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Point-by-point replies to the question and comments by Reviewer 2 

Dear Reviewer 2, 

we are pleased to submit the replies to your questions and are thankful for the insightful comments 

and many good suggestions, as well as we are grateful for your time and effort in providing valuable 

feedback. We believe that addressing the issues raised by you, have now substantially improved our 

manuscript. 

We hope our answers meet your approval. Your comments and our point-by-point responses are 

presented below. Please note, that we added a detailed description of a new RF modelling approach 

in the appendix A. 

 

Reviewer #2 comments Action Response 

1. The authors produce a random forest (RF) 
model based on lidar-derived topographic 
predictors and point observations of snow 
depth. The RF model is used to create a 
continuous snow depth field over the three 
independent palsas in Finland and Sweden. It 
is then evaluated against the point 
observations and compared to UAS-lidar-
derived snow depths. Finally, the authors 
discuss the implications of snow depth 
variability on permafrost dynamics at the 
palsas. The manuscript has well-constructed 
figures, relies on a unique and interesting 
dataset, includes an assessment of a wide 
range of reasonable terrain predictors of 
snow depth, and the methods are on the right 
track. However, there are some significant 
concerns, including manuscript 
organization/framing, limited lidar 
validation/processing concerns, model 
overfitting, and generally weak 
analysis/discussion. These are detailed 
below. 

Answered We sincerely appreciate your thorough 
review, insightful comments, and thoughtful 
questions. Your valuable feedback has 
provided us with important guidance to 
improve our manuscript. 
We believe that addressing the issues you 
have raised have significantly enhanced the 
clarity and overall quality of our work. Below, 
we present our point-by-point responses to 
your comments and suggestions. 

2. Lastly, please do not be overwhelmed by all 
of the comments! Addressing the major 
suggestions and proofreading the manuscript 
thoroughly should move this study much 
closer to publication. The specific comments 
are intended as suggestions/thoughts to help 
steer the revision process and are generally 
related to the below Major 
Suggestions/Comments. 

Answered Thank you for your encouraging words. We 
appreciate your detailed feedback and are 
confident that your suggestions have 
significantly enhanced the quality of our 
manuscript. 

Major Suggestions/Comments   

Concerns with Research Objectives, Methods, and 
Manuscript Organization 

  

3. Ln 94-99: It is my opinion that the research 
objectives need to be refined. The first stage 
of the paper should be an evaluation of lidar-
based snow depth, followed by an evaluation 

Changed/ 
Answered 

In response to your comments and those of 
Reviewer 1, we refined the focus of our 
manuscript during the review process. 
Originally, our main objective was to analyse 



2 
 

of the RF modeling approach. Only then 
should the authors discuss the potential 
implications of the depth patterns, and this 
should be a smaller part of the manuscript 
focused in the discussion. Since the authors 
did not explicitly collect data to link snow 
depth to changes in the active layer (or ice 
loss/gain), the outcomes are more based on 
expectations and assumptions – which may 
be valid, but to verify and to be a focus of the 
manuscript would require more data. The 
points described on Ln 97-99 are 
underdeveloped and unsupported by 
observations. 

snow depth patterns and their potential 
impact on palsas. However, based on your 
valuable suggestions, we now recognize the 
importance of a more explicit comparison 
between UAS-LiDAR and RF-modelled snow 
depth products. 
We have adjusted our research objectives 
accordingly to highlight this comparison. 
However, we still believe it is important to 
discuss the potential impact of snow depth 
distribution on palsa dynamics. We agree, 
nevertheless, that these interpretations are 
based on assumptions and not on direct 
observed data. For clarity, we explicitly point 
out that these ideas need to be further 
validated in future studies. 

4. Section 4.3 needs revision. Unless the 
expected errors in the lidar product are 
further expanded upon, these are physical 
observations and it is standard practice to 
assume that these products have 
uncertainties errors proportional to the 
sensor error (e.g., ~5 cm). This can be directly 
evaluated from ground observations of snow 
depth and was to some degree. However, the 
errors were much larger than expected (>20 
cm, Ln 298-302), raising concerns about the 
processing of lidar data to produce snow 
depth maps. This component and the framing 
of the analysis are significant concerns. A 
section early on evaluating the lidar depth 
products seems necessary and considering 
the influence of vegetation on their accuracy 
explicitly (for example, examining some of 
the outliers in Figure 8 more closely) – 
addressing the concern of vegetation 
compression should be added here and 
vegetation height models produced from the 
summer lidar point cloud 

Changed/ 
Answered 

Thank you for highlighting these concerns. In 
response, we have conducted an additional 
model run, refining the LiDAR-based snow 
depth estimation by removing vegetation 
from the initial LiDAR products to create a 
more accurate DTM. Additionally, we 
implemented hyperparameter tuning and 
tested different cross-validation folds to 
mitigate potential overfitting. 
These methodological improvements are 
explained in detail in Appendix A. The 
updated results demonstrate a substantial 
improvement in the accuracy of the LiDAR-
derived snow depth estimates. However, 
snow depth estimation remains less accurate 
for the Thermokarst point group, likely due to 
high reflectance in water-dominated areas. 
Furthermore, the revised RF modelling 
approach now has improved results in terms 
of representation and generalization. To 
ensure clarity, we have revised the relevant 
sections accordingly and have introduced a 
new section specifically detailing the 
processing and validation of LiDAR data. 
In the following, we refer to Appendix A. 
There you find all necessary information, 
which answer your questions. 

