical images, LiDAR actively emits laser pulses and measures their return time to generate high-resolution, three-

dimensional surface models. Harder et al. (2020) demonstrated that LiDAR can accurately capture vegetation, allowing for its

removal from ground surface data, which significantly improves snow depth estimation. Similarly, Jacobs et al. (2021) showed

that LiDAR-based
:::::::::::::
LiDAR-derived

:
vegetation filtering enhances snow cover mapping in forestry and open areas. Given the90

limitations of satellite data in resolving small-scale snow depth variations and the challenges of RGB-based photogrammetry
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in vegetated terrain, we employ UAS LiDAR to generate high-resolution snow depth models. Its ability to capture vegetation

and provide precise elevation data makes it particularly suitable for monitoring snow depth in subarctic permafrost landscapes.

Another method to estimate snow distribution is the application of statistical machine learning models like the Random Forest

(RF) algorithm (Breiman, 2001). RF is a widely used method of ensemble learning that is characterized by complex, non-linear95

relationships between predictor variables and is therefore suitable for environmental modeling. In snow research, RF has been

used primarily for large-scale mapping of snow distribution in mountainous regions (Meloche et al., 2022; Revuelto et al.,

2020; Richiardi et al., 2023), where it has demonstrated good predictive capabilities through the integration of remote sensing,

topographic and meteorological data. However, these studies mainly focused on coarser spatial scales with resolutions of more

than 1 m × 1 m, which limits their applicability for analyzing small-scale snow distribution patterns. To our knowledge, RF100

has not yet been systematically applied to high-resolution snow depth modeling in subarctic and permafrost environments,

such as Finnish Lapland. As small-scale variations in snow depth play a crucial role in permafrost dynamics, investigating the

feasibility of RF for such detailed applications could provide valuable insights for future research and monitoring needs.

In this study, we compare and evaluate two methods for generating high-resolution snow distribution maps at three exemplary

palsa sites in northernmost Finland: (i) snow depth derived from UAS LiDAR data and (ii) snow depth simulated using a
::
an105

RF modeling approach. In-situ measured snow depth data was
:
is
:
used to train the RF model as well as to validate the results

obtained with both methods. The primary objective of this study is to assess the accuracy and suitability of these methods for

small-scale snow distribution mapping. Specifically, we investigate whether RF can effectively model small-scale snow depth

patterns, providing a cost-effective alternative to UAS LiDAR methods. In addition, we investigate the spatial distribution of

snow depth at palsas and their surroundings based on the results of the methods to identify characteristic small-scale variation110

patterns. The results provide a basis for discussing relationships between snow distribution and palsa dynamics. To address

these objectives, we focus on the following research questions: (1) How accurately can UAS LiDAR and RF modeling estimate

snow depth, and which approach provides the most reliable results,
::
and

:
(2) and how do the snow depth patterns derived from

UAS LiDAR and RF modeling compare, and what does this reveal about small-scale snow distribution?

2 Study sites115

The palsa sites under investigation - Puolikkoniva, Pousu and Peera - are located ca. 30 km south from the closest Finnish

Meteorological Institute‘
:
’s (FMI) weather station in Kilpisjärvi, Finland (Fig. 1). These sites are located along the Könkämäeno

river, a significant terrain depression with numerous palsas, and are adjacent to the region‘
:
’s primary main road (European

Route E8) in the northwestern part of Finnish Lapland (Fig. 1 (a, b)). While Peera has been previously described by Verdonen

et al. (2023), Pousu and Puolikkoniva were not yet investigated.120
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Figure 1. Location of the study sites Puolikkoniva, Pousu and Peera in north-western Finland (a). Climate data used in this study are from

the Kilpisjärvi weather station, from which the distance to the palsa sites is around 20 km (b). Basemaps obtained from EuroGeographics

(2024).

2.1 Palsa mire sites

Puolikkoniva is located approximately 2.3 km south of lake Peerajärvi at 68°51’43" N, 21°06’18" E and around 455 m a.s.l,

surrounded at the eastern part by the Könkämäeno river and in
::::::
extends

::
to

:
the west by the main road. The study site has an area

of roughly 4.26 ha
:
, with a maximum height difference to the surrounding peatland of ca. 2 m. This palsa is about 590 m in

length and 130 m in width. Puolikkoniva is a prototypical longitudinal plateau palsa, consisting of several single and complex125

shaped palsas. According to the definition of Seppälä (2006) and Meier (2015), the palsas contain a perennially frozen core of

peat with segregated ice. Numerous cracks traverse the palsa site, with dwarf shrubs (5 - 20 cm high, e.g. Rubus chamaemorus,

Empetrum hermaphroditum) and dwarf birches (5 - 60 cm high, Betula nana) at the edges, while atop and around the palsas,

typical vegetation such as lichens (up to 3 cm high, e.g. Cetraria spp., Cladonia spp.) and sphagnum mosses (under 3 cm high,

e.g. Sphagnum lindbergii) dominates. The absence of distinct dome-shaped structures and the presence of thermokarst ponds130

within the palsa structure indicate the degradation of the palsa (Seppälä, 2011), with pronounced block erosion at steep edges.

Pousu is located approximately 600 m east of the Puolikkoniva palsa at 68°51’39" N, 21°07’17" E and around 470 m a.s.l.,

150 m east of the main road. This study site covers an area of about 0.36 ha and has a maximum height difference to the

surrounding peatland of ca. 2.5 m. This site, measuring 130 m in length and 50 m in width, is a classic example of a degrading
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dome-shaped palsa, as shown by collapsed parts, block erosion at its steep edges and thermokarst ponds within the former135

palsa structure. Similar to Puolikkoniva, typical palsa mire vegetation grows around and on it.

Peera is located at 68°52’45” N, 21°04’35” E and around 460 m a.s.l., approximately 400 m south of lake Peerajärvi and 100

m west of the main road. This study site encompasses an area of about 0.13 ha and has a maximum height difference to the

surrounding peatland of ca. 2 m. This palsa is about 55 m in length and 45 m in width. The palsa structure is surrounded by

typical peatland vegetation such as sphagnum mosses and sedges. Water bodies, peat and bare rock structures can be found at140

the edges of the palsa. Mainly lichens and dwarf shrubs grow on top of the palsa. Similar to Pousu, this palsa is also dome-

shaped and in a degrading phase. Verdonen et al. (2023) point out a significant decrease in the surface area of the palsa during

the past 15 to 60 years.

Table 1. Main characteristics of each palsa site. Images recorded with DJI mini 3 Pro UAS at 30.08.2023.

