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Abstract. Snow cover has an important role in permafrost processes and dynamics, creating cooling and warming systems,

impacting the aggradation and degradation of frozen soil. Despite theoretical, experimental, and remote sensing-based research,

comprehensive understanding of small-scaled snow distribution at palsas remains limited. This study compares two approaches5

to generate spatially continuous, small-scale snow distribution models in palsa mires in northwestern Finland based on Digital

Surface Models: a machine learning approach using the Random Forest
:::
(RF)

:
algorithm with in-situ measured snow depth data

and an Unmanned Aerial System (UAS) equipped with a Light Detection and Ranging (LiDAR) sensor. For the first time,

snow distribution was recorded over a palsa using a UAS
::::
UAS

::::::
LiDAR

::::
data. The aim is to review which approach is more

precise
:::::::
accurate overall and which areas are not represented sufficiently accurate

::::
snow

::::::::::
distribution

:::::::
patterns

:::
can

::
be

::::::::
identified. In10

comparison to in-situ collected validation data, the machine learning results showed high
::::
both

:::
the

:::
RF

::::::
results

:::
and

::::
UAS

:::::::
LiDAR

:::
data

:::::
show

::::::::
sufficient accuracy, with a RMSE of 6.16 cm

::::
18.33

:::
cm

::::
(RF)

::::
and

:::::
23.49

::
cm

::::::::
(LiDAR)

:
and an R2 of 0.98, outperforming

the LiDAR-based approach, which had an RMSE of 26.73 cm and an R2 of 0.59. Random Forest models snow distribution

significantly better at steep slopes and in vegetated areas. This considerable difference highlights the ability
::::
0.77

::::::::::
respectively

:::::
0.691.

:::
RF

::::::::
performs

::::::::::
particularly

::::
well

::
in

::::::::
modeling

:::::
snow

::::::::::
distribution

::::
over

:::::
open

:::::
water

:::
and

::::::::
vegetated

::::::
areas,

::::::::::::
demonstrating

:::
the15

:::::::
potential

:
of machine learning to capture fine-scale snow distribution patterns in detail. However, our results indicate that UAS

data enables the study of
:::::::::
small-scale

:::::::
patterns

::::
based

:::
on

::::
field

:::::::::::
observations.

:::
The

:::::
UAS

::::::
LiDAR

::::
also

::::::
enables

:
a
::::
very

:::::::
detailed

:::::::
analysis

::
of

:::
the

:::::::::
interactions

::::::::
between snow and permafrostinteraction at a highly detailed level as well.

Generally, .
:::::
Both

:::::::::
approaches

::::::
reveal snow accumulation zones

:
, especially at steep edges of the palsas and inside cracksare

recognizable, while thin snow cover occurs at exposed areas on top of the palsas. Correspondingly, areas with thicker snow20

cover at the edges and inside cracks act as potential warming spots, possibly leading to heavy degradation including
::::
palsa

::::::
margins

::::
and

::::::
within

::::::
cracks,

::::::
where

::::::::
insulation

:::::
limits

:::::
frost

:::::::::
penetration

::::
and

:::::::::
contributes

:::
to

::::::::::
degradation

::::::::
processes

::::
such

:::
as block

erosion. In contrast, areas with thinner snow cover on the exposed crown parts can act as cooling spots. They initially stabilize

the frozen core under the crown parts, but then form
:
a

::::::
thinner

:::::
snow

:::::
depth

:::
on

:::::::
exposed

:::::
palsa

:::::::
surfaces

::::::
allows

::::::
deeper

:::::
frost
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:::::::::
penetration,

::::::
which

:::::::
initially

::::::::
stabilizes

::
the

:::
ice

::::
core

:::
but

:::::
leads

::
to

:::
the

::::::::
formation

::
of

:
steep edges and expose the frozen core, leading25

finally to even more block erosion and
::::::
further degradation.

1 Introduction

Snow cover plays an important role in permafrost processes and dynamics. Its physical characteristics impact the aggradation

and degradation of frozen soil (Barry, 2002). In March 2023, around 39.26 million km2 of the northern hemisphere were

permanently or partly covered by snow (NOAA, 2023), affecting around 14.77 million km2 permafrost area (Ran et al., 2022).30

This includes the discontinuous permafrost areas in northern parts of Sweden, Norway and Finland, known as Fennoscandia.

Due to changes in climate, a reduction in snow cover duration and an increase in snow depth have been monitored in these

regions (IPCC, 2023)
:
is
::::::::
expected

:::::::::::::::::
(Quante et al., 2021), leading to changes of air and soil temperature interactions and resulting

in negative impacts for permafrost soils (Chen et al., 2021). This has a direct impact on ecological processes, such as a reduced

albedo in winter that leads to a higher energy uptake by soils (Thackeray and Fletcher, 2016) and longer growing seasons35

(Madani et al., 2023). In addition, Wang et al. (2024) showed that snow cover – in combination with landscape heterogeneity -

plays an important role in controlling soil temperatures throughout the year. The Intergovernmental Panel on Climate Change

(IPCC) already highlighted in their latest report that a loss of permafrost within this century is expected in these regions (IPCC,

2023). Especially in northern Fennoscandia– with a main focus on
::
In

:::::::
northern

::::::::::::
Fennoscandia,

::::::::::
particularly

::
in northern Finnish

Lapland in
:
-
:::
the

::::
main

:::::
focus

::
of

:
this study - specific periglacial permafrost landform types called palsas are in danger

::::::::
landforms40

:::::
known

:::
as

:::::
palsas

:::
are

::
at

:::
risk

:
of disappearing within this century (Leppiniemi et al., 2023).

The occurrence of palsas, small mounds up to 4 - 7 m height with a frozen core, is bound mainly to the presence of peat-

lands and driven by climatic parameters (Meier, 2015; Seppälä, 2011). Palsas
:::::
serve

::
as

:::::::::
indicators

::
of

:::::::
climate

::::::::
warming,

:::
as

::::
their

::::::::::
degradation

:::
and

::::::::::::
disappearance

:::::
reflect

:::::
rising

:::::::::::
temperatures

:::::::::::::::::::::
(Leppiniemi et al., 2023).

:::::::::::
Additionally,

::::
they

::::::
provide

:::::::::
important

::::::
habitats

:::
for

:::::::
various

::::::
animal

:::::::
species

:::::::::::::::::
(Luoto et al., 2004)

::
and

:::::
hold

:::::::::
significant

:::::::
cultural

:::
and

:::::::
societal

:::::
value

:::
for

::::::::::
indigenous

::::
and45

::::
local

:::::::::::
communities,

::::::::::
particularly

:::
in

:::
the

::::::
context

::
of
:::::::::

traditional
::::::::

reindeer
::::::
herding

::::::::::::::::::::
(Markkula et al., 2019).

::::::
Given

::::
their

:::::::::
ecological

:::
and

:::::::
cultural

::::::::::
importance,

:::::::::
monitoring

:::::
their

:::::::
changes

::
is

::::::::
essential.

:::::
Palsas

:
are highly sensitive to shifts in temperature insulation

::::::::::
temperature

::::::::
insulation

:::::
shifts induced by snow during winter. Their development is directly influenced by the variety of snow

depththrough thermal isolation dynamics
::::::::
variations

::
in
:::::
snow

::::::
depth,

:::::
which

:::::::
regulate

:::::::
thermal

::::::::
insulation in winter and protection

::::::
protect against warm air and sunlight in summer, leading to the growth of the

::::::
spring,

::::::::
ultimately

::::::::
affecting Active Layer Thick-50

ness (ALT) and warming of the soils
:::
soil

:::::::
warming

:
(Park et al., 2015; Verdonen et al., 2023, 2024). In detail

:::::
winter, deep snow

depth in winter leads to a lower impact on the underlying frozen soil due to a decreased penetration of low temperatures

, while in summerthis would protect the permafrost from thawing
::::
cover

::::::::
insulates

:::
the

:::::::
ground,

::::::::
reducing

:::
the

::::::::::
penetration

:::
of

:::
cold

:::::::::::
temperatures

::::
and

:::::::
keeping

:::
the

:::::::::
underlying

::::
soil

::::::::::::
comparatively

:::::::
warmer.

::
In

::::::::
summer,

:::
this

:::::::::::
accumulated

:::::
snow

:::::
delays

:::::::
ground

:::::::
warming

::::
and

:::::
slows

:::::::::
permafrost

::::::::
thawing,

:::::::
resulting

::
in

::
a
::::::::
shallower

:::::
ALT.

:::::
These

:::::
areas

:::
are

:::::::
defined

::
as

::::::::
warming

::::
areas

::::::::::
throughout55

:::
this

::::::
article.

::::
They

:::
are

::::::::
typically

:::::
found

::
in

::::::::::
depressions,

:::::::
concave

::::::
terrain,

::
or

:::::::::::::
wind-sheltered

:::::::
locations

::::::
where

:::::::::
snowdrifts

::::::::::
accumulate.

:::::::::
Conversely,

::::
thin

:::::
snow

:::::
cover

::::::
allows

:::
for

::::
more

::::::::
intensive

::::::
winter

:::::::
cooling

:::
due

::
to

:::::::
reduced

:::::::::
insulation,

:::::::
leading

::
to

::::::
greater

::::
heat

::::
loss
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::::
from

:::
the

:::::::
ground.

::
In

:::::::
summer,

:::::
these

:::::
areas

:::::
warm

::
up

::::::
earlier,

:::::::
causing

:
a
::::::

deeper
:::::
ALT.

:::::
Such

:::::::
locations

:::
are

:::::::
defined

::
as

:::::::
cooling

:::::
areas.

::::
They

:::
are

::::::::::
commonly

:::::
found

::
in
::::::::

elevated
::
or

::::::::::::
wind-exposed

:::::
areas

::
of
::::

the
:::::
palsa,

::::::
where

:::::
snow

:::::::::::
accumulation

::
is
::::::::

naturally
:::::::

limited

:::::::::::::::::::::::::::::
(Seppälä, 1982; Olvmo et al., 2020). Lower snow depth would have the exact opposite impact throughout the seasons. This60

influence on palsas has been empirically demonstrated by Seppälä (2011), who described the impact of variable snow cover on

palsa development
::::::
thermal

::::::::
dynamics

:
during subsequent thawing periods. Moreover, experiments show that mainly the depth of

snow cover influences the development of palsas (Seppälä, 1982). Deviations from the usual thickness of snow cover, whether

thinner or thicker, induce varying conditions for palsa dynamics. For example, at the steep edges of palsas, the accumulation

of snow can pose a risk by destabilizing the frozen core due to increased thermal insulation at these specific areas leading to a65

higher risk of block erosion (Olvmo et al., 2020; Seppälä, 1994). Despite theoretical, experimental, and remote sensing-based

research, comprehensive understanding of actual snow distribution conditions within and around palsas remains limited (Sep-

pälä, 2011; Verdonen et al., 2023). Although they have high potential for accurate mapping, Unmanned Aerial Vehicle
:::::::
Systems

(UAS) have not yet been used to measure snow depth in palsa mires.

Consequently, detailed data on snow distribution in palsa mires is not available. Even if sufficient climate data is made available70

through official weather stations, it is the microclimate inside these mires that impacts the snow distribution in various ways,

especially by snow drifts due to strong winds, as monitored exemplarily by Zuidhoff (2002). Since palsa mires occur mostly

in remote areas, simple interpolation of climatic observations from weather stations within the same region does not provide

data on the actual state within these mire complexes, which does not allow to monitor the exact snow distribution (Verdonen

et al., 2023). Microtopography affects snow depth and creates an environment, in which the palsas usually receive enough75

penetrating cold air to remain stable and to last year after year due to a thin snow cover. However, warming is predicted to

increase precipitation in Fennoscandia (IPCC, 2023), leading to higher snow layers in winter, which is detrimental to the palsas

and contributes to their thawing. Based on snow depth mapping, identifying cold or warm spots inside palsa mires is possible

and can help to improve our understanding of further palsa dynamics. Only in-situ measured
::::
snow

:::::
depth data can provide clear

insights into these conditions. However, to date and to our knowledge, no small-scale mapping of snow depth in palsa mires80

has yet been carried out.

Measuring snow depth manually demands a relatively high workload in time and effort under mostly harsh climatic conditions.

Thus, measurements of snow depth over a long time span without technical help have been undertaken in Finnish Lapland by

only a few researchers, e.g. by Leppänen et al. (2016), who describe the snow survey program by the Finnish Meteorological

Institute (FMI) that was established in 1909 in Sodankylä. Statistical evaluations of collected data at weather stations were85

published for whole Finnish Lapland (Merkouriadi et al., 2017).

The use of remote sensing data and methods to monitor snow depth has become increasingly important in snow research.

Satellite data has been widely used for many years to monitor and estimate snow properties such as snow density or snow water

equivalent (Holmberg et al., 2024), but only in coarse resolution due to the properties of satellites. Numerous studies have been

published recently on methods to determine snow depth with Unmanned Aerial Systems (UAS) in high resolution (cell size90

of
::::::
Optical

::::
and

::::
radar

:::::::
satellite

::::
data

::::
have

::::
been

::::::
widely

:::::::
utilized

::
to

::::
map

:::::
snow

::::::::::
distribution

::::::::::::::::::::::::::::
(Marti et al., 2016; Hu et al., 2023)

:
,
:::
but

::::
their

:::::
coarse

:::::::::
resolution

:::::
limits

::::
their

::::::::::::
effectiveness,

:::::::::
particularly

:::
in

::::::::
capturing

:::::::::
small-scale

:::::::::
variations

::
in

::::::
ground

::::::
surface

::::::::::
conditions.
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:::::::::
Small-scale

:::::::::
structures,

::::
such

::
as

::::::
palsas,

::::::
exhibit

:::::::::
substantial

::::
snow

:::::
depth

::::::::::::
heterogeneity,

::::::
making

:::::::::::::
satellite-derived

:::::::
datasets

:::::::::
unsuitable

::
for

::::::::
analyzing

:::::
these

::::::::
localized

::::::::
processes.

:::
To

:::::::
improve

:::::
spatial

:::::::::
resolution,

::::
UAS

:::::::::::
RGB-derived

::::::::::::::
photogrammetry

:::
has

::::
been

::::::::::
increasingly

::::
used

:::
for

::::::::::::
high-resolution

:::::
snow

:::::
depth

::::::::
mapping.

:::::
With

:::::
small

:::
grid

:::::
sizes

:
(10 cm x

:
×
:

10 cm , respectively
::
or 5 cm x

:
×
:

5 cm), e.g.95

by Bühler et al. (2016) Bühler et al. (2016) and Michele et al. (2016) , who directly mapped
:::::
these

:::::::
methods

:::::::
provide

:::::::
detailed

::::
snow

:::::
depth

:::::::::
estimates.

:::::::::::::::::
Bühler et al. (2016)

::
and

::::::::::::::::::
Michele et al. (2016)

::::::::::
successfully

:::::::
applied

:::
this

::::::::
approach

::
to

:::::::
directly

::::
map

:
snow

depth in alpine terrainusing UAS RGB. ,
:::::
while

:
Rauhala et al. (2023) and Meriö et al. (2023) compared different UAS in terms

of snow depth mapping precision for a test site in Finnish Lapland. They concluded that spatially representative estimates

of snow depth can be obtained with UAS. Furthermore, several studies utilizing satellite images to map snow distribution100

were conducted (Marti et al., 2016; Hu et al., 2023). However, coarse satellite datasets significantly limit the resolution of the

results
::::::::
evaluated

:::
the

:::::::
accuracy

::
of

:::::
UAS

::::
RGB

:::::::
surveys

::
in

:::::::
Finnish

:::::::
Lapland,

:::::::
showing

::::
that

::::
they

:::
can

:::::::
produce

:::::::
spatially

::::::::::::
representative

::::
snow

:::::
depth

:::::::::
estimates.

:::::::
However, especially to capture the ground surface precisely without vegetation. Small-scale structures

such as palsas have very strong changes in snow depth at a fine spatial scale, which limits the information value
:::::::::::
RGB-derived

:::::::::
approaches

::::
face

:::::::::
challenges

::
in

::::::::
capturing

:::
the

:::::::
ground

::::::
surface,

::::::::::
particularly

::
in
::::::::::::
environments

::::
with

:::::
dense

:::::::::
vegetation

::
as

:::::::::
suggested105

::
by

::::::::::::::::
Walker et al. (2021)

:
,
::::
who

:::::::
explored

:::
the

::::::::
accuracy

::
of

::::
UAS

:::::::::::
RGB-derived

:::::
snow

:::::
depth

:::::::
mapping

::::
and

::::::::
suggested

::::
that

::
an

::::::::
approach

:::
that

:::::
better

:::::
filters

:::
out

:::::::::
vegetation

:::::
could

:::::::
improve

:::
the

:::::::
mapping

::::::
results.

::::::::
Recently,

::::
UAS

::::::::
equipped

::::
with

:::::
Light

::::::::
Detection

::::
and

:::::::
Ranging

:::::::
(LiDAR)

:::::::
sensors

::::
have

:::::
been

:::::::::
introduced

::
as

:::
an

:::::::::
alternative

:::
for

:::::
snow

:::::
depth

::::::::::
monitoring.

::::::
Unlike

:::::
RGB

:::::::
sensors,

::::::
which

::::::::
passively

::::::
capture

::::::
optical

::::::
images,

:::::::
LiDAR

::::::
actively

:::::
emits

::::
laser

:::::
pulses

::::
and

::::::::
measures

::::
their

:::::
return

::::
time

::
to

:::::::
generate

:::::::::::::
high-resolution,

:::::::::::::::
three-dimensional

::::::
surface

:::::::
models.

:::::::::::::::::
Harder et al. (2020)

:::::::::::
demonstrated

:::
that

:::::::
LiDAR

::::
can

:::::::::
accurately

::::::
capture

::::::::::
vegetation,

::::::::
allowing

:::
for

::
its

::::::::
removal110

::::
from

::::::
ground

:::::::
surface

::::
data,

::::::
which

:::::::::::
significantly

::::::::
improves

:::::
snow

:::::
depth

::::::::::
estimation.

::::::::
Similarly,

:::::::::::::::::
Jacobs et al. (2021)

::::::
showed

::::
that

:::::::::::
LiDAR-based

:::::::::
vegetation

:::::::
filtering

::::::::
enhances

:::::
snow

:::::
cover

:::::::
mapping

::
in

:::::::
forestry

:::
and

:::::
open

:::::
areas.

