
Point-by-point replies to the question and comments by Reviewer 1 

Dear Reviewer 1, 

we are pleased to submit the replies to your questions and are thankful for the insightful comments 

and many good suggestions, as well as we are grateful for your time and effort in providing valuable 

feedback. We believe that addressing the issues raised by you, have now substantially improved our 

manuscript. 

We hope our answers meet your approval. Your comments and our point-by-point responses are 

presented below. Please note, that we added a detailed description of a new RF modelling approach 

in the appendix A. 

 

Reviewer #1 comments Action Response 

1. The paper “Comparing High-Resolution Snow 
Mapping Approaches in Palsa Mires: UAS 
Lidar vs Machine Learning” by A. Störmer et 
al. aims to quantify the accuracy and 
efficiency of mapping snow depth over three 
palsas in northern Finland, in a spatially 
continuous raster-based map. Specifically, 
they choose two methods to compare: 1) 
using a Lidar sensor on a drone with two 
acquisition dates of data (no snow and snow), 
and 2) modelling snow depth based solely on 
a digital elevation model and using the 
machine learning algorithm “Random 
Forest”. In situ data of snow depth are 
collected and used for training and validation. 
It is an interesting idea, and the need of 
mapping snow-depths over permafrost 
features is of great interest. It is also hard 
work, as noted by the authors in the 
Discussion, and the contribution of this paper 
will be of use for those wishing to map snow 
cover over terrain that has large variations 
over short distance, such as palsas. The 
conclusion was that the Random Forest 
model gave superior results as compared to 
the UAV Lidar. However, I have some major 
questions about the process and conclusions 
that must be addressed, as I question the 
overly optimistic result presented from the 
Random Forest model. The two larger issues 
to be addressed are below, followed by 
general and specific comments. 

Answered We appreciate your recognition of the 

relevance of our study and acknowledge the 

concerns raised regarding the optimism of the 

Random Forest model results. In response to 

your suggestions, we have conducted an 

additional model run incorporating the 

recommended adjustments. Specifically, we 

have removed vegetation from the initial 

DSM and applied hyperparameter tuning as 

well as cross-validation to the Random Forest 

model. The updated results, which provide a 

more robust evaluation, are presented in 

Appendix A. 

Larger issues that need to be addressed: 

 

2. Why was a Digital Surface Model and not a 
Digital Terrain Model used for calculating the 
ground in the no-snow data, and how does 

Changed/ 

Answered 

We have provided detailed answers to the 

two larger issues in Appendix A. 



this affect the snow-depth measurements, 
and even the topographic derivatives used in 
the RF Model? 

3. If the authors used cross-validation and 
present it as the accuracy of the model, then 
this result is over-optimistic and the 
comparison of UAV-Lidar to the Random 
Forest model result is biased and not a fair 
comparison to make. 

4. 1 - Use of a DSM to represent ground level - It 
appears that the authors have made a Digital 
Surface Model (DSM) from the Lidar point 
data to represent the ground, rather than 
create a Digital Terrain Model (DTM) from the 
Lidar data. The DSM represents the height of 
all objects on the surface, and if there are 
shrubs on the palsas (which is typically the 
case in degraded palsas), they may be 35-50 
cm tall. Therefore if a DSM was used to 
represent the ground in August, while insitu 
snow-depth measurements were taken from 
the ground up, the reported snow-depth will 
be highly affected by the height of the 
vegetation, and this will then vary over the 
whole surface of the palsa. If the authors have 
a reason for using a DSM rather than DTM, it 
is not clear in the article, and it needs to be 
motivated. Using a DSM will result in error in 
the snow depth measurements as presented. 
To create a DTM from your existing data is not 
difficult. If you look at the paper by Jacobs et 
al., 2021, you will see reference to papers 
that discuss the potential errors of snow 
depth measurements when DSMs are used. 

 

In addition if the DSM was used to calculate the 

Topographic derivatives used as input parameters to 

the RF model, are these derivatives valid? 

Changed/ 

Answered 

See Appendix A. 