Puolikkoniva Pousu Peera

UAS image

Location 68°51’43" N, 21°06’18" E 68°51’39" N, 21°07’17" E 68°52’45” N, 21°04’35” E

Area 4.26 ha 0.36 ha 0.13 ha

Extent (length, width) 590 m, 130 m 130 m, 50 m 55 m, 45 m

Height 2 m 2.5 m 2 m

2.2 Climate

The investigation areas are located on the pre-alpine belt of the Scandes. For the time period 1991 - 2020, the annual mean145

temperature is -1.30 °C, the annual mean precipitation amount is about 515 mm and the dominating wind direction is south-

southeast from November to April (FMI, 2022). Higher mountains influence local weather conditions, e.g. clouds get held

in front of mountains or wind directions are influenced (Autio and Heikkinen, 2002). This may lead to different precipitation

amounts or wind directions and speeds than measured at the Kilpisjärvi weather station (Verdonen et al., 2023). Also, high wind

speeds during winter can lead to a more intensive snow drift, influencing the snow distribution inside the mire sites (DeWalle150

and Rango, 2008).

The palsa mire sites are affected by cold winters and moderate warm summers (Fig. 2). Winter is the longest season, lasting

about 200 days including the polar night
:
, with around 50 days without sunlight. During winter

:
, the temperature can drop close

to - 50 °C and can increase above 0 °C (FMI, 2024). In Kilpisjärvi, the duration of permanent snow cover lasts about 217 days

a year (Lépy and Pasanen, 2017). During spring, the snow cover melts away, and the growing season starts in late May. In late155

August the growing season ends with the beginning of autumn which lasts around 102 days (Kauhanen, 2013).
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Figure 2. Climate chart of Kilpisjärvi (FMI, 2022). Climate data measured at 69.03905N, 20.81379E and 474 m.a.s.l. in the period 1991 -

2020. Dotted line shows 2 m above ground temperature in °C, dashed line shows precipitation in mm and solid line shows snow depth in cm.

The Köppen-Geiger climate classification is Dfc.

3 Data and methods

In late August 2022 and late March 2023, field expeditions to the palsa mire sites were conducted to collect a comprehensive

dataset consisting of UAS LiDAR data and in-situ snow depth measurements for modeling purposes. Late August was chosen

specifically for the collection of summer data as it corresponds with the peak of the growing season and the maximum ALT,160

which typically occurs in this region by the end of August and mid-September, depending on annual weather patterns and the

onset of frost (Verdonen et al., 2023). This timing ensures the capture of the landscape’s conditions in its various states before

the start of the winterseason
:::::
winter, providing the basis for extracting relevant input parameters for our approach. The input

parameters are spatial datasets calculated on the basis of elevation data derived from UAS LiDAR.

On the contrary, late March was chosen for the the winter dataset based on historical climatological patterns in the Kilpisjärvi165

region, which typically have maximum snow depths at this time (FMI, 2024). This period allowed the collection of data under

conditions that reflect winter extremes, which serves as both validation and training data for the RF modeling. Figure 3 shows

an overview of the different steps carried out for this work.
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Figure 3. General overview of the data collection and analysis.

3.1 UAS Data

3.1.1 UAS data collection170

For the initial collection of UAS LiDAR data to generate input parameters, aerial surveys were conducted at all three study

sites on August 27, 2022, using a DJI Matrice 300 RTK, equipped with a YellowScan Mapper+ LiDAR system that scanned at

a wavelength of 905 nm. The flight altitude was 30 m for each palsa, with a 50% side overlap. The flight direction was along

the longitudinal axis of the palsas, except for Peera palsa, which followed an east-west orientation. The flight trajectories are

pictured in Fig. 4. To improve the accuracy of the collected data, we used Ground Control Points (GCPs), measured with a175

Trimble R12i Real-Time Kinematic (RTK) GNSS. We have established several permanent GCPs located on known points of

large stones in the study sites. Permanent GCPs have been established because we are monitoring changes in the palsas by

collecting drone data annually since the past 8 years. The accuracy of these RTK GPS-measured GCPs is between 1–2 cm. For

all UAS LiDAR summer flights we utilized these GCPs: three for Peera, 20 for Pousu, and 30 for Puolikkoniva.

The winter survey replicated the methodological framework of the summer survey, using the same drone and sensor. The flights180

for all three study sites were carried out on March 23 (Puolikkoniva and Pousu) and 24 (Peera), 2023. The flight altitude was

60 m, with a 50% side overlap. The flight direction was along the longitudinal axis of each palsa (see Fig. 4). For each side we

used four GCPs, positioned around the palsa. The accuracy for each GCP is between 1 - 2 cm.

In addition, high-resolution RGB images were captured with an Autel EVO II Pro V2 to create an orthopicture in Agisoft

Metashape Professional software of each palsa site during both surveys, enabling a comprehensive analysis of the site’s condi-185
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tions. The flight altitude was 80 m, with a 75% side overlap for each flight. The RGB flights were conducted using the drone’s

internal RTK system.

3.1.2 UAS data post-processing

The acquired LiDAR data were post-processed using YellowScan CloudStation, resulting in point clouds for each flight. Mean

point densities per square meter vary from 1064 (summer) to 831 (winter) for Peera site, 308 to 338 for Pousu site and 260190

to 313 for Puolikkoniva site. To refine the flight trajectories, we used Receiver Independent Exchange Format (RINEX) data

in the Position and Orientation System Post-processing software (POSPac). For each dataset, we obtained RINEX data from

the continuously operating reference station (CORS) of the National Land Survey of Finland (NLS) in Kilpisjärvi (KILP

2147250.4266 820562.0462 5930136.8831).

For noise and vegetation removal in the dataset, we used the progressive Morphological Filter (PMF) described by (Zhang195

et al., 2003) and (Jacobs et al., 2021) in order to receive Digital Terrain Models (DTM). We applied the filtering using window

sizes of 0.5, 1, 2 and 3 and thresholds of 0.05, 0.1, 0.3 and 0.5. The extracted ground points were saved in point cloud format.

Using the software CloudCompare, we generated a DTM for each flight mission in 0.1 m x 0.1 m resolution with the Rasterize

function. Empty cells within the point clouds were interpolated with a triangle max edge length value of 5.0.

Based on the summer and winter DTM of the palsa sites, snow distribution datasets were calculated by substracting
:::::::::
subtracting200

the winter by the summer DTM in Geographic Information Systems (GIS) -
::::
using

:
ArcGIS Pro by Esriwas used -, allowing the

comparison of UAS LiDAR conducted snow depth (SDLiDAR) and RF modeled (SDRF).

3.2 Reference data collection

Additional datasets that are essential for modeling and validation were collected after the respective flights. Snow depth mea-

surements (SDin-situ) were carried out manually using a wooden yardstick across all sites, whereas each point was measured at205

the snow cover surface by RTK GPS to receive the exact location. On March 23, 2023, SDin-situ were measured in Puolikkoniva

and Pousu and on March 24, 2023, in Peera. A total of 185 validation points were recorded, divided across the sites as follows:

100 in Puolikkoniva, 46 in Pousu, and 39 in Peera (Fig. 4).