::::::
Given

:::
the

:::::::::
limitations of satellite

data on
:
in

::::::::
resolving

:
small-scale processes in these structures. UAS-based data can provide data to close this gap, but these

techniques also have difficulties in mapping the ground surface without vegetation , particularly in subartic areas with low

but dense vegetation
:::::
snow

::::
depth

:::::::::
variations

:::
and

:::
the

:::::::::
challenges

::
of

::::::::::
RGB-based

::::::::::::::
photogrammetry

::
in

::::::::
vegetated

::::::
terrain,

:::
we

:::::::
employ115

::::
UAS

::::::
LiDAR

::
to

:::::::
generate

:::::::::::::
high-resolution

:::::
snow

:::::
depth

::::::
models.

:::
Its

:::::
ability

::
to

:::::::
capture

::::::::
vegetation

::::
and

::::::
provide

::::::
precise

::::::::
elevation

::::
data

:::::
makes

::
it

:::::::::
particularly

:::::::
suitable

:::
for

:::::::::
monitoring

:::::
snow

:::::
depth

::
in

::::::::
subarctic

:::::::::
permafrost

:::::::::
landscapes.

Another method to estimate snow distribution is the application of statistical machine learning models like the Random For-

est (RF) algorithm (Breiman, 2001), which – in snow research- has so far mainly been used
:
.
:::
RF

::
is

::
a

::::::
widely

::::
used

:::::::
method

::
of

::::::::
ensemble

:::::::
learning

::::
that

::
is

:::::::::::
characterized

:::
by

::::::::
complex,

::::::::
non-linear

:::::::::::
relationships

::::::::
between

::::::::
predictor

:::::::
variables

::::
and

::
is

::::::::
therefore120

::::::
suitable

:::
for

::::::::::::
environmental

:::::::::
modeling.

::
In

:::::
snow

:::::::
research,

:::
RF

:::
has

:::::
been

::::
used

::::::::
primarily

:
for large-scale mapping of snow distribu-

tion in mountainous regions (Meloche et al., 2022; Revuelto et al., 2020; Richiardi et al., 2023)
:
,
:::::
where

::
it
:::
has

::::::::::::
demonstrated

::::
good

:::::::::
predictive

:::::::::
capabilities

:::::::
through

:::
the

:::::::::
integration

:::
of

::::::
remote

:::::::
sensing,

::::::::::
topographic

::::
and

::::::::::::
meteorological

::::
data. However, these

studies have not been conducted at a small scale with very high resolution (<
:::::
mainly

:::::::
focused

:::
on

::::::
coarser

::::::
spatial

::::::
scales

::::
with

:::::::::
resolutions

::
of

:::::
more

::::
than

:
1 m x

:
×
:

1 mcell size), and – to our knowledge- no study has been conducted
:
,
:::::
which

:::::
limits

:::::
their125

::::::::::
applicability

:::
for

:::::::::
analyzing

::::::::::
small-scale

:::::
snow

::::::::::
distribution

:::::::
patterns.

:::
To

:::
our

:::::::::::
knowledge,

:::
RF

:::
has

::::
not

:::
yet

::::
been

:::::::::::::
systematically

::::::
applied

::
to

:::::::::::::
high-resolution

:::::
snow

:::::
depth

::::::::
modeling

:
in subarctic and permafrost areas

:::::::::::
environments,

:
such as Finnish Lapland.
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::
As

::::::::::
small-scale

::::::::
variations

::
in

:::::
snow

:::::
depth

::::
play

:
a
::::::
crucial

::::
role

::
in

:::::::::
permafrost

::::::::
dynamics,

:::::::::::
investigating

:::
the

:::::::::
feasibility

::
of

:::
RF

:::
for

::::
such

::::::
detailed

::::::::::
applications

:::::
could

:::::::
provide

:::::::
valuable

:::::::
insights

:::
for

:::::
future

:::::::
research

::::
and

:::::::::
monitoring

::::::
needs.

In this study, we applied a combination and comparison of all three mentioned methods by assessing
:::::::
compare

::::
and

:::::::
evaluate130

:::
two

:::::::
methods

:::
for

::::::::::
generating

::::::::::::
high-resolution

:::::
snow

::::::::::
distribution

:::::
maps

::
at

:
three exemplary palsa sites in northernmost Finland:

i) precise snow depth data measured in the field; ii) snow distribution calculated with UAS data; and iii) simulated snow

distribution by a RF approach. The field
::
(i)

:::::
snow

:::::
depth

:::::::
derived

::::
from

:::::
UAS

::::::
LiDAR

::::
data

::::
and

:::
(ii)

::::
snow

:::::
depth

:::::::::
simulated

:::::
using

:
a
:::
RF

::::::::
modeling

::::::::
approach.

::::::
In-situ measured snow depth data was used to

::::
train

:::
the

:::
RF

:::::
model

:::
as

::::
well

::
as

::
to

:
validate the results

given by remote sensing devices and models. The aim is to identify the most promising approaches for accurately determining135

:::::::
obtained

::::
with

::::
both

::::::::
methods.

::::
The

:::::::
primary

::::::::
objective

::
of
::::

this
:::::
study

::
is

::
to

::::::
assess

:::
the

::::::::
accuracy

:::
and

:::::::::
suitability

::
of

:::::
these

::::::::
methods

::
for

:
small-scale snow distribution and to test a method for generating precise snow distribution maps

:::::::
mapping. Specifically,

this study evaluates whether machine learning
:::
we

:::::::::
investigate

:::::::
whether

:::
RF can effectively model small-scale snow distribution,

providing snow researchers with
:::::
depth

:::::::
patterns,

:::::::::
providing

:
a cost-effective alternative to expensive UAS-based methodsfor

future research. Furthermore, we provide a detailed assessment about the
::::
UAS

:::::::
LiDAR

::::::::
methods.

::
In

::::::::
addition,

:::
we

:::::::::
investigate140

::
the

::::::
spatial

:
distribution of snow depth at palsas and their surrounding areas at a small scale. Therefore, this paper aims to

answer
:::::::::::
surroundings

:::::
based

:::
on

:::
the

:::::
results

:::
of

:::
the

:::::::
methods

::
to

:::::::
identify

:::::::::::
characteristic

::::::::::
small-scale

::::::::
variation

:::::::
patterns.

::::
The

::::::
results

::::::
provide

::
a

::::
basis

:::
for

:::::::::
discussing

:::::::::::
relationships

::::::::
between

::::
snow

::::::::::
distribution

::::
and

:::::
palsa

::::::::
dynamics.

:::
To

:::::::
address

:::::
these

:::::::::
objectives,

:::
we

::::
focus

:::
on

:::
the following research questions: How is snow depth distributed at palsas at a small scale and is it possible to identify

warming and cooling spots based on the results (1) and how accurate are snow distribution analyses based on UAS data and145

the RF algorithm
::::
How

:::::::::
accurately

:::
can

:::::
UAS

::::::
LiDAR

::::
and

:::
RF

::::::::
modeling

::::::::
estimate

::::
snow

:::::
depth, and which are the most suitable

input parameter for the modeling approach
:::::::
approach

:::::::
provides

:::
the

::::
most

:::::::
reliable

::::::
results,

:
(2)

:::
and

::::
how

::
do

:::
the

:::::
snow

:::::
depth

:::::::
patterns

::::::
derived

::::
from

:::::
UAS

::::::
LiDAR

::::
and

::
RF

:::::::::
modeling

:::::::
compare,

::::
and

::::
what

::::
does

::::
this

:::::
reveal

:::::
about

::::::::::
small-scale

::::
snow

::::::::::
distribution?

The obtained results provide novel insights of precise snow distribution in palsa mires including knowledge about warming

and cooling spots and its negative and positive effects. Furthermore, this information can improve our understanding of the150

paradoxical effects of changing snow distributiondue to global warming on the palsas.

2 Study sites

The palsa sites under investigation - Puolikkoniva, Pousu and Peera - are located ca. 30 km south from the closest Finnish

Meteorological Institute‘s (FMI) weather station in Kilpisjärvi, Finland (Fig. 1). These sites are located along the Könkämäeno

river, a significant terrain depression with numerous palsas, and are adjacent to the region‘s primary main road (European155

Route E8) in the northwestern part of Finnish Lapland (Fig. 1 (a, b)). While Peera has been previously described by Verdonen

et al. (2023), Pousu and Puolikkoniva were not yet investigated.
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Figure 1. Location of the study sites Puolikkoniva, Pousu and Peera in north-western Finland (a). Climate data used in this study are from

the Kilpisjärvi weather station, from which the distance to the palsa sites is around 20 km (b). Basemaps obtained from EuroGeographics

(2024).

2.1 Palsa mire sites

Puolikkoniva is located approximately 2.3 km south of lake Peerajärvi at 68°51’43" N, 21°06’18" E and around 455 m a.s.l,

surrounded at the eastern part by the Peerasuvanto
:::::::::::
Könkämäeno river and in the west by the main road. The study site has an160

area of roughly 4.26 ha with a maximum height difference to the surrounding peatland of ca. 2 m. This palsa is about 590 m

in length and 130 m in width. Puolikkoniva is the largest study site and a prototypical longitudinal plateau palsa, consisting of

several single and complex shaped palsas. According to the definition of Seppälä (2006) and Meier (2015), the palsas contain

a perennially frozen core of peat with segregated ice. Numerous cracks traverse the palsa site, with dwarf shrubs (
:
5
:
-
:::
20

:::
cm

::::
high,

:
e.g. Rubus chamaemorus, Empetrum hermaphroditum) and birches (

:::::
dwarf

::::::
birches

::
(5

:
-
:::
60

:::
cm

:::::
high, Betula nana) at the165

edges, while atop and around the palsas, typical vegetation such as lichens (
::
up

::
to

::
3
:::
cm

:::::
high,

:
e.g. Cetraria spp., Cladonia

spp.) and sphagnum moss (
::::::
mosses

::::::
(under

:
3
:::
cm

:::::
high, e.g. Sphagnum lindbergii) flourishes

::::::::
dominates. The absence of distinct

dome-shaped structures and the presence of thermokarst ponds within the palsa structure indicate the degradation of the palsa

(Seppälä, 2011), with pronounced block erosion at steep edges.

Pousu is located approximately 600 m east of the Puolikkoniva palsa at 68°51’39" N, 21°07’17" E and around 470 m a.s.l.,170

150 m east of the main road. This study site covers an area of about 0.36 ha and has a maximum height difference to the

surrounding peatland of ca. 2.5 m. This site, measuring 130 m in length and 50 m in width, is a classic example of a degrading
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dome-shaped palsa, as shown by collapsed parts, block erosion at its steep edges and thermokarst ponds within the former

palsa structure. Similar to Puolikkoniva, typical palsa mire vegetation grows around and on it.

Peera is located at 68°52’45” N, 21°04’35” E and around 460 m a.s.l., approximately 400 m south of lake Peerajärvi and 100175

m west of the main road. This study site encompasses an area of about 0.13 ha and has a maximum height difference to the

surrounding peatland of ca. 2 m. This palsa is about 55 m in length and 45 m in width. The palsa structure is surrounded by

typical peatland vegetation such as sphagnum mosses
:::
and

::::::
sedges. Water bodies, peat and bare rock structures can be found at

the edges of the palsa. Mainly lichens and dwarf shrubs grow on top of the palsa. Similar to Pousu, this palsa is also dome-

shaped and in a degrading phase. (Verdonen et al., 2023)
::::::::::::::::::
Verdonen et al. (2023) point out a massive loss of the permafrost area180

::::::::
significant

::::::::
decrease

::
in

:::
the

::::::
surface

::::
area

::
of

:::
the

:::::
palsa during the past 15 to 60 years.

Table 1. Main characteristics of each palsa site. Images recorded with DJI mini 3 Pro UAS at 30.08.2023.

Puolikkoniva Pousu Peera

UAS image

Location 68°51’43" N, 21°06’18" E 68°51’39" N, 21°07’17" E 68°52’45” N, 21°04’35” E

Area 4.26 ha 0.36 ha 0.13 ha

Extent (length, width) 590 m, 130 m 130 m, 50 m 55 m, 45 m

Height 2 m 2.5 m 2 m

2.2 Climate

The investigation areas are located on the pre-alpine belt of the Scandes. For the time period 1990
::::
1991

:
- 2020, the annual mean

temperature is -1.38
::::
-1.30 °C, the annual mean precipitation amount is about 514

:::
515 mm and the dominating wind direction

is south-southeast from November to April (FMI, 2022). Higher mountains affect the
:::::::
influence

:
local weather conditions,185

clouds for instance remain
:::
e.g.

::::::
clouds

:::
get

::::
held

:
in front of the mountain

::::::::
mountains

:
or wind directions are influenced (Autio

and Heikkinen, 2002). This may lead to different precipitation amounts or wind directions and speeds than measured at the

Kilpisjärvi weather station (Verdonen et al., 2023). Also, high wind speeds during winter can lead to a more intensive snow

drift, influencing the snow depth distribution inside the mire sites (DeWalle and Rango, 2008).

The palsa mire sites are affected by cold winters and moderate warm summers (Fig. 2). Winter is the longest season, lasting190

about 200 days including the polar night with around 50 days without sunlight. During winter the temperature can drop close

to - 50 °C and can increase above 0 °C (FMI, 2024). In Kilpisjärvi, the duration of permanent snow cover lasts about 217 days

a year (Lépy and Pasanen, 2017). During spring, the snow cover melts away, and the growing season starts in late May. In late

August the growing season ends with the beginning of autumn which lasts around 102 days (Kauhanen, 2013).
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Figure 2. Climate chart of Kilpisjärvi (FMI, 2022).
::::::
Climate

:::
data

::::::::
measured

:
at
:::::::::
69.03905N,

:::::::::
20.81379E

:::
and

:::
474

::::::
m.a.s.l.

::
in

::
the

:::::
period

:::::
1991

:
-

::::
2020. Dotted line shows 2 m above ground temperature in °C, dashed line shows precipitation in mm and solid line shows snow depth in cm.

:::
The

:::::::::::
Köppen-Geiger

:::::
climate

::::::::::
classification

::
is

:::
Dfc.

3 Data and methods195

In
:::
late

:
August 2022 and

:::
late March 2023, field expeditions to the palsa mire sites were conducted to collect a comprehensive

dataset . The selection of August for the summer dataset collection was strategic, corresponding
::::::::
consisting

:::
of

::::
UAS

:::::::
LiDAR

:::
data

::::
and

::::::
in-situ

::::
snow

:::::
depth

::::::::::::
measurements

:::
for

:::::::::
modeling

::::::::
purposes.

::::
Late

::::::
August

::::
was

::::::
chosen

::::::::::
specifically

:::
for

:::
the

::::::::
collection

:::
of

::::::
summer

::::
data

:::
as

::
it

::::::::::
corresponds

:
with the peak of the growing season and the maximum ALT

:
,
:::::
which

::::::::
typically

::::::
occurs

::
in

::::
this

:::::
region

:::
by

:::
the

:::
end

::
of

::::::
August

::::
and

:::::::::::::
mid-September,

:::::::::
depending

::
on

::::::
annual

:::::::
weather

:::::::
patterns

:::
and

:::
the

:::::
onset

::
of

::::
frost

:
(Verdonen et al.,200

2023). This timing ensures the capture of the landscape’s conditions in its most diverse
:::::
various

:
states before the start of the

winter season, providing the basis for extracting relevant input parameters for our approach.
:::
The

:::::
input

:::::::::
parameters

:::
are

::::::
spatial

::::::
datasets

:::::::::
calculated

::
on

:::
the

:::::
basis

::
of

::::::::
elevation

::::
data

::::::
derived

::::
from

:::::
UAS

:::::::
LiDAR.

On the contrary, the winter dataset, collected in March 2023, was chosen
:::
late

:::::
March

::::
was

::::::
chosen

:::
for

::::
the

:::
the

:::::
winter

:::::::
dataset

based on historical climatological patterns in the Kilpisjärvi region, which typically have maximum snow depths at this time205

(FMI, 2024). This period allows
::::::
allowed the collection of data under conditions that reflect winter extremes, which serves as

both validation and training data for the RF modeling. Figure 3 shows an overview of the different steps carried out for this

work.
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Figure 3. General overview of the data collection and analysis.

3.1
:::

UAS
:
DatacollectionFor the collection of input parameter data

3.1.1
::::
UAS

::::
data

:::::::::
collection210

:::
For

:::
the

:::::
initial

::::::::
collection

::
of

::::
UAS

:::::::
LiDAR

::::
data

::
to

:::::::
generate

::::
input

:::::::::
parameters, aerial surveys were conducted at all three study sites

during summer
::
on

::::::
August

:::
27,

:::::
2022, using a DJI Matrice 300 RTK, equipped with a YellowScan Mapper+ LiDAR system that

scanned at a wavelength of 905 nm.
:::
The

:::::
flight

:::::::
altitude

:::
was

:::
30

::
m

:::
for

::::
each

:::::
palsa,

::::
with

::
a
::::
50%

::::
side

:::::::
overlap.

:::
The

:::::
flight

::::::::
direction

:::
was

:::::
along

::::
the

::::::::::
longitudinal

::::
axis

::
of

::::
the

::::::
palsas,

::::::
except

:::
for

:::::
Peera

:::::
palsa,

::::::
which

::::::::
followed

:::
an

::::::::
east-west

::::::::::
orientation.

::::
The

:::::
flight

:::::::::
trajectories

:::
are

:::::::
pictured

::
in

::::
Fig.

::
4. To improve the accuracy of the collected data,

::
we

::::
used

:
Ground Control Points (GCPs)were215

set using ,
::::::::
measured

:::::
with a Trimble R12i Real-Time Kinematic (RTK) GNSS.

:::
We

::::
have

:::::::::
established

::::::
several

:::::::::
permanent

::::::
GCPs

::::::
located

::
on

::::::
known

::::::
points

::
of

::::
large

::::::
stones

::
in

:::
the

:::::
study

::::
sites.

:::::::::
Permanent

::::::
GCPs

::::
have

::::
been

::::::::::
established

::::::
because

:::
we

:::
are

::::::::::
monitoring

::::::
changes

:::
in

:::
the

:::::
palsas

:::
by

:::::::::
collecting

:::::
drone

::::
data

::::::::
annually

::::
since

::::
the

::::
past

:
8
::::::
years.

:::
The

::::::::
accuracy

:::
of

::::
these

:::::
RTK

:::::::::::::
GPS-measured

:::::
GCPs

::
is

:::::::
between

:::
1–2

::::
cm.

:::
For

:::
all

::::
UAS

:::::::
LiDAR

:::::::
summer

:::::
flights

:::
we

:::::::
utilized

::::
these

::::::
GCPs:

:::::
three

:::
for

:::::
Peera,

:::
20

:::
for

::::::
Pousu,

:::
and

:::
30

::
for

::::::::::::
Puolikkoniva.220

:::
The

::::::
winter

:::::
survey

:::::::::
replicated

:::
the

::::::::::::
methodological

::::::::::
framework

::
of

::
the

:::::::
summer

::::::
survey,

:::::
using

:::
the

:::::
same

:::::
drone

:::
and

::::::
sensor.