5. 2- Cross validation - As I understand what has 
been done, the results of snow-depth for UAV 
Lidar and RF Modelling have been evaluated 
differently. In the case of UAV Lidar, the in 
situ data act as a fully independent data set 
used for calculating RMSE and the accuracy of 
the snow-depth measurements. In the case of 
the RF Modelling, the in situ data are used for 
training of the model, and the validation of 
the model as presented (see Fig 8) seems to 
have been made using a 10-fold cross-
validation. In any case, the latter means that 
the data used to create the model are also 
used to evaluate the model. Cross-validation 
is never an assessment of the resulting map 
accuracy but is an assessment of the fit of the 
model. So it is no surprise that the authors get 
seemingly much better results for the RF 

Changed/ 

Answered 

See Appendix A. 



Model – the comparison is biased in the favor 
of the RF Model. Figure 8 shows this clearly, 
and to me is misleading. So the conclusion, as 
in the Results on Line 367/368, that the RF 
Model is showing its strength without high 
bias, I think is not valid. 

 

The only way to fairly compare the assessments of 

these two would be to develop a model using in situ 

data from one palsa and apply the RF model developed 

to the other two palsas and assess the accuracy using 

the in situ data from those two palsas. Or, you could 

take insitu data from half of each palsa and developing 

training and accuracy datasets. (Note that if you 

consider taking a random selection of the insitu data 

for training/accuracy it is not optimal, since you will 

have spatial autocorrelation issues due to the 

proximity of the points, which is why the previous 

suggestions are better. ) 

Other general   

6. The title: Rather than using the term 
“Machine Learning”, I think it would be better 
to refer to this as “Modelling”, because it 
doesn’t make sense to me to compare it to 
the specific algorithm that is used, but rather 
that you have created a model to predict 
snow depth. 

Changed We agree with your suggestion to change the 

specific term “Machine Learning” to 

“Modelling”.  

7. There have been scientific articles that have 
mapped snow with UAV Lidar, eg, Jacobs, J.M. 
et al., 2021 “Snow depth mapping with 
unpiloted aerial system lidar observations: a 
case study in Durham, New Hampshire, 
United States” in The Cryosphere. 
(https://doi.org/10.5194/tc-15-1485-2021). 
While this may be the first paper to be 
published using UAV Lidar for snow on a 
palsa, I think that the Introduction should 
review and refer to articles that have 
generally applied UAV Lidar mapping of snow 
over other landscape types. 

Changed We acknowledge the importance of previous 

studies that have applied UAV LiDAR for snow 

depth mapping and appreciate your 

suggestion. Our initial focus was primarily on 

demonstrating the feasibility of snow depth 

modelling using Random Forest and assessing 

its implications for palsas. However, as the 

study evolved, the focus shifted more 

towards a comparative analysis between 

Random Forest modelling and LiDAR-based 

snow depth estimation. In response to your 

suggestion, we have incorporated additional 

references on UAV LiDAR-based snow depth 

mapping. Specifically, we adopted the 

vegetation removal approach inspired by 

Jacobs et al. (2021) and further reviewed 

relevant studies, including those by Avanzi et 

al. (2020) and Harder et al. (2020). 

8. Section 2.1 is lacking a description of 
vegetation heights on the palsas. 

Changed We have added a description of the typical 

heights of common palsa vegetation. Dwarf 

birches are 15 and 60 cm (Betula nana) and 

dwarf shrubs 5 – 20 cm, while sphagnum 



moss (up to 3 cm) and lichens (<3 cm) are 

considerably smaller. These height estimates 

are based on our field observations. 

The following points all refer to Section 3.1 – Data 

collection 

  

9. Did you Post-Process the UAV Lidar data with 
RINEX data from a base station? If so, what 
was the base station (ie, source of the RINEX 
data)? 

Changed/ 

Answered 

We used RINEX data for post-processing the 

LiDAR flight trajectory in POSPac. For both 

datasets, we obtained the RINEX data from 

the National Land Survey of Finland (NLS) 

CORS station in Kilpisjärvi (KILP 2147250.4266 

820562.0462 5930136.8831). Further details 

can be found on the NLS website. This 

information has been incorporated into the 

newly added paragraph 3.1.1 (see comment 

#17). 