To ensure the derivation of a diverse SDin-situ training dataset, different measurement network designs were attempted at each

site, customised to the unique geomorphological features of the palsa mires, making sure to catch points on top of the palsa, at210

the edges and at the steep slopes, on the thermokarst ponds and the surrounding field as at those parts differences in snow depth

can be expected. In Pousu, a randomised sampling strategy was applied with focus on the palsa edges and summits (Fig. 4 b).

In Puolikkoniva, there were two parallel transects measured following its longitude shape and complemented by randomised

points at the edge, thermokarst and surrounding field (Fig. 4 a). The Peera approach consisted of two intersecting transects,

augmented by a set of randomly chosen points along the edge (Fig. 4 c). This training dataset captures the variability of snow215

cover within palsa mires, ranging from snow-free palsa summits to deeply covered palsa edges, allowing a distribution of all

SDin-situ into point classes Edge, On Top, Open Area and Thermokarst. A histogram of SDin-situ can be viewed in Appendix A1

and the distribution to the respective classes in Appendix A2.
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Figure 4. Snow depth measuring points within the investigation sites at Puolikkoniva (a), Pousu (b) and Peera (c) palsa illustrating different

methods for recording snow depth (transects, randomized, crossed).

3.3 Modeling data preparation

The collected LiDAR data from the summer flight missions were used to create the input parameters for the RF modeling in220

SAGA GIS by SourceForge. For that, we used the created DTMs as input for the creation of all parameters and afterwards

resampled these raster
:::::
rasters

:
to the same extent and resolution in ArcGIS Pro, making it suitable for analysis with the RF

algorithm.

Subsequently, SAGA GIS was used for the computation of various geomorphological parameters to enhance the training dataset

with a diverse range of topographical and environmental predictors. These predictors included elevation, aspect, slope, and a225

range of indices comprising hydrological and morphological landscape features (Table 2). According to Meloche et al. (2022)

and Revuelto et al. (2020), the Topographic Position Index (TPI) is of great relevance when modeling snow distributions due

to its proven importance for representing dependencies between topography and snow depth.
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Table 2. Overview of all input parameter used in the RF modeling.

Parameter Description

Aspect Aspect in degree of every raster cell (Olaya, 2009).

Channel Network Base

Level

Provides information about channel networks and interpolates the base level elevations of it (Olaya and

Conrad, 2009).

Channel Network Distance Gives information about the vertical distance from altitudes above the channel network to its base (Olaya

and Conrad, 2009).

Elevation The elevation calculated from remote sensing data in Agisoft Metashape Professional.

Negative Openness Parameter which indicates how enclosed the location of a landscape is (Yokoyama et al., 2002).

Positive Openness Parameter which indicates how dominant the location of a landscape is (Yokoyama et al., 2002).

Relative Slope Position Provides a measure of each cell’s position in relation to the surrounding terrain (Böhner and Selige, 2006).

Slope Slope in degree of every raster cell (Olaya and Conrad, 2009).

Topographic Position Index Describes the relative elevation of a point compared to its surrounding terrain and is used to classify land-

forms. Positive values indicate ridges, negative values indicate valleys, and values near zero represent flat

or uniform slopes (Guisan et al., 1999; Wilson and Gallant, 2000).

Valley Depth Calculates the depth of valleys by finding the difference between each cell’s elevation and an interpolated

ridge level, where positive values indicate areas below the interpolated ridges, representing valleys, and

negative values describing elevated regions like hills or ridges (Conrad et al., 2015).

Wind Effect The index is a dimensionless measure used to assess terrain exposure relative to a specific wind direction.

Values below 1 indicate areas sheltered from the wind, while values above 1 refer to regions exposed to

wind (Gerlitz et al., 2015).

Wind Exposition It assesses the overall terrain exposure to wind by considering all possible wind directions (Gerlitz et al.,

2015). Unlike Wind Effect, this index calculates an average exposure value across multiple directions. Values

below 1 indicate sheltered areas, while values above 1 signify wind-exposed regions.

3.4 Random Forest algorithm

For the modeling process, we used the ranger package (Wright and Zigler, 2017) within the R programming environment,230

which is known for its ability to efficiently process large datasets and accounts for complicated predictor interactions. The

preparatory steps included aggregating the various input parameters into a uniform raster stack, conducted by the stack function

from the raster package (Hijmans et al., 2023), ensuring spatial alignment across all layers.
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The dependent variable for our model was the previous described SDin-situ. These measurements, together with the stacked

input parameters (Table 2) as independent variables, formed the basis of our RF model. The SDin-situ locations, serving as the235

training dataset, were buffered by 0.3 m, with each buffered point assigned to the corresponding snow depth value. The process

of extracting input parameter values from the stacked raster set was performed by randomly separating 70% of the point

features from each SDin-situ dataset for training and 30% for testing. After this separation we extracted the input parameter

values for the training dataset, ensuring a clear distinction between training and testing data. The input parameters were not

averaged within the buffer areas; instead, each parameter value was directly linked to the respective SDin-situ measurement.240

Consequently, each snow depth value is associated with an average of 28 input parameter values, leading to a dataset consisting

of 3645 training values (Puolikkoniva 1983; Pousu 905; Peera 757) and 1577 test values (836; 401; 340). The buffering strategy

aimed to moderate model variability, reduce noise, minimize the influence of geolocation and sampling errors, and enhance

the robustness of the model by increasing the number of training points. By incorporating groupings of nearby points rather

than relying on single-point measurements, this approach helps improve the model’s stability and realism, as demonstrated in245

Bergamo et al. (2023). To prevent errors and miscalculations, all NoData values were removed from the datasets, resulting in

a final training dataset of 3504 points and a final test dataset of 1548 points for further modeling and validation.

To determine the optimal values for mtry, min.node.size, and sample fraction, we performed hyperparameter tuning using the

mlr package in R (Bischl et al., 2016). To prevent overfitting, we restricted the search range for min.node.size to 10–15 and

for sample fraction to 0.7–0.85, following the recommendations of Probst et al. (2019) and Breiman (2001). Allowing an250

unlimited search range initially resulted in better model performance, but at the cost of reduced generalization, indicating signs

of overfitting. We selected the final search range based on multiple test runs with different settings. For cross-validation, we

tested different fold sizes to identify the most effective configuration. The best results were achieved using a 4-fold cross-

validation. The final tuned hyperparameters values were as follows: mtry: 9; min.node.size: 10; sample fraction: 0.79.

Permutation mode was chosen for variable importance assessment, and a specific seed value was implemented to ensure repro-255

ducibility of the results. For more robustness, we repeated the calculation 100 times to obtain a mean permutation importance

(PI) value for each input parameter, ensuring reliable rankings. The resulting PI values for each input parameter were normal-

ized for better comparison by setting the most important parameter to 1. Subsequently, the trained RF model was employed to

calculate SDRF predictions across each palsa site by using the predict function.