:::
The

::::::
flights

::
for

:::
all

::::
three

:::::
study

::::
sites

:::::
were

::::::
carried

:::
out

:::
on

:::::
March

:::
23

::::::::::::
(Puolikkoniva

:::
and

::::::
Pousu)

::::
and

::
24

:::::::
(Peera),

:::::
2023.

::::
The

:::::
flight

::::::
altitude

::::
was

::
60

:::
m,

::::
with

:
a
::::
50%

::::
side

:::::::
overlap.

:::
The

:::::
flight

::::::::
direction

:::
was

:::::
along

:::
the

::::::::::
longitudinal

::::
axis

::
of

::::
each

:::::
palsa

::::
(see

:::
Fig.

:::
4).

:::
For

::::
each

::::
side

:::
we

::::
used

:::
four

::::::
GCPs,

:::::::::
positioned

::::::
around

:::
the

:::::
palsa.

::::
The

:::::::
accuracy

:::
for

::::
each

:::::
GCP

::
is

:::::::
between

:
1
:
-
::
2
:::
cm.

:

In addition, with the integrated high-resolution RGB sensor of the DJI Matrice 300 RTK, images were captured,
:::::
RGB

::::::
images225

::::
were

:::::::
captured

::::
with

:::
an

::::
Autel

:::::
EVO

::
II

:::
Pro

:::
V2

::
to

:::::
create

::
an

:::::::::::
orthopicture

::
in

::::::
Agisoft

:::::::::
Metashape

:::::::::::
Professional

:::::::
software

::
of

::::
each

:::::
palsa

:::
site

::::::
during

::::
both

:::::::
surveys,

:
enabling a comprehensive analysis of the sites’ conditions.

::
the

:::::
site’s

::::::::::
conditions.

:::
The

:::::
flight

:::::::
altitude

:::
was

:::
80

::
m,

::::
with

::
a

::::
75%

:::
side

:::::::
overlap

:::
for

::::
each

:::::
flight.

::::
The

::::
RGB

::::::
flights

::::
were

:::::::::
conducted

:::::
using

:::
the

::::::
drone’s

:::::::
internal

::::
RTK

:::::::
system.
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3.1.2
::::
UAS

::::
data

::::::::::::::
post-processing

These aerial missions were post-processed in detail using YellowScan CloudStation Agisoft Metashape Professional Software,230

resulting in Digital Surface Models (DSMs) with a raster cell resolution of 0.1 m x 0.1 m. No additional filtering or noise

removal was performed on the UAS LiDAR data, keeping vegetation in the DSMs. Structure from Motion techniques were not

applied and no imagery was used in the post-processing. Orthophotos were also created to provide detailed visual representations

of the terrain
:::
The

::::::::
acquired

::::::
LiDAR

::::
data

::::
were

:::::::::::::
post-processed

::::
using

::::::::::
YellowScan

::::::::::::
CloudStation,

:::::::
resulting

:::
in

::::
point

::::::
clouds

:::
for

::::
each

::::
flight. Mean point cloud densities per raster cell vary from 7.2

:::::::
densities

:::
per

::::::
square

:::::
meter

:::::
vary

::::
from

:::::
1064

:
(summer) to 9.1235

:::
831

:
(winter) for Peera site, 9.9 to 8.1 four

:::
308

::
to
::::

338
:::
for

:
Pousu site and 6.6 to 9.0

:::
260

:::
to

::::
313 for Puolikkoniva site.

::
To

:::::
refine

:::
the

:::::
flight

::::::::::
trajectories,

::
we

:::::
used

:::::::
Receiver

:::::::::::
Independent

:::::::::
Exchange

::::::
Format

::::::::
(RINEX)

::::
data

::
in

:::
the

:::::::
Position

::::
and

::::::::::
Orientation

::::::
System

:::::::::::::
Post-processing

::::::::
software

:::::::::
(POSPac).

::::
For

::::
each

:::::::
dataset,

:::
we

::::::::
obtained

:::::::
RINEX

::::
data

:::::
from

:::
the

:::::::::::
continuously

:::::::::
operating

:::::::
reference

::::::
station

::::::::
(CORS)

::
of

:::
the

::::::::
National

:::::
Land

::::::
Survey

::
of

:::::::
Finland

::::::
(NLS)

::
in

::::::::::
Kilpisjärvi

:
(
::::
KILP

:::::::::::::
2147250.4266

:::::::::::
820562.0462

::::::::::::
5930136.8831

:
).240

The winter survey replicated the methodological framework of the summer survey, using the same UAS and sensor configurations

to produce DSMs and orthophotos.
:::
For

:::::
noise

:::
and

:::::::::
vegetation

:::::::
removal

::
in
:::

the
:::::::

dataset,
:::
we

::::
used

:::
the

::::::::::
progressive

:::::::::::::
Morphological

::::
Filter

::::::
(PMF)

::::::::
described

:::
by

:::::::::::::::::
(Zhang et al., 2003)

:::
and

:::::::::::::::::
(Jacobs et al., 2021)

:
in

:::::
order

::
to

::::::
receive

::::::
Digital

::::::
Terrain

:::::::
Models

:::::::
(DTM).

:::
We

::::::
applied

:::
the

:::::::
filtering

::::
using

:::::::
window

:::::
sizes

::
of

:::
0.5,

::
1,
::
2
:::
and

::
3

:::
and

:::::::::
thresholds

::
of

::::
0.05,

::::
0.1,

:::
0.3

:::
and

::::
0.5.

:::
The

::::::::
extracted

::::::
ground

::::::
points

::::
were

:::::
saved

::
in

:::::
point

:::::
cloud

::::::
format.

:::::
Using

:::
the

::::::::
software

:::::::::::::
CloudCompare,

:::
we

::::::::
generated

:
a
:::::
DTM

:::
for

::::
each

:::::
flight

:::::::
mission

::
in

:::
0.1

::
m

::
x245

:::
0.1

::
m

::::::::
resolution

::::
with

:::
the

::::::::
Rasterize

:::::::
function.

::::::
Empty

::::
cells

::::::
within

:::
the

:::::
point

:::::
clouds

:::::
were

::::::::::
interpolated

::::
with

::
a

::::::
triangle

::::
max

:::::
edge

:::::
length

::::::
value

::
of

:::
5.0.

:

Based on the summer and winter DSM
::::
DTM

:
of the palsa sites, snow distribution datasets were calculated by substracting the

winter by the summer DSM
:::::
DTM in Geographic Information Systems (GIS) - ArcGIS Pro by Esri was used -, allowing the

comparison of UAS-LiDAR
::::
UAS

::::::
LiDAR

:
conducted snow depth (SDLiDAR) and RF modeled (SDRF).250

3.2
::::::::

Reference
::::
data

:::::::::
collection

Additional datasets that are essential for modeling and validation were collected after the respective flights. Snow depth mea-

surements (SDin-situ) were carried out manually using a
::::::
wooden

:
yardstick across all sites, whereas each point was measured by

RTK-GPS.
::
at

:::
the

::::
snow

:::::
cover

:::::::
surface

::
by

:::::
RTK

::::
GPS

::
to

::::::
receive

:::
the

:::::
exact

:::::::
location.

:::
On

::::::
March

:::
23,

:::::
2023,

:::::::
SDin-situ:::::

were
::::::::
measured

::
in

:::::::::::
Puolikkoniva

:::
and

:::::
Pousu

::::
and

::
on

::::::
March

:::
24,

:::::
2023,

::
in

:::::
Peera.

:
A total of 185 validation points were recorded, divided across the255

sites as follows: 100 in Puolikkoniva, 46 in Pousu, and 39 in Peera (Fig. 4).

To ensure the derivation of an optimal
:
a
:::::::

diverse SDin-situ training dataset, different measurement network designs were at-

tempted at each site, customised to the unique geomorphological features of the palsa mires, making sure to catch points on

top of the palsa, at the edges and at the steep slopes, on the thermokarst ponds and the surrounding field as at those parts

differences in snow depth can be expected. In Pousu, a randomised sampling strategy was applied with focus on the palsa260

edges and summits (Fig. 4 b). In Puolikkoniva, there were two parallel transects measured following its longitude shape and
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complemented by randomised points at the edge, thermokarst and surrounding field (Fig. 4 a). The Peera approach consisted

of two intersecting transects, augmented by a set of randomly chosen points along the edge (Fig. 4 c). This training dataset

captures the variability of snow cover within palsa mires, ranging from snow-free palsa summits to deeply covered palsa edges
:
,

:::::::
allowing

:
a
::::::::::
distribution

::
of

:::
all

:::::::
SDin-situ :::

into
:::::
point

::::::
classes

:::::
Edge,

:::
On

::::
Top,

:::::
Open

:::::
Area

:::
and

:::::::::::
Thermokarst. A histogram of the snow265

measurements
::::::
SDin-situ:can be viewed in Appendix A1

:::
and

:::
the

:::::::::
distribution

:::
to

::
the

:::::::::
respective

::::::
classes

::
in

::::::::
Appendix

:::
A2.

Figure 4. Snow depth measuring points within the investigation sites at Puolikkoniva (a), Pousu (b) and Peera (c) palsa illustrating different

methods for recording snow depth (transects, randomized, crossed).

3.3 Random Forest algorithm
::::::::
Modeling

::::
data

:::::::::::
preparation

For the modeling process, we used
:::
The

::::::::
collected

::::::
LiDAR

::::
data

::::
from

:::
the

:::::::
summer

:::::
flight

::::::::
missions

::::
were

:::::
used

::
to

:::::
create

:::
the

:::::
input

:::::::::
parameters

:::
for the ranger package (Wright and Zigler, 2017) within the R programming environment, which is known for its

ability to efficiently process large datasets and accounts for complicated predictor interactions. The preparatory steps included270

aggregating the various input parameters into a uniform raster stack, conducted by the stack function from the raster package

(Hijmans et al., 2023). This method allowed for a comprehensive analysis of the multidimensional dataset, ensuring spatial

alignment across all layers.
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The dependent variable for our model was the previous described SDin-situ dataset. These measurements, together with the

stacked input parameters (Table 2) as independent variables, formed the basis of our RF model. The process of extracting input275

parameter values from the stacked raster set was performed using the buffered shapefile. This procedure was crucial for the

preparation of the training dataset, which was subsequently split randomly into training (70%) and testing (30%) subsets for

all palsa locations combined. This split allowed an evaluation of the model’s predictive accuracy.

The RF model was used without explicit hyperparameter specifications, so default settings were used, including the construction

of 500 decision trees, a maximum of 3 variables per split, and a target node size of 5, reflecting the characteristics of the final280

model run (12 input parameters ). Permutation mode was chosen for variable importance assessment, and a specific seed

value was implemented to ensure reproducibility of the results. The resulting Permutation Importance (PI) value of each input

parameter was given and - for better understanding and comparability - the PI values were converted into percentages over all

input parameters. Subsequently, the trained RF model was employed to calculate SDRF predictions across each palsa site. For

that, the predict function was used, applying the model to the test dataset to estimate snow depth values.285

3.4 Modeling data preparation

The collected airborne data were subjected to extensive preprocessing using GIS, in particular ArcGIS Pro and
:::
RF

::::::::
modeling

::
in

SAGA GIS by SourceForge. This preprocessing aimed to match the datasets (cell size 0.1 m x 0.1 m)
::
by

:::::::::::
SourceForge.

::::
For

::::
that,

::
we

:::::
used

::
the

:::::::
created

:::::
DTMs

:::
as

::::
input

:::
for

:::
the

:::::::
creation

::
of

:::
all

:::::::::
parameters

:::
and

:::::::::
afterwards

:::::::::
resampled

:::::
these

:::::
raster

::
to

:::
the

::::
same

::::::
extent

:::
and

::::::::
resolution

::
in
:::::::
ArcGIS

:::
Pro, making it suitable for analysis with the RF algorithm.290

Subsequently, SAGA GIS was used for the computation of various geomorphological parameters to enhance the training dataset

with a diverse range of topographical and environmental predictors. These predictors included elevation, aspect, slope, and a

range of indices comprising hydrological and morphological landscape features (Table 2). According to Meloche et al. (2022)

and Revuelto et al. (2020), the Topographic Position Index (TPI) is most suitable
::
of

::::
great

:::::::::
relevance

:::::
when

::::::::
modeling

:::::
snow

::::::::::
distributions

:
due to its proven relevance to show

:::::::::
importance

:::
for

:::::::::::
representing dependencies between topography and snow295

depth.

To reduce the risk of possible overfitting, the Elevation parameter was purposely excluded in the subsequent model iteration.

Further refinement was based on the RF algorithm’s PI values, leading to the exclusion of parameters with initial minimal

impact on model performance (PI < 1.25 %) for the final model iteration. These parameters included: Analytical Hillshading,

Convergence Index, LS Factor, Plan Curvature, Profile Curvature, Real Surface Area, Terrain Ruggedness Index, Topographic300

Wetness Index, and Total Catchment Area (see Table 2).

The SDin-situ locations, serving as the training dataset, were buffered by 0.3 m, with each buffered point assigned the

corresponding snow depth value. This buffering strategy aimed to moderate model variability and offers a balanced representation

of parameter combinations linked to the specific SDin-situ measurements, improving the realism and consistency of the model

as proven in Bergamo et al. (2023).305
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Table 2. Overview of all input parameter used in the RF modeling.

Parameter Description

Analytical Hillshading

Parameter shows landscape

as shaded by the sunlight

from a specific direction

(Tarini et al., 2006). Inserts

topographical structures to

the training data set.Aspect

Aspect in degree of every raster cell (Olaya, 2009).

Channel Network Base

Level Gives information
::::::
Provides

:::::::::
information

::::
about

:
channel networks and interpolates the base level elevations

of it (Olaya and Conrad, 2009).

Channel Network Distance Gives information about the vertical distance from altitudes above the channel network to its base (Olaya

and Conrad, 2009).

Convergence Index Shows

an index of convergence in

relation to the overland flow

(Kiss, 2004).Elevation

The elevation calculated from remote sensing data in Agisoft Metashape Professional.

LS Factor The

factorised length and

steepness of a slope

(Böhner and Selige, 2006)

.Negative Openness

Parameter which indicates how enclosed the location of a landscape is (Yokoyama et al., 2002).

Plan Curvature Describes

the curvature of the

surface, with positive

values indicating areas of

convergent and negative

values divergent flow

(Wood, 1996).Positive

Openness

Parameter which indicates how dominant the location of a landscape is (Yokoyama et al., 2002).

Profile Curvature

Describes the curvature

where the Z axis intersects

with the direction of

maximum gradient,

with positive values

indicating convex and

negative values concave

profile (Wood, 1996).Real

Surface Area Shows real

cell area and considers

texture of the surface

(Grohmann et al., 2009)

.Relative Slope Position

Providing
::::::
Provides

:
a measure of each cell’s position in relation to the surrounding terrain (Böhner and

Selige, 2006).

Slope Slope in degree of every raster cell (Olaya and Conrad, 2009).

Terrain Ruggedness Index

Quantifies the terrain

ruggedness with higher

values representing

higher roughness

(Riley et al., 1999)

.Topographic Position

Index

Parameter based on Guisan et al. (1999), which combines several topographic features

(Wilson and Gallant, 2000).
:::::::
Describes

:::
the

:::::::
relative

:::::::
elevation

:::
of

::
a
:::::

point
::::::::
compared

::
to
:::

its
::::::::::

surrounding

:::::
terrain

:::
and

::
is

:::
used

::
to
::::::

classify
:::::::::

landforms.
::::::
Positive

:::::
values

::::::
indicate

::::::
ridges,

::::::
negative

::::::
values

::::::
indicate

::::::
valleys,

:::
and

:::::
values

:::
near

::::
zero

:::::::
represent

::
flat

::
or
:::::::
uniform

:::::
slopes

::::::::::::::::::::::::::::::::::
(Guisan et al., 1999; Wilson and Gallant, 2000)

:
.

Topographic Wetness Index

Parameter which maps

the relative wetness or

moisture potential of each

cell with higher values

indicating wetter areas

(Böhner and Selige, 2006)

.Total Catchment Area

Represents the overall

area draining towards a

specific point , reflecting

the vulnerability of an

area to collect water

respectively snow

(Gruber and Peckham, 2009)

.

Valley Depth

Calculates the depth of valleys by finding the difference between each cell’s elevation and an interpolated

ridge level, where positive values indicate areas below the interpolated ridges, representing valleys, and

negative values describing elevated regions like hills or ridges (Conrad et al., 2015).

Wind Effect
Index indicating values

:::
The

:::::
index

:
is
::
a
::::::::::
dimensionless

:::::::
measure

::::
used

::
to

:::::
assess

:::::
terrain

:::::::
exposure

::::::
relative

::
to

:
a

:::::
specific

:::::
wind

:::::::
direction.

:::::
Values

:
below 1 for shaded areas and

::::::
indicate

::::
areas

:::::::
sheltered

::::
from

:::
the

::::
wind,

:::::
while

:::::
values above 1 for exposed areas in relation to a specific wind direction

::::
refer

:
to
::::::

regions
:::::::
exposed

::
to

::::
wind

(Gerlitz et al., 2015).

Wind Exposition
Like parameter

:
It

:::::::
assesses

:::
the

::::::
overall

::::::
terrain

:::::::
exposure

::
to
:::::

wind
:::

by
:::::::::

considering
:::

all
:::::::

possible
:::::

wind

:::::::
directions

:::::::::::::::
(Gerlitz et al., 2015)

:
.
:::::
Unlike Wind Effect, but it automatically calculates an Index taking all wind

directionsinto account (Gerlitz et al., 2015).
::
this

:::::
index

:::::::
calculates

::
an

::::::
average

:::::::
exposure

:::::
value

::::
across

:::::::
multiple

::::::::
directions.

:::::
Values

:::::
below

:
1
::::::
indicate

:::::::
sheltered

:::::
areas,

::::
while

:::::
values

:::::
above

:
1
::::::
signify

::::::::::
wind-exposed

::::::
regions.
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3.4
:::::::

Random
::::::
Forest

:::::::::
algorithm

:::
For

:::
the

::::::::
modeling

:::::::
process,

:::
we

:::::
used

:::
the

::::::
ranger

:::::::
package

::::::::::::::::::::::
(Wright and Zigler, 2017)

:::::
within

:::
the

::
R

:::::::::::
programming

::::::::::::
environment,

:::::
which

::
is

::::::
known

:::
for

:::
its

:::::
ability

:::
to

::::::::
efficiently

:::::::
process

:::::
large

:::::::
datasets

:::
and

::::::::
accounts

:::
for

::::::::::
complicated

::::::::
predictor

:::::::::::
interactions.