10. Parameters for the UAV flights are needed, 
eg, flying altitude, were cross-wise flights 
used? Knowing the directions of the flight 
lines is important because there are some 
Lidar measurements of 0 cm snow depth, and 
50-60 cm snow depth in the insitu data, and 
it might be explained (possibly?) by not 
acquiring Lidar data in multiple angles – but I 
am not sure what has been done. 

Changed/ 

Answered 

We have included additional details about the 

LiDAR flights in the newly added paragraph 

3.1.1 (see comment #17). 

The flight altitude during the summer data 

collection was 30 m for each palsa, while in 

winter, the flight altitude was 60 m. All flights 

had a 50% side overlap. Cross-flights were not 

conducted, as we determined that they 

would not provide additional valuable data 

due to the specific environmental conditions 

(flat terrain with low vegetation). The flight 

direction was primarily along the longitudinal 

axis of the palsas, except for the summer 

flight over Peera palsa, which followed an 

east-west orientation. To improve clarity, we 

have included the flight trajectories in Figure 

4 (see Appendix C). Additionally, we have 

provided point density values for each flight 

in m2. 

The RGB flights were conducted using an 

Autel EVO II Pro V2 UAV at a flight altitude of 

80 m, with a 75% side overlap for each flight. 

Initially, we had stated that the orthophotos 

were acquired with the integrated RGB 

sensor of the LiDAR mapper. However, this 

was a misunderstanding, and we have now 

corrected this statement. The orthophotos do 

not contribute specific data to the analysis 

but were solely used for figure creation. 

Regarding the occurrences of 0 cm snow 

depth in the UAS-LiDAR data: These values 



result from our initial processing step, in 

which we set all negative values in the 

computed DSM to zero. This aspect is now 

explicitly mentioned in Appendix A, and we 

have adjusted this approach in the updated 

modelling. 

11. Line 151/152 says that GCPs were set out. 
Was this for both the Lidar and the RGB 
images? How many GCPs? And then, what 
was the horizontal and vertical accuracy of 
your data – both the Lidar and the RGB 
images? 

Changed/ 

Answered 

For all winter flights (LiDAR and RGB) and 

palsa sites, four GCPs were used, positioned 

around the palsa. The accuracy for each GCP 

is between 1–2 cm. 

We have established several permanent GCPs 

(measured with RTK-GPS) located on known 

points of large stones in the study sites. 

Permanent GCPs have been established 

because we are monitoring changes in the 

palsas by collecting drone data annually since 

past 8 years. The accuracy of these RTK-GPS-

measured GCPs is between 1–2 cm. For all 

UAS-LiDAR summer flights we utilized these 

GCP’s: three for Peera, 20 for Pousu, and 30 

for Puolikkoniva. The RGB flights were 

conducted using the drone's internal RTK 

system. However, we consider the accuracy 

of these flights to be not relevant in the 

context of this study, as the orthomosaics are 

used solely for overview purposes. 

We have added this information to section 

3.1.1. 

12. Line 153 – Change orthopictures to images, 
since the raw images are not orthorectified 
yet. That’s a later step. 

Changed We agree and changed the term. 

13. Line 157/158 “Structure from Motion 
techniques were not applied…” I do not 
understand why this sentence is here. If you 
created an orthophoto, which you say you do 
in the next sentence, then you have applied 
photogrammetric image matching (how you 
define SfM and if you define it differently 
than photogrammetric image matching 
determines what term you like to use). But 
why even say what you haven’t done? State 
what you have done to produce the 
orthophoto. 

Changed We acknowledge the potential for 

misunderstanding and have clarified our 

statement in lines 157/158. Specifically, we 

used SfM techniques solely for the creation of 

orthophotos. As noted in comment #10, there 

was an initial misunderstanding regarding the 

generation of the orthophotos. We have now 

revised this section to ensure clarity and 

accuracy. 

14. Line 164 – I think you mean snow depth 
rather than snow cover. 

Changed We agree and changed the term. 

