Point-by-point replies to the question and comments by Reviewer 2

Dear Reviewer 2,

we are pleased to submit the replies to your questions and are thankful for the insightful comments

and many good suggestions, as well as we are grateful for your time and effort in providing valuable

feedback. We believe that addressing the issues raised by you, have now substantially improved our

manuscript.

We hope our answers meet your approval. Your comments and our point-by-point responses are

presented below. Please note, that we added a detailed description of a new RF modelling approach

in the appendix A.

of the paper should be an evaluation of lidar-
based snow depth, followed by an evaluation

Reviewer #2 comments Action Response

1. The authors produce a random forest (RF) | Answered We sincerely appreciate your thorough
model based on lidar-derived topographic review, insightful comments, and thoughtful
predictors and point observations of snow questions. Your valuable feedback has
depth. The RF model is used to create a provided us with important guidance to
continuous snow depth field over the three improve our manuscript.
independent palsas in Finland and Sweden. It We believe that addressing the issues you
is then evaluated against the point have raised have significantly enhanced the
observations and compared to UAS-lidar- clarity and overall quality of our work. Below,
derived snow depths. Finally, the authors we present our point-by-point responses to
discuss the implications of snow depth your comments and suggestions.
variability on permafrost dynamics at the
palsas. The manuscript has well-constructed
figures, relies on a unique and interesting
dataset, includes an assessment of a wide
range of reasonable terrain predictors of
snow depth, and the methods are on the right
track. However, there are some significant
concerns, including manuscript
organization/framing, limited lidar
validation/processing  concerns,  model
overfitting, and generally weak
analysis/discussion. These are detailed
below.

2. Lastly, please do not be overwhelmed by all | Answered Thank you for your encouraging words. We
of the comments! Addressing the major appreciate your detailed feedback and are
suggestions and proofreading the manuscript confident that your suggestions have
thoroughly should move this study much significantly enhanced the quality of our
closer to publication. The specific comments manuscript.
are intended as suggestions/thoughts to help
steer the revision process and are generally
related to the below Major
Suggestions/Comments.

Major Suggestions/Comments
Concerns with Research Objectives, Methods, and
Manuscript Organization

3. Ln 94-99: It is my opinion that the research | Changed/ In response to your comments and those of

objectives need to be refined. The first stage | Answered Reviewer 1, we refined the focus of our

manuscript during the review process.
Originally, our main objective was to analyse




of the RF modeling approach. Only then
should the authors discuss the potential
implications of the depth patterns, and this
should be a smaller part of the manuscript
focused in the discussion. Since the authors
did not explicitly collect data to link snow
depth to changes in the active layer (or ice
loss/gain), the outcomes are more based on
expectations and assumptions — which may
be valid, but to verify and to be a focus of the
manuscript would require more data. The
points described on Ln 97-99 are
underdeveloped and unsupported by
observations.

snow depth patterns and their potential
impact on palsas. However, based on your
valuable suggestions, we now recognize the
importance of a more explicit comparison
between UAS-LIDAR and RF-modelled snow
depth products.

We have adjusted our research objectives
accordingly to highlight this comparison.
However, we still believe it is important to
discuss the potential impact of snow depth
distribution on palsa dynamics. We agree,
nevertheless, that these interpretations are
based on assumptions and not on direct
observed data. For clarity, we explicitly point
out that these ideas need to be further
validated in future studies.

Section 4.3 needs revision. Unless the
expected errors in the lidar product are
further expanded upon, these are physical
observations and it is standard practice to
assume that these products have
uncertainties errors proportional to the
sensor error (e.g., ~5 cm). This can be directly
evaluated from ground observations of snow
depth and was to some degree. However, the
errors were much larger than expected (>20
cm, Ln 298-302), raising concerns about the
processing of lidar data to produce snow
depth maps. This component and the framing
of the analysis are significant concerns. A
section early on evaluating the lidar depth
products seems necessary and considering
the influence of vegetation on their accuracy
explicitly (for example, examining some of
the outliers in Figure 8 more closely) —
addressing the concern of vegetation
compression should be added here and
vegetation height models produced from the
summer lidar point cloud

Changed/
Answered

Thank you for highlighting these concerns. In
response, we have conducted an additional
model run, refining the LiDAR-based snow
depth estimation by removing vegetation
from the initial LiDAR products to create a
more accurate DTM. Additionally, we
implemented hyperparameter tuning and
tested different cross-validation folds to
mitigate potential overfitting.

These methodological improvements are
explained in detail in Appendix A. The
updated results demonstrate a substantial
improvement in the accuracy of the LiDAR-
derived snow depth estimates. However,
snow depth estimation remains less accurate
for the Thermokarst point group, likely due to
high reflectance in water-dominated areas.
Furthermore, the revised RF modelling
approach now has improved results in terms
of representation and generalization. To
ensure clarity, we have revised the relevant
sections accordingly and have introduced a
new section specifically detailing the
processing and validation of LiDAR data.

In the following, we refer to Appendix A.
There you find all necessary information,
which answer your questions.

Comparing the lidar to an RF model trained
and evaluated against <200 observations
directly is not appropriate. As presented, the
lidar depth analysis does not add much to the
manuscript — | suggest it be redone
(reprocessed data, more detailed lidar depth
evaluation), and/or, the work reframed to
simply build the RF model using lidar terrain
and snow depth point observations, then a
revised analysis on how these patterns are
expected to influence the palsa stability.

Changed/
Answered

See Appendix A.