::::
The

:::::::::
preparatory

:::::
steps

:::::::
included

::::::::::
aggregating

:::
the

::::::
various

::::
input

::::::::::
parameters

:::
into

:
a
:::::::
uniform

:::::
raster

:::::
stack,

:::::::::
conducted

::
by

:::
the

:::::
stack

:::::::
function

::::
from

:::
the

:::::
raster

::::::
package

::::::::::::::::::
(Hijmans et al., 2023)

:
,
:::::::
ensuring

::::::
spatial

:::::::::
alignment

:::::
across

:::
all

:::::
layers.

:
310

:::
The

:::::::::
dependent

:::::::
variable

:::
for

:::
our

::::::
model

::::
was

:::
the

::::::::
previous

::::::::
described

:::::::
SDin-situ.

::::::
These

::::::::::::
measurements,

::::::::
together

::::
with

:::
the

:::::::
stacked

::::
input

:::::::::
parameters

::::::
(Table

::
2)

::
as
:::::::::::

independent
::::::::
variables,

::::::
formed

:::
the

:::::
basis

::
of

:::
our

:::
RF

::::::
model.

::::
The

:::::::
SDin-situ ::::::::

locations,
:::::::
serving

::
as

:::
the

::::::
training

:::::::
dataset,

::::
were

:::::::
buffered

:::
by

:::
0.3

::
m,

::::
with

::::
each

:::::::
buffered

:::::
point

:::::::
assigned

::
to

:::
the

::::::::::::
corresponding

:::::
snow

::::
depth

::::::
value.

:::
The

:::::::
process

::
of

::::::::
extracting

:::::
input

:::::::::
parameter

::::::
values

:::::
from

:::
the

::::::
stacked

::::::
raster

:::
set

::::
was

:::::::::
performed

::
by

:::::::::
randomly

:::::::::
separating

::::
70%

:::
of

:::
the

:::::
point

::::::
features

:::::
from

::::
each

:::::::
SDin-situ::::::

dataset
:::

for
:::::::

training
::::
and

::::
30%

:::
for

:::::::
testing.

:::::
After

:::
this

:::::::::
separation

:::
we

::::::::
extracted

:::
the

:::::
input

:::::::::
parameter315

:::::
values

:::
for

:::
the

:::::::
training

:::::::
dataset,

:::::::
ensuring

::
a

::::
clear

:::::::::
distinction

:::::::
between

:::::::
training

::::
and

::::::
testing

::::
data.

::::
The

:::::
input

:::::::::
parameters

:::::
were

:::
not

:::::::
averaged

::::::
within

:::
the

::::::
buffer

:::::
areas;

:::::::
instead,

::::
each

:::::::::
parameter

:::::
value

:::
was

:::::::
directly

::::::
linked

::
to

:::
the

:::::::::
respective

:::::::
SDin-situ::::::::::::

measurement.

:::::::::::
Consequently,

::::
each

:::::
snow

:::::
depth

:::::
value

:
is
:::::::::
associated

::::
with

::
an

:::::::
average

::
of

:::
28

::::
input

:::::::::
parameter

::::::
values,

::::::
leading

::
to

:
a
::::::
dataset

:::::::::
consisting

::
of

::::
3645

:::::::
training

:::::
values

::::::::::::
(Puolikkoniva

:::::
1983;

:::::
Pousu

::::
905;

:::::
Peera

::::
757)

:::
and

:::::
1577

:::
test

:::::
values

:::::
(836;

::::
401;

:::::
340).

:::
The

::::::::
buffering

:::::::
strategy

:::::
aimed

::
to

::::::::
moderate

::::::
model

:::::::::
variability,

::::::
reduce

:::::
noise,

::::::::
minimize

::::
the

:::::::
influence

:::
of

::::::::::
geolocation

:::
and

::::::::
sampling

::::::
errors,

::::
and

:::::::
enhance320

::
the

:::::::::
robustness

:::
of

:::
the

:::::
model

:::
by

:::::::::
increasing

:::
the

:::::::
number

::
of

:::::::
training

::::::
points.

:::
By

:::::::::::
incorporating

:::::::::
groupings

::
of

::::::
nearby

:::::
points

::::::
rather

:::
than

:::::::
relying

::
on

::::::::::
single-point

:::::::::::::
measurements,

:::
this

::::::::
approach

:::::
helps

:::::::
improve

:::
the

:::::::
model’s

:::::::
stability

:::
and

:::::::
realism,

::
as

::::::::::::
demonstrated

::
in

::::::::::::::::::
Bergamo et al. (2023).

:::
To

::::::
prevent

:::::
errors

::::
and

:::::::::::::
miscalculations,

:::
all

:::::::
NoData

:::::
values

:::::
were

:::::::
removed

:::::
from

:::
the

:::::::
datasets,

::::::::
resulting

::
in

:
a
::::
final

:::::::
training

::::::
dataset

::
of

::::
3504

::::::
points

:::
and

::
a

::::
final

:::
test

::::::
dataset

::
of

:::::
1548

:::::
points

:::
for

::::::
further

::::::::
modeling

:::
and

:::::::::
validation.

:

::
To

:::::::::
determine

:::
the

::::::
optimal

::::::
values

:::
for

::::
mtry,

::::::::::::
min.node.size,

::::
and

::::::
sample

:::::::
fraction,

:::
we

:::::::::
performed

:::::::::::::
hyperparameter

::::::
tuning

:::::
using

:::
the325

:::
mlr

::::::
package

::
in

::
R

::::::::::::::::
(Bischl et al., 2016)

:
.
::
To

:::::::
prevent

:::::::::
overfitting,

:::
we

::::::::
restricted

::
the

::::::
search

:::::
range

:::
for

:::::::::::
min.node.size

:
to

::::::
10–15

:::
and

:::
for

::::::
sample

::::::
fraction

:
to

::::::::
0.7–0.85,

::::::::
following

:::
the

:::::::::::::::
recommendations

::
of

::::::::::::::::
Probst et al. (2019)

:::
and

:::::::::::::
Breiman (2001)

:
.
:::::::
Allowing

:::
an

::::::::
unlimited

:::::
search

:::::
range

:::::::
initially

::::::::
resulted

::
in

:::::
better

::::::
model

:::::::::::
performance,

::::
but

::
at

:::
the

::::
cost

:::
of

:::::::
reduced

:::::::::::::
generalization,

::::::::
indicating

:::::
signs

:::
of

:::::::::
overfitting.

:::
We

:::::::
selected

:::
the

::::
final

:::::
search

:::::
range

:::::
based

::
on

::::::::
multiple

:::
test

::::
runs

::::
with

:::::::
different

:::::::
settings.

:::
For

::::::::::::::
cross-validation,

:::
we

:::::
tested

:::::::
different

::::
fold

::::
sizes

::
to

:::::::
identify

:::
the

::::
most

::::::::
effective

:::::::::::
configuration.

::::
The

::::
best

:::::
results

:::::
were

:::::::
achieved

:::::
using

::
a

:::::
4-fold

::::::::::::::
cross-validation.330

:::
The

::::
final

:::::
tuned

::::::::::::::
hyperparameters

:::::
values

:::::
were

::
as

:::::::
follows:

::::
mtry

:
:
::
9;

:::::::::::
min.node.size

:
:
:::
10;

::::::
sample

:::::::
fraction:

:::::
0.79.

::::::::::
Permutation

:::::
mode

::::
was

::::::
chosen

:::
for

::::::::
variable

:::::::::
importance

:::::::::::
assessment,

:::
and

::
a
:::::::
specific

::::
seed

:::::
value

::::
was

:::::::::::
implemented

:::
to

::::::
ensure

::::::::::::
reproducibility

::
of

::::
the

::::::
results.

::::
For

:::::
more

:::::::::
robustness,

::::
we

:::::::
repeated

::::
the

:::::::::
calculation

::::
100

:::::
times

:::
to

:::::
obtain

::
a
:::::
mean

:::::::::::
permutation

:::::::::
importance

::::
(PI)

:::::
value

:::
for

::::
each

:::::
input

:::::::::
parameter,

:::::::
ensuring

:::::::
reliable

::::::::
rankings.

:::
The

::::::::
resulting

::
PI

::::::
values

:::
for

::::
each

:::::
input

:::::::::
parameter

::::
were

:::::::::
normalized

:::
for

:::::
better

::::::::::
comparison

:::
by

::::::
setting

:::
the

::::
most

::::::::
important

:::::::::
parameter

::
to

::
1.

::::::::::::
Subsequently,

:::
the

::::::
trained

:::
RF

:::::
model

::::
was335

::::::::
employed

::
to

::::::::
calculate

::::
SDRF::::::::::

predictions
:::::
across

::::
each

:::::
palsa

:::
site

:::
by

:::::
using

:::
the

::::::
predict

:::::::
function.

:

::::::::::
Additionally,

::
a
:::::::::
correlation

:::::::
analysis

:::::::
between

:::
the

::::
input

:::::::::
parameters

::::
and

::::::::
predicted

::::
SDRF::::

was
:::::::::
performed

::
to

::::::
identify

::::
any

:::::::::
correlating

::::::::
predictors

::::
and

:::::
assess

::::
the

:::::::
strength

:::
of

:::
the

:::::::::::
relationships

:::::::
between

:::::
them

::::
and

:::
the

::::::::::
prediction.

::::::::::
Correlation

::::::
values

:::
for

:::
all

:::::
input

::::::::
parameter

:::
are

:::::
listed

::
in
:::::::::

Appendix
::::
A3.

:::::::::::
Furthermore,

:::
the

:::
RF

::::::
model

::::
was

:::
run

:::::
three

::::::::
additional

:::::
times

:::
to

::::::
ensure

:
a
:::::
fully

:::::::
external
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::::::::
validation.

:::
In

::::
each

::::
run,

:::
one

:::::
palsa

:::
site

::::
was

::::::::
excluded

::::
from

::::
the

::::::
training

:::::
data,

:::::::
allowing

:::
its

::::::::
measured

:::::::
SDin-situ::::::

values
::
to

::
be

:::::
used340

:::::::::
exclusively

::::
for

:::::::::
validation.

3.5 Statistical analysis

The statistical analysis focused on evaluating the predictive accuracy of the model. The following metrics were summarized

for all palsa sites and calculated in the R environment:

1. Coefficient of Determination (R2): Calculated to quantify the proportion of variance in the dependent variable that is345

predictable from the independent variables in the model (Nagelkerke, 1991), giving clearance about the overall effec-

tiveness of the model, defined as

R2 = 1−
∑

(yi − ŷi)
2∑

(yi − ȳ)2
(1)

2. Root Mean Square Error (RMSE): Employed to quantify the average magnitude of the error in the predictions (Chai

and Draxler, 2014), highlighting the ability of the model to predict snow depth accurately, defined as350

RMSE =

√
1

n

∑
(yi − ŷi)2 (2)

3. Mean Absolute Error (MAE): Measures the average magnitude of the absolute errors between predicted and observed

values, without considering their direction (Chai and Draxler, 2014; Willmott and Matsuura, 2005), defined as

MAE =
1

n

n∑
i=1

|yi − ŷi| (3)

4. Standard Deviation (SD): Provides a measure of the dispersion of prediction errors around their mean (Walser, 2011),355

revealing the precision and consistency of the predictions, defined as

SD =

√√√√ 1

n− 1

n∑
i=1

(yi − ŷi)2 (4)

where yi is the observed value, ŷi is the predicted value from the model, ȳ is the mean of observed values.

Furthermore a 10-fold cross-validation according to James et al. (2013) was done in RStudio using the caret package (Kuhn, 2008)

to further validate the model and mitigate the risk of overfitting. This method divides the SDin-situ training data into ten subsets,360

trains the model on 9 subsets, and evaluates it on the remaining one. This cycle was repeated ten times, with each subset serving

as the test set once, ensuring that every data point is used for both training and testing. The choice of 10 folds balances the

need for model evaluation with computational efficiency. In the end, the mean R2 and RMSE were calculated, allowing the

comparison with the initially calculated values.

Additionally, a correlation analysis between the input parameters and predicted SDRF was performed to identify any significant365

predictors and assess their influence on the model’s predictions. Special focus was set to parameters exceeding or fall below a

correlation of +/- 0.7, indicating a significant influence on the model performance.
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To visualize the statistical analysis results, scatter plots of
::::
were

::::::
created

::
to

:::::::
compare

:
RF and UAS LiDAR derived snow depths

in comparison to the measured valueswere conducted
:::
with

:::
the

:::
test

:::::::
dataset

:::::
values.

4 Results370

4.1 Snow depth predictions

The
:
In

:::::::
general,

:::
the

:
predicted SDRF present a good visual alignment with the calculated SDLiDAR (Fig. 5).

The Puolikkoniva palsa site is affected by several collapsed areas, in which snow accumulates massively
:::::
heavily. This can be

seen in the SDRF (Fig. 5 a) as well as in the SDLiDAR (Fig. 5 b) results. In general, the
::
At

:::
the

::::::
eastern

::::
side

::
of

:::
the

:::::
palsa, RF models

the snow depth inside these collapsed holes and cracks slightly higher than the UAS LiDAR was detecting it. Especially directly375

at the steep edges of the palsa, the depth values increase up to 30 cm
::
20

:
-
:::
40

:::
cm,

:::::
partly

:::
up

::
to

::
60

::::
cm.

::
At

:::
the

:::::::
western

::::
side

::
of

:::
the

:::::
palsa,

:::::::
SDLiDAR::

is
::::::
higher

::
at

::::
these

:::::
parts

::::
with

:::::
values

:::::::::
increasing

:::
up

::
to

::
20

::
-
::
40

:::
cm

:::::::::
compared

::
to

:::::
SDRF. However, the transition of

the snow depths better corresponds to changes at slopes on the UAS LiDAR results, as the RF model reveals obvious patterns.

The most obvious differences are occurring in areas beneath the palsa itself, for example the whole northeastern and eastern

parts
:::::::
directly

::
at

:::
the

::::
edge

::
of

:::
the

:::::
palsa, which have higher snow depths

:::
(up

::
to

::
60

::::
cm)

:
predicted by RF than detected based on380

the UAS LiDAR data.
:::::
Within

:::
the

:::::
open

:::
area

:::::::
beneath

:::
the

::::::
palsa,

:::::::
SDLiDAR::

is
::::::
higher

:::
(up

::
to

:::
50

::::
cm),

::::::::
following

:::::
areas

::::
with

::::::
higher

:::::::::
vegetation. The most similar parts are the areas on top of the palsa with slightly higher snow depths predicted by RF

:::::::::
differences

:::::::
between

::::
both

:::::::
datasets

:::::
under

::
15

::::
cm,

:::::
partly

::
20

:::
cm.

The Pousu palsa site shows a similar pattern as in the Puolikkoniva palsa site, with cracks filled by snow and collapsed parts

with steep slopes where snow accumulated heavily (Fig. 5 c, d). Again, the transition of the snow depth at those areas is more385

natural in the SDLiDAR data since the SDRF data are showing sharp steps. Also, mire areas parts next to the palsa are observed

by UAS LiDAR with lower snow depth as modeled with RF. This is especially visible in the southwestern and southern parts

of the area, where snow height
::::
depth

:
was modeled between 40 – 50 cm and the UAS LiDAR detected values between 10 – 20

cm. However, similarities are visible on top of the palsa, where snow depths were modeled and observed in a range between

10 to 30 cm each.390

The Peera palsa site shows the highest consistency between SDRF and SDLiDAR. However, as in the two former sites, the highest

snow pack
::::
depth

:
accumulated in cracks and at the steep edges of the palsa (Fig. 5 e, f). Unlike at the other locations, there are

no sharp steps at the parts mentioned here, as both approaches model smooth transitions. Similar structures are also visible on

top of the palsa with snow heights
::::::
depths around 20 cm in each approach. However, differences are visible like at the two other

palsa sites in the surrounding area of the palsa, where the snow pack
:::::
depth is calculated higher by RF than the UAS LiDAR395

detected it.
::::::
Higher

::::
snow

::::::
depths

::::
were

::::
also

::::::::
calculated

::::
with

:::
RF

:::
on

:::
the

:::::::::::
northwestern

::::
edge

::
of

:::
the

::::
Palsa

::::
than

::::::::
measured

::::
with

:::::::
LiDAR

:::
(up

::
to

:::::
30-50

::::
cm).

Snow depth predictions based on the RF model run 3 (left) and the UAS LiDAR (right) at site Puolikkoniva (a, b), Pousu (c,

d) and Peera (e, f) palsas. Red points are showing the in-situ snow depth measurement locations.

Snow depth differences between modeled and UAS LiDAR results at a) Puolikkoniva, b) Pousu and c) Peera palsas.400
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Viewing the deviations in snow height
:::::
depth between the two approaches, it is evident that the top parts of the palsa sites

themselves show very low differences (Fig. 6 a, b, c). However, deviations occurred at the edges, inside of cracks, at the

highest parts of the palsa and in the surrounding areas. Within cracks on top of the palsa sites, the UAS LiDAR detected in

general higher snow pack
::::
depth

:
than RF modeled it,

::::::
except

:::
for

:::
the

::::::
eastern

::::
side

::
of

:::::::::::
Puolikkoniva

:::::
palsa,

:::::
where

::
it

:
is
:::
the

:::::
other

::::
way

::::::
around. Differences of around 20 cm are shown, but with peaks up to 50

::
60 cm. Also, highest elevated structures of the palsa405

sites directly at edges show deviations of about 15 - 30
::
40 cm higher snow pack

::::
depth

:
calculated by the UAS LiDAR

:
,
::::::
except

::
for

:::::
Peera

:::::
palsa. In contrast, the collapsed parts with accumulated snow are consistently modeled with higher values exceeding

45 cm of deviation to the UAS LiDAR derived values. It is worth noting that the
:::::::
Notably,

:
deviations in the areas surrounding

the palsas are mostly in the type of higher modeled snow from
::::::::
primarily

:::::::::::
characterized

::
by

::::::
higher

:::::
snow

:::::
depths

::::::::
predicted

:::
by the

RF model . Only a few narrow structures with significantly higher snow can be recognized based on the UAS LiDAR data
::::
with410

::::::::
exception

:::
for

::::
areas

::::
with

::::::
higher

:::::::::
vegetation

::
at

:::::::::::
Puolikkoniva

::::
palsa

::::
site.
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Figure 5.
::::
Snow

:::::
depth

::::::::
predictions

:::::
based

::
on

::
the

:::
RF

:::::
model

::::
(left)

:::
and

:::
the

:::
UAS

::::::
LiDAR

:::::
(right)

::
at

:::
site

::::::::::
Puolikkoniva

::
(a,

::
b),

:::::
Pousu

::
(c,

::
d)
:::
and

:::::
Peera

::
(e,

:
f)
::::::

palsas.
:::
Red

:::::
points

:::
are

::::::
showing

::::::
SDin-situ:::::::

locations.
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Figure 6.
::::
Snow

:::::
depth

::::::::
differences

:::::::
between

::::::
modeled

:::
and

::::
UAS

::::::
LiDAR

:::::
results

::
at

::
a)

::::::::::
Puolikkoniva,

::
b)

:::::
Pousu

:::
and

::
c)

::::
Peera

::::::
palsas.