Additionally, a correlation analysis between the input parameters and predicted SDRF was performed to identify any correlating260

predictors and assess the strength of the relationships between them and the prediction. Correlation values for all input param-

eter are listed in Appendix A3. Furthermore, the RF model was run three additional times to ensure a fully external validation.

In each run, one palsa site was excluded from the training data, allowing its measured SDin-situ values to be used exclusively

for validation.

3.5 Statistical analysis265

The statistical analysis focused on evaluating the predictive accuracy of the model. The following metrics were summarized

for all palsa sites and calculated in the R environment:
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1. Coefficient of Determination (R2): Calculated to quantify the proportion of variance in the dependent variable that is

predictable from the independent variables in the model (Nagelkerke, 1991), giving clearance about the overall effec-

tiveness of the model, defined as270

R2 = 1−
∑

(yi − ŷi)
2∑

(yi − ȳ)2
(1)

2. Root Mean Square Error (RMSE): Employed to quantify the average magnitude of the error in the predictions (Chai

and Draxler, 2014), highlighting the ability of the model to predict snow depth accurately, defined as

RMSE =

√
1

n

∑
(yi − ŷi)2 (2)

3. Mean Absolute Error (MAE): Measures the average magnitude of the absolute errors between predicted and observed275

values, without considering their direction (Chai and Draxler, 2014; Willmott and Matsuura, 2005), defined as

MAE =
1

n

n∑
i=1

|yi − ŷi| (3)

4. Standard Deviation (SD): Provides a measure of the dispersion of prediction errors around their mean (Walser, 2011),

revealing the precision and consistency of the predictions, defined as

SD =

√√√√ 1

n− 1

n∑
i=1

(yi − ŷi)2 (4)280

where yi is the observed value, ŷi is the predicted value from the model, ȳ is the mean of observed values.

To visualize the statistical analysis results, scatter plots were created to compare RF and UAS LiDAR derived snow depths

with the test dataset values.

4 Results

4.1 Snow depth predictions285

In general, the predicted SDRF present a good visual alignment with the calculated SDLiDAR (Fig. 5).

The Puolikkoniva palsa site is affected by several collapsed areas, in which snow accumulates heavily. This can be seen in the

SDRF (Fig. 5 a) as well as in the SDLiDAR (Fig. 5 b) results. At the eastern side of the palsa, RF models the snow depth inside

these collapsed holes and cracks higher than the UAS LiDAR was detecting it. Especially directly at the steep edges of the

palsa, the depth values increase up to 20 - 40 cm, partly up to 60 cm. At the western side of the palsa, SDLiDAR is higher at these290

parts with values increasing up to 20 - 40 cm compared to SDRF. However, the transition of the snow depths better corresponds

to changes at slopes on the UAS LiDAR results, as the RF model reveals obvious patterns. The most obvious differences are

occurring in areas beneath the palsa itself, for example the whole northeastern and eastern parts directly at the edge of the
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palsa, which have higher snow depths (up to 60 cm) predicted by RF than detected based on the UAS LiDAR data. Within the

open area beneath the palsa, SDLiDAR is higher (up to 50 cm), following areas with higher vegetation. The most similar parts295

are the areas on top of the palsa with differences between both datasets under 15 cm, partly 20 cm.
:::
The

::::
UAS

:::::::
LiDAR

::::::
dataset

:::::::
includes

:::::::
negative

:::::
snow

:::::
depth

::::::
values,

:::::
which

:::::
result

:::::
from

::::::::
elevation

::::::::::
mismatches

:::::::
between

:::
the

:::::::
summer

:::
and

::::::
winter

::::::
DTMs.

::::::
These

::
are

:::::::::
visualized

::
in

:::
red

::
to

:::::::::
distinguish

:::::
them

::::::
clearly

::
in

::::::
Figure

::
5.

The Pousu palsa site shows a similar pattern as in the Puolikkoniva palsa site, with cracks filled by snow and collapsed parts

with steep slopes where snow accumulated heavily (Fig. 5 c, d). Again, the transition of the snow depth at those areas is more300

natural in the SDLiDAR data since the SDRF data are showing sharp steps. Also, mire areas next to the palsa are observed by

UAS LiDAR with lower snow depth as modeled with RF. This is especially visible in the southwestern and southern parts

of the area, where snow depth was modeled between 40 – 50 cm and the UAS LiDAR detected values between 10 – 20 cm.

However, similarities are visible on top of the palsa, where snow depths were modeled and observed in a range between 10 to

:::
and 30 cm each.305

The Peera palsa site shows the highest consistency between SDRF and SDLiDAR. However, as in the two former sites, the highest

snow depth accumulated in cracks and at the steep edges of the palsa (Fig. 5 e, f). Unlike at the other locations, there are no

sharp steps at the parts mentioned here, as both approaches model smooth transitions. Similar structures are also visible on top

of the palsa with snow depths around 20 cm in each approach. However, differences are visible like at the two other palsa sites

in the surrounding area of the palsa, where the snow depth is calculated higher by RF than the UAS LiDAR detected it. Higher310

snow depths were also calculated with RF on the northwestern edge of the Palsa than measured with LiDAR (up to 30-50 cm).

Viewing the deviations in snow depth between the two approaches, it is evident that the top parts of the palsa sites themselves

show very low differences (Fig. 6 a, b, c). However, deviations occurred at the edges, inside of cracks, at the highest parts of

the palsa and in the surrounding areas. Within cracks on top of the palsa sites, the UAS LiDAR detected in general higher

snow depth than RF modeled it, except for the eastern side of Puolikkoniva palsa, where it is the other way around. Differences315

of around 20 cm are shown, but with peaks up to 60 cm. Also, highest elevated structures of the palsa sites directly at edges

show deviations of about 15 - 40 cm higher snow depth calculated by the UAS LiDAR, except for Peera palsa. In contrast,

the collapsed parts with accumulated snow are consistently modeled with higher values exceeding 45 cm of deviation to the

UAS LiDAR derived values. Notably, deviations in the areas surrounding the palsas are primarily characterized by higher snow

depths predicted by the RF model
:
, with exception for areas with higher vegetation at Puolikkoniva palsa site.320
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Figure 5. Snow depth predictions based on the RF model (left) and the UAS LiDAR (right) at site Puolikkoniva (a, b), Pousu (c, d) and Peera

(e, f) palsas. Red points are showing
:::::
indicate

:
SDin-situ locations

::
and

:::::::
represent

::::::::
measured

::::
snow

::::
depth.

::
In

::
the

::::::
LiDAR

::::::
results,

:::::::::
red-colored

::::
areas

::::::::
correspond

::
to

::::::
negative

::::
snow

:::::
depth

:::::
values,

:::::
which

:::::
result

::::
from

:::::::
elevation

:::::::::
mismatches

::::::
between

:::
the

::::::
summer

:::
and

:::::
winter

::::::
DTMs.
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Figure 6. Snow depth differences between modeled and UAS LiDAR results at a) Puolikkoniva, b) Pousu and c) Peera palsas.