15. Line 166 – RTK-GPS. Changed We agree and added “GPS”. 

16. It says on line 173 that there are randomized 
points on the edges of Puolikkoniva, but I do 
not see very many of these (maybe 5 at 

Changed/ In Puolikkoniva, 20 randomized points are 

located at the edges, which corresponds to 

one fifth of the total point dataset for this 



most?). In hindsight, I would guess that you 
would want to have made cross-wise 
transects on this palsa. Take this up in the 
Discussion if so. 

Answered palsa. We consider this distribution to be 

adequate. 

To provide a clearer visualization of the point 

distribution, we have added an additional 

figure to the appendix, categorizing the 

points by classes. In this figure, we have also 

included an orthophoto without snow cover 

to enhance the visibility of point distribution 

in the most extreme areas. Furthermore, we 

have adjusted the point style to improve 

differentiation and recognition (Appendix E). 

Reference (in situ) data   

17. I think you need a separate section to 
describe Reference data collection – either 
two sub-sections under 3.1 or else 3.1 for UAS 
data collection and 3.2 for Reference data 
collection. Under the reference data 
collection, there should be a better 
description regarding how the insitu snow 
depth measurements were made, 
specifically, was the GPS Z-measurement 
made from the ground level? Was it a 
yardstick, and was a level used to make sure 
it was normal to the surface? 

Changed/ 

Answered 

We have revised the manuscript to create a 

clearer structure for data collection. In 

particular, we have introduced two separate 

subsections: 3.1.1 for data collection at 

universities of applied sciences and 3.1.2 for 

the collection of reference data. 

In response to your suggestion, we have 

expanded the description of the reference 

data collection. The snow depth 

measurements were carried out with a heavy 

wooden yardstick. GPS-Z measurements 

were not taken from the ground, as this 

approach is subject to large uncertainties. In 

addition, no level was used to ensure that the 

measurements were perpendicular to the 

surface. These methodological details were 

explicitly mentioned in the revised section to 

improve transparency and reproducibility. 

18. For the insitu data you need at some point to 
say that these also may have errors and what 
these errors may be caused by, and how they 
may affect your result. Since the RF model is 
completely based on the insitu data, the 
errors of the insitu data are simply 
propagated, but do not affect the evaluation. 
For validating the Lidar data derived snow 
depths, the potential measurement errors of 
the insitu data are only accounted for in the 
evaluation. 

Changed/ 

Answered 

We have expanded our discussion on the 

uncertainties associated with snow depth 

measurements in lines 409–411. In this 

revision, we have explicitly acknowledged 

that measurement errors not only influence 

the modelling results but also affect their 

statistical evaluation. We have critically 

assessed the extent of this impact. 

However, we still consider that manual snow 

depth measurement is the most accurate 

method available, with only minor deviations. 

Given the overall reliability of this approach, 

we do not expect these uncertainties to 

significantly affect the conclusions of the 

study. 



19. Also, think about whether the section on UAS 
data collection is only about data collection or 
if you want to describe the processing of the 
data here – in which case you might just name 
it “UAS data” or “UAS data collection and 
processing”. 

Changed We agree with your suggestion and have 

renamed section 3.1.1 to “UAS Data 

Collection and Processing” to better reflect its 

content. As noted in previous comments, we 

have also expanded this section to include 

additional details on both the data collection 

and processing procedures. 

20. The in situ data particularly in the case of the 
largest palsa Puolikkoniva were run in two 
transects lengthwise along the palsa, but not 
crosswise, over the edges where the deepest 
accumulation of snow may have been. 
Therefore the values where some of the 
largest differences are between the Lidar and 
the RF Model cannot really be assessed, 
making the assessment incomplete – the 
shortcoming must be acknowledged. 

Answered We respectfully disagree with this point. As 

discussed in comment #28, we believe that 

our dataset is well-suited for the objectives of 

this study. Our measurement strategy 

included data points in key areas of the palsa, 

such as the summit, steep slopes, and internal 

trenches, ensuring that the primary variations 

in snow depth were captured. 