4.2 Variable importances
::::::::::
importance

The calculated PI shares
:::::
values

:
of all parameters for all model runs are pictured in Fig. 7. In model run 1, the

:::
The

:
four most

important parameters are TPI, Wind Effect
:::::::::
Exposition, Valley Depth

::::::::
Elevation

:
and Channel Network Base Level, while TPI is

nearly three times more important (29.36 %) than the second
:::
the most important parameter with 9.33 %. Low importances are415

shown for the parameters Terrain Ruggedness Index, Real Surface Area, Analytical Hillshading, Profile Curvature, Topographic

Wetness Index, LS Factor, Total Catchment Area, Plan Curvature and Convergence Index. These parameters showed a PI value

lower than 1.25 %, which is about 24 times less than the most important parameter TPI.

After removing the parameter Elevation for model run 2 and all parameters with PI values lower than 1.25 % for model

run 3, slight changes in PI values can be recognized. The remove of
:::
and

:::
set

::
to

::
1.

::
It

::
is

:::::
more

::::
than

::::
four

:::::
times

::::
more

:::::::::
important420

:::
than

::::
the

:::
two

:::::::::
following

:::::::::
parameters

:
Elevation

:::::
Wind

:::::::::
Exposition led to a minor PI value increase for 15 parameters and slight

decrease for 5 parameters. However, removing all parameters with PI values lower than 1.25 % increased the importance of all

remaining parameters, especially for the four most important parameters and
:::::::
(around

::::
0.14)

::::
and

::::::::
Elevation

:::::
(0.13).

::
In

::::::::
addition,

:::::::
Channel

:::::::
Network

:::::
Base

::::
Level

:::::
(0.12),

:::::
Wind

:::::
Effect

:::::
(0.08)

:::
and

:
Elevation

:::::
valley

::::::
Depth as well as Wind Exposition with 8 - 15 %
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total increase.
:::::
(0.07)

:::
are

:::
also

:::
of

:::::::::
substantial

::::::::::
importance.

:::
The

:::::::::
remaining

:::::
input

::::::::
parameter

:::::::
Positive

:::::::::
Openness,

:::::::
Channel

::::::::
Network425

::::::::
Distance,

:::::::
Relative

:::::
Slope

:::::::
Position,

::::::::
Negative

::::::::
Openness,

::::::
Slope,

::::::
Aspect

::::::
possess

:::::
lower

::::::::::
importance

::::
than

::::
0.04.

:

Figure 7. Overview of percentage shares of PI per input parameter and model run
::::::::
normalized

::::
mean

:::::::::
Permutation

:::::::::
Importance

:::::
values

::::
from

:::
RF

:::::::
modeling

:::
over

::::
100

:::::::
iterations.

4.3 Statistical evaluation results

The statistical analysis by model run
:
of

:::
the

:::::::
general

:
(Table 3) and validation point locations

:::::::
accuracy

:
(Table 4) reveals high

precision
:::::::::
comparable

::::
high

::::::::
accuracy of SDRF .

While each model run has significantly better
::
and

::::::::
SDLiDAR.

::::
The

:::
RF

::::::::
modeling

::::::
dataset

:::
has

::::::
slightly

:::::
better

::::::::
statistical

:::::::::
validation430

metrics than the SDLiDAR , only minor differences are found between model runs. The RMSE amounts to 6.16 cmfor model

run 3, which is about 1.2 cm better than the worst model run 2. Same tendencies can be seen for
:::::
dataset

::::
with

::
a

::::::
RMSE

::
of

:::::
18.33

::
cm

:::::::::
compared

::
to

:::::
23.49

:::
cm.

:::::::::::
Furthermore,

:
R2, MAE and SD with model run 3 having the best and model run 2 the worst results

among all. However, the SDLiDAR results drop off in accuracy for each metric compared to the model runs with 20 cm worse

RMSE
:::
are

:::::
better

::
in

:::
the

:::
RF

::::::::
modeling

:::::
with

:::::
values

:::
of

:::::
0.770, a R2

:::::
13.26

:::
cm

:::
and

:::::
18.11

::::
cm

::::::::
compared

::
to

::::::
0.691,

:::::
17.49

:::
cm

::::
and435

:::::
20.84

:::
cm.

::::
The

:::::::
external

::::::::
validation

::::::
results

:::
of

:::
the

:::
RF

::::::::
modeling

::::::
dataset

:::
for

::::
each

:::::
palsa

::::::
(Table

::
3)

:::::::
indicate

:::
the

::::
best

:::::::::::
performance

:
at
:::

the
::::::

Peera
:::
site,

:::::
with

::
an

::::::
RMSE

::
of

:::::
16.67

:::
cm

::::
and

::
an

:::
R2

:
of 0.59 and MAE respectively SD with ca. 15 cm and 19 cm higher

values
:::::
0.628.

:::
At

::
the

::::::
Pousu

::::
site,

:::
the

:::::
RMSE

::
is
::::::
higher

:::::
(21.31

:::::
cm),

:::
but

:::
the

::
R2

::::::::
improves

::
to

:::::
0.767.

::::
The

:::::::::::
Puolikkoniva

:::
site

::::::
shows

:::
the

::::::
weakest

::::::::::::
performance,

::::
with

::::
both

::::::
metrics

:::::
being

:::
the

::::::
lowest:

:::
an

:::::
RMSE

:::
of

:::::
27.13

:::
cm

:::
and

::
an

:::
R2

::
of

:::::
0.578.

Separated to
:::::
When

::::::::
analysed

::
by

:
point groups, the results of SDRF show clear trends among the individual groups. While440

RMSE, MAE and SDis in group
::RF :::

and
::::::::
SDLiDAR :::::

results
:::::

show
::::::
strong

:::::::::
similarities

:::
for

:::
the

:::
On

::::
Top

:::
and

:::::
Edge

::::::
classes,

:::::
while

:::
the

::::::::::
Thermokarst

:::
and Open Area best (1.42 cm, 0.89 cm, 1.39 cm), followed by Thermokarst (1.44 cm, 0.98 cm, 1.42 cm),

::::::
classes

::::::
exhibit

:::::
better

::::::
metrics

::
in

:::
the

:::::
SDRF ::::::

dataset.
::::::
RMSE

::::
and

:::::
MAE

:::::
values

:::
are

::::::::
identical

::
for

::::
both

:::::::
datasets

::
in

:::
the

:
On Top (1.79 cm, 0.99

cm, 1.73 cm
:::
8.33

::::
cm,

::::
3.84

:::
cm) and Edge (2.56 cm, 1.44 cm, 2.55 cm) , for metric R2 there are no significant differences among
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each group (all 0.99). However, the same metrics - but for SD
::::
13.12

::::
cm,

::::
5.85

::::
cm)

:::::::
groups,

:::
but

:::
R2

:
is
::::::

higher
:::
for

:::
SDLiDAR

::
RF -445

were revealing significant differences. Each accuracy metric shows lower results compared to the RF performance, but also the

order of point groups shows different results. Thus, group (On Topcontains the best RMSE and MAE (17.01 cm :
:::::
0.841, 12.20

cm ) among the groups followed by Open Area(17.33 cm, 14.18 cm ), Edge(32.53 cm, 22.66 cm ) and Thermokarst (40.73 cm

, 34.04 cm), but for :
::::::
0.894)

::::::::
compared

::
to

:
SDOpen Area is best (14.20 cm ) followed by On Top (16.87 cm) , Thermokarst

:::::LiDAR

(24.21 cm ) and Edge (30.46 cm). The R2 metric shows a completely different order with best results for Edge (0.48) followed450

by
:::::
0.730,

::::::
0.768).

::
A

::::::
similar

:::::
trend

::
is

::::::::
observed

:::
for

:::::::
standard

:::::::::
deviation,

::::
with

:::::
values

:::
of

::::
8.32

:::
cm

::::::
versus

:::::
10.83

:::
cm

::
in

:::
the

:::
On

::::
Top

::::
class

:::
and

:::::
12.82

:::
cm

::::::
versus

:::::
19.09

::
cm

::
in
:::
the

:::::
Edge

:::::
class.

:::
The

:
Thermokarst (0.22),

::::
class

::::::::::
consistently

::::::
shows

:::::
better

::::::
metrics

::
in

:::::
SDRF

::::::::
compared

::
to

::::::::
SDLiDAR,

::::
with

::::::
RMSE

::
of
::::::

10.99
:::
cm

::::::::
compared

::
to

:::::
33.73

::::
cm,

:::
R2

::
of

:::::
0.893

::
to

::::::
0.592,

:::::
MAE

::
of

::::
5.42

:::
cm

:::
to

:::::
30.35

:::
cm

:::
and

:::
SD

::
of

:::::
10.69

:::
cm

::
to

:::::
25.08

:::
cm.

::
A

::::::
similar

::::::
pattern

::
is

::::::::
observed

:::
for

::
the

:
Open Area

::::
class,

::::::
where

::::::
RMSE

:::::::
improves

:::::
from

:::::
14.23

:::
cm

(0.16) and On Top
::::::::
SDLiDAR)

::
to

::::
4.45

:::
cm

:
(0.00)

:::::
SDRF),

:::
R2

::::
from

:::::
0.519

:::
to

:::::
0.926,

:::::
MAE

:::::
from

::::
9.84

:::
cm

::
to

::::
1.56

::::
cm,

:::
and

:::
SD

:::::
from455

:::::
12.59

::
cm

:::
to

::::
4.40

::
cm.

Table 3. Overview of
::
the calculated Root Mean Square Error (RMSE)

::
in

::
cm, Coefficient of Determination (R2), Mean Absolute Error (MAE)

:
in
:::
cm

:
and Standard Deviation (SD)

:
in
:::
cm for model runs 1 to 3

:::
RF- and UAS LiDAR

:::::::::::
LiDAR-derived

::::
snow

:::::
depth

::::::::
estimations.

::::::::::
Additionally,

::::::
external

:::::::
validation

:::::
results

::::::
(RMSE

:::
and

:::
R2)

::
for

::::::::::
RF-modeled

::::
snow

::::
depth

::
at

::::
each

::::
palsa

:::
site

::::
(Peera

:::
RF,

:::::
Pousu

:::
RF,

::::::::::
Puolikkoniva

:::
RF)

:::
are

:::::::
provided.

Parameter Model Run 1
:::
RF Model Run 2

::::::
LiDAR

::::
UAS Model Run 3

:::::
Peera

::
RF UAS LiDAR Snow Depth

:::::
Pousu

:::
RF

::::::::::
Puolikkoniva

:::
RF

RMSE 6.98
::::
18.33 7.34

:::::
23.49 6.16

::::
16.67

:
26.73

::::
21.31

: ::::
27.13

R2 0.97
::::
0.770 0.97

:::::
0.691 0.98

::::
0.628

:
0.59

::::
0.767

::::
0.578

MAE 4.39
::::
13.26 4.59

:::::
17.49 3.25

:
- 18.68

:
-

:
-

SD 6.97
::::
18.11 7.34

:::::
20.84 6.16

:
- 25.15

:
-

:
-

Table 4. Overview of RMSE
::
in

::
cm, R2, MAE

::::
(cm) and SD

::::
(cm) divided by validation point locations within the investigation areas.

RMSE R2 MAE SD

RF LiDAR RF LiDAR RF LiDAR RF LiDAR

On Top
::
(n

:
=
:::
69) 1.79

:::
8.33

:
17.01

:::
8.33

:
0.995

::::
0.841 0.009

::::
0.730 0.99

:::
3.84 12.20

:::
3.84

:
1.73

:::
8.32

:
16.87

::::
10.83

Edge
::
(n

:
=
:::
66)

:
2.56

::::
13.12 32.53

::::
13.12 0.996

::::
0.894 0.482

::::
0.768 1.44

:::
5.85 22.66

:::
5.85

:
2.55

::::
12.82 30.46

::::
19.09

Thermokarst
:
(n
::
=

:::
16) 1.44

::::
10.99 40.73

::::
33.73 0.999

::::
0.893 0.223

::::
0.592 0.98

:::
5.42 34.04

::::
30.35 1.42

::::
10.69 24.21

::::
25.08

Open Area
::
(n

:
=
:::

26)
:

1.42
:::
4.54

:
17.33

::::
14.23 0.993

::::
0.926 0.163

::::
0.519 0.89

:::
1.56 14.18

:::
9.84

:
1.39

:::
4.40

:
14.20

::::
12.59

The presented scatter plots of both approaches (Fig. 8) are revealing further insights into the accuracy of the results. On the left

, the plotdepicts the relationship between SDin-situ and SD
::::
Both

:::
SDLiDAR and on the right, SDRF results are compared to it.

The UAS LiDAR approach shows a positive linear relationship between detected and measured snow depths. However,

variability is visible especially at higher snow depths. The RF approach shows a strong positive linear relationship with460

data points closely following the trend lineand exhibiting minimal deviation, meaning a higher correlation between SDRFand
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SDin-situ than for SD
::::
(left

::::
plot)

:::
and

:::::
SDRF:::::

(right
:::::
plot)

::::
show

::
a
:::::::
positive

:::::::::
correlation

::::
with

:::
the

:::::::
SDin-situ.

::::
The

:::::::::
regression

:::
line

:::
in

::::
both

::::
plots

::::::
closely

:::::::
follows

:::
the

::::::::
expected

:::::
trend,

:::::::
showing

::::
that

::::
both

::::::::
methods

::::::
capture

:::::
snow

:::::
depth

:::::::
patterns

:::::
well.

:::
The

::::
SDLiDAR can be

observed.
::::
have

::
a

::::::
tighter

:::::
spread

:::::::
around

:::
the

:::::::::
regression

::::
line,

:::::::::
indicating

:::::
lower

:::::::
variance

:::::::::
compared

::
to

:::
the

::::::
SDRF.

:::
The

::::::
spread

:::
of

:::::::
residuals

::::::
(black

:::
dots

::::::::
deviating

:::::
from

:::
the

::::::::
regression

:::::
line)

:::::::
increases

:::::
with

::::
snow

:::::
depth

::
in

::::
both

::::::
cases,

::::::::
indicating

:::::
larger

::::::::::
uncertainty465

::
for

::::::
deeper

:::::
snow,

:::::
while

::::
the

:::::::::
confidence

:::::::
intervals

::::::
remain

:::::::
narrow

::
at

:::::
lower

:::::
snow

::::::
depths.

::
A

:::::
single

::::::::
negative

:::::
outlier

::
is
:::::::

present
:::
for

:::::::
SDLiDAR.

:

Scatter plots with regression lines of the UAS LiDAR derived and RF modeled snow depths.

The 10-fold cross-validation supports the validation results shown above and, with an R2 of 0.97 and an RMSE of 6.4 cm,

shows good consistency with the statistical metrics mentioned above. In addition, the correlation analysis of
::::::
between

:
the input470

parameters and SDRF shows a high correlation for the
:::::
reveals

::
a
:::::
strong

::::::::
negative

:::::::::
correlation

::::
with TPI (-0.79) , which indicates

a large influence of this parameter on the model performance. However, all other parameters do not show a comparably

high correlation. The parameters
:::::
-0.87)

:::
and

:::::
Wind

:::::::::
Exposition

::::::
(-0.80).

::::::::::
Moderately

::::
high

:::::::
negative

::::::::::
correlations

:::
are

::::::::
observed

:::
for

Channel Network Distance
::::
Wind

:::::
Effect (-0.23)and

:::::
-0.50),

:::::::
Positive

::::::::
Openness

::::::
(-0.50), Relative Slope Position (-0.34)are worth

mentioning.
::::::
-0.49),

:::
and

:::::::
Channel

::::::::
Network

:::::::
Distance

::::::
(-0.45).

::::
The

::::
only

:::::::::
moderately

::::
high

:::::::
positive

::::::::::
correlation

:
is
:::::

given
:::
for

::::::
Valley475

:::::
Depth

::::
with

::::
0.50.

:::
All

:::::
other

:::::::::
parameters

:::::
show

::::
low

:::::::::
correlation,

::::
with

::::::
values

::::
close

::
to
:::::
zero.

5 Discussion

4.1 Snow distribution mapping in palsa mires and its impacts

The snow cover maps provide a high-resolution and precise overview of the distribution within palsa mires. Unique small-scale

differences in the height of the snowpack, which are closely related to the topographic properties of the palsa mires, are depicted480

in SDRF results. However, also SDLiDAR maps provide this kind of differences, although the model results are statistically more

accurate.
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Figure 8.
:::::
Scatter

::::
plots

::::
with

::::::::
regression

::::
lines

::
for

::::
UAS

::::::::::::
LiDAR-derived

:::
and

:::::::::
RF-modeled

:::::
snow

:::::
depths,

:::::
based

::
on

:::
the

::::::
external

:::
test

::::::
dataset.

Snow accumulation areas at palsa edges and in open cracks on the palsa tops probably have a warming impact on palsas.

This effect is consistent with findings by Peng et al. (2024), who showed that snow accumulation can insulate the ground and

reduce cold air penetration. Higher insulation from a dense snowpack reduces the penetration of cold air into the ground during485

winter. For Pousu palsa (

5
:::::::::
Discussion

5.1
:::::::

Analysis
::
of

:::
RF

::::
and

::::::
LiDAR

:::::
snow

::::::::
mapping

:::
The

::::::::
statistical

:::::::
analysis

::
of

:::::
SDRF:::

and
::::::::
SDLiDAR :::::::::::

demonstrates
:::::::::
statistically

:::::::::
significant

:::
and

:::::::
reliable

:::::
results

:::
for

::::
both

::::::::::
approaches.

::::
The

:::::
overall

:::::::
metrics

::
of

::::::
RMSE

:::
and

:::
R2

:::
for

:::
RF

:::
and

::::::
LiDAR

:::::::::
indicating

:
a
:::::::
slightly

:::::
better

::::::::::
performance

::
of

:::
the

:::
RF

::::::
model

::
in

:::::::
mapping

:::::
snow490

:::::::::
distribution

::::::
(Table

::
3).