5. Comparing the lidar to an RF model trained 
and evaluated against <200 observations 
directly is not appropriate. As presented, the 
lidar depth analysis does not add much to the 
manuscript – I suggest it be redone 
(reprocessed data, more detailed lidar depth 
evaluation), and/or, the work reframed to 
simply build the RF model using lidar terrain 
and snow depth point observations, then a 
revised analysis on how these patterns are 
expected to influence the palsa stability. 

Changed/ 
Answered 

See Appendix A. 

Random Forest Modeling Concerns   

6. Ln 189-191: It seems like little consideration 
was given to the hyperparameters, and 

Changed/ 
Answered 

See Appendix A. 
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several important ones (like maximum split 
size, and minimum node size) are not 
mentioned. Please clearly state the 
hyperparameters used, and an optimization 
routine should be included to select these – 
not just using defaults – which are likely 
geared towards a much larger data set. If 
done correctly, this will reduce overfitting 
(see following concerns) 

7. Various model runs were not clear. The 
predictors for model 1,2, and 3 should be 
explicitly stated, with the appropriate 
reasoning within the methods section 

Changed We have described the input parameters 
used for each model run in lines 205–209. 
However, based on your (and Reviewer 1) 
suggestions and the revised model design, we 
have decided to focus on a single model run. 
As a result, we used only 12 parameters and 
removed the information related to 
previously unused parameters and former 
model runs. The section on input parameters 
and model runs has been updated 
accordingly. 

8. 10-fold cross-validation is not sufficient to 
ensure that the model is not overfit. Each 
model is still trained with 90% (9/10) of all 
data (and the training dataset is relatively 
small <200 snow depths). The authors should 
explore the influence of fewer folds (e.g., 3-
10) to assess how much model performance 
is degraded. For such a small dataset, around 
four (4) folds seems more appropriate in this 
case 

Changed/ 
Answered 

See Appendix A.  

9. Ln 232 – 242: This is relevant to RF model 
training/evaluation – I suggest moving to the 
random forest training section 

Changed We agree and moved this part to the 
description of the RF algorithm and modelling 
data preparation.  

10. The results shown in Table 3 (R2 > 0.99, RMSE 
less than the expected measurement 
uncertainty <3 cm) suggest substantial 
overfitting of the random forest model 

Changed/ 
Answered 

See Appendix A. 

11. Avoid analysis based on terms like 
‘potentially,’ ‘possibly,’ and ‘probably’ -- you 
should focus your study on explaining and 
describing the data you have collected its 
likely implications with clearly stated support 

Changed We agree and changed/avoided assumptions 
within the abstract/discussion at lines 18, 
320, 323, 347. We either supported our ideas 
by own observations in the field (decreasing 
parts, block erosion) or pointing out the 
uncertainties and the necessity to verify these 
assumptions in further studies. 

12. The terminology of cooling and warming 
spots was unclear – since these are not a 
standard term to my knowledge, these need 
to be explicitly defined early on and used 
consistently throughout the manuscript 

Changed Thank you for highlighting this important 
point. To ensure clarity and consistency, we 
have explicitly defined these terms in the 
introduction when explaining the role of 
snow dynamics in palsa environments: 
 
We define Cooling Spots as areas on and 
around a palsa where the snow cover remains 
relatively thin during winter. Due to the lack 
of insulating snow, these areas experience 
increased heat loss from the ground to the 
atmosphere, allowing frost to penetrate 
deeper into the subsurface. As a result, when 
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summer arrives, the snow in these areas 
melts earlier, exposing the ground to warm 
temperatures for an extended period. This 
prolonged exposure leads to a deeper thaw of 
the active layer, making these locations more 
susceptible to ground cracking and 
thermokarst formation, particularly along the 
palsa edges. Cooling spots are typically found 
in elevated or wind-exposed areas of the 
palsa, where snow accumulation is naturally 
limited. 
 
In contrast, Warming Spots are areas where a 
relatively thick snow cover accumulates 
during winter. The insulating properties of 
the snow reduce heat loss from the ground, 
preventing deep frost penetration and 
keeping the underlying soil comparatively 
warmer throughout the winter. In summer, 
the accumulated snow melts later, delaying 
the warming of the ground and slowing active 
layer thawing. Consequently, the active layer 
in these areas tends to be shallower 
compared to cooling spots. Warming spots 
are typically located in depressions, concave 
terrain, or wind-sheltered locations where 
snowdrifts form. 
 
These definitions have been integrated into 
the manuscript to provide a clearer 
conceptual framework for our analysis. 

13. Ln 71-73: UAS-lidar-based snow depth 
monitoring approaches/literature should be 
sufficiently reviewed in the introduction (& by 
the authors). The approaches used to 
produce snow-depth products do not align 
with standard practice (e.g., classifying the 
vegetation-free ground surface). See work by 
Avanzi et al., 2018; Harder et al., 2020; Jacobs 
et al., 2021. 

Changed We acknowledge the importance of previous 
studies that have applied UAS-LiDAR for snow 
depth mapping and appreciate your 
suggestion. Our initial focus was primarily on 
demonstrating the feasibility of snow depth 
modelling using RF and assessing its 
implications for palsas. However, as the study 
evolved, the focus shifted more towards a 
comparative analysis between Random 
Forest modelling and LiDAR-based snow 
depth estimation. In response to your 
suggestion, we have incorporated additional 
references on UAV LiDAR-based snow depth 
mapping. Specifically, we adopted the 
vegetation removal approach inspired by 
Jacobs et al. (2021) and further reviewed 
relevant studies, including those by Avanzi et 
al. (2020) and Harder et al. (2020). 