Random Forest Modeling Concerns

Ln 189-191: It seems like little consideration
was given to the hyperparameters, and

Changed/
Answered

See Appendix A.




several important ones (like maximum split
size, and minimum node size) are not
mentioned. Please clearly state the
hyperparameters used, and an optimization
routine should be included to select these —
not just using defaults — which are likely
geared towards a much larger data set. If
done correctly, this will reduce overfitting
(see following concerns)

spots was unclear — since these are not a
standard term to my knowledge, these need
to be explicitly defined early on and used
consistently throughout the manuscript

7. Various model runs were not clear. The | Changed We have described the input parameters
predictors for model 1,2, and 3 should be used for each model run in lines 205-209.
explicitly stated, with the appropriate However, based on your (and Reviewer 1)
reasoning within the methods section suggestions and the revised model design, we

have decided to focus on a single model run.
As a result, we used only 12 parameters and
removed the information related to
previously unused parameters and former
model runs. The section on input parameters
and model runs has been updated
accordingly.

8. 10-fold cross-validation is not sufficient to | Changed/ See Appendix A.

ensure that the model is not overfit. Each | Answered
model is still trained with 90% (9/10) of all
data (and the training dataset is relatively
small <200 snow depths). The authors should
explore the influence of fewer folds (e.g., 3-
10) to assess how much model performance
is degraded. For such a small dataset, around
four (4) folds seems more appropriate in this
case

9. Ln 232 — 242: This is relevant to RF model | Changed We agree and moved this part to the
training/evaluation — | suggest moving to the description of the RF algorithm and modelling
random forest training section data preparation.

10. Theresults shown in Table 3 (R2 >0.99, RMSE | Changed/ See Appendix A.
less than the expected measurement | Answered
uncertainty <3 c¢m) suggest substantial
overfitting of the random forest model

11. Avoid analysis based on terms like | Changed We agree and changed/avoided assumptions
‘potentially,” ‘possibly,” and ‘probably’ -- you within the abstract/discussion at lines 18,
should focus your study on explaining and 320, 323, 347. We either supported our ideas
describing the data you have collected its by own observations in the field (decreasing
likely implications with clearly stated support parts, block erosion) or pointing out the

uncertainties and the necessity to verify these
assumptions in further studies.

12. The terminology of cooling and warming | Changed Thank you for highlighting this important

point. To ensure clarity and consistency, we
have explicitly defined these terms in the
introduction when explaining the role of
snow dynamics in palsa environments:

We define Cooling Spots as areas on and
around a palsa where the snow cover remains
relatively thin during winter. Due to the lack
of insulating snow, these areas experience
increased heat loss from the ground to the
atmosphere, allowing frost to penetrate
deeper into the subsurface. As a result, when
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summer arrives, the snow in these areas
melts earlier, exposing the ground to warm
temperatures for an extended period. This
prolonged exposure leads to a deeper thaw of
the active layer, making these locations more
susceptible to ground cracking and
thermokarst formation, particularly along the
palsa edges. Cooling spots are typically found
in elevated or wind-exposed areas of the
palsa, where snow accumulation is naturally
limited.

In contrast, Warming Spots are areas where a
relatively thick snow cover accumulates
during winter. The insulating properties of
the snow reduce heat loss from the ground,
preventing deep frost penetration and
keeping the underlying soil comparatively
warmer throughout the winter. In summer,
the accumulated snow melts later, delaying
the warming of the ground and slowing active
layer thawing. Consequently, the active layer
in these areas tends to be shallower
compared to cooling spots. Warming spots
are typically located in depressions, concave
terrain, or wind-sheltered locations where
snowdrifts form.

These definitions have been integrated into
the manuscript to provide a clearer
conceptual framework for our analysis.

13.

Ln 71-73: UAS-lidar-based snow depth
monitoring approaches/literature should be
sufficiently reviewed in the introduction (& by
the authors). The approaches used to
produce snow-depth products do not align
with standard practice (e.g., classifying the
vegetation-free ground surface). See work by
Avanzi et al., 2018; Harder et al., 2020; Jacobs
et al., 2021.

Changed

We acknowledge the importance of previous
studies that have applied UAS-LiDAR for snow
depth mapping and appreciate your
suggestion. Our initial focus was primarily on
demonstrating the feasibility of snow depth
modelling using RF and assessing its
implications for palsas. However, as the study
evolved, the focus shifted more towards a
comparative analysis between Random
Forest modelling and LiDAR-based snow
depth estimation. In response to vyour
suggestion, we have incorporated additional
references on UAV LiDAR-based snow depth
mapping. Specifically, we adopted the
vegetation removal approach inspired by
Jacobs et al. (2021) and further reviewed
relevant studies, including those by Avanzi et
al. (2020) and Harder et al. (2020).

14.

Grammatical and sentence structure issues
limit communication effectiveness in the
paper. A thorough proofreading by a third
party before resubmission would benefit the
paper. Some specific instances of this were
noted in the comments below

Changed

Thank you for pointing this out. We will have
a close look to grammar and sentence
structure before resubmission and will
particular improve the comments you are
mentioning below.

Minor/Technical/Grammatical Suggestions




15. Stick with snow depth or snow height | Changed Agree, we are now using the term snow depth

throughout — be consistent with word choice and changed snow height in lines 258, 264
and 266.

16. The use of the word ‘precision’ is | Changed This is a good point. We changed the term
questionable at times (see abstract Ln 9). precise/precision/precisely in lines 9, 74, 90,
Precision measures the ability for repeatable 97, 188, 288, 316, 365, 370 and 396.
measurements. Accuracy is a better term for
assessing something like a random forest
model. Read through the manuscript and
consider if the wuse of ‘precision’ is
appropriate throughout

17. Word choice should be reviewed throughout | Changed We scanned our manuscript for judgmental
— (e.g., Ln 78: ‘very strong changes’ could be words and changed them to more neutral
‘control’, Ln 212: ‘realism’) terms.

18. Avoid broad terminology throughout, | Changed By “input parameters”, we are specifically
especially before something a term s referring to the variables listed in Table 2.
explicitly defined (e.g., Ln 150 — was not clear These parameters are all derived from the
what ‘input parameter data’ referred to again initially generated DSM in summer and were
at Ln 181, 182, 185). | suggest defining the exclusively used in the RF model.
types of input parameters earlier on — like To enhance clarity and avoid ambiguities, we
was done in Section 3.3 have explicitly defined the term “input

parameters” in line 144. Additionally, we
have standardized the terminology by
removing the word “data” in line 150 to
ensure  consistency  throughout the
manuscript.