4.2 Variable importance

The calculated PI values of all parameters are pictured in Fig. 7. The four most important parameters are TPI, Wind Exposition,

Elevation,
:
and Channel Network Base Level, while TPI is the most important parameter and set to 1. It is more than four

times more important
::::::::
significant

:
than the two following parameters Wind Exposition (around 0.14) and Elevation (0.13). In

addition, Channel Network Base Level (0.12), Wind Effect (0.08) and valley Depth (0.07) are also of substantial importance.325

The remaining input parameter Positive Openness, Channel Network Distance, Relative Slope Position, Negative Openness,

Slope, Aspect possess lower importance than 0.04.
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Figure 7. Overview of normalized mean Permutation Importance values from RF modeling over 100 iterations.

4.3 Statistical evaluation results

The statistical analysis of the general (Table 3) and validation point locations accuracy (Table 4) reveals comparable high

accuracy of SDRF and SDLiDAR. The RF modeling dataset has slightly better statistical validation metrics than the SDLiDAR330

dataset with a RMSE of 18.33 cm compared to 23.49 cm. Furthermore, R2, MAE and SD are better in the RF modeling with

values of 0.770, 13.26 cm and 18.11 cm compared to 0.691, 17.49 cm and 20.84 cm. The external validation results of the RF

modeling dataset for each palsa (Table 3) indicate the best performance at the Peera site, with an RMSE of 16.67 cm and an

R2 of 0.628. At the Pousu site, the RMSE is higher (21.31 cm), but the R2 improves to 0.767. The Puolikkoniva site shows the

weakest performance, with both metrics being the lowest: an RMSE of 27.13 cm and an R2 of 0.578.335

When analysed by point groups, the SDRF and SDLiDAR results show strong similarities for the On Top and Edge classes, while

the Thermokarst and Open Area classes exhibit better metrics in the SDRF dataset. RMSE and MAE values are identical for

both datasets in the On Top (8.33 cm, 3.84 cm) and Edge (13.12 cm, 5.85 cm) groups, but R2 is higher for SDRF (On Top: 0.841,

Edge: 0.894) compared to SDLiDAR (0.730, 0.768). A similar trend is observed for standard deviation, with values of 8.32 cm

versus 10.83 cm in the On Top class and 12.82 cm versus 19.09 cm in the Edge class. The Thermokarst class consistently shows340

better metrics in SDRF compared to SDLiDAR, with RMSE of 10.99 cm compared to 33.73 cm, R2 of 0.893 to 0.592, MAE of

5.42 cm to 30.35 cm and SD of 10.69 cm to 25.08 cm. A similar pattern is observed for the Open Area class, where RMSE

improves from 14.23 cm (SDLiDAR) to 4.45 cm (SDRF), R2 from 0.519 to 0.926, MAE from 9.84 cm to 1.56 cm, and SD from

12.59 cm to 4.40 cm.
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Table 3. Overview of the calculated Root Mean Square Error (RMSE) in cm, Coefficient of Determination (R2), Mean Absolute Error (MAE)

in cm and Standard Deviation (SD) in cm for RF- and UAS LiDAR-derived snow depth estimations. Additionally, external validation results

(RMSE and R2) for RF-modeled snow depth at each palsa site (Peera RF, Pousu RF, Puolikkoniva RF) are provided.

Parameter RF LiDAR UAS Peera RF Pousu RF Puolikkoniva RF

RMSE 18.33 23.49 16.67 21.31 27.13

R2 0.770 0.691 0.628 0.767 0.578

MAE 13.26 17.49 -
::::
12.56

:
-
::::
15.78

:
-
::::
21.44

SD 18.11 20.84 -
::::
15.70

:
-
::::
19.63

:
-
::::
26.82

Table 4. Overview of RMSE in cm, R2, MAE (cm) and SD (cm) divided by validation point locations within the investigation areas.

RMSE R2 MAE SD

RF LiDAR RF LiDAR RF LiDAR RF LiDAR

On Top (n = 69) 8.33 8.33 0.841 0.730 3.84 3.84 8.32 10.83

Edge (n = 66) 13.12 13.12 0.894 0.768 5.85 5.85 12.82 19.09

Thermokarst (n = 16) 10.99 33.73 0.893 0.592 5.42 30.35 10.69 25.08

Open Area (n = 26) 4.54 14.23 0.926 0.519 1.56 9.84 4.40 12.59

The presented scatter plots of both approaches (Fig. 8) are revealing further insights into the accuracy of the results. Both345

SDLiDAR (left plot) and SDRF (right plot) show a positive correlation with the SDin-situ. The regression line in both plots closely

follows the expected trend, showing that both methods capture snow depth patterns well. The SDLiDAR
::
RF have

::::::
results

::::::
exhibit

a tighter spread around the regression line, indicating lower variance compared to the SDRF:::::LiDAR.
::::
This

::
is

:::::::::
consistent

::::
with

:::
the

:::::::
standard

::::::::
deviation

:::::
values

::::::::
reported

::
in

:::::
Table

::
4,

:::::
where

:::::
SDRF:::::

shows
::
a
:::::::
13–65%

:::::
lower

::::::
spread

:::::
across

:::::::::
validation

:::::
point

::::::
groups. The

spread of residuals (black dots deviating from the regression line) increases with snow depth in both cases, indicating
:::::::
indicate350

larger uncertainty for deeper snow, while the confidence intervals remain narrow at lower snow depths. A single negative outlier

is present for SDLiDAR.

In addition, the correlation analysis between the input parameters and SDRF reveals a strong negative correlation with TPI

(-0.87) and Wind Exposition (-0.80). Moderately high negative correlations are observed for Wind Effect (-0.50), Positive

Openness (-0.50), Relative Slope Position (-0.49), and Channel Network Distance (-0.45). The only moderately high positive355

correlation is given for Valley Depth with 0.50. All other parameters show low correlation, with values close to zero.
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Figure 8. Scatter plots with regression lines for UAS LiDAR-derived and RF-modeled snow depths, based on the external test dataset.

5 Discussion

5.1 Analysis of RF and LiDAR snow mapping

The statistical analysis of SDRF and SDLiDAR demonstrates statistically significant and reliable results for both approaches. The

overall metrics of RMSE and R2 for RF and LiDAR
:
, indicating a slightly better performance of the RF model in mapping360

snow distribution (Table 3). This trend is also evident in the visual comparison, though a more detailed examination reveals

important differences between the two methods. The external validation across all palsa sites confirms the sufficient accuracy

of the RF model (Table 3), while the scatter plots (Fig. 8) show a strong consistency between the two approaches.