::::
This

:::::
trend

::
is

:::
also

::::::
evident

::
in
:::
the

:::::
visual

:::::::::::
comparison,

::::::
though

:
a
::::
more

:::::::
detailed

:::::::::::
examination

::::::
reveals

::::::::
important

:::::::::
differences

:::::::
between

:::
the

::::
two

:::::::
methods.

::::
The

:::::::
external

:::::::::
validation

:::::
across

:::
all

::::
palsa

::::
sites

::::::::
confirms

:::
the

::::::::
sufficient

::::::::
accuracy

::
of

:::
the

:::
RF

:::::
model

::::::
(Table

:::
3),

:::::
while

:::
the

::::::
scatter

::::
plots

::
(Fig. 8d, e) , this effect can be seen at the edges in southwestern and northeastern

direction, possibly because of windward and leeward effects. This leads to transportation of snow to these parts following

the main wind direction which has been south, southwest during the past 20 years in the Kilpisjärvi area (based on FMI data495

at Kilpisjärvi weather station). At the bottom of these edges, snow accumulates due to wind and gravitational slide down,

leading to a thinner ALT at the edges as the exposition to solar radiation is shorter due to the longer-lasting snow cover. These

observations concur with findings by Verdonen et al. (2023) and Seppälä (2011). However, at accumulation zones the frost is

not able to penetrate the ground deeply, meaning that the underlying soil is not able to freeze deeply. These parts of a palsa can

be classified as warming spots. During late spring and summer
:
)
::::
show

::
a
:::::
strong

::::::::::
consistency

:::::::
between

:::
the

::::
two

::::::::::
approaches.500
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::
In

::::
both

::::::::::
approaches,

:::
the

:::::
upper

::::
parts

:::
of

:::
the

:::::
palsa,

:::::
which

:::
are

::::::::
relatively

:::
flat

::::
and

:::::::
covered

::::
with

:::
low

::::::::::
vegetation,

::::
have

::::::
similar

:::::
snow

::::
depth

:::::::
values.

::::
This

::
is

:::
also

:::::::::
confirmed

:::
by

:::
the

:::::::
identical

::::::
RMSE

:::
for

:::
the

:::::
point

:::::
group

:::
On

::::
Top

:::::
(Table

:::
4).

:::::
Since

:::::
these

:::::
areas

:::
are

::::
well

:::::::::
represented

::
in

:::
the

:::::::
training

::::::
dataset

:::
for

:::
the

::
RF

::::::::
approach

::::
and

::
the

:::::::
surface

:::::::
captured

::
by

:::::
UAS

::::::
LiDAR

:::::::
changes

::::
only

:::::::
slightly

:::::::
between

::::::
summer

::::
and

::::::
winter

::
in

:::
the

:::::
stable

::::
area

::
of

:::
the

:::::
palsa,

::::
both

::::::::
methods

:::::::
perform

::::
well

::
in

:::::::::
estimating

:::::
snow

:::::
depth.

::::
The

:::::::
accuracy

:::
of

:::
the

::
RF

:::::::
models

:::::::
depends

::
to

::
a
:::::
large

:::::
extent

:::
on

:::
the

::::::
quality

::
of

::::
the

::::::
training

:::::
data,

::::::
which

::
is

:::
the

::::::
reason

::::
why

:
a
:::::::::::::
well-distributed

:::::::
dataset505

:
is
::::::::
essential.

::::::::
However, these areas remain more humid due to the longer snowmelt, allowing higher temperatures to penetrate

deeper because of the higher thermal conductivity and destabilize the ice core especially at edges. Combined with gravitational

forces due to the high slope at the edges, block erosion occurs, exposing the frozen core in late spring and summer , which

then leads to increased thawing and degradation. These effects are intensified, when cracks open at the upper edge parts and

are filled with snow during winter. They can be considered as warming spots as well, which lead to destabilization at the palsa510

edges . Martin et al. (2021) experimentally showed this in a model approach, pointing out the phase of initial slope adjustment

for palsas which constantly experience snow depth between 20 – 30 cm . According to our findings, even larger depths occur

::
as

:::
the

::::::
surface

::::::::
variations

:::
on

:::
the

:::
top

::
of

:::
the

::::::
palsas

:::
are

:::::::
minimal,

:::
the

::::::::::
acquisition

::
of

::::::::::::
representative

::::::
training

::::
data

::
is
::::::::
relatively

:::::
easy,

:::::
which

:::::::
explains

:::
the

::::
high

::::::::
accuracy

::
of

:::
the

:::::
model

::
in
:::::
these

:::::
areas.

::::
The

::::
same

:::::::::::::
considerations

:::::
apply

::
to

:::
the

::::
UAS

::::::
LiDAR

:::::
data.

::::
Due

::
to

::
the

::::
low

:::::::::
vegetation

:::::
cover,

::::
only

:::::::
minimal

:::::::::
vegetation

:::::::
removal

::::
was

:::::::
required

:::::
during

::::::::::::::
post-processing,

::::::::
reducing

:::::::
potential

:::::::
sources

::
of515

::::
error

::
in

:::::
these

:::::
areas.

::::::::
However,

:::
the

:::::::
seasonal

:::::::
changes

::
in

::::::
ground

::::
level

::
in
:::::
palsa

:::::
mires

::::
must

::::
also

::
be

:::::
taken

::::
into

:::::::
account.

:::::
Frost

:::::
heave

:::
and

:::::::::
subsidence

:::::
cause

:::::::
natural

:::::
height

:::::::::
variations

::
of

::::::
several

::::::::::
centimeters

::::::::
between

:::::::
summer

:::
and

::::::
winter,

:::
as

:::::::
recently

::::::::
described

:::
by

::::::::::::::::
Renette et al. (2024)

:
.
::
If

:::
the

::::
UAS

::::::
LiDAR

:::::::
dataset

:
is
::::::::
acquired

::
in

:::::
spring

:::::::::::
immediately

::::
after

:::::::::
snowmelt,

:::::
when

:::
the

::::
ALT

:::
has

:::::::
reached

::
its

::::::::
minimum

:::::::
thawing

::::::
depth,

::::
such

::::::
effects

:::::
could

:::
be

:::::::::
minimized.

:::
In

:::::::
addition,

:::::
RTK

::::
GPS

:::::
point

::::
data

::::
from

::::
field

:::::::::::::
measurements

::
in

:::::
winter

::::
and

::::::
summer

:::::
could

::::
help

::
to
:::::::

correct
:::::::
elevation

::::::::::
differences

::
by

:::::::::
calculating

:::::
mean

::::::::
elevation

:::::
shifts.

:::::::::
However,

:::
this

:::::::
method

:::
has520

::
its

::::
own

:::::::::
challenges,

::
as

:::::::::
measuring

::::::
ground

::::
level

::
in

::::::
winter

:
is
:::::::
difficult

:::
due

::
to
:::
the

::::::::
overlying

:::::
snow

:::::
cover.

:::::
These

:::::::
seasonal

:::::::::
variations

::
in

:::::::
elevation

::::::
should

::
be

::::::::
carefully

:::::::::
considered

:::::
when

:::::::
deriving

:::::
snow

:::::::::
distribution

::::
from

:::::
multi

::::::
season

::::::
DTMs.

::
In

::::::::
contrast,

::
RF

::
is
::::::::
expected

::
to

::
be

:::
less

:::::::
affected

:::
by

:::
this

:::::::
problem

:::
as

:::
the

:::::::
modeled

:::::
snow

:::::
depth

:::::
values

:::
are

:::::::
derived

::::
from

:::::::
training

::::
data

:::
and

:::
are

:::
not

:::::::
directly

:::::
based

::
on

:::
the

:::::::
absolute

::::::::
elevation

:::::::::
differences

:::::::
between

:::::::
summer

::::
and

:::::
winter

::::::::
datasets.

::::::
Similar

:::::::
patterns

:::
are

::::::::
observed

:::
for

:::
the

::::
steep

::::::
edges

::
of

:::
the

:::::
palsa.

::::::
While

:::
the

:::
RF

:::::
model

::::::::
performs

::::::
lowest

:::
for

:::
the

:::::
Edge

::::
point

:::::
class525

:::::
within

:::
its

::::
own

::::::
results,

::::
the

::::::
LiDAR

:::::::::
approach

:::::::
achieves

:::
its

::::::
second

::::
best

:::::::::::
performance

::
in
::::

this
::::::::
category.

:::::::
Despite

:::::
these

:::::::
internal

:::::::::
differences,

:::::
both

:::::::
methods

:::::::
produce

::::::::
identical

::::::
RMSE

:::::
values

:::
of

:::::
13.12

:::
cm

::::::
(Table

::
4).

:::::::::
However,

:::::
when

::::::::::
interpreting

::::::
LiDAR

:::::
data,

::::
there

:::
are

::::::::
additional

:::::::::
challenges

:
at the palsa edges in the Kilpisjärvi region with increasing degradation . This cycle is repeating

until the slopes at the edges are not steep enough to accumulate snow, which happens when the top plateau of a palsa is

degrading as well. Snow conditions might have a more significant impact on palsa developments than previously known, as530

already suggested by Seppälä (2011). Further monitoring and implementation in modeling of the findings of this project can

help to better understand the future palsa development.
::
due

::
to
::::::::::
continuous

:::::::::
degradation

::::::::
processes

::::
that

:::
lead

::
to
::::::::::
differences

:::::::
between

::
the

:::::::
summer

::::
and

:::::
winter

:::::::
DTMs.

::::::
During

:::::::
summer

:::
data

:::::::::
collection,

:::::
palsa

:::::
edges

:::
are

:::::::
recorded

::::::
before

:::::
block

::::::
erosion

::::::
occurs,

::::::::
meaning

:::
that

:::::
loose

:::
soil

:::::::
remains

:::::
intact.

:::
By

::::::
winter,

:::::
block

::::::
erosion

::::
and

:::
soil

:::::::::::
displacement

::::
may

::::
alter

:::
the

::::::
terrain,

::::::
leading

:::
to

:::::
higher

:::::::::
deviations

:::::::
between

:::
the

::::::
DTMs.

:::
As

:
a
::::::

result,
:::
the

::::::::
SDLiDAR :::::

values
:::
are

:::::::::
artificially

::::::::
increased

:::::
even

::::::
though

:::
the

:::::
actual

:::::
snow

:::::
depth

::
is

::::::
lower.

::
A535
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::::::
similar

:::::::
problem

:::::
arises

::
if

:::::
cracks

:::::
form

::::
after

::::
data

:::::::::
collection

::
in

:::::::
summer,

::::::
which

:::::::::
accumulate

:::::
snow

::
in

::::::
winter

::::
and

::::::
further

:::::::
increase

::
the

:::::::::
calculated

:::::
snow

::::::
depths.

:::
At

:::
the

::::
same

:::::
time,

:::::
these

::::::::::
degradation

::::::::
processes

:::
are

::::
also

:::
not

:::::::::
considered

::
in

:::
the

:::
RF

::::::::
approach,

:::
as

:::
the

::::::
summer

::::::
dataset

::::
was

::::
used

::
to

::::::
derive

::
all

:::::
input

::::::::::
parameters.

::::
This

:::::::
explains

::::
why

:::
RF

:::::::
struggles

:::
the

:::::
most

::
at

:::
the

:::::
edges.

::
In

::::::::
addition,

:::
the

:::::::::::
redistribution

:::
and

:::::::::::
accumulation

::
of

:::::
snow

::
on

:::::
steep

:::::
slopes

::
is
::
a

:::::
highly

:::::::
dynamic

::::
and

::::::
chaotic

::::::
process

::::
that

::
is

::::::
difficult

::
to
:::::::
capture

::::
with

::::
high

::::::::
precision.540

On the other hand, cooling spots could also be identified based on the snow distribution. The top parts of the investigated

palsas were covered with thin snow layers, allowing frost to penetrate the ground deeply and stabilize the ice core during

winter. However, Seppälä (2003) proved that thicker snow cover on palsas prevents melting at the ice core due to a longer

duration of snow cover. This means that cooling spots inhibit a greater ALT during summer, where the risk of crack occurrence

is higher. As shown for the Pousu palsa (Fig. 8 d, e), the cooling spots are located near to the uppermost parts of steep edges,545

where the surface is heavily exposed to wind. The assumption is that this, in combination with destabilized and collapsing

edges, could lead to very sharp and even vertical edges. The next stage would be the occurrence of cracks, which would lead

to more block erosion and degrading
::
In

::::::
contrast

::
to
:::::
other

:::::
areas of the palsaedge.

Explanation of differences between UAS LiDAR-calculated and RF-modeled snow depths.

5.2 Analysis of RF and LiDAR snow mapping550

The statistical analysis of SDRF and SDLiDAR shows that the RF approach outperformed the latter in terms of accuracy. An

overall RMSE of 6.16 cm compared to 26.73 cm reveals the better performance of machine learning algorithms compared

to the use of not in depth post-processed remote sensing data in snow distribution mapping, shown in Table 3 and Fig. 8.

These findings concur with recent studies by Luo et al. (2022) and Panda et al. (2022),
:::
the

:::
RF

::::
and

:::::
UAS

::::::
LiDAR

::::::::::
approaches

::::
show

:::
the

::::::
lowest

:::::::::
agreement

::::
over

::::
open

:::::
water

:::::
areas,

::::::
which

::
is

:::::::
reflected

::
in

:::
the

::::::::
statistical

:::::::
metrics

::
for

:::
the

:::::::::::
Thermokarst

::::
point

:::::
class.555

:::::
While

:::
the

:::
RF

::::::
model

::::::::
estimates

:::::
snow

:::::
depth

:::
in

::::
these

:::::
areas

:::::
more

:::::::::
accurately

::::
than

:::
at

:::
the

:::::
palsa

:::::
edges,

:::::
UAS

:::::::
LiDAR

::::::::
performs

:::::
lowest

::
in
::::

this
::::::::
category.

::::
This

::::
can

::
be

:::::::::
attributed

::
to

:::
the

::::
well

:::::::::::
documented

::::::::
problems

::::
with

::::
low

::::::::
reflective

:::::::
surfaces

::::
such

:::
as

:::::
water

:::::::::::::::::::::::::
(Mandlburger and Jutzi, 2019)

:::
and

:::
the

:::::::::
difficulties

::
in

::::::::
detecting

::::::
highly

::::::::
scattering

::::::::
materials

::::
such

:::
as

::::
snow

:::::::::::::::::
(Deems et al., 2013).

However, a closer look at the differences provides further insights and helps to understand the results. Figure 5 (b, c) shows,

for Pousu palsa, which kind of deviations exist between the two approaches
:::
RF

:::::
takes

::::::::
advantage

::
of

:::
the

:::::::::
contextual

:::::::::::
relationships560

:::::::
between

:::
the

::::
input

::::::::::
parameters

:::
and

:::
the

::::::::
observed

:::::
snow

:::::
depth

::
on

::::::::::
thermokarst

::::::
ponds

:::
and

:::
can

::::::::
therefore

::::::::::
compensate

:::
for

::::::::
incorrect

:::::
initial

:::::
values

::
in

:::
the

:::::
UAS

::::::
LiDAR

::::::
dataset

::::
and

::::
keep

:
a
::::
high

:::::::::::
performance.

It is evident that in both approaches, the upper parts of the palsa, which are mostly flat and populated by low vegetation,

contain the same snow cover. High deviations occur in parts characterized by a high slope, higher vegetation , and especially

open water
::
In

:::::::
addition,

::
in
:::::

mire
::::
areas

:::::::::::
surrounding

:::
the

:::::
palsa,

::::
such

:::
as

:::
the

:::::::
statistics

:::
for

:::::
Open

:::::
Area

::::
point

:::::
class

:::::
shows

:::
it,

:::
the

:::
RF565

:::::
model

::::::::
performs

::::
with

:::
the

::::::
highest

::::::::
accuracy

:::::
within

:::
its

::::
own

::::::
results,

:::::
while

:::::
UAS

::::::
LiDAR

:::::
ranks

::::::
second

::::::
lowest.

::::::::
However,

:::
for

:::::
UAS

::::::
LiDAR,

:::
the

::::::::
deviation

:::::
from

:::
the

:::
two

::::::::::::::
best-performing

::::::
groups

:::
On

:::
Top

::
and

:::::
Edge

::::::
remains

::::::::
relatively

:::::
small,

:::::::::
indicating

:
a
:::::::::
consistent

::::::::::
performance

::::::
across

:::
the

:::::::
dataset.

::
A

:::::::::
significant

::::::::
challenge

:::
in

::::
these

:::::
areas

::
is
:::
the

::::::::
seasonal

:::::::::
vegetation

::::::::
dynamics. In summer, the

vegetation within palsa mires is seasonally taller than during winter due to general growth. In contrast, vegetation like sedges
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and grasses is also flattened in winter because
:
in
:::::

palsa
:::::
mires

::::::
grows

::::
taller

::::
and

::::::
denser,

:::::
while

::
in

::::::
winter

:::
the

::::::
grasses

::::
and

::::::
sedges570

::
are

:::::::::::
compressed

:::::
under

:::
the

::::::
weight

:
of the snow’s weight. The LiDAR sensor detects

::::::
records

:
all surface elements, including

the vegetation with leaves in summer , but during winter only the snow surface is recorded, leading to a bias between the

summer and winter DSMs. This existing bias is also detectable in the final snow depth, which means that the snow depth is

consequently calculated too low
::
i.e.

:::
the

:::::::::
vegetation

:
in

::::::
summer

::::
and

:::
the

:::::
snow

:::::::
covered

::::
areas

::
in
:::::::

winter.
::::::
Despite

:::
the

:::::::
removal

:::
of

::::::::
vegetation

::
in

::::::::::::::
post-processing,

:
a
:::::::
residual

:::
bias

:::::::
remains

::::
due

::
to

::
the

:::::
dense

::::::::::
vegetation,

:::::
which

::::::
cannot

::
be

:::::::::
completely

::::::
filtered

:::
out

:::::
from575

::
the

:::::::
ground,

:::::::
leading

::
to

:
a
:::::::::
systematic

::::::::::::::
underestimation

::
of

:::::
snow

:::::
depth

::
in areas with height-changing vegetation.

:::::
height

::::::::
changing

:::::::::
vegetation.

::::::
Similar

::::::::
problems

:::::
with

:::::::::::::
LiDAR-derived

:::::
snow

:::::
depth

::::::::
mapping

::::
were

:::::::
reported

:::
by

::::::::::::::::::
Broxton et al. (2019).