Abstract

19. Ln 13-15: Machine learning is used to model | Changed We agree and changed the sentence: “This
the snow depth spatially and relies on considerable difference  highlights the
observations. On its own, it does not capture capability of machine learning to model fine-
snow depth patterns. Consider rewording scale snow distribution based on in-situ

observations.”

20. The abstract should be a single cohesive | Changed We agree and changed the abstract to a single
paragraph, avoid splitting into two parts cohesive paragraph.

Introduction

21. Ln 26, 57-58: While snow cover duration is | Changed/ Thank you for vyour suggestion. We
decreasing, the suggestion that snow depthis | Answered acknowledge that while snow cover duration
increasing substantially in these regions is is generally decreasing, trends in snow depth
less clear. This paper suggests snowfall are more regionally variable. Increased
extremes will be reduced in the study area winter precipitation may lead to higher snow
(https://www.nature.com/articles/s41598- depths in some areas, whereas other regions
021-95979-4) — can you clarify this point? might experience a decrease in snowfall

extremes, as suggested by Quante et al.
(2021). Since we have not specifically
analysed these trends for our study region,
we recognize the need to be more cautious
with this statement and have revised it
accordingly to reflect the regional variability
and associated uncertainties.

22. Ln 32-33: Sentence structure/clarity issues — | Changed We changed the sentence: In northern

please revise

Fennoscandia, particularly in northern Finnish
Lapland - the main focus of this study - specific
periglacial permafrost landforms known as
palsas are at risk of disappearing within this
century (Leppiniemi et al., 2023).




23. The relevance of palsas is not addressed | Changed We have added that palsas serve as indicators
clearly in the introduction. Please add some of climate warming, as their degradation and
sentences on their general significance, e.g., disappearance reflect rising temperatures
Do they stabilize permafrost? Provide (Leppiniemi et al., 2023). Additionally, they
habitat? Have societal relevance? provide important habitats for various animal

species (Luoto et al, 2004) and hold
significant cultural and societal relevance for
the Sami people, particularly in the context of
traditional reindeer herding (Markkula et al.,
2019).

24. Ln 53: remove ‘exemplarily’ Changed Removed.

25. Ln 56-57: These points seem essential for | Changed We moved the sentence “Microtopography
understanding the relevance of palsas — | affects snow depth and creates an
suggest this is moved earlier in the environment, in which the palsas usually
introduction when palsas are defined receive enough penetrating cold air to remain

stable and to last year after year due to a thin
snow cover.” to line 41.

26. Ln 60-61: ‘in-situ measured data’ or | Changed We are referring to “snow depth data” an
‘observations’ need to be clarified. Is this inserted this term for clarification.
temperature data? Snow depth? Other?

27. Ln 78-79: Wording is unclear — ‘..limits | Changed We changed the sentence: Small-scale
information value of satellite data...” structures, such as palsas, exhibit significant

variations in snow depth at fine spatial scales,
which reduces the usefulness of satellite data
for analysing small-scale processes in these
structures.

28. Ln 81:'Another’ should start a new paragraph | Changed We would like to point out kindly, that there
— this section is also very short relative to the is a paragraph between line 80 and 81.
prominent role that machine learning plays in As mentioned previously, we initially focused
the paper. | suggest adding more detail. more on the impacts of the snow depth

distribution to palsas in this paper. However,
after your useful comments, we agree and
inserted more details about machine learning
and specifically RF.

29. Ln90: “...test methods for generating detailed | Changed Yes, we agree and have adjusted the focus of
snow distribution maps..” should lead this the paper accordingly. Specifically, we have
section. The objectives need to be clearly ensured that the section begins with a clear
stated up front statement of our objectives, emphasizing the

evaluation of methods for generating
detailed snow distribution maps.
Data and Methods

30. Ln 141: a comprehensive dataset of what? | Changed We have clarified this statement by specifying

Specify that we collected a comprehensive dataset
consisting of UAS-LIDAR data and in-situ snow
depth measurements for modelling purposes.

31. Figure 3: Should clearly state the actual | Changed We have clarified that the collected data
observations that were collected include UAS-LIDAR measurements, which

were used to generate DTMs for both winter
and summer, as well as in-situ snow depth
measurements, which served as training data
for the modelling.

32. Ln 151: This is the first time LiDAR is | Changed We agree and introduced LiDAR in lines 73 —

mentioned. Needs to be introduced within
the introduction

74 in the context of the studies by Rauhala et
al. (2023) and Merio et al. (2023).




33.

Ln 157-160: very confusing. No SfM, but then
orthophotos were created? That relies on
photogrammetry -- but then you state point
cloud densities. Are these associated with
lidar or RGB orthophotos? If lidar, need to put
it right after the lidar. Also, should report
density per square meter as it is the standard.

Changed

We acknowledge the potential for
misunderstanding and have clarified our
statement in lines 157/158. Specifically, we
used SfM techniques solely for the creation of
orthophotos. The RGB flights were conducted
using an Autel EVO Il Pro V2 UAV at a flight
altitude of 80 m, with a 75% overlap for each
flight. Initially, we had stated that the
orthophotos were acquired with the
integrated RGB sensor of the LiDAR mapper.
However, this was a misunderstanding, and
we have now corrected this statement. The
orthophotos do not contribute specific data
to the analysis but were solely used for figure
creation.

34.

Ln 162-164: Revise sentence structure for
clarity

Changed

We changed the sentence: “By substracting
the winter by the summer DSM in Geographic
Information Systems (GIS) — ArcGIS Pro by Esri
was used — snow depth distribution datasets
were calculated, allowing the comparison of
UAS-LIDAR snow depth (SDipar) and RF
modelled (SDge).”