14. Grammatical and sentence structure issues 
limit communication effectiveness in the 
paper. A thorough proofreading by a third 
party before resubmission would benefit the 
paper. Some specific instances of this were 
noted in the comments below 

Changed Thank you for pointing this out. We will have 
a close look to grammar and sentence 
structure before resubmission and will 
particular improve the comments you are 
mentioning below. 

Minor/Technical/Grammatical Suggestions   
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15. Stick with snow depth or snow height 
throughout – be consistent with word choice 

Changed Agree, we are now using the term snow depth 
and changed snow height in lines 258, 264 
and 266. 

16. The use of the word ‘precision’ is 
questionable at times (see abstract Ln 9). 
Precision measures the ability for repeatable 
measurements. Accuracy is a better term for 
assessing something like a random forest 
model. Read through the manuscript and 
consider if the use of ‘precision’ is 
appropriate throughout 

Changed This is a good point. We changed the term 
precise/precision/precisely in lines 9, 74, 90, 
97, 188, 288, 316, 365, 370 and 396. 

17. Word choice should be reviewed throughout 
– (e.g., Ln 78: ‘very strong changes’ could be 
‘control’, Ln 212: ‘realism’) 

Changed We scanned our manuscript for judgmental 
words and changed them to more neutral 
terms. 

18. Avoid broad terminology throughout, 
especially before something a term is 
explicitly defined (e.g., Ln 150 – was not clear 
what ‘input parameter data’ referred to again 
at Ln 181, 182, 185). I suggest defining the 
types of input parameters earlier on – like 
was done in Section 3.3 

Changed By “input parameters”, we are specifically 
referring to the variables listed in Table 2. 
These parameters are all derived from the 
initially generated DSM in summer and were 
exclusively used in the RF model. 
To enhance clarity and avoid ambiguities, we 
have explicitly defined the term “input 
parameters” in line 144. Additionally, we 
have standardized the terminology by 
removing the word “data” in line 150 to 
ensure consistency throughout the 
manuscript. 

Abstract   

19. Ln 13-15: Machine learning is used to model 
the snow depth spatially and relies on 
observations. On its own, it does not capture 
snow depth patterns. Consider rewording 

Changed We agree and changed the sentence: “This 
considerable difference highlights the 
capability of machine learning to model fine-
scale snow distribution based on in-situ 
observations.” 

20. The abstract should be a single cohesive 
paragraph, avoid splitting into two parts 

Changed We agree and changed the abstract to a single 
cohesive paragraph. 

Introduction   

21. Ln 26, 57-58: While snow cover duration is 
decreasing, the suggestion that snow depth is 
increasing substantially in these regions is 
less clear. This paper suggests snowfall 
extremes will be reduced in the study area 
(https://www.nature.com/articles/s41598-
021-95979-4) – can you clarify this point? 

Changed/ 
Answered 

Thank you for your suggestion. We 
acknowledge that while snow cover duration 
is generally decreasing, trends in snow depth 
are more regionally variable. Increased 
winter precipitation may lead to higher snow 
depths in some areas, whereas other regions 
might experience a decrease in snowfall 
extremes, as suggested by Quante et al. 
(2021). Since we have not specifically 
analysed these trends for our study region, 
we recognize the need to be more cautious 
with this statement and have revised it 
accordingly to reflect the regional variability 
and associated uncertainties. 

22. Ln 32-33: Sentence structure/clarity issues – 
please revise 

Changed We changed the sentence: In northern 
Fennoscandia, particularly in northern Finnish 
Lapland - the main focus of this study - specific 
periglacial permafrost landforms known as 
palsas are at risk of disappearing within this 
century (Leppiniemi et al., 2023). 
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23. The relevance of palsas is not addressed 
clearly in the introduction. Please add some 
sentences on their general significance, e.g., 
Do they stabilize permafrost? Provide 
habitat? Have societal relevance? 

Changed We have added that palsas serve as indicators 
of climate warming, as their degradation and 
disappearance reflect rising temperatures 
(Leppiniemi et al., 2023). Additionally, they 
provide important habitats for various animal 
species (Luoto et al., 2004) and hold 
significant cultural and societal relevance for 
the Sámi people, particularly in the context of 
traditional reindeer herding (Markkula et al., 
2019). 

24. Ln 53: remove ‘exemplarily’ Changed Removed. 

25. Ln 56-57: These points seem essential for 
understanding the relevance of palsas – I 
suggest this is moved earlier in the 
introduction when palsas are defined 

Changed We moved the sentence “Microtopography 
affects snow depth and creates an 
environment, in which the palsas usually 
receive enough penetrating cold air to remain 
stable and to last year after year due to a thin 
snow cover.” to line 41. 

26. Ln 60-61: ‘in-situ measured data’ or 
‘observations’ need to be clarified. Is this 
temperature data? Snow depth? Other? 

Changed We are referring to “snow depth data” an 
inserted this term for clarification.  

27. Ln 78-79: Wording is unclear – ‘…limits 
information value of satellite data…’ 

Changed We changed the sentence: Small-scale 
structures, such as palsas, exhibit significant 
variations in snow depth at fine spatial scales, 
which reduces the usefulness of satellite data 
for analysing small-scale processes in these 
structures. 

28. Ln 81:’Another’ should start a new paragraph 
– this section is also very short relative to the 
prominent role that machine learning plays in 
the paper. I suggest adding more detail. 

Changed We would like to point out kindly, that there 
is a paragraph between line 80 and 81. 
As mentioned previously, we initially focused 
more on the impacts of the snow depth 
distribution to palsas in this paper. However, 
after your useful comments, we agree and 
inserted more details about machine learning 
and specifically RF.  