However, we acknowledge that extreme 

values may still have been missed due to the 

inherent limitations of in situ snow depth 

measurements. We have addressed this 

explicitly in the discussion part about 

limitations. 

21. Also the Lidar may measure extremes in 
snow-depths, while the model will not if it 
does not have representative data for the 
extremes. Therefore there will be more 
variability in the Lidar data, but we cannot tell 
which is “wrong”. 

Answered As mentioned in response to the previous 

comment, we believe that our dataset 

adequately captures most of the extreme 

snow depth variations. However, we 

acknowledge that some extreme values may 

not have been fully represented in the model 

due to limitations in the in-situ data 

collection.  Therefore, we address this issue in 

the limitations section and emphasize the 

differences in variability between LiDAR 

measurements and the RF model. 

Section 3.2 – RF algorithm   

22. The authors state on Line 189 that no explicit 
hyperparameters were specified. So this 
means that they were not analyzed, although 
the outcome of the model is what is being 
assessed as the main objective of the article. 
It is not difficult to assess the 
hyperparameters using Grid-Search or 
another comparable function. 

Changed/ 

Answered 

See Appendix A. 

23. Permutation mode was used for variable 
importance – do you know how this works? Is 
it a single run of the RF model? When you run 
PI repeatedly, do the same variables have the 
same importance? The random nature of RF 
often requires running variable importance 
(or in this case PI) many times (eg, 100) and 
taking an average. Even then, one needs to be 

Changed/ 

Answered 

See Appendix A. 



careful with their interpretation of variable 
importance. 

24. For Line 187-188 - I’m not really sure what 
you have done with the model and the in situ 
data. You state that you have split 70% 
training and 30% test. Is this used by RF for 
internal cross-validation of the model (if you 
split the data 70/30 in the RF model, then it is 
likely this is how it is being used). Is this done 
with replacement? If you have removed 30% 
of the data for independent evaluation, then 
you need to clearly state this, but I don’t think 
this is what you have done. 

Changed/ 

Answered 

We separated the dataset into 70% training 

data, which was used for the Random Forest 

model, and 30% test data. The test dataset 

was not utilized for internal cross-validation 

but was exclusively used to compute 

performance metrics, including RMSE, R2, 

MAE, and standard deviation. Further details 

on this methodology are provided in 

Appendix A. 

25. Line 184 – The dependent variable for your 
model is snow-depth. 

Changed We agree, and to clarify this, we have 

removed the term “dataset” in line 184. 

26. Line 185 –“Input parameters” are mentioned 
here but we don’t know what they are until 
later. Couldn’t you refer to Table 2 here? 
Otherwise we are left wondering what the 
parameters are. 

Changed We agree and added Table 2 as reference. 

27. Line 189 – delete “precise” – This is a 
judgmental word – leave it to your results to 
be the judge of that. 

Changed We agree and removed the word precise. 

28. In addition, RF models are sensitive to 
imbalance in the training data, and also do 
not extrapolate beyond the minimum and 
maximum snow-depth values (or whatever 
the target variable may be). How are your 
results affected by this, and how might others 
in the future be affected by this and what 
would your recommendations be to future 
applications of this method? 

Answered We acknowledge the sensitivity of Random 

Forest models to imbalances in the training 

data, as well as their inability to extrapolate 

beyond the observed minimum and 

maximum values of the target variable. To 

ensure the robustness of the model, it is 

crucial to capture a dataset that adequately 

represents the full range of snow depths 

within the study area. 

A thorough understanding of the 

investigation area is essential, and snow 

depth measurements should specifically 

target extreme locations, such as exposed 

areas on the palsa summit and accumulation 

zones along the edges. However, conducting 

such measurements in these environmental 

conditions is both time-consuming and 

labour-intensive. 

For future applications of this method, we 

recommend careful planning to ensure 

representative data collection. This includes 

identifying extreme locations in advance by 

analysing orthophotos and previously 

acquired digital elevation models (DEMs) to 

optimize the placement of measurement 

points. We have added this to our discussion. 