35.

Ln 166: should be ‘by an RTK GPS system’

Changed

We agree and added the term.

36.

Ln 170: word choice - ‘optimal’

Changed

We changed “optimal” to “diverse”.

37.

Ln 172: The sampling strategy is claimed to be
randomized, though it appears observations
were collected along transects with some
random points. Some of these could be
biased, so it would be useful to add a bit more
description. There are also areas with clear

gaps

Answered

We acknowledge that the sampling strategy
may  appear  structured, potentially
suggesting a bias. However, no strict transect
approach was followed when measuring
snow depth in Pousu. Instead, the sampling
locations were selected based on terrain
features, as illustrated in the figure in
Appendix E, which we will include in the
manuscript appendix.

Measuring snow depth under these
environmental conditions is challenging, and
our data collection was constrained by a
limited time frame. Therefore, we prioritized
a well-distributed dataset that captures the
variability within our palsa sites as effectively
as possible.

38.

Related to the previous point, the distribution
of snow depth observations included in the
appendix should be split by site (in my
opinion)

Changed

See Appendix D.

39.

Ln 176: It isn’t easy to make out any snow-
free areas on the palsas in the imagery — can
these be indicated?

Answered

The snow-free points represent extreme
locations in highly exposed areas. These
points were specifically captured to ensure
that the model is trained with the full range
of snow depth variations observed in the
field.

However, due to the limited resolution of the
orthophotos, it is difficult to clearly visualize
these areas as the images appear too blurry
to clearly highlight them. However, these
snow-free areas are mainly located on steep
slopes where wind-induced redistribution of
snow and downslope movement have either
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removed or significantly reduced the snow
cover.

40.

Ln 184-188: To clarify, the full training set is
based on only 185 observations — but
increased due to the buffering? Please
indicate how many unique features were
actually used to train the model after the
buffering. Will help the reader understand
the robustness of the model

Changed/
Answered

See Appendix A.

41.

Ln 193-194: Just state the metrics were
normalized 0-1, with the highest output
importance set as 1

Changed/
Answered

See Appendix A.

42.

Ln 205: The removal of elevation as a
predictor needs more explanation — the logic
that is will ‘reduce possible overfitting’ is not
apparent

Changed/
Answered

Please refer to our previous responses,
especially comment #7, regarding the
removal of the initial model runs. As a result,
it is no longer necessary to elaborate on the
exclusion and reintroduction of the Elevation
parameter.

For clarity regarding our initial approach:
Elevation was excluded in the second model
run because all other input parameters were
derived from it. This step was taken to assess
whether Elevation might introduce bias into
the modelling results. After analysing the
outcomes, we found no indication of such
bias and subsequently decided to retain
Elevation as an input parameter in the final
model.

43.

Ln 206-207: wordy, what is ‘initial minimal
impact’?

Changed

We changed the term to “low impact”.

44.

Ln 211: Unclear how this offers a balanced
representation. The idea of taking an area is
usually to remove noise, reduce the influence
of sampling or geolocation errors, and to
grow the training set size (taking groupings of
nearby points vs. a single one - which should
improve the robustness of the model). Please
explain further.

Changed/
Answered

Thank you for your comment. We agree that
the phrase “balanced representation” was
not the most precise wording. To clarify, the
buffering strategy was implemented to
reduce noise, minimize the influence of
geolocation and sampling errors, and
enhance the robustness of the model by
increasing the number of training points. By
incorporating groupings of nearby points

rather than relying on single-point
measurements, this approach helps improve
the model’s stability and realism, as

demonstrated in Bergamo et al. (2023).
We have revised the manuscript accordingly
to reflect this explanation more clearly.

45.

Table 2: Nice table! For features like TPI
(which are determined to be very important),
you should be more detailed in their
definition. More than ‘it combines several
topographic features.” TPl is generally just the
relative elevation of a point to surrounding
points within some radius (or adjacent pixels)

Changed

Thank you for your positive feedback!

We agree with your suggestion and have
added more detailed explanations for TP,
Wind Effect, Valley Depth, Channel Network
Base Level, and Wind Exposition to ensure
clarity and precision in their definitions.

46.

Ln 238-239: Be careful with wording.
Correlation (strength of linear relationship)
and significance (based on statistical testing)
are not the same thing

Changed

We recognize the difference between
correlation and statistical significance and
have adjusted the wording accordingly to
ensure accuracy. In particular, we clarify that




the analysis aimed to assess the strength of
the relationships between the input
parameters and the SDgr predictions, rather
than implying statistical significance unless
explicitly tested.

Results

47. Section 4.1: Nice job describing results clearly Thank you very much!
and sequentially by site.

48. Figure 5: Nice figure, it would be useful to add | Answered Thank you for your valuable suggestion!
annotations for areas of interest referred to While we acknowledge that adding
in Section 4.1 on the figure (e.g., the collapsed annotations could enhance interpretability,
areas) we aim to maintain clarity and avoid

overloading the maps with excessive
information. Additionally, we want to prevent
cross-referencing multiple figures within a
single visualization.

For these reasons, we have decided not to
modify Figure 5 further but will ensure that
the areas of interest are clearly described and
referenced within the text.

49. Ln 252: When stating things like ‘slightly | Changed We agree with your suggestion and have
higher,” specify the magnitude (is this 10cm, included exact numerical differences in
20cm, 5cm?). Same as Ln 257, how much centimetres to provide a more precise
lower? comparison in lines 252 and 257.

50. Ln 272-273: sentence clarity issue Changed We changed the sentence: Notably,
deviations in the areas surrounding the palsas
are primarily characterized by higher snow
depths predicted by the RF model.

51. Figure 7: Nice figure! Be sure to add more | Answered See comment #42.

specifications on the model runs in the
methods section

52. Ln 294: How were they separated into ‘point | Changed/ See Appendix A and E.
groups’ used to produce Table 4 — how were | Answered
the different areas delineated and can these
be added to the maps?