29. Ln 90: ‘…test methods for generating detailed 
snow distribution maps..” should lead this 
section. The objectives need to be clearly 
stated up front 

Changed Yes, we agree and have adjusted the focus of 
the paper accordingly. Specifically, we have 
ensured that the section begins with a clear 
statement of our objectives, emphasizing the 
evaluation of methods for generating 
detailed snow distribution maps. 

Data and Methods   

30. Ln 141: a comprehensive dataset of what? 
Specify 

Changed We have clarified this statement by specifying 
that we collected a comprehensive dataset 
consisting of UAS-LiDAR data and in-situ snow 
depth measurements for modelling purposes. 

31. Figure 3: Should clearly state the actual 
observations that were collected 

Changed We have clarified that the collected data 
include UAS-LiDAR measurements, which 
were used to generate DTMs for both winter 
and summer, as well as in-situ snow depth 
measurements, which served as training data 
for the modelling. 
 

32. Ln 151: This is the first time LiDAR is 
mentioned. Needs to be introduced within 
the introduction 

Changed We agree and introduced LiDAR in lines 73 – 
74 in the context of the studies by Rauhala et 
al. (2023) and Meriö et al. (2023). 
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33. Ln 157-160: very confusing. No SfM, but then 
orthophotos were created? That relies on 
photogrammetry -- but then you state point 
cloud densities. Are these associated with 
lidar or RGB orthophotos? If lidar, need to put 
it right after the lidar. Also, should report 
density per square meter as it is the standard. 

Changed We acknowledge the potential for 
misunderstanding and have clarified our 
statement in lines 157/158. Specifically, we 
used SfM techniques solely for the creation of 
orthophotos. The RGB flights were conducted 
using an Autel EVO II Pro V2 UAV at a flight 
altitude of 80 m, with a 75% overlap for each 
flight. Initially, we had stated that the 
orthophotos were acquired with the 
integrated RGB sensor of the LiDAR mapper. 
However, this was a misunderstanding, and 
we have now corrected this statement. The 
orthophotos do not contribute specific data 
to the analysis but were solely used for figure 
creation. 

34. Ln 162-164: Revise sentence structure for 
clarity 

Changed We changed the sentence: “By substracting 
the winter by the summer DSM in Geographic 
Information Systems (GIS) – ArcGIS Pro by Esri 
was used – snow depth distribution datasets 
were calculated, allowing the comparison of 
UAS-LiDAR snow depth (SDLiDAR) and RF 
modelled (SDRF).” 

35. Ln 166: should be ‘by an RTK GPS system’ Changed We agree and added the term. 

36. Ln 170: word choice - ‘optimal’ Changed We changed “optimal” to “diverse”. 

37. Ln 172: The sampling strategy is claimed to be 
randomized, though it appears observations 
were collected along transects with some 
random points. Some of these could be 
biased, so it would be useful to add a bit more 
description. There are also areas with clear 
gaps 

Answered We acknowledge that the sampling strategy 
may appear structured, potentially 
suggesting a bias. However, no strict transect 
approach was followed when measuring 
snow depth in Pousu. Instead, the sampling 
locations were selected based on terrain 
features, as illustrated in the figure in 
Appendix E, which we will include in the 
manuscript appendix. 
Measuring snow depth under these 
environmental conditions is challenging, and 
our data collection was constrained by a 
limited time frame. Therefore, we prioritized 
a well-distributed dataset that captures the 
variability within our palsa sites as effectively 
as possible. 

38. Related to the previous point, the distribution 
of snow depth observations included in the 
appendix should be split by site (in my 
opinion) 

Changed See Appendix D. 

39. Ln 176: It isn’t easy to make out any snow-
free areas on the palsas in the imagery – can 
these be indicated? 

Answered The snow-free points represent extreme 
locations in highly exposed areas. These 
points were specifically captured to ensure 
that the model is trained with the full range 
of snow depth variations observed in the 
field. 
However, due to the limited resolution of the 
orthophotos, it is difficult to clearly visualize 
these areas as the images appear too blurry 
to clearly highlight them. However, these 
snow-free areas are mainly located on steep 
slopes where wind-induced redistribution of 
snow and downslope movement have either 



8 
 

removed or significantly reduced the snow 
cover. 

40. Ln 184-188: To clarify, the full training set is 
based on only 185 observations – but 
increased due to the buffering? Please 
indicate how many unique features were 
actually used to train the model after the 
buffering. Will help the reader understand 
the robustness of the model 

Changed/ 
Answered 

See Appendix A. 

41. Ln 193-194: Just state the metrics were 
normalized 0-1, with the highest output 
importance set as 1 

Changed/ 
Answered 

See Appendix A. 

42. Ln 205: The removal of elevation as a 
predictor needs more explanation – the logic 
that is will ‘reduce possible overfitting’ is not 
apparent 

Changed/ 
Answered 

Please refer to our previous responses, 
especially comment #7, regarding the 
removal of the initial model runs. As a result, 
it is no longer necessary to elaborate on the 
exclusion and reintroduction of the Elevation 
parameter. 
For clarity regarding our initial approach: 
Elevation was excluded in the second model 
run because all other input parameters were 
derived from it. This step was taken to assess 
whether Elevation might introduce bias into 
the modelling results. After analysing the 
outcomes, we found no indication of such 
bias and subsequently decided to retain 
Elevation as an input parameter in the final 
model. 

43. Ln 206-207: wordy, what is ‘initial minimal 
impact’? 

Changed We changed the term to “low impact”. 