Section 3.3 –   

29. The first sentence needs rewriting. First of all, 
which “collected airborne data” is referred to 
here? I assume it was the August DSM from 
Lidar that was used? It is not stated. Were 
these data processed differently than what 
was described in Section 3.1? Declare which 
DEM you are working with and say specifically 
that you are creating parameters from this. 
What happens if you use a DSM and create all 
of these topographic derivatives as 
parameters? Are those new derivatives valid, 
such as Topographic Wetness Index, if they 
are based on the surface elevation which 
includes vegetation? This must be well-
motivated if the authors believe that there is 
a valid reason for this. 

Changed/ 

Answered 

We acknowledge the need for greater clarity 

in the first sentence and have specified that 

we are referring to the summer dataset. To 

improve transparency, we have moved this 

information to the newly added section on 

UAS-LiDAR processing (Section 3.1.1). 

Regarding the influence of vegetation on the 

derived topographic parameters, we have 

addressed this aspect in previous comments 

and provided further details in Appendix A.  

30. Line 210 – If a 0.3 m buffer was used were the 
values for any parameters averaged within 
this area? 

Answered The input parameters were not averaged 

within the 0.3 m buffer areas. Instead, each 

input parameter value was directly linked to 

the corresponding in-situ snow depth (SDin-

situ) measurement. Consequently, each snow 

depth value is associated with an average of 

28 input parameter values. 

For Puolikkoniva, 100 snow depth 

measurements were linked to a total of 2,819 

input parameter observations, while for 

Peera and Pousu, the corresponding values 

were 39 to 1,097 and 46 to 1,306, 

respectively. In total, 5,222 points were 

generated for the Random Forest model, with 

70% used for training and 30% for validation. 

This approach was chosen to reduce noise 

and smooth the resulting dataset. 

You can find further information in Appendix 

A. 

31. Table 2 – 12 parameters were used, but 21 
are in the table. Could you indicate in a way 
what parameters were used? 

Changed We have described the input parameters 

used for each model run in lines 205–209. 

However, based on your suggestions and the 

revised model design, we have decided to 

focus on a single model run. As a result, we 

used only 12 parameters and removed the 

information related to previously unused 

parameters and former model runs. The 

section on input parameters and model runs 

has been updated accordingly. 

32. For the Discussion: When you made the insitu 
measurements, it was August, and the palsa 

Changed/ We have already incorporated the findings of 

Renette et al. (2024) into our discussion (lines 



had likely subsided. Renette et al., 2024 show 
that the difference between elevation in 
September (likely maximum thaw depth of 
the Active Layer) and April (minimum thaw) 
was on average 15 cm, and up to 30 cm in 
some areas, albeit on a taller palsa than in the 
study presented here. In any case, this may 
mean that trying to measure snow depth 
using a DTM from September may introduce 
errors if the terrain is actually elevated some 
cm more than this. This is hard issue to solve 
with UAV Lidar, since you would need to be in 
place to create a DTM right after snow-melt, 
and all snow would need to have melted. So, 
you need to discuss what implications this has 
to your results. Also, since you have RTK-GPS 
data, and you have measured to the ground I 
assume, you actually have a dataset where 
you could compare the Z-measurement from 
March to the DTM from August, and get an 
estimate of the difference in height between 
the max-thaw and min-thaw state of the 
palsa. 

Answered 384–387). However, based on your 

comments, we have expanded this discussion 

to explicitly address the potential impact of 

seasonal elevation changes on the accuracy 

of SDLiDAR measurements. In contrast, the SDRF 

results should be less affected, as the 

modelled snow depth is independent of 

seasonal elevation fluctuations. 

Furthermore, we have considered this aspect 

when refining our overall evaluation of the 

comparison between RF and LiDAR results. As 

you pointed out, accurately capturing snow 

depth using LiDAR is only possible if data 

collection occurs immediately after 

snowmelt, once all snow has disappeared. 

Regarding the RTK-GPS measurements, we 

did not measure directly to the ground. 

During fieldwork, we observed that the thick 

and frozen vegetation layer made it 

challenging to reach the true ground surface 

using the RTK stick. Instead, we found that 

the fine yardstick provided a more accurate 

way to measure snow depth. Consequently, 

we are unable to compare Z-measurements 

within our datasets. However, we have 

incorporated this consideration into our 

discussion of future research implications 

(lines 386–387). 