53. Ln 310-313: Correlation analysis results | Changed/ See Appendix F.
should be included as a table — this could be | Answered
added to the appendix if the authors do not
want to include it in the body of the paper

Discussion

54. Ln 318-319: Revise based on previous | Answered Revision have been done.
comments

55. Ln 329: warming and cooling spots need to be | Changed/ See answer to comment #12.
defined more before this point. What is a | Answered
good technical definition? For example, are
warming spots where the net heat flux into
the ground during the winter is highest -
making these areas warmer? vs. Cooling
spots, where the net heat flux into the ground
is lowest? We need to have a clear and more
scientific definition

56. Ln 345: ‘Cooling spots inhibit a greater active | Changed/ We appreciate your suggestion and have
layer thickness in summer’ — is this the | Answered revised the sentence accordingly to improve

technical definition? It comes across as
difficult to interpret. An alternative version of
this: ‘Cooling spots result in shallower active

clarity:




layers in summer compared to warming
spots.’

“Cooling spots result in shallower active
layers in summer compared to warming
spots.”

Additionally, we have provided a detailed
definition of cooling and warming spots in
response to comment #12 to ensure
consistency throughout the manuscript.

57.

Figure 8 - Nice figure. The delineations are
helpful. Similar delineations would help the
interpretation of results in prior figures

Answered

See answer to comment #48.

58.

Section 5.2: This section should be revised
thoroughly — see previous comments on lidar
snow depth and RF model comparison

Answered

We have revised this section based on our
new results.

59.

Ln 354: Luo and Panda studies were based on
satellite remotely sensed snow cover — not
sure | understand the link to UAS-lidar
observations. Also, not clear what ‘not in
depth post-processed data’ is. | did not
understand the transition of the discussion
from snow depth to snow cover

Changed

Thank you for pointing this out. We
acknowledge that the studies by Luo et al.
(2022) and Panda et al. (2022) focus on
satellite-based snow cover observations
rather than snow depth. To avoid confusion,
we have removed these references in this
context and ensured that our discussion
remains focused on snow depth mapping.
Additionally, since our revised model
approach now utilizes a DTM instead of a
DSM, we have removed the statement
regarding “not in-depth post-processed
remote sensing data” to accurately reflect the
improved data processing methodology.

60. Ln 363-364: How did manual probing address

the issue of vegetation? The uncertainty in
these observations was never discussed

Answered

Thank you for highlighting this important
point. We acknowledge that the impact of
vegetation on manual snow depth probing
was not explicitly discussed.

In our study, manual probing was conducted
with a heavy yardstick, which allowed us to
reach the ground despite the presence of
vegetation. However, we recognize that
vegetation, particularly tall grasses and
shrubs, can introduce uncertainties in snow
depth measurements. In areas with denser
vegetation, there is a possibility that the
probe may not always reach the exact ground
surface, leading to slight overestimations of
snow depth.

To address this, we have expanded our
discussion on potential uncertainties in
manual snow depth measurements and their
implications for model accuracy.

61.

Ln 366-368: This doesn't seem like only a lidar
limitation - but a measurement challenge in
general. Measuring snow over dense
vegetation with air voids, compression, etc..
is always challenging. New approaches to
correct the lidar based on the underlying
vegetation type/density/height may improve
lidar snow depth products.

Answered

We agree that the challenges of measuring
snow depth over dense vegetation are not
solely a limitation of LiDAR but rather a
general measurement issue.

We acknowledge that new approaches, such
as correcting LiDAR-based snow depth
estimates based on vegetation type, density,
and height, could improve the accuracy of
these products. We briefly addressed this in
the discussion and highlight it as a potential
avenue for future research.
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62.

Ln 375-387: The discussion in this paragraph
was strong, and it was easier to follow the
logic. This could be an example to use when
revising the discussion.

Answered

Thank you! We have now used this paragraph
as example for revising the discussion.

63.

Ln 392, 407-408: Why was vegetation not
removed from the summer point cloud? | do
not understand why this was done in this
manner. This step is critical for snow depth
mapping with lidar.

Changed/
Answered

See Appendix A.

64.

Ln 395-397: There is a growing body of
literature on this that would be useful to
review. See Buhler 2016, 2017; Adams et al.,
2018; Avanzi et al., 2018, Cho et al., 2024
(Preprint), Eker et al. 2019; Harder et al. 2020
(compares lidar and RGB)

Answered

We have reviewed the recommended
literature and incorporate relevant findings
or ideas if they make a meaningful
contribution to the context of our study.

65.

Much of the discussion relies on findings from
other studies and assumed links to snow
depth observed in this study to conclude —
not clear to me what value the work
presented here has to understanding palsa
permafrost dynamics more than point
observations on a transect across one of
these features would. Related to previous
comments on reframing and refocusing the
research objectives

Answered

Thank you for your comment. We recognize
that directly linking our modelled snow
distribution to permafrost dynamics remains
a complex challenge. However, we believe
that our study offers significant value beyond
point transect measurements by providing
the first spatially continuous snow depth
maps over palsas using validated LiDAR and
RF-based approaches.

Our results show that these models perform
well compared to independent validation
datasets, confirming the reliability of the
derived snow depth distributions. Given the
crucial role of snow in regulating permafrost
stability, we argue that these spatial datasets
provide valuable insights into the potential
snow-induced thermal dynamics of palsas.
While additional ground-based validation of
permafrost responses would strengthen this
link, our study provides an important
foundation for future research in this area.
We have clarified these points in the
discussion to better emphasize the unique
contribution of our study.

66.

Ln 412-414: A fewer number of folds should
be used in the model training/validation

Changed/
Answered

See Appendix A.

67.