44. Ln 211: Unclear how this offers a balanced 
representation. The idea of taking an area is 
usually to remove noise, reduce the influence 
of sampling or geolocation errors, and to 
grow the training set size (taking groupings of 
nearby points vs. a single one - which should 
improve the robustness of the model). Please 
explain further. 

Changed/ 
Answered 

Thank you for your comment. We agree that 
the phrase “balanced representation” was 
not the most precise wording. To clarify, the 
buffering strategy was implemented to 
reduce noise, minimize the influence of 
geolocation and sampling errors, and 
enhance the robustness of the model by 
increasing the number of training points. By 
incorporating groupings of nearby points 
rather than relying on single-point 
measurements, this approach helps improve 
the model’s stability and realism, as 
demonstrated in Bergamo et al. (2023). 
We have revised the manuscript accordingly 
to reflect this explanation more clearly. 

45. Table 2: Nice table! For features like TPI 
(which are determined to be very important), 
you should be more detailed in their 
definition. More than ‘it combines several 
topographic features.’ TPI is generally just the 
relative elevation of a point to surrounding 
points within some radius (or adjacent pixels) 

Changed Thank you for your positive feedback! 
We agree with your suggestion and have 
added more detailed explanations for TPI, 
Wind Effect, Valley Depth, Channel Network 
Base Level, and Wind Exposition to ensure 
clarity and precision in their definitions. 

46. Ln 238-239: Be careful with wording. 
Correlation (strength of linear relationship) 
and significance (based on statistical testing) 
are not the same thing 

Changed We recognize the difference between 
correlation and statistical significance and 
have adjusted the wording accordingly to 
ensure accuracy. In particular, we clarify that 
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the analysis aimed to assess the strength of 
the relationships between the input 
parameters and the SDRF predictions, rather 
than implying statistical significance unless 
explicitly tested. 

Results   

47. Section 4.1: Nice job describing results clearly 
and sequentially by site. 

 Thank you very much!  

48. Figure 5: Nice figure, it would be useful to add 
annotations for areas of interest referred to 
in Section 4.1 on the figure (e.g., the collapsed 
areas) 

Answered Thank you for your valuable suggestion! 
While we acknowledge that adding 
annotations could enhance interpretability, 
we aim to maintain clarity and avoid 
overloading the maps with excessive 
information. Additionally, we want to prevent 
cross-referencing multiple figures within a 
single visualization. 
For these reasons, we have decided not to 
modify Figure 5 further but will ensure that 
the areas of interest are clearly described and 
referenced within the text. 

49. Ln 252: When stating things like ‘slightly 
higher,’ specify the magnitude (is this 10cm, 
20cm, 5cm?). Same as Ln 257, how much 
lower? 

Changed We agree with your suggestion and have 
included exact numerical differences in 
centimetres to provide a more precise 
comparison in lines 252 and 257. 

50. Ln 272-273: sentence clarity issue Changed We changed the sentence:  Notably, 
deviations in the areas surrounding the palsas 
are primarily characterized by higher snow 
depths predicted by the RF model. 

51. Figure 7: Nice figure! Be sure to add more 
specifications on the model runs in the 
methods section 

Answered See comment #42. 

52. Ln 294: How were they separated into ‘point 
groups’ used to produce Table 4 – how were 
the different areas delineated and can these 
be added to the maps? 

Changed/ 
Answered 

See Appendix A and E. 

53. Ln 310-313: Correlation analysis results 
should be included as a table – this could be 
added to the appendix if the authors do not 
want to include it in the body of the paper 

Changed/ 
Answered 

See Appendix F. 

Discussion   

54. Ln 318-319: Revise based on previous 
comments 

Answered Revision have been done. 

55. Ln 329: warming and cooling spots need to be 
defined more before this point. What is a 
good technical definition? For example, are 
warming spots where the net heat flux into 
the ground during the winter is highest - 
making these areas warmer? vs. Cooling 
spots, where the net heat flux into the ground 
is lowest? We need to have a clear and more 
scientific definition 

Changed/ 
Answered 

See answer to comment #12. 

56. Ln 345: ‘Cooling spots inhibit a greater active 
layer thickness in summer’ – is this the 
technical definition? It comes across as 
difficult to interpret. An alternative version of 
this: ‘Cooling spots result in shallower active 

Changed/ 
Answered 

We appreciate your suggestion and have 
revised the sentence accordingly to improve 
clarity: 
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layers in summer compared to warming 
spots.’ 

“Cooling spots result in shallower active 
layers in summer compared to warming 
spots.” 
Additionally, we have provided a detailed 
definition of cooling and warming spots in 
response to comment #12 to ensure 
consistency throughout the manuscript. 

57. Figure 8 - Nice figure. The delineations are 
helpful. Similar delineations would help the 
interpretation of results in prior figures 

Answered See answer to comment #48. 

58. Section 5.2: This section should be revised 
thoroughly – see previous comments on lidar 
snow depth and RF model comparison 

Answered We have revised this section based on our 
new results. 

59. Ln 354: Luo and Panda studies were based on 
satellite remotely sensed snow cover – not 
sure I understand the link to UAS-lidar 
observations. Also, not clear what ‘not in 
depth post-processed data’ is. I did not 
understand the transition of the discussion 
from snow depth to snow cover 

Changed Thank you for pointing this out. We 
acknowledge that the studies by Luo et al. 
(2022) and Panda et al. (2022) focus on 
satellite-based snow cover observations 
rather than snow depth. To avoid confusion, 
we have removed these references in this 
context and ensured that our discussion 
remains focused on snow depth mapping. 
Additionally, since our revised model 
approach now utilizes a DTM instead of a 
DSM, we have removed the statement 
regarding “not in-depth post-processed 
remote sensing data” to accurately reflect the 
improved data processing methodology. 