In both approaches, the upper parts of the palsa, which are relatively flat and covered with low vegetation, have similar snow

depth values. This is also confirmed by the identical RMSE for the point group On Top (Table 4). Since these areas are well365

represented in the training dataset for the RF approach and the surface captured by UAS LiDAR changes only slightly between

summer and winter in the stable area of the palsa, both methods perform well in estimating snow depth. The accuracy of the

RF models depends to a large extent on the quality of the training data, which is the reason why a well-distributed dataset is

essential. However, as the surface variations on the top of the palsas are minimal, the acquisition of representative training data

is relatively easy, which explains the high accuracy of the model in these areas. The same considerations apply to the UAS370

LiDAR data. Due to the low vegetation cover, only minimal vegetation removal was required during post-processing, reducing

potential sources of error in these areas. However, the seasonal changes in ground level in palsa mires must also be taken into

account. Frost heave and subsidence cause natural height variations of several centimeters between summer and winter, as

recently described by Renette et al. (2024). If the UAS LiDAR dataset is acquired in spring immediately after snowmelt, when

the ALT has reached its minimum thawing depth, such effects could be minimized. In addition, RTK GPS point data from field375

measurements in winter and summer could help to correct elevation differences by calculating mean elevation shifts. However,
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this method has its own challenges, as measuring ground level in winter is difficult due to the overlying snow cover. These

seasonal variations in elevation should be carefully considered when deriving snow distribution from multi season DTMs. In

contrast, RF is expected to be less affected by this problem as the modeled snow depth values are derived from training data

and are not directly based on the absolute elevation differences between summer and winter datasets.380

Similar patterns are observed for the steep edges of the palsa. While the RF model performs lowest for the Edge point class

within its own results, the LiDAR approach achieves its second best performance in this category. Despite these internal

differences, both methods produce identical RMSE values of 13.12 cm (Table 4). However, when interpreting LiDAR data,

there are additional challenges at the palsa edges due to continuous degradation processes that lead to differences between the

summer and winter DTMs. During summer data collection, palsa edges are recorded before block erosion occurs, meaning385

that loose soil remains intact. By winter, block erosion and soil displacement may alter the terrain, leading to higher deviations

between the DTMs. As a result, the SDLiDAR values are artificially increased even though the actual snow depth is lower. A

similar problem arises if cracks form after data collection in summer, which accumulate snow in winter and further increase

the calculated snow depths. At the same time, these degradation processes are also not considered in the RF approach, as the

summer dataset was used to derive all input parameters. This explains why RF struggles the most at the edges. In addition, the390

redistribution and accumulation of snow on steep slopes is a highly dynamic and chaotic process that is difficult to capture with

high precision.

In contrast to other areas of the palsa, the RF and UAS LiDAR approaches show the lowest agreement over open water

::::::::::
thermokarst

::::
pond

:
areas, which is reflected in the statistical metrics for the Thermokarst point class. While the RF model

estimates snow depth in these areas more accurately than at the palsa edges, UAS LiDAR performs lowest in this category.395

This can be attributed to
::::::::
Although

:::::
these

::::
areas

:::
are

::::::::::::
snow-covered

::::::
during

:::::
winter

:::::::
LiDAR

::::::::::
acquisition,

::::
they

:::
are

:::::::::::
characterized

:::
by

::::
open

:::::
water

:::::::
surfaces

::
in

:::
the

:::::::
summer

::::::
dataset

:::::
used

::
to

:::::
derive

:::::
snow

:::::
depth

:::
by

:::::
DTM

::::::::::
subtraction.

::::
This

:::::
leads

::
to

::
an

::::::::::::::
underestimation

::
of

::::::
terrain

:::::
height

:::
in

:::
the

:::::::
summer

:::::
DTM

::::
due

::
to

:::
the

::::
low

:::::::::
reflectivity

::::
and

:::::::::
absorption

:::
of

:::
the

:::::::
LiDAR

:::::
signal

::::
over

:::::
water

::::::::
surfaces

::::::::::::::::::::::::
(Mandlburger and Jutzi, 2019)

:
,
:::::::
resulting

:::
in

::
an

::::::::::::
overestimation

:::
of

::::
snow

::::::
depth.

::
In

:::::::
contrast,

:::
RF

:::::::::
modeling

::::::
benefits

:::::
from the well

documented problems with low reflective surfaces such as water (Mandlburger and Jutzi, 2019) and the difficulties in detecting400

highly scattering materials such as snow (Deems et al., 2013). However, RF takes advantage of the contextual relationships

between the input
:::::
terrain

:
parameters and the observed snow depth on

:::
over

:
thermokarst ponds and can therefore compensate

for incorrect initial values in the UAS LiDAR dataset and keep a high performance
::::::
partially

::::::::::
compensate

:::
for

:::::
such

:::::::::
systematic

:::::
errors,

::::::::::
maintaining

::::::
higher

::::::::
accuracy.

::::
Even

::::::
though

::::::::::
volumetric

::::::::
scattering

::
in

:::::
snow

:::
can

:::::
affect

::::::
LiDAR

:::::::
results,

:::
the

::::::::
associated

:::::
error

:
at
:::::::::::
wavelengths

:::::::::
commonly

::::
used

:::
for

::::
snow

:::::
depth

:::::::::::::
measurements,

::::
such

::
as

:::
the

:::
905

:::
nm

::::::::::
wavelength

::::::
applied

::
in

:::
this

::::::
study,

:
is
::::::::
typically405

::
in

::
the

::::
low

:::::::::
centimeter

:::::
range

:::::::::::::::::
(Deems et al., 2013),

:::
and

::::
thus

::::
does

:::
not

:::::::
account

:::
for

:::
the

:::::
larger

:::::::::::
discrepancies

::::::::
observed

::
in

:::
this

:::::
study.

In addition, in mire areas surrounding the palsa, such as the statistics for Open Area point class shows it, the RF model performs

with the highest accuracy within its own results, while UAS LiDAR ranks second lowest. However, for UAS LiDAR, the

deviation from the two best-performing groups On Top and Edge remains relatively small, indicating a consistent performance

across the dataset. A significant challenge in these areas is the seasonal vegetation dynamics. In summer, the vegetation in410

palsa mires grows taller and denser, while in winter the grasses and sedges are compressed under the weight of the snow. The

20



LiDAR sensor records all surface elements, i.e. the vegetation in summer and the snow covered areas in winter. Despite the

removal of vegetation in post-processing, a residual bias remains due to the dense vegetation, which cannot be completely

filtered out from the ground, leading to a systematic underestimation of snow depth in areas with height changing vegetation.

Similar problems with LiDAR-derived snow depth mapping were reported by Broxton et al. (2019). Tall shrubs such as Betula415

nana, which form thickets at palsa edges, can further complicate capturing the palsa surface in detail. In contrast, the RF

model inherently accounts for vegetation as it uses UAS LiDAR summer data as the basis for calculating input parameters.