Ln 421, 425-426: A large number of input
features are used in this model and the
results as presented show nearly perfect
model performance — are you suggesting
others should be included? If others could
make the model better, why were they not
included?

Answered

Thank you for your comment. With our
revised model approach, we now use only 12
input parameters, ensuring a more
streamlined and interpretable model.

Our intention was not to suggest that
additional parameters should necessarily be
included in this study, but rather to
acknowledge that future research could
explore  further  potentially relevant
predictors. For instance, more detailed
vegetation classifications - such as specific
vegetation types or density indices - could
enhance snow depth modelling. Additionally,
there may be other influential parameters
that are not directly linked to snow depth but
still play a role in snow distribution patterns.
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Identifying such factors would require a
dedicated study focused on assessing and
selecting the most critical parameters for
snow depth modelling.

We have clarified this point in the discussion
to ensure that our statement is not
misinterpreted as a recommendation for
additional parameters in the current model.

68. Ln 423-424: Good point Thank you!

69. Once noted challenges throughout are | Answered After all changes have been made, we have
addressed — the discussion should be re- adapted the discussion based on the updated
written to align with the updated manuscript manuscript.

Conclusions
70. As presented, the paper is focused on the | Answered Based on all the revisions and refinements

evaluation of the methods for snow depth
mapping and on the predictors that control
the depth distribution -- discussion into the
influence of these characteristics on the
thermal profiles is purely assumption based -
- thus reframing the conclusion in line with
the revised paper and the actual results/data
presented will be critical in the revised
version.

made throughout the manuscript, we have
rewritten the conclusion to align more clearly
with the revised focus of the paper and the
actual results presented. This ensures that
our conclusions remain grounded in the data
and analyses conducted.

Appendix

In this section, we provide additional information addressing comments #4, 5, 10, 16, 22, 23, 24, 44, 49, 50, 54,
56 from Reviewer 1 and #5, 6, 8, 10, 38, 40, 41, 52, 53, 63, 66 from Reviewer 2.

We sincerely appreciate your insightful comments and suggestions, which have significantly contributed to
improving both the modelling approach and the overall quality of the manuscript.

Appendix A

To ensure high-quality modelling results and accurate snow depth distribution maps derived from UAS-LiDAR,
we implemented your recommendations, including the removal of vegetation from the LiDAR-derived products
and a re-evaluation of the modelling approach.

Additionally, we incorporated hyperparameter tuning and cross-validation to determine the most suitable
parameter settings for the Random Forest model. To further improve model robustness and prevent overfitting,
we also adjusted the data splitting strategy by testing the RF model on an independent external dataset.

1. Removal of vegetation from UAS-LIDAR DSM

Our initial decision to retain vegetation in the modelling process assumed that small and dense vegetation, as
present in our study sites, is difficult to remove - even from point clouds. Testing several vegetation filter
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algorithms, such as the Cloth Simulation Filter (CSF) and Statistical Outlier Removal (SOR) in CloudCompare,
confirmed this assumption, as the vegetation was not properly removed in the resulting products.

Additionally, we considered that vegetation significantly influences snow depth distribution by enhancing snow
retention capacity. Therefore, we initially decided to include vegetation in the modelling process, expecting it to
be beneficial for RF modelling.

However, based on your suggestions, we tested the Progressive Morphological Filter (PMF) Algorithm as
described by Zhang et al. (2003) and Jacobs et al. (2021) and obtained satisfactory results with an effective
removal of vegetation. We applied PMF filtering using the following parameters:

e Window sizes: 0.5,1, 2,and 3
e Thresholds: 0.05, 0.1, 0.3, and 0.5

The extracted ground and vegetation points were saved in point cloud format. Using CloudCompare, we
generated a DTM for each palsa using the Rasterize function. Empty cells within the point clouds were
interpolated with a triangle max edge length value of 5.0.

The newly created DTMs were then used to recalculate the snow depth distribution for all three test sites in GIS,
following the methodology described in the manuscript. In our initial calculations, all negative values were set to
zero. However, in this revised approach, we retained negative values to highlight areas where either the LiDAR
sensor produced inaccuracies or surface degradation occurred between the summer and winter flights.

Based on these refined DTMs, we recalculated all input parameters used in the final RF model run in SAGA GIS.
The following 12 parameters were included: Aspect, Elevation, Channel Network Base Level, Channel Network
Distance, Negative Openness, Positive Openness, Relative Slope Position, Slope, Topographic Position Index,
Valley Depth, Wind Effect, Wind Exposition.

A detailed description of these parameters is provided in Table 2. We have now focused on a single model run,
and accordingly, we have removed descriptions of other parameters from the manuscript to ensure clarity and
consistency.

2. Splitting data into training and test datasets

In the initial study design, we used the entire buffered SDi,sit, dataset to extract the input parameters from the
raster stack, resulting in a data frame with 5222 points. We then split this dataset into 70% training and 30% test
data. However, this approach introduced a risk of overfitting, as each SDi,ity point was represented an average
of 28 times in the dataset. Consequently, many points appeared in both the training and test datasets, reducing
the independence of the validation process.