60. Ln 363-364: How did manual probing address 
the issue of vegetation? The uncertainty in 
these observations was never discussed 

Answered Thank you for highlighting this important 
point. We acknowledge that the impact of 
vegetation on manual snow depth probing 
was not explicitly discussed. 
In our study, manual probing was conducted 
with a heavy yardstick, which allowed us to 
reach the ground despite the presence of 
vegetation. However, we recognize that 
vegetation, particularly tall grasses and 
shrubs, can introduce uncertainties in snow 
depth measurements. In areas with denser 
vegetation, there is a possibility that the 
probe may not always reach the exact ground 
surface, leading to slight overestimations of 
snow depth. 
To address this, we have expanded our 
discussion on potential uncertainties in 
manual snow depth measurements and their 
implications for model accuracy. 

61. Ln 366-368: This doesn't seem like only a lidar 
limitation - but a measurement challenge in 
general. Measuring snow over dense 
vegetation with air voids, compression, etc.. 
is always challenging. New approaches to 
correct the lidar based on the underlying 
vegetation type/density/height may improve 
lidar snow depth products. 

Answered We agree that the challenges of measuring 
snow depth over dense vegetation are not 
solely a limitation of LiDAR but rather a 
general measurement issue. 
We acknowledge that new approaches, such 
as correcting LiDAR-based snow depth 
estimates based on vegetation type, density, 
and height, could improve the accuracy of 
these products. We briefly addressed this in 
the discussion and highlight it as a potential 
avenue for future research. 
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62. Ln 375-387: The discussion in this paragraph 
was strong, and it was easier to follow the 
logic. This could be an example to use when 
revising the discussion. 

Answered Thank you! We have now used this paragraph 
as example for revising the discussion. 

63. Ln 392, 407-408: Why was vegetation not 
removed from the summer point cloud? I do 
not understand why this was done in this 
manner. This step is critical for snow depth 
mapping with lidar. 

Changed/ 
Answered 

See Appendix A. 

64. Ln 395-397: There is a growing body of 
literature on this that would be useful to 
review. See Buhler 2016, 2017; Adams et al., 
2018; Avanzi et al., 2018, Cho et al., 2024 
(Preprint), Eker et al. 2019; Harder et al. 2020 
(compares lidar and RGB) 

Answered We have reviewed the recommended 
literature and incorporate relevant findings 
or ideas if they make a meaningful 
contribution to the context of our study. 

65. Much of the discussion relies on findings from 
other studies and assumed links to snow 
depth observed in this study to conclude – 
not clear to me what value the work 
presented here has to understanding palsa 
permafrost dynamics more than point 
observations on a transect across one of 
these features would. Related to previous 
comments on reframing and refocusing the 
research objectives 

Answered Thank you for your comment. We recognize 
that directly linking our modelled snow 
distribution to permafrost dynamics remains 
a complex challenge. However, we believe 
that our study offers significant value beyond 
point transect measurements by providing 
the first spatially continuous snow depth 
maps over palsas using validated LiDAR and 
RF-based approaches. 
Our results show that these models perform 
well compared to independent validation 
datasets, confirming the reliability of the 
derived snow depth distributions. Given the 
crucial role of snow in regulating permafrost 
stability, we argue that these spatial datasets 
provide valuable insights into the potential 
snow-induced thermal dynamics of palsas. 
While additional ground-based validation of 
permafrost responses would strengthen this 
link, our study provides an important 
foundation for future research in this area. 
We have clarified these points in the 
discussion to better emphasize the unique 
contribution of our study. 

66. Ln 412-414: A fewer number of folds should 
be used in the model training/validation 

Changed/ 
Answered 

See Appendix A. 

67. Ln 421, 425-426: A large number of input 
features are used in this model and the 
results as presented show nearly perfect 
model performance – are you suggesting 
others should be included? If others could 
make the model better, why were they not 
included? 

Answered Thank you for your comment. With our 
revised model approach, we now use only 12 
input parameters, ensuring a more 
streamlined and interpretable model. 
Our intention was not to suggest that 
additional parameters should necessarily be 
included in this study, but rather to 
acknowledge that future research could 
explore further potentially relevant 
predictors. For instance, more detailed 
vegetation classifications - such as specific 
vegetation types or density indices - could 
enhance snow depth modelling. Additionally, 
there may be other influential parameters 
that are not directly linked to snow depth but 
still play a role in snow distribution patterns. 
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Appendix 

In this section, we provide additional information addressing comments #4, 5, 10, 16, 22, 23, 24, 44, 49, 50, 54, 

56 from Reviewer 1 and #5, 6, 8, 10, 38, 40, 41, 52, 53, 63, 66 from Reviewer 2. 

We sincerely appreciate your insightful comments and suggestions, which have significantly contributed to 

improving both the modelling approach and the overall quality of the manuscript. 

 

Appendix A 

To ensure high-quality modelling results and accurate snow depth distribution maps derived from UAS-LiDAR, 

we implemented your recommendations, including the removal of vegetation from the LiDAR-derived products 

and a re-evaluation of the modelling approach. 

Additionally, we incorporated hyperparameter tuning and cross-validation to determine the most suitable 

parameter settings for the Random Forest model. To further improve model robustness and prevent overfitting, 

we also adjusted the data splitting strategy by testing the RF model on an independent external dataset. 