:
Tall shrubs

such as Betula nanasometimes
:
,
:::::
which

:
form thickets at the palsa edges, which could cause problems to detect palsa surfaces

with LiDAR. The described problems with precise mapping of snow distribution are also described by Broxton et al. (2019).

:::
can

::::::
further

:::::::::
complicate

::::::::
capturing

:::
the

:::::
palsa

::::::
surface

::
in
::::::
detail.

:
In contrast, the RF approach incorporates the existing vegetation580

, using the LiDAR UAS data from summer as a base for all
:::::
model

::::::::
inherently

::::::::
accounts

:::
for

:::::::::
vegetation

::
as

::
it

::::
uses

::::
UAS

:::::::
LiDAR

::::::
summer

::::
data

:::
as

:::
the

::::
basis

:::
for

::::::::::
calculating input parameters. When combining SDin-situ in winter, the RF approach was able to

connect
::
By

:::::::::
integrating

:::::::
SDin-situ :::::::::::

measurements
:::::
from

::::::
winter,

:::
RF

:::
can

:::::::
establish

:::::::::::
relationships between vegetation and higher snow ,

showcasing the model’s strength in calculating these without a high bias .
::::
snow

::::::::::::
accumulation,

:::::
which

:::::::
reduces

::::
bias

:::
and

::::::::
improves

::::
snow

:::::
depth

::::::::::
estimation.

:::::::
Methods

::
to

::::::
further

:::::::
improve

::::::::::::::
LiDAR-derived

::::
snow

:::::
depth

::::::::
mapping,

:::::
such

::
as

:::::::::
correcting

::::::::
estimates

:::::
based585

::
on

:::::::::
vegetation

::::
type,

::::::
density

::::
and

::::::
height,

:::::
could

::::
help

::
to

:::::::
mitigate

::::
these

::::::::::
limitations.

:

The RF and UAS LiDAR approaches also show high deviations between open water areas – known specifically as thermokarst

ponds in thawing palsa mires -, although the RF models the snow depth at these parts more precisely than the latter. The low

performance of the LiDAR sensor can be explained by commonly known problems with low reflecting surfaces such as water

(Mandlburger and Jutzi, 2019) or the ability of detecting scattering such as snow (Deems et al., 2013). RF considers the context590

of all parameters in relation to the specific snow depth measured on thermokarst ponds, which explains the strong performance

of the model even with faulty initial values of the UAS LiDAR data set
:::::
These

::::::
results

::::::
confirm

::::
that

:::::
snow

::::::::::
distribution

:::
can

:::
be

::::::::
accurately

::::::::
modeled

:
at
::
a

:::::::::
small-scale

:::::
using

:::
low

::::
cost

:::::::::
equipment,

::::
such

::
as

:
a
:::::::::
yardstick,

::
in

::::::::::
combination

::::
with

::::::::
moderate

::::::::::::
computational

::::::::
resources.

::::::::
However,

:::
we

:::::::::::
acknowledge

:::
that

:::
an

::::::::
expensive

::::::
LiDAR

::::::
sensor

::::
was

::::
used

::
in

:::
this

:::::
study

::
to

:::::
derive

:::
the

:::::
input

:::::::::
parameters

:::
for

::
the

:::
RF

::::::
model.

:::::::::
Therefore,

::::::
further

:::::::
research

::::::
should

:::::::::
investigate

::
if

:::
low

::::
cost

::::
UAS

:::::
RGB

::::
data

:::
can

:::::::
provide

::::::
equally

::::
high

::::::
quality

:::::
input595

:::::::::
parameters

::
or

::
if

::::::
LiDAR

::
is
::::
still

:::::::
essential

:::
for

::::::::
accurate

::::::::
modeling.

:::::::
Recent

::::::
studies

::
by

:::::::::::::::::
Harder et al. (2020)

:::
and

:::::::::::::::
Cho et al. (2024)

::::
have

::::::
shown

:::
that

:::::
snow

::::::
depths

:::::::
derived

::::
from

:::::
UAS

:::::::
LiDAR

::::
data

:::::::
provide

:
a
:::::
more

:::::::
accurate

:::::::::::::
representation

::
of

:::::
snow

::::::::::
distribution

:::
than

:::::
snow

:::::
depth

::::::::
products

::::::
derived

:::::
from

::::
UAS

:::::
RGB

:::::
data,

:::::
which

:::::
raises

:::
the

::::::::
question

::
of

:::::::
whether

:::
the

:::
use

:::
of

:::::::::::
RGB-derived

:::::
input

:::::::::
parameters

::
is

::::::
feasible

:::
for

:::::::::
modeling

::::::::
purposes.

::::::::
However,

:::
for

:::::::::
large-scale

::::::
spatial

:::::
snow

:::::::::
distribution

:::::::::
overviews

::
or

::
in
:::::

cases
::::::
where

::::::::::::
high-resolution

:::::
snow

:::::
depth

::::::::
mapping

::
is

:::
not

::::::::
required,

::::
UAS

:::::::
LiDAR

::
or

:::::
RGB

::::
data

:::::
might

:::
be

:::::::::
preferable,

::
as

:::::::
manual

:::::
snow

:::::
depth600

:::::::::::
measurements

::::
are

:::::::::
connected

::::
with

::
a

::::
high

::::::::
workload

::::
and

:::::::::::
considerable

::::
time

::::::::::
investment.

::::::::::::
Furthermore,

:::
the

::::::::
potential

::
of

:::::
UAS

:::::::
imagery

::
for

:::::
snow

:::::
depth

::::::::
estimation

:::
has

:::::
been

:::::::::
investigated

::
in
::::::
several

::::::
recent

::::::
studies

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Marti et al., 2016; Rauhala et al., 2023; Revuelto et al., 2021; Walker et al., 2021)

:
,
::::::::::
emphasizing

::
its

::::::::
growing

:::::::::
importance

:::
for

:::::
snow

:::::::::
distribution

::::::::::
monitoring.

:
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5.2
::::

Snow
:::::::::::
distribution

::::::::
mapping

::
in

:::::
palsa

:::::
mires

::::
and

::
its

::::::::
impacts

:::
The

:::::::::::::
high-resolution

:::::
snow

:::::
depth

:::::
maps

::::::::
produced

::
in
::::

this
:::::
study

:::::::
provide

::
a

:::::::
detailed

::::::
spatial

::::::::::::
representation

::
of

:::::
snow

::::::::::
distribution605

::::::
patterns

::
in
:::::

palsa
:::::
mires

::::
and

:::::::
highlight

::::::::::
pronounced

::::::::
warming

::::
and

::::::
cooling

:::::
areas.

:::::
Both

:::
the

::::::
LiDAR

::::
and

:::
RF

:::::::
datasets

:::::
show

::::::
similar

:::::::::
small-scale

::::::::
variations

::::
that

:::
are

::::::
closely

:::::
linked

::
to

::::::::::
topographic

:::::::
features.

:::::
These

:::::::
findings

:::::::
suggest

:::
that

:::
the

::::::::
observed

::::
snow

::::::::::
distribution

::::::
patterns

:::::::::
accurately

:::::
reflect

:::
the

:::::
actual

:::::::::
conditions

::
in

:::
the

::::::
studied

::::
palsa

::::::::::
landscapes,

::::::
making

:::::
them

:::::::
valuable

:::
for

::::::::
assessing

::
the

::::::::
potential

:::::::::
interactions

:::::::
between

:::::
snow

:::::::::::
accumulation

::::
and

::::
palsa

:::::::
thermal

::::::::
dynamics.

Moreover, high deviations at the steep
::::::::
Warming

::::
areas

:::
in

:::
the

:::::
palsas

::::
were

:::::::::
identified

::
at

:::
the edges of the palsas are visible, here610

with larger depths calculated by the LiDAR sensor. This can be explained by natural degrading processes at these edges leading

to differences between the summer and winter DSMs. For instance, in summer, the edges of the palsas are recorded before block

erosion can partly occur and soil can slide to the bottom. In comparison with winterrecordings, when block erosion occurs,

the LiDAR can detect a high deviation between the DSMs. This results in unnaturally high SDLiDAR, although the actual snow

depth is lower. The same applies to cracks that can open after the first data collection in summer, leading to higher snow depths615

in combination with winterdata. However, these degrading processes were also not considered in the RF approach since the

summer dataset was used for calculating all input parameters, indicating that the RF approach also models the snow depth at

edges less accurately (see Table 4 with the most erroneous RMSE at edge parts for the RF approach). Moreover,
::::
palsa

::::
and

::
in

:::::
cracks

:::::
where

:::::
snow

::::::::::
accumulates

::::
due

::
to

::::
wind

::::::::
transport

:::
and

:::::::::::
gravitational

::::::
sliding.

::::
This

:::::
effect

::
is

::::::::
consistent

::::
with

:
the down-floating

and accumulating of snow at edges is a chaotic process that is extremely difficult to monitor accurately. Accordingly, a natural620

shift in ground elevation of several centimetres in palsa mires occurs between summer and winter due to frost heave and

subsidence, as Renette et al. (2024) recently described. This should be taken into account when considering snow distribution

based on two DSMs from warm and cold seasons
:::::::
findings

::
of

:::::::::::::::
Peng et al. (2024),

::::
who

:::::::
showed

:::
that

:::::
snow

::::::::::::
accumulations

:::::::
insulate

::
the

:::::::
ground

:::
and

::::::
reduce

:::
the

:::::::::
penetration

::
of
::::
cold

:::
air.

:::
An

::::::::
example

::
of

:::
this

:::::
effect

:::
can

:::
be

::::
seen

::
at

:::::
Pousu

:::::
Palsa

::::
(Fig.

::
9
::
d,

::
e),

::::::
where

:::
the

::::::::
dominant

::::
south

::::
and

::::::::
southwest

:::::
winds

:::::
(FMI

::::
data

:::
for

:::
the

:::
last

:::
20

::::
years

:::::
from

:::
the

:::::::::
Kilpisjärvi

::::::
weather

:::::::
station)

::::::::
contribute

::
to
:::::::
highest625

::::
snow

:::::::::::
accumulation

:::
on

:::
the

:::::::::::
southwestern

:::
and

:::::::::::
northeastern

:::::
edges.

:::::
Snow

::::::::::::
accumulation

::
in

::::
these

:::::
areas

::::::
extends

:::::::::
snowmelt

:::
into

::::
late

:::::
spring

::::
and

:::::::
summer

:::
and

::::::::
increases

::::
soil

::::::::
moisture,

:::::
which

::::
can

:::::::
increase

::::
heat

:::::::
transfer

::
to

:::
the

::::
soil.

::::::
While

::
an

::::::::
extended

:::::
snow

:::::
cover

::::::
reduces

:::::
direct

:::::
solar

::::::::
radiation,

::
it

::::
also

:::::::
prevents

::::
deep

::::::::
freezing

::
in

::::::
winter,

::::::
which

:::
can

:::::::::
destabilize

:::
ice

::::
core

::::::
edges.

::::
This

::::
also

:::::
leads

::
to

:
a
::::::
thinner

::::
ALT

::
at
:::

the
::::::

edges,
::
as

:::
the

:::::
solar

:::::::
radiation

:::::::
remains

:::::::
limited

:::
due

::
to

:::
the

::::::::::::
longer-lasting

::::
snow

::::::
cover.

:::::
These

:::::::::::
observations

::
are

:::::::::
consistent

::::
with

:::
the

::::::
results

:::
of

:::::::::::::::::::
Verdonen et al. (2023)

::
and

:::::::::::::
Seppälä (2011)

:
.
::::
Such

:::::::::
processes

:::
can

:::::::::
contribute

::
to

:::::
block

:::::::
erosion630

:::
and

::::::
expose

:::
the

::::::
frozen

:::::
core

::
to

::::::
further

::::::::
thawing.

::::
The

::::::::
formation

:::
of

::::::
cracks

::
in

:::
the

::::::
upper

::::
edge

:::::
zones

::::::
could

::::
also

:::::::
increase

::::
this

:::::
effect,

::
as

::::
they

:::
fill

::::
with

:::::
snow

::
in

::::::
winter,

::::::::
delaying

:::::::
freezing

::::
and

:::::::
possibly

::::::
further

::::::::::
accelerating

:::
the

:::::::::
instability

::
of

:::
the

:::::
palsa.

::::::
These

:::::
results

:::
are

:::::::::
consistent

::::
with

:::::
those

:::
of

::::::::::::::::
Martin et al. (2021),

:::::
who

::::::
showed

::::
that

::::::
palsas

:::::::
undergo

::::::::
structural

::::::::::
adjustments

::
at
::::::::

constant

::::
snow

::::::
depths

::
of

::::::
20-30

:::
cm.

::::::::
However,

::::
our

:::::
results

:::::::
indicate

::::
that

::
in

:::
the

:::::::::
Kilpisjärvi

:::::::
region,

::::
even

::::::
greater

:::::
snow

::::::
depths

:::::
occur

::
at

:::
the

::::
palsa

::::::
edges,

:::::::::
suggesting

::::
that

:::
the

:::::::::
increasing

:::::
snow

::::::::::::
accumulation

::::
may

::
be

::::::
linked

::
to
::::

the
:::::::::
continuing

::::::::::
degradation

::
of

::::
the

::::::
palsas.635

::::
This

::::
cycle

:::::::::
continues

::::
until

:::
the

:::::
palsa

::::::
slopes

::::::
flatten,

::::::::
reducing

:::::
snow

::::::::::::
accumulation,

:::::
which

:::::::::
eventually

:::::
leads

::
to
::::

the
::::::::::
degradation

::
of

:::
the

:::::
upper

:::::::
plateau.

::::::::::
Long-term

::::
ALT

::::
and

:::::::::
permafrost

::::::::::
temperature

:::::::::::::
measurements

::
at

:::::
these

::::
sites

:::
are

:::::::
needed

::
to

:::::::
confirm

::::
this
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:::::::::
hypothesis.

:::
As

::::::::
suggested

:::
by

::::::::::::
Seppälä (2011)

:
,
::::
snow

:::::::::
conditions

::::
may

::::
play

:
a
:::::
more

::::::::
important

:::
role

::
in
:::
the

:::::::::::
development

::
of

:::::
Palsa

::::
than

::::::::
previously

:::::::
thought.

:::::::::
Continued

::::::::::
monitoring

:::
and

:::::::::
integration

::
of

:::::
these

:::::::
findings

:::
into

:::::::::
permafrost

::::::
models

::::
will

::
be

::::::::
essential

::
for

::
a
:::::
better

:::::::::::
understanding

::
of
::::::
future

::::
palsa

:::::::::::
development.640

These findings confirm that even with low-cost equipment such as a yardstick and moderate computer power, extremely

accurate snow distribution can be modeled on
:::::::::
Uppermost

::::
parts

:::
of

:::
the

::::
palsa

::::::::
summits

:::
are

:::::::
cooling

:::::
areas,

:::::
where

::::
thin

:::::
layers

:::
of

::::
snow

:::::
allow

::::
cold

:::
air

::
to

::::::::
penetrate

::::::
deeper,

:::::
which

::::::::
promotes

:::
ice

::::
core

:::::::
stability

::
in

::::::
winter.

:::::::::::::
Seppälä (2003)

::::::
proved

:::
that

:
a small-scale.

We are aware, that in this research an expensive LiDAR sensor was used for preparing input parameter for the RF model.

Therefore, it should be investigated whether a low-cost UAS RGB can provide comparable high-quality input parameters645

for the model or if expensive LiDAR sensors are necessary. In depth post-processing of the LiDAR dataset, like removing

vegetation from the initial point cloud, can help to improve the accuracy of the conducted SDLiDAR to clarify the necessity of

an expensive LiDAR sensor. Additionally, it is worth to find out whether a low-cost and low-quality UAS RGB can achieve the

same statistical metrics for snow distribution as the UAS LiDAR in order to receive a full understanding about the necessary

quality of UAS sensors for snow mapping. For large areas, or if an extremely
:::::
thicker

:::::
snow

:::::
cover

:::
on

:::
the

::::::
palsas

::::::
delays

:::
the650

::::::
melting

::
of

:::
the

:::
ice

::::
core

::::
due

::
to

::
its

:::::::::
prolonged

::::::::
presence.

::::::::::
Conversely,

::::
this

:::::
means

::::
that

::::::
cooling

:::::
areas

::::
have

::::::
deeper

:::::
ALT

::
in

:::::::
summer

:::
than

::::::::
warming

:::::
areas.

:::
As

::::::::
observed

::
at

:::::
Pousu

:::::
Palsa

:::::
(Fig.

:
9
::
b,

:::
c),

:::
the

::::::
cooling

:::::
areas

:::
are

:::::::::::
concentrated

::::
near

:::
the

:::::::::
uppermost

::::
parts

:::
of

::
the

:::::
steep

::::::
edges,

:::::
where

:::
the

:::::::
surface

::
is

::::::
highly

:::::::
exposed

::
to

:::
the

:::::
wind.

:::::::
Further

:::::::::::
investigation

:
is
:::::::

needed
::
to

:::::::::
determine

:::::::
whether

::::
this,

::::::::
combined

::::
with

::::::::::::
destabilization

::::
and

::::
edge

::::::::
collapse,

:::::::::
contributes

::
to

:::
the

:::::::::
formation

::
of

:::::
steep

::
or

::::
even

:::::::
vertical

::::::
slopes.

::
If

:::
this

:::::::
process

::::::::
continues,

::::::
cracks

::::
may

::::::::
eventually

:::::
form,

:::::::
causing

:::::
block

::::::
erosion

::::
and

::::::::::
degradation

::
of

:::
the

::::
palsa

:::::
edge.

:
655

:::
The

:::::::
findings

::
of

::::
this

::::
study

:::::::
suggest

:::
that

:::::
snow

:::::
depth

:::::::::
variability

::::
plays

::
a

::::::
crucial

:::
role

::
in

:::
the

:::::::
stability

::
of

:::
the

:::::
palsa,

::::
with

:
small-scale ,

high-precision overview
:::::::::::
redistribution

::::::
patterns

::::::::::
influencing

::::
local

::::::::::
permafrost

::::::::
dynamics.

::::::::
However,

::
as

::::
this

:::::::
analysis

::
is

::::
only

:::::
based

::
on

:::::
snow

:::::
depth

::::
data,

::::::
further

::::::::
research

:::::::::
combining

:::::::::
continuous

::::::::::
monitoring of snow depth is not needed , UAS LiDAR or RGB

should be the preferred option due to the high workload and time-consuming nature of measuring snow depth. Recently, the

potential of UAS imagery for snow depth estimation was explored in several studies (Marti et al., 2016; Rauhala et al., 2023; Revuelto et al., 2021)660

::::
with

::::::
thermal

:::::::::::
observations

:::
of

:::::::::
permafrost

::
is
:::::::

needed
::
to

:::::::
confirm

:::::
these

:::::::::::
interactions.