To address this issue, we revised our study design by first separating 70% of the point features from each SDjq-situ
dataset for training and 30% for testing. Only after this separation did we extract the input parameter values for
the training dataset, ensuring a clear distinction between training and validation data. The test dataset was
reserved exclusively for model validation. The following extract from the R script illustrates these steps:
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#===== Function to split trai

and test dataset =====

split_shapefile <- function(shp) {
set.seed(42) # Ensure reproducibility
num_samples <- nrow(shp) # Get the number of samples
train_indices <- sample(num_samples, size = round(0.7 num_samples)) elect 70% of the samples for training
test_indices <- setdiff(l:num_samples, train_indices) # The remaining for testing
shp_train <- shp[train_indices, ] # Create training dataset
shp_test <- shp[test_indices, ] # Create test dataset
return(list(train = shp_train, test = shp_test)) # Return the split datasets as a list

# Splitting the dataset for all three Tlocations
Isplit_pousu <- split_shapefile(shp_pousu)

Isplit_peera <- split_shapefile(shp_peera)
split_puolikkoniva <- split_shapefile(shp_puolikkoniva)

# combine training and test datasets for all palsas
Ishp_train_all <- rbind(split_pousu$train, split_peerastrain, split_puolikkonivastrain) # Merge training datasets
Ishp_test_all <- rbind(split_pousu$test, split_peerasStest, split_puolikkonivaStest) # Merge test datasets

After extracting the input parameters from the raster stack, the final dataset consisted of:

e Training dataset: 3,645 points (Puolikkoniva: 1,983; Pousu: 905; Peera: 757)
e Test dataset: 1,577 points (Puolikkoniva: 836; Pousu: 401; Peera: 340)

To prevent errors and miscalculations, all NoData values were removed from the datasets, resulting in a final
training dataset of 3,504 points and a final test dataset of 1,548 points for further modelling and validation.

3. Hyperparameter tuning and cross validation

To determine the optimal values for mtry, min.node.size, and sample fraction, we performed hyperparameter
tuning using the mir package in R (Bischl et al., 2016).

To prevent overfitting, we restricted the search range for min.node.size to 10-15 and for sample fraction to 0.7—
0.85, following the recommendations of Probst et al. (2019) and Breiman (2001). Allowing an unlimited search
range initially resulted in better model performance, but at the cost of reduced generalization, indicating signs
of overfitting. We selected the final search range based on multiple test runs with different settings.

For cross-validation, we tested different fold sizes to identify the most effective configuration. The best results
were achieved using a 4-fold cross-validation. The following R script extract provides details on the tuning

process:
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#===== Hyperparameter Tuning with tuneRanger (Regression) =====

# Define the regression task
task <- makeRegrTask(data = all_train, target = "Class")

# Define the cross-validation strategy
cv_desc <- makerResampleDesc("cv", iters = 4) # 4-fold cross-validation

# Define the Random Forest learner with hyperparameters as tuning options
Tearner <- makeLearner(“regr.ranger”, num.trees = 1000)

param_set <- makeParamSet(

makeIntegerParam("mtry", lower = 2, upper = ncol(all_train) - 1), # Number of variables to consider at each split
makeIntegerParam("min.node.size", lower = 10, upper = 15), # Minimum number of observations per node
makeNumericParam(“sample.fraction”, lower = 0.7, upper = 0.85) # Proportion of samples used in each tree

)

# Define the tuning control (e.g., Bayesian optimization or random search)
control <- makeTuneControlRandom(maxit = 70) # 70 iterations for tuning

# Hyperparameter tuning with cross-validation

tuned_params <- tuneParams(

learner = learner,

task = task,

resampling = cv_desc, # 4-fold cv

par.set = param_set,

control = control,

measures = rmse # Root Mean Squared Error as the performance metric

)

# Display results
print(tuned_params)

# Best Random Forest model with tuned parameters
best_learner <- setHyperpars(learner, par.vals = tuned_params$x)

The final tuned hyperparameters were as follows:

e mtry:9
e min.node.size: 10
e sample fraction: 0.79

4. Permutation Importance (PI)

In our initial study design, we conducted the RF modelling once and directly used the permutation importance
(P1) values provided by the model.

In our revised approach, we refined this process by repeating the calculation 100 times to obtain a mean PI
value for each input parameter, ensuring more robust and reliable importance rankings.

The following R script extract details the implementation of this approach:

15




#========== Permutation Importance

num_repeats <- 100

importance_values <- matrix(NA, nrow = num_repeats, ncol = ncol(all_train) - 1)
for (i in l:num_repeats) {
cat("Iteration:", i, "\n")

# Train the model using the identical hyperparameters from tuning
temp_model <- ranger(
x = all_train[, -ncol(all_train)],
y = all_trainsiclass,
mtry = tuned_params$x$mtry, # Optimized mtry value
min.node.size = tuned_params$x$imin.node.size, # Optimized min.node.size
sample.fraction = tuned_params$x$sample.fraction, # Optimized sample.fraction
num.trees = 1000,
importance = "permutation”,
seed = i # Different seed per run for robustness

)

# store the feature importances in the matrix
importance_values[i, ] <- importance(temp_model)

1
J

# Compute the mean Permutation Importance over the 100 runs
mean_importance <- colMeans (importance_values)

We modified Figure 7 to display only the 12 selected parameters along with their respective mean PI values
over 100 iterations. Additionally, we normalized the values, setting the most important parameter
(Topographic Position Index) to 1.

Normalized Pl Values from RF Modelling

Topographic Position Index
Wind Exposition

Elevation

Channel Network Base Level
Wind Effect

Valley Depth

Paositive Openness
Channel Network Distance
Relative Slope Position
Megative Openness

Slope

Aspect

O — ——

=
=

025 050 075 1.00
Normalized Permutation Importance

Figure 7. Overview of normalized mean Permutation Importance values from RF modelling over 100 iterations.

5. Final results and validation

Both the RF-based and UAS-LiDAR-based results were validated using the initially separated test dataset.
Additionally, we conducted three further RF model runs, where in each iteration, two palsa sites were used as
the training dataset, and one was used as the test dataset. This approach further validated the generalization
capability of the model.
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The validation results indicate that the RF-based approach now exhibits lower peak accuracies compared to the
initial study design. However, by reducing overfitting, the results are more plausible and robust, while still
achieving high accuracy and outperforming the UAS-LiDAR-based approach:

Table 3. Overview of the calculated Root Mean Square Error (RMSE), Coefficient of Determination (R2), Mean
Absolute Error (MAE) and Standard Deviation (SD) for RF- and UAS-LiDAR-based snow depth estimations.
Additionally, external validation results (RMSE and R?) for RF-based snow depth at each palsa site (Peera RF,
Pousu RF, Puolikkoniva RF) are provided.