 

1. Removal of vegetation from UAS-LiDAR DSM 

 

Our initial decision to retain vegetation in the modelling process assumed that small and dense vegetation, as 

present in our study sites, is difficult to remove - even from point clouds. Testing several vegetation filter 

Identifying such factors would require a 
dedicated study focused on assessing and 
selecting the most critical parameters for 
snow depth modelling. 
We have clarified this point in the discussion 
to ensure that our statement is not 
misinterpreted as a recommendation for 
additional parameters in the current model. 

68. Ln 423-424: Good point  Thank you! 

69. Once noted challenges throughout are 
addressed – the discussion should be re-
written to align with the updated manuscript 

Answered After all changes have been made, we have 
adapted the discussion based on the updated 
manuscript. 

Conclusions   

70. As presented, the paper is focused on the 
evaluation of the methods for snow depth 
mapping and on the predictors that control 
the depth distribution -- discussion into the 
influence of these characteristics on the 
thermal profiles is purely assumption based -
- thus reframing the conclusion in line with 
the revised paper and the actual results/data 
presented will be critical in the revised 
version. 

Answered Based on all the revisions and refinements 
made throughout the manuscript, we have 
rewritten the conclusion to align more clearly 
with the revised focus of the paper and the 
actual results presented. This ensures that 
our conclusions remain grounded in the data 
and analyses conducted. 
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algorithms, such as the Cloth Simulation Filter (CSF) and Statistical Outlier Removal (SOR) in CloudCompare, 

confirmed this assumption, as the vegetation was not properly removed in the resulting products. 

Additionally, we considered that vegetation significantly influences snow depth distribution by enhancing snow 

retention capacity. Therefore, we initially decided to include vegetation in the modelling process, expecting it to 

be beneficial for RF modelling. 

However, based on your suggestions, we tested the Progressive Morphological Filter (PMF) Algorithm as 

described by Zhang et al. (2003) and Jacobs et al. (2021) and obtained satisfactory results with an effective 

removal of vegetation. We applied PMF filtering using the following parameters: 

 

 Window sizes: 0.5, 1, 2, and 3    

 Thresholds: 0.05, 0.1, 0.3, and 0.5 

The extracted ground and vegetation points were saved in point cloud format. Using CloudCompare, we 

generated a DTM for each palsa using the Rasterize function. Empty cells within the point clouds were 

interpolated with a triangle max edge length value of 5.0. 

The newly created DTMs were then used to recalculate the snow depth distribution for all three test sites in GIS, 

following the methodology described in the manuscript. In our initial calculations, all negative values were set to 

zero. However, in this revised approach, we retained negative values to highlight areas where either the LiDAR 

sensor produced inaccuracies or surface degradation occurred between the summer and winter flights. 

Based on these refined DTMs, we recalculated all input parameters used in the final RF model run in SAGA GIS. 

The following 12 parameters were included: Aspect, Elevation, Channel Network Base Level, Channel Network 

Distance, Negative Openness, Positive Openness, Relative Slope Position, Slope, Topographic Position Index, 

Valley Depth, Wind Effect, Wind Exposition. 

A detailed description of these parameters is provided in Table 2. We have now focused on a single model run, 

and accordingly, we have removed descriptions of other parameters from the manuscript to ensure clarity and 

consistency. 

 

2. Splitting data into training and test datasets 

 

In the initial study design, we used the entire buffered SDin-situ dataset to extract the input parameters from the 

raster stack, resulting in a data frame with 5222 points. We then split this dataset into 70% training and 30% test 

data. However, this approach introduced a risk of overfitting, as each SDin-situ point was represented an average 

of 28 times in the dataset. Consequently, many points appeared in both the training and test datasets, reducing 

the independence of the validation process. 

To address this issue, we revised our study design by first separating 70% of the point features from each SDin-situ 

dataset for training and 30% for testing. Only after this separation did we extract the input parameter values for 

the training dataset, ensuring a clear distinction between training and validation data. The test dataset was 

reserved exclusively for model validation. The following extract from the R script illustrates these steps: 
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After extracting the input parameters from the raster stack, the final dataset consisted of: 

 Training dataset: 3,645 points (Puolikkoniva: 1,983; Pousu: 905; Peera: 757) 

 Test dataset: 1,577 points (Puolikkoniva: 836; Pousu: 401; Peera: 340) 

To prevent errors and miscalculations, all NoData values were removed from the datasets, resulting in a final 

training dataset of 3,504 points and a final test dataset of 1,548 points for further modelling and validation. 

 

3. Hyperparameter tuning and cross validation 

 

To determine the optimal values for mtry, min.node.size, and sample fraction, we performed hyperparameter 

tuning using the mlr package in R (Bischl et al., 2016). 

To prevent overfitting, we restricted the search range for min.node.size to 10–15 and for sample fraction to 0.7–

0.85, following the recommendations of Probst et al. (2019) and Breiman (2001). Allowing an unlimited search 

range initially resulted in better model performance, but at the cost of reduced generalization, indicating signs 

of overfitting. We selected the final search range based on multiple test runs with different settings. 

For cross-validation, we tested different fold sizes to identify the most effective configuration. The best results 

were achieved using a 4-fold cross-validation. The following R script extract provides details on the tuning 

process: 
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The final tuned hyperparameters were as follows: 

 mtry: 9 

 min.node.size: 10 

 sample fraction: 0.79 

 

4. Permutation Importance (PI) 

 

In our initial study design, we conducted the RF modelling once and directly used the permutation importance 

(PI) values provided by the model. 

In our revised approach, we refined this process by repeating the calculation 100 times to obtain a mean PI 

value for each input parameter, ensuring more robust and reliable importance rankings. 