::::::::::
Establishing

::
a
:::::
direct

::::
link

::::::::
between

:::::
snow

:::::::::::
accumulation

:::::::
patterns

:::
and

:::::::
thermal

::::::::
processes

::
in

:::
the

:::::::::
subsurface

:::::
would

:::::::
provide

:::::::
valuable

:::::::
insights

:::
into

:::
the

:::::::::
long-term

::::::::
evolution

::
of

::::
palsa

:::::
mires

:::::
under

::::::::
changing

:::::::
climatic

::::::::::
conditions.

:::::::::::
Furthermore,

:::
our

:::::
study

::::::::
indicates

:::
that

:::::
there

::
is

:
a
:::::
clear

::::
need

:::
for

:::::
more

:::::::
detailed

:::::::
research

::
on

:::
the

:::::::::
interaction

:::::::
between

:::
tall

:::::::
shrubs,

::::
snow

::::::
depth,

:::
and

:::::::::
permafrost.
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Figure 9.
:::::::::
Explanation

::
of

::::::::
differences

:::::::
between

::::
UAS

:::::::::::
LiDAR-derived

::::
and

:::::::::
RF-modeled

::::
snow

::::::
depths.

5.3 Uncertainties and limitations665
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Snow distribution underlies erratic processes
::::
Snow

::::::::::
distribution

::
is

::::::
highly

:::::::
variable, especially because of wind drifts . This

:::
and

:::::::::
topography,

::::::
which must be considered when using

:::::::
applying

:
these methods. In addition, these

::::::::::
Additionally,

:
machine learning

models are based
:::
rely

:
on a unique observation in time. Changing weather conditions could lead to

::::
result

::
in
:

a completely

different snow distribution on another day, which could influence the model quality
::::
affect

::::::
model

::::::::::
performance.

However, even during the initial collection of the dataset
::::::
Various

:::::::
sources

::
of

:::::
error

::::
may

:::
be

::::::
present

::::::
during

::::
data

::::::::
collection

:
in670

summer and winter, errors could have occurred. Especially the LiDAR sensor is prone to errors; surface conditions with high

reflectance can lead to dispersion
:
.
::::::
LiDAR

:::::::
sensors

::
in

::::::::
particular

:::
are

:::::
prone

::
to

:::::::::::
inaccuracies;

::::::
highly

:::::::
reflective

:::::::
surfaces

::::
can

:::::
cause

::::::::
scattering of the laser beamand therefore to

:
,
::::::
leading

::
to
::

a
:
bias in the data . Moreover, not all surface elements can be fully

detected due to shielding through shrub vegetation (Gould et al., 2013). This bias must be considered as a consequential error

for the whole modeling approach when calculating
::::::::::::::::
(Deems et al., 2013)

:
.
::
In

::::::::
addition,

:::::
shrub

:::::::::
vegetation

:::
can

::::
hide

::::
the

:::::::
surfaces675

:::
and

:::::::
prevent

::::
them

:::::
from

:::::
being

:::::
fully

:::::::
captured

:::::::::::::::::
(Gould et al., 2013).

::::::
These

:::::::::
distortions

:::::
affect

::::
the

:::::
entire

::::::::
modeling

::::::::
approach

:::
as

:::
they

::::::::
influence

:::
the

::::::::::
calculation

::
of

:::
the

:
input parameters. On the other hand, removing of vegetation in the initial LiDAR-based

point cloud could improve the accuracy of SDLiDAR, although it would increase the preparation time clearly. Also the
:::
The

:::::
choice

::
of

:::::::
LiDAR

:::::::::
wavelength

::
is
:::::::
another

::::::
critical

::::::
factor,

::
as

:::
the use of different - or more - wavelengths can increase

::
or

:::::::
multiple

::::::::::
wavelengths

:::
has

::::
been

::::::
shown

::
to

:::::::
improve the accuracy of snow mapping with LiDAR sensors (Deems et al., 2013). Furthermore,680

the collection of training dataalso contains possible errors, although significantly lower. The yardstick is the most reliable

method to measure
:::::
depth

:::::::
mapping

:::::::::::::::::
(Deems et al., 2013)

:
.
:::::
Errors

::::
can

:::
also

::::::
occur

::::
when

:::::::::
collecting

:::::::
training

::::
data,

:::::
albeit

:::
to

:
a
::::
less

::::::::
significant

::::::
extent.

::::::::::
Measuring

::::
with

::
a

::::::::
yardstick

::
is

:
a
:::::::

reliable
:::::::
method

::
of

:::::::::
measuring

:
snow depth, although dense ice layers or

near ground vegetation like rootscan alter the
:::
but

:::::
dense

:::::
layers

:::
of

:::
ice

::
or

:::::::::
vegetation

:::::
close

::
to

:::
the

:::::::
ground,

:::::
such

::
as

:::::
roots,

::::
can

::::::
change

:::
the

:::::::
recorded

:
values by a few centimetres. The modeling step in RF naturally contains a high susceptibility to errors,685

such as overfitting. Even if the 10-fold cross-validation detects no significant overfitting, the modeling resultscan only be

exactly verified by using measured snow depth . This should be tested in a first step before applying this method in further

projects. Additionally, we have discussed the suitability of all input parameters . It is very plausible that the TPI has such an

importance for the model because it summarizes several topographic information in one parameter. Snow accumulates at edges

and drifts down slopes, meaning in terms of modeling that snow moves from one raster
:::::::::
centimeters,

:::
as

:::
the

::::::
ground

:::::::
surface690

:::
was

:::::::::
incorrectly

::::::::
assumed.

::
In

:::::
areas

::::
with

::::::
denser

:::::::::
vegetation,

:::
the

:::::
probe

::::
may

:::
not

:::::::
always

::::
reach

:::
the

:::::
exact

::::::
ground

:::::::
surface,

::::::::
resulting

::
in

:
a
:::::
slight

::::::::::::::
underestimation

::
of

::::
the

::::
snow

::::::
depth.

::::
This

::::::
could

:::::
affect

::::
both

:::
the

:::::::
training

::::
and

::::::::
validation

:::
of

:::
the

:::
RF

::::::
model

::::
and

:::
the

:::::::
accuracy

::
of

:::
the

:::::::::::::
LiDAR-derived

:::::
snow

:::::::::::
distributions,

::::
thus

::::::::
affecting

:::
the

::::::::
statistical

::::::::::
performance

:::
of

:::
the

::::::
results.

:::::::
Devices

:::
that

:::::
have

::::
been

:::::::::
developed

::::
only

:::
for

:::::
taking

:::::
snow

:::::
depth

:::::::
values,

::::
such

::
as

::
a
::::
GPS

::::::::::::
Magnaprobe,

::
as

::::
used

::
in
::

a
:::::
study

:::
by

::::::::::::::::
Walker et al. (2021)

:
,

::::
could

::::::::
minimize

:::::
such

:::::::
possible

:::::
errors.

:
695

:::
The

::::::::
selection

::
of

:::::
input

:::::::::
parameters

::
is

::::::
another

::::::
aspect

::::
that

:::::::
requires

::::::
critical

:::::::::
evaluation.

::::
The

:::
TPI

:::::
plays

:
a
::::::
central

::::
role

::
in

:::
the

::::::
model

::
as

:
it
:::::::::
combines

::::::
several

::::::::::
topographic

:::::::
features

:::
into

::
a
:::::
single

:::::::::
parameter.

:::
As

:::::
snow

::::
tends

:::
to

:::::::::
accumulate

::
at

:::
the

:::::
edges

::::
and

::::
drift

:::::
down

::
the

:::::::
slopes,

::
its

:::::::::
movement

:::::
from

:::
one

::::
grid

:
cell to the next . This is perfectly

::
is

:::::::::
effectively captured by the TPI

:::
TPI, making it a

critical parameter
::::::
crucial

:::::::
variable for the model. This finding is supported by studies from

:
in

:::
line

::::
with

::::::
studies

:::
by Revuelto et al.

(2020) and Meloche et al. (2022), pointing out
:::::
which

:::::::
highlight

:
the importance of the TPI

:::
TPI for modeling snow distribution.700
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All other parameters with higher importance are connected to wind characteristics
:::::
Other

::::::::
important

:::::::::
parameters

::::
are

::::::
related

::
to

::::
wind

::::::::
properties

:
and basic surface structures, which supports the significance of wind drifts

:::::::::
emphasizes

:::
the

:::::::::
importance

::
of

:::::
wind

:::
drift

:
and steep edges in the dynamics of snow distribution

::::
snow

::::::::::
distribution

:::::::::
formation. However, it should also be noted that

the used parameters only represent a small number of available parameters in relation to
::::::
selected

:::::::::
parameters

::::::::
represent

::::
only

::
a

::::::
fraction

::
of

:::
the

::::::::
potential

:::::::
variables

::::
that

::::::::
influence snow distribution. Theoretically, the

::::
The RF model is capable of taking a large705

number of parameters into account and still highlighting
::::::::::
theoretically

:::::::
capable

::
of

:::::::::::
incorporating

::
a
:::::
larger

:::
set

::
of

:::::::::
parameters

::::
and

:::
still

:::::::::
identifying

:
the most important ones. Our results also show that changing the input parameters impacts the performance

of the model. Accordingly, future work should proceed in the same way, first using a large number of parameters and then

successively limiting them to
:::
For

::::::::
example,

:::::::
detailed

:::::::::
vegetation

:::::::::::
classifications

::
-
::::::::
including

::::::
specific

:::::::::
vegetation

:::::
types

::
or

:::::::
density

::::::
indices

:
-
:::::
could

::::::
further

:::::::
improve

:::::
snow

:::::
depth

::::::::
modeling.

::
In

::::::::
addition,

:::::
there

:::
are

:::::::::
influencing

::::::
factors

::::
that,

:::::
while

:::
not

:::::::
directly

::::::
related710

::
to

::::
snow

::::::
depth,

::::
can

:::
still

:::::
have

::
an

::::::
impact

:::
on

:::::
snow

::::::::::
distribution

:::::::
patterns.

::::
The

:::::::::::
identification

:::
of

::::
such

::::::::
variables

::::::
would

::::::
require

::
a

::::::
specific

:::::
study

:::::
aimed

::
at

:::::::::
evaluating

:::
and

::::::::
selecting the most important ones. Based on our results, similar projects should consider

significantly more parameters , generating better results by including metrics that capture wind and terrain exposure
:::::::::
parameters

::
for

:::::
snow

:::::
depth

::::::::
modeling.

6 Conclusions715

We present an analysis of snow distribution in palsa mires using a combination of field
:::::
in-situ measurements, UAS LiDAR data,

and RF-based calculations
:::
RF

::::::::
modeling. This study provides significant

::::::
valuable

:
insights into small-scale snow dynamics in

palsa mires
:::::::::
distribution, revealing distinct patterns of snow accumulation at

::::::::::
accumulation

:::::::
patterns

::
at
:::::
palsa edges and cracksof

the palsas due to
:
,
::::::
driven

::
by

:
wind effects and gravitational sliding. The increased snow depth provides thermal insulation ,

reducing the penetration of cold air during winter and resulting in degradation of frozen soil. Conversely, exposed tops of the720

palsas
::
in

::::
these

:::::
areas

:::::::
prolongs

:::::::::
snowmelt,

:::::
which

:::::
could

::::::::
influence

::::::
thermal

::::::::
insulation

::::
and

::::
ALT

::::::::
dynamics

::
of

:::::::::
permafrost.

:::
In

:::::::
contrast,

::
the

::::::::
exposed

::::
palsa

:::::
areas exhibit thinner snow cover, allowing

:::::::::
promoting deeper frost penetration but also longer exposition

::
in

:::::
winter

:::
but

::::
also

::::::
greater

::::::::
exposure to solar radiation throughout the year.

Statistically, the RF model demonstrated a high predictive accuracy with a RMSE of 6.16 cm and an R2 of 0.98, significantly

outperforming the UAS LiDAR data, which had
:
in

:::::::
summer.

:::::::::::
Statistically,

::::
both

:::
RF

::::::::
modeling

:::
and

::::
UAS

:::::::
LiDAR

:::::::
provided

:::::::
reliable725

:::::
results

:::
for

::::::::
mapping

::::
snow

::::::::::
distribution

::::
with

:
an RMSE of 26.73 cm

::::
18.33

:::
cm

:::::
(RF)

:::
and

:::::
23.49

:::
cm

::::::::
(LiDAR)

::::
and

::::::::::::
corresponding

::
R2

::::::
values

::
of

::::
0.77

:
and an R2 of 0.59. The better performance underscores the effectiveness of incorporating parameters into

the model, considering spatial wind- and terrain-related metrics. The TPI resulted as the most significant predictor of snow

distribution, followed by parameters that consider the influence of wind like Wind Effect and Valley Depth
:::::
0.691.

::::::
While

:::
the

:::
RF

:::::
model

:::::::
showed

::::::
slightly

::::::
better

::::::::
prediction

::::::::::::
performance,

:::
the

:::::::::
differences

:::::::
between

::::
the

:::
two

::::::::::
approaches

::::::::
remained

:::::::::
moderate.

::::
This730

:::::::
indicates

::::
that

:::
RF

::::::::
modeling

:
is
::
a
::::::::
promising

:::::::::
alternative

:::
for

:::::
snow

:::::
depth

:::::::::
estimation,

::::::::
especially

:::::
when

::::::::::
appropriate

::::
input

::::::::::
parameters

::::
such

::
as

:::
TPI

::::
and

::::::::::
wind-related

::::::::::
parameters

:::
are

:::::::
included.

:::
At

:::
the

:::::
same

::::
time,

:::::
UAS

::::::
LiDAR

:::::::
provides

::
a
:::::
direct,

:::::::::::::
high-resolution

:::::
snow

::::
depth

::::::
dataset

::::
and

::
is

:::::::
therefore

::
a
:::::::
valuable

::::
tool

::
for

::::::
spatial

:::::
snow

:::::::
mapping.
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Our results underscore
:::::::
highlight

:
the vulnerability of palsas to changing snow dynamics

:::::
Palsas

::
to

:::::::
changes

::
in

::::
snow

:::::
depth

:::::::
patterns

due to climate change. Increasing
:::::::
warming.

::
A
::::::
change

::
in
:
snow depth and altered wind patterns could intensify palsa degradation735

, leading to the
:::::::
dynamics

:::::
could

::::::
further

:::::::::
accelerate

:::
the

::::::::::
degradation

::
of

::::::
Palsas

:::
and

::::
lead

::
to

::
a

:::::::::
progressive

:
loss of permafrost soils

in Northern
:::::::
northern Finnish Lapland. Future research could expand this high-resolution snow distribution modeling approach

to larger areas using satellite images, providing more comprehensive insights into the feedback mechanisms
::::::
studies

::::::
should

::::
focus

:::
on

:::::::::
integrating

::::::::
long-term

:::::::::
permafrost

::::::::::
monitoring

::::
with

::::
these

:::::
snow

::::::::::
distribution

::::::
models

::
to

:::::
better

:::::::::
understand

:::
the

::::::::::
interactions

between snow cover, permafrost ,
::::
thaw and climate change. Our methodology can serve as

:::
The

:::::::::
presented

::::::::::
methodology

::::::::
provides740

a foundation for further modeling approaches , integrating knowledge about the importance of snow distribution for palsa

development with other well-known drivers. It can
:::
that

::::::::
integrate

:::::
snow

:::::::::
distribution

:::::::::
dynamics

::::
with

:::::::::
permafrost

::::::::::::
development.

:::::
While

:::::
tested

:::
for

:::::
palsa

::::::::::::
environments,

:::
the

:::::::
approach

::::
can

::::
also be applied to other pan-Arctic palsa areas, continuous permafrost

regions, and even for small scale avalanche forecasting in the Alps. Furthermore, general transferability in other earth surface

phenomena is given,
::::::
adapted

:::
for

::::::::::
small-scale

::::::::
avalanche

:::::::::
forecasting

:::
or

::::::
surface

::::::
process

::::::
studies

:
such as soil erosion or landform745

changes.

In conclusion, this study provides a detailed assessment of snow distribution within palsa mires and its implications for

permafrost stability. The high accuracy of the RF model underscores the importance of incorporating spatial and environmental

predictors in snow mapping, showing how small-scale dynamics can be unveiled to improve the understanding of permafrost

evolution. Additionally, the results can be utilized in greenhouse gas measurements and footprint analyses, among other750

applications, highlighting their relevance for researchers focusing on the interactions between snow cover, permafrost, and

greenhouse gas emissions
::::::::::
demonstrates

:::
the

:::::::::
feasibility

::
of

:::::
using

::::
both

:::
RF

:::::::::
modeling

:::
and

:::::
UAS

::::::
LiDAR

:::
for

:::::::::::::
high-resolution

:::::
snow

::::
depth

::::::::
mapping

::
in

::::::
palsa

:::::
mires.
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Appendix A

A1755

Figure A1.
:::::::
Histogram

::
of

::::::
SDin-situ:::::

points
:::
and

::::::::
respective

::::::
statistics

:::
per

::::
palsa

::::
site.
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A2

Figure A2. Histogram
:::::::
Overview

:
of

::::::::::
classification

::
of all measured SDin-situ points

:::
into

:::::
classes

:::::
Edge,

:::
On

::::
Top,

::::
Open

:::::
Area and respective

statistics of the whole dataset
:::::::::
Thermokarst.

A3

Table A1.
::::::::
Correlation

::::::
between

::::
each

::::
input

::::::::
parameter

:::
and

:::::::::
RF-modeled

:::::
snow

:::::
depth.

::::::::
Parameter

:::::::::
Correlation

::
to

:::::
SDRF ::::::::

Parameter
:::::::::
Correlation

::
to

:::::
SDRF

:::::
Aspect

: :::
0.09

: ::::::
Relative

::::
Slope

:::::::
Position

::::
-0.49

:::::::
Elevation

::::
-0.12

::::
Slope

: :::
0.08

::::::
Channel

:::::::
Network

::::
Base

::::
Level

: ::::
-0.09

:::::::::
Topographic

:::::::
Position

::::
Index

: ::::
-0.87

::::::
Channel

:::::::
Network

:::::::
Distance

::::
-0.45

:::::
Valley

:::::
Depth

:::
0.50

:::::::
Negative

:::::::
Openness

:::
0.22

: ::::
Wind

:::::
Effect

::::
-0.55

::::::
Positive

:::::::
Openness

: ::::
-0.50

::::
Wind

::::::::
Exposition

: ::::
-0.80
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