By integrating SDin-situ measurements from winter, RF can establish relationships between vegetation and snow accumulation,

which reduces bias and improves snow depth estimation. Methods to further improve LiDAR-derived snow depth mapping,

such as correcting estimates based on vegetation type, density and height, could help to mitigate these limitations.420

These results confirm that snow distribution can be accurately modeled at a small-scale using low cost equipment, such as a

yardstick, in combination with moderate computational resources. However, we acknowledge that an expensive LiDAR sensor

was used in this study to derive the input parameters for the RF model. Therefore, further research should investigate if low

cost UAS RGB data can provide equally high quality input parameters or if LiDAR is still essential for accurate modeling.

Recent studies by Harder et al. (2020) and Cho et al. (2024) have shown that snow depths derived from UAS LiDAR data425

provide a more accurate representation of snow distribution than snow depth products derived from UAS RGB data, which

raises the question of whether the use of RGB-derived input parameters is feasible for modeling purposes. However, for large-

scale spatial snow distribution overviews or in cases where high-resolution snow depth mapping is not required, UAS LiDAR

or RGB data might be preferable, as manual snow depth measurements are connected with a high workload and considerable

time investment. Furthermore, the potential of UAS imagery for snow depth estimation has been investigated in several recent430

studies (Marti et al., 2016; Rauhala et al., 2023; Revuelto et al., 2021; Walker et al., 2021), emphasizing its growing importance

for snow distribution monitoring.

5.2 Snow distribution mapping in palsa mires and its impacts

The high-resolution snow depth maps produced in this study provide a detailed spatial representation of snow distribution

patterns in palsa mires and highlight pronounced warming and cooling areas. Both the LiDAR and RF datasets show similar435

small-scale variations that are closely linked to topographic features. These findings suggest that the observed snow distribution

patterns accurately reflect the actual conditions in the studied palsa landscapes, making them valuable for assessing the potential

interactions between snow accumulation and palsa thermal dynamics.

Warming areas in the palsas were identified at the edges of the palsa and in cracks where snow accumulates due to wind

transport and gravitational sliding. This effect is consistent with the findings of Peng et al. (2024), who showed that snow440

accumulations insulate the ground and reduce the penetration of cold air. An example of this effect can be seen at Pousu Palsa

(Fig. 9 d, e), where the dominant south and southwest winds (FMI data for the last 20 years from the Kilpisjärvi weather station)

contribute to
::
the

:
highest snow accumulation on the southwestern and northeastern edges. Snow accumulation in these areas

extends snowmelt into late spring and summer and increases soil moisture, which can increase heat transfer to the soil. While

an extended snow cover reduces direct solar radiation, it also prevents deep freezing in winter, which can destabilize ice core445
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edges. This also leads to a thinner ALT at the edges, as the solar radiation remains limited due to the longer-lasting snow cover.

These observations are consistent with the results of Verdonen et al. (2023) and Seppälä (2011). Such processes can contribute

to block erosion and expose the frozen core to further thawing. The formation of cracks in the upper edge zones could also

increase this effect, as they fill with snow in winter, delaying freezing and possibly further accelerating the instability of the

palsa. These results are consistent with those of Martin et al. (2021), who showed that palsas undergo structural adjustments at450

constant snow depths of 20-30 cm. However, our results indicate that in the Kilpisjärvi region, even greater snow depths occur

at the palsa edges, suggesting that the increasing snow accumulation may be linked to the continuing degradation of the palsas.

This cycle continues until the palsa slopes flatten, reducing snow accumulation, which eventually leads to the degradation of the

upper plateau. Long-term ALT and permafrost temperature measurements at these sites are needed to confirm this hypothesis.

As suggested
::::::::
proposed by Seppälä (2011), snow conditions may play a more important role in the development of Palsa than455

previously thought. Continued monitoring and integration of these findings into permafrost models will be essential for a better

understanding of future palsa development.

Uppermost
::::
The

:::::::::
uppermost parts of the palsa summits are cooling areas, where thin layers of snow allow cold air to penetrate

deeper, which promotes ice core stability in winter. Seppälä (2003) proved that a thicker snow cover on the palsas delays the

melting of the ice core due to its prolonged presence. Conversely, this means that cooling areas have deeper ALT in summer460

than warming areas. As observed at Pousu Palsa (Fig. 9 b, c), the cooling areas are concentrated near
:
at

:
the uppermost parts

of the steep edges, where the surface is highly exposed to the wind. Further investigation is needed to determine whether this,

combined with destabilization and edge collapse, contributes to the formation of steep or even vertical slopes. If this process

continues, cracks may eventually form, causing block erosion and degradation of the palsa edge.

The findings of this study suggest that snow depth variability plays a crucial role in the stability of the palsa, with small-scale465

redistribution patterns influencing local permafrost dynamics. However, as this analysis is only based on snow depth data,

further research combining continuous monitoring of snow depth with thermal observations of permafrost is needed to confirm

these interactions. Establishing a direct link between snow accumulation patterns and thermal processes in the subsurface

would provide valuable insights into the long-term evolution of palsa mires under changing climatic conditions. Furthermore,

our study indicates that there is a clear need for more detailed research on the interaction between tall shrubs, snow depth, and470

permafrost.
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Figure 9. Explanation
:::::::::::
Demonstration

:
of differences between UAS LiDAR-derived and RF-modeled snow depths.
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5.3 Uncertainties and limitations

Snow distribution is highly variable, especially because of wind drifts and topography, which must be considered when apply-

ing these methods. Additionally, machine learning models rely on a unique observation in time. Changing weather conditions

could result in a completely different snow distribution on another day, which could affect model performance.475

Various
::::::
Several sources of error may be present during data collection in

:::
can

:::::
affect

:::::::::::::
LiDAR-derived

:::::
snow

:::::
depth

::::::::::::
measurements

:::::
during

::::
both

:
summer and winter

::::
data

:::::::::
acquisition.

:::::::::
Reflective

::
or

::::::::
complex

:::::::
surfaces,

:::::
such

::
as

:::::
water

::
or

::::::::::
vegetation,

::::
may

:::::
scatter

:::
or

::::
block

:::
the

::::
laser

::::::
signal,

::::::::::
introducing

:::::::::::
measurement

:::::
biases

:::
and

:::::::
limiting

::::::
surface

::::::::::
detectability

::::::::::::::::::::::::::::::::
(Deems et al., 2013; Gould et al., 2013)

. LiDAR sensors in particular are prone to inaccuracies; highly reflective surfacescan cause scattering of the laser beam, leading

to a bias in the data (Deems et al., 2013). In addition, shrub vegetationcan hide the surfaces and prevent them from being fully480

captured (Gould et al., 2013). These distortions affect
:::::
impact

:
the entire modeling approach as they influence the calculation

of the input parameters. The
:::::::
Another

::::::
source

::
of

:::::::::
uncertainty

::
is

:::
the

:
choice of LiDAR wavelengthis another critical factor, as the

use of different or multiple wavelengths has been shown to improve the accuracy of snow depth mapping (Deems et al., 2013)