Parameter RF LiDAR UAS Peera RF Pousu RF Puolikkoniva RF
RMSE 18.33 23.49 16.67 21.31 27.13

R? 0.77 0.691 0.628 0.767 0.578

MAE 13.26 17.49 - - -

SD 18.11 20.84 - - -

We recalculated all metrics for different point groups and included the number of points per group. These groups
were classified visually, based on orthophotos, slope data, and elevation characteristics of the respective
locations.

The results show that the accuracy differences between RF and UAS-LiDAR-based approaches are now less
pronounced. However, in certain categories, such as Thermokarst and Open Area, the UAS-LiDAR-based results
show lower accuracy, likely due to measurement inaccuracies caused by water surfaces and irregularities in areas
with higher vegetation.

Table 4. Overview of RMSE, R?, MAE and SD divided by validation point locations within the investigation areas.

RMSE R? MAE SD
RF LiDAR RF LiDAR RF LiDAR RF LiDAR
On Top 3.84 3.84 8.32 10.83
8.33 8.33 0.841 0.730
(n=69)
Edge 5.85 5.85 12.82 19.09
13.12 13.12 0.894 0.768
(n=66)
Thermokarst 5.42 30.35 10.69 25.08
10.99 33.73 0.893 0.592
(n=16)
Open Area 1.56 9.84 4.40 12.59
4.54 14.23 0.926 0.519
(n=26)

Figures 5, 6, 8, and 9 have been updated based on the new results.

Figure 5 now includes the recalculated snow depth maps. We have incorporated all areas where SDyipar Values
are below 0, visualizing these parts in red to highlight regions where the LiDAR sensor may have measured
incorrectly or where degradation has occurred between flights.
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Figure 5. Snow depth predictions based on the RF model (left) and the UAS-LIDAR (right) at site Puolikkoniva (a, b), Pousu (c,
d) and Peera (e, f) palsas. Red points are showing the in-situ snow depth measurement locations.
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In Figure 6 we inserted the new calculated difference maps and we also included the parts with negative values

inred:

a)

Background
UAS orthomosaic

23.03.2023 P
[ Palsa edge in 2022 1‘

Snow depth measuring
points

Snow depth difference in cm
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Brown:  RF snow depth higher
Blue: UAS-LIDAR snow depth higher

-30 - -45
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No colour: Values between 15 and -15 not visualized to highlight extremes

Figure 6. Snow depth differences between modelled and UAS LiDAR results at a) Puolikkoniva, b) Pousu and c) Peera palsas.

Figure 8 shows the scatter plots based on the 30% test dataset. Here we used only the single values of the SDjn.

situ, NOt considering the values within the buffer areas of the test data. We decided to do it like that, to obtain a

very fine validation of both methods:

LiDAR UAS snow depth validation

150~
€
L

£ 100-
o
[
el
2
o
c
w
2

3 50-
x
<
a
-

0.

0 50 100
Measured snow depth (cm)

150

Random Forest snow depth validation
150- i

B3
C
£ 100-
[7]
o
z
o
C
"
Rel
=
3 50-
o
=

o-

0 50 100 150
Measured snow depth (cm)

Figure 8. Scatter plots with regression lines for UAS-LiDAR-derived and RF-modelled snow depths, based on the external test

dataset.
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Figure 9 has been updated to reflect the new results. Additionally, we have incorporated the calculated slope

derived from the DTM of Pousu palsa.

a) a) Pousu palsa site and the analysis area (red).
b) Slope in degrees.

c) Differences in snow depth between RF and
LIDAR UAS approach.

d) Snow distribution based on RF approach and
highlighted cooling and warming locations.

e) Possible warming/cooling spots based on
snow distribution and areas with existing or
higher possibility of block erosion.

|:| Analysis area
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UAS orthomosaic
25.08.2022

igh Slope
Slope in degree
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Figure 9. Explanation of differences between UAS LiDAR-derived and RF-modelled snow depths.

20



Appendix B

Enontekid Kilpisjarvi kyldkeskus, Finland
69.03905N, 20.81379E | 474 m.a.s.l. | Climate Class: Dfc | Years: 1991 - 2020

Temperature [°C]

Precipitation [mm]/ Snow Depth [cm]

-10 -
Jan Feb Mar Apr May Jun Jul Aug Sep Okt Nov Dez
Months
— Snow Depth [cm] (@ 37) — - Mean Precipitation [mm] (@ 515) --- Mean Temperature [°C] (@ -1.30)

Figure 2. Climate chart of Kilpisjdrvi (FMI, 2022). Dotted line shows 2 m above ground temperature in °C, dashed line shows
precipitation in mm and solid line shows snow depth in cm.
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Appendix C
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Figure 4. Snow depth measuring points within the investigation sites at Puolikkoniva (a), Pousu (b) and Peera (c) palsa
illustrating different methods for recording snow depth (transects, randomized, crossed).

Appendix D

Histogram of Snow Depth Measurements per Site
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Figure A1. Histogram of SDinsits points and respective statistics per palsa site.
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Appendix E

Point Class
® Edge
©  On Top
® Open Area
©  Thermokarst

[_] Palsa edge in 2022

Background N e SR
UAS orthomosaic A 0 50 100 m
25.08.2022

Figure A2. Overview of classification of all SDin-sity points into classes Edge, On Top, Open Area and Thermokarst.

Appendix F

Table A3. Correlation between each input parameter and RF-modelled snow depth.

Parameter Correlation to SDgr Parameter Correlation to SDgr
Aspect 0.09 Relative Slope Position -0.49
Elevation -0.12 Slope 0.08
Channel Network Base Level -0.09 Topographic Position Index -0.87
Channel Network Distance -0.45 Valley Depth 0.50
Negative Openness 0.22 Wind Effect -0.55
Positive Openness -0.50 Wind Exposition -0.80
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