The following R script extract details the implementation of this approach: 
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We modified Figure 7 to display only the 12 selected parameters along with their respective mean PI values 

over 100 iterations. Additionally, we normalized the values, setting the most important parameter 

(Topographic Position Index) to 1. 

 

 

Figure 7. Overview of normalized mean Permutation Importance values from RF modelling over 100 iterations. 

 

5. Final results and validation 

Both the RF-based and UAS-LiDAR-based results were validated using the initially separated test dataset. 

Additionally, we conducted three further RF model runs, where in each iteration, two palsa sites were used as 

the training dataset, and one was used as the test dataset. This approach further validated the generalization 

capability of the model. 
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The validation results indicate that the RF-based approach now exhibits lower peak accuracies compared to the 

initial study design. However, by reducing overfitting, the results are more plausible and robust, while still 

achieving high accuracy and outperforming the UAS-LiDAR-based approach: 

 

 

 

 

 

 

 

 

We recalculated all metrics for different point groups and included the number of points per group. These groups 

were classified visually, based on orthophotos, slope data, and elevation characteristics of the respective 

locations. 

The results show that the accuracy differences between RF and UAS-LiDAR-based approaches are now less 

pronounced. However, in certain categories, such as Thermokarst and Open Area, the UAS-LiDAR-based results 

show lower accuracy, likely due to measurement inaccuracies caused by water surfaces and irregularities in areas 

with higher vegetation. 

 

 

 

 

 

 

 

 

 

 

 

Figures 5, 6, 8, and 9 have been updated based on the new results. 

Figure 5 now includes the recalculated snow depth maps. We have incorporated all areas where SDLiDAR values 

are below 0, visualizing these parts in red to highlight regions where the LiDAR sensor may have measured 

incorrectly or where degradation has occurred between flights. 

Table 3. Overview of the calculated Root Mean Square Error (RMSE), Coefficient of Determination (R2), Mean 
Absolute Error (MAE) and Standard Deviation (SD) for RF- and UAS-LiDAR-based snow depth estimations. 
Additionally, external validation results (RMSE and R2) for RF-based snow depth at each palsa site (Peera RF, 
Pousu RF, Puolikkoniva RF) are provided. 

Parameter RF LiDAR UAS Peera RF Pousu RF Puolikkoniva RF 

RMSE 18.33 23.49 16.67 21.31 27.13 

R2 0.77 0.691 0.628 0.767 0.578 

MAE 13.26 17.49 - - - 

SD 18.11 20.84 - - - 

Table 4. Overview of RMSE, R2, MAE and SD divided by validation point locations within the investigation areas. 

 RMSE R2 MAE SD 

 RF LiDAR RF LiDAR RF LiDAR RF LiDAR 

On Top 

(n = 69) 
8.33 8.33 0.841 0.730 

3.84 3.84 8.32 10.83 

Edge 

(n = 66) 
13.12 13.12 0.894 0.768 

5.85 5.85 12.82 19.09 

Thermokarst 

(n = 16) 
10.99 33.73 0.893 0.592 

5.42 30.35 10.69 25.08 

Open Area 

(n = 26) 
4.54 14.23 0.926 0.519 

1.56 9.84 4.40 12.59 
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Figure 5. Snow depth predictions based on the RF model (left) and the UAS-LiDAR (right) at site Puolikkoniva (a, b), Pousu (c, 
d) and Peera (e, f) palsas. Red points are showing the in-situ snow depth measurement locations. 
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In Figure 6 we inserted the new calculated difference maps and we also included the parts with negative values 

in red: 

 

Figure 6. Snow depth differences between modelled and UAS LiDAR results at a) Puolikkoniva, b) Pousu and c) Peera palsas. 

Figure 8 shows the scatter plots based on the 30% test dataset. Here we used only the single values of the SDin-

situ, not considering the values within the buffer areas of the test data. We decided to do it like that, to obtain a 

very fine validation of both methods: 

 

Figure 8. Scatter plots with regression lines for UAS-LiDAR-derived and RF-modelled snow depths, based on the external test 
dataset. 
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Figure 9 has been updated to reflect the new results. Additionally, we have incorporated the calculated slope 

derived from the DTM of Pousu palsa. 

 

Figure 9. Explanation of differences between UAS LiDAR-derived and RF-modelled snow depths. 
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Appendix B 

 

Figure 2. Climate chart of Kilpisjärvi (FMI, 2022). Dotted line shows 2 m above ground temperature in °C, dashed line shows 
precipitation in mm and solid line shows snow depth in cm. 
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Appendix C 

 

Figure 4. Snow depth measuring points within the investigation sites at Puolikkoniva (a), Pousu (b) and Peera (c) palsa 
illustrating different methods for recording snow depth (transects, randomized, crossed). 

 

Appendix D 

 

Figure A1. Histogram of SDin-situ points and respective statistics per palsa site. 
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Appendix E 

 

Figure A2. Overview of classification of all SDin-situ points into classes Edge, On Top, Open Area and Thermokarst. 

 

Appendix F 

 

 

 

 

 

 

 

 

 

 

Table A3. Correlation between each input parameter and RF-modelled snow depth.  

Parameter Correlation to SDRF Parameter Correlation to SDRF 

Aspect 0.09 Relative Slope Position -0.49 

Elevation -0.12 Slope 0.08 

Channel Network Base Level -0.09 Topographic Position Index -0.87 

Channel Network Distance -0.45 Valley Depth 0.50 

Negative Openness 0.22 Wind Effect -0.55 

Positive Openness -0.50 Wind Exposition -0.80 
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