:
.
:::
The

::::
905

:::
nm

::::::::::
wavelength

::::
used

::
in
::::

this
:::::
study

::
is

::::::
typical

:::
for

:::::
many

:::::::
airborne

:::::::
systems

::::
and

::::::::
generally

::::::::
produces

::::
only

::::::
minor

:::::
depth

:::::
errors

::
in

:::::
snow

::::
due

::
to

:::::::
limited

::::::::::
penetration,

::::
with

:::::
most

::
of
::::

the
:::::
signal

::::::::
returned

:::::
from

:::
the

:::::
upper

::::::::::
centimeters

:::
of

:::
the

:::::::::
snowpack485

::::::::::::::::
(Deems et al., 2013)

:
.
::
In

:::::::::::
comparison,

:::::::::
shortwave

:::::::
infrared

::::::::::
wavelengths

:::::
such

::
as

:::::
1550

:::
nm

:::
are

:::::
more

:::::::
strongly

::::::::
absorbed

:::
by

::::
ice,

:::::::
resulting

::
in

:
a
:::::
return

::::::
signal

:::
that

::
is

::::
more

::::::::
confined

:
to
:::
the

:::::
snow

:::::::
surface.

::::
This

:::::::::::
characteristic

:::
can

::::
help

:::::
reduce

::::::::::
uncertainty,

::::::::::
particularly

::
in

::::
areas

::::
with

:::::::
complex

:::::::
surface

::::::::
conditions

::
or

::::
low

:::::::::
reflectivity.

:::::
While

:::
the

::::::::::::::::
wavelength-related

:::::::::
interaction

::::
with

:::
the

::::
snow

:::::::
surface

:
is
::
a

:::
key

:::::
factor,

:::::::
detailed

::::::::::
information

::
on

:::::
snow

:::::::::
conditions,

::::
such

:::
as

::::
grain

::::
size,

:::::
snow

::::
age,

::
or

:::::::
impurity

:::::::
content,

:::
was

:::
not

::::::::
collected

::::::
during

::
the

::::
field

:::::::::
campaign.

:::::
Such

:::
data

::::::
could,

:::::::
however,

::::
help

::
to
:::::
better

::::::
assess

:::::::
potential

:::::::
sources

::
of

:::::::::
uncertainty

::
in

:::
the

:::::::::::::
LiDAR-derived

:::::
snow490

:::::
depth,

::::::::::
particularly

::::
those

::::::
related

::
to

:::::::::
scattering

:::
and

:::::::::
absorption

::::::
effects. Errors can also occur when collecting training data, albeit

to a less significant extent. Measuring with a yardstick is a reliable method of measuring snow depth, but dense layers of ice

or vegetation close to the ground, such as roots, can change the recorded values by a few centimeters, as the ground surface

was incorrectly assumed. In areas with denser vegetation, the probe may not always reach the exact ground surface, resulting

in a slight underestimation of the snow depth. This could affect both the training and validation of the RF model and the accu-495

racy of the LiDAR-derived snow distributions, thus affecting the statistical performance of the results. Devices that have been

developed only for taking snow depth values, such as a GPS Magnaprobe, as used in a study by Walker et al. (2021), could

minimize such possible errors.

The selection of input parameters is another aspect that requires critical evaluation. The TPI plays a central role in the model
:
, as

it combines several topographic features into a single parameter. As snow tends to accumulate at the edges and drift down the500

slopes, its movement from one grid cell to the next is effectively captured by the TPI, making it a crucial variable for the model.

This finding is in line with studies by Revuelto et al. (2020) and Meloche et al. (2022), which highlight the importance of the

TPI for modeling snow distribution. Other important parameters are related to wind properties and basic surface structures,

which emphasizes the importance of wind drift and steep edges in snow distribution formation. However, it should be noted

that the selected parameters represent only a fraction of the potential variables that influence snow distribution. The RF model505
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is theoretically capable of incorporating a larger set of parameters and still identifying the most important
::::::::
significant

:
ones.

For example, detailed vegetation classifications - including specific vegetation types or density indices - could further improve

snow depth modeling. In addition, there are influencing factors that, while not directly related to snow depth, can still have an

impact on snow distribution patterns. The identification of such variables would require a specific study aimed at evaluating

and selecting the most important parameters for snow depth modeling.510

6 Conclusions

We present an analysis of snow distribution in palsa mires using a combination of in-situ measurements, UAS LiDAR data,

and RF modeling. This study provides valuable insights into small-scale snow distribution, revealing distinct accumulation

patterns at palsa edges and cracks, driven by wind effects and gravitational sliding. The increased snow depth in these areas

prolongs snowmelt, which could influence thermal insulation and ALT dynamics of permafrost. In contrast, the exposed palsa515

areas exhibit thinner snow cover, promoting deeper frost penetration in winter but also greater exposure to solar radiation in

summer. Statistically, both RF modeling and UAS LiDAR provided reliable results for mapping snow distribution with an

RMSE of 18.33 cm (RF) and 23.49 cm (LiDAR) and corresponding R2 values of 0.77 and 0.691. While the RF model showed

slightly better prediction performance, the differences between the two approaches remained moderate. This indicates that RF

modeling is a promising alternative
:::::::
approach for snow depth estimation, especially when appropriate input parameters such as520

TPI and wind-related parameters are included. At the same time, UAS LiDAR provides a direct, high-resolution snow depth

dataset and is therefore a valuable tool for spatial snow mapping.

Our results highlight the vulnerability of Palsas to changes in snow depth patterns due to climate warming. A change in snow

depth and altered wind dynamics could further accelerate the degradation of Palsas and lead to a progressive loss of permafrost

soils in northern Finnish Lapland. Future studies should focus on integrating long-term permafrost monitoring with these525

snow distribution models to better understand the interactions between snow cover, permafrost thaw and climate change. The

presented methodology provides a foundation for further modeling approaches that integrate snow distribution dynamics with

permafrost development. While tested for palsa environments, the approach can also be applied to other pan-Arctic palsa areas,

continuous permafrost regions, and even adapted for small-scale avalanche forecasting or surface process studies such as soil

erosion or landform changes. In conclusion, this study demonstrates the feasibility of using both RF modeling and UAS LiDAR530

for high-resolution snow depth mapping in palsa mires.
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Appendix A

A1

Figure A1. Histogram of SDin-situ points and respective statistics per palsa site.
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A2

Figure A2. Overview of classification of all SDin-situ points into classes Edge, On Top, Open Area and Thermokarst.

A3535

Table A1. Correlation between each input parameter and RF-modeled snow depth.

Parameter Correlation to SDRF Parameter Correlation to SDRF

Aspect 0.09 Relative Slope Position -0.49

Elevation -0.12 Slope 0.08

Channel Network Base Level -0.09 Topographic Position Index -0.87

Channel Network Distance -0.45 Valley Depth 0.50

Negative Openness 0.22 Wind Effect -0.55

Positive Openness -0.50 Wind Exposition -0.80

Code availability. The R script used in this study is available upon request from the authors.
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