Language   

33. It’s my feeling that some value judgement 
words don’t belong in a scientific article. Such 
as “exemplarily” on line 53. 

Changed We reviewed the manuscript for judgemental 

words and changed these accordingly. 

34. Line 38 – deepening instead of growth. Line 
58 – deeper instead of higher. 

Changed We changed these words. 

35. Otherwise some minor grammatical fixes 
once the paper is revised can be looked over. 

Changed We will have a final grammar check after 

implementing all changes to the manuscript. 

Specific   

36. Line 35 – it is not only bound by peatland 
presence but also climatic parameters 

Changed We agree and added “and driven by climatic 

parameters”. 

37. Line 69 – “Satellite data” only names the 
platform. What kind of satellite data are you 
referring to? Optical? Radar? That is the more 
important aspect. Similar issue is on line 74 
where the sensor type should be mentioned 
and not just the platform which is UAS/UAV. 
Look through your paper for these kind of 
omissions. 

Changed We acknowledge the need for greater 

specificity regarding the types of satellite data 

referenced. In the respective sections, we 

now explicitly state that we are referring to 

both optical and radar satellite data. 



Additionally, we have specified the type of 

UAS sensor used in each mentioned study to 

ensure clarity. These adjustments have been 

implemented in lines 9, 14, 49, 71, 74, 75, and 

95. 

38. Line 70 – change technical limitations to 
properties 

Changed We agree and changed the term. 

39. Line 86 – the authors mention 3 methods, but 
the title takes up two. The third method 
seems to be the insitu data, but that has been 
used to train the RF Model, and I don’t think 
you are really assessing the accuracy of the 
method, so I would stick to the two methods. 

Changed Thank you for highlighting this inconsistency. 

We have revised our focus to explicitly center 

on the two primary methods - LiDAR-based 

snow depth estimation and RF modelling. 

Accordingly, we have adjusted the structure 

of our objectives and intentions. 

40. Line 89 – delete simulation. You are just 
modelling. 

Changed We agree and deleted “simulation”. 

41. Table 1 – the photos are rather small. Can 
they be made bigger. Put the date (day-
month-year) of the photos in the Table text. 

Changed We agree and changed the caption and 

increased the size of the images. 

42. Line 129 – For what year or years is that the 
annual mean temperature? 

Changed We inserted “For the time period 1991 – 

2020, …”. 

43. Line 137 – For what location is that the 
duration of permanent snow cover? 

Changed This value is specific to Kilpisjärvi, and we 

have incorporated it into the text. 

44. Figure 2 – What is shown in Fig 2? It needs to 
be said clearly in the Fig text. Is this an 
average value for 1990-2020? It would be 
very helpful to know what the climate 
conditions were for the years in which you 
acquired the snow data. Was it a very snowy 
year? Windy in the days before you visited? 
Warm temperatures so that the snow melted 
some? Knowing these conditions can help us 
to explain any differences between the 
various results, particularly if the model is 
solely based on the DEM. I see you mention 
this on Line 401/402. 

Changed/ 

Answered 

Figure 2 presents the average monthly snow 

depth (cm), temperature (°C), and 

precipitation (mm) recorded at the Kilpisjärvi 

weather station for the period 1990–2020. 

This timeframe was selected to align with the 

30-year reference period established by the 

World Meteorological Organization (WMO). 

However, we recognized that the appropriate 

reference period should be 1991–2020 and 

have updated the figure accordingly 

(Appendix B). 

The purpose of this figure is to provide a 

general overview of the climatic conditions in 

the study area. Since snow depth data were 

collected on only two days (March 23–24, 

2023) under stable weather conditions, we do 

not believe that presenting weather data 

from the preceding days or the entire winter 

season of 2022/23 would provide additional 

meaningful insights. 

To clarify this, we have explicitly stated in line 

141 that all snow depth measurements were 

conducted on March 23–24, 2023. 



45. Line 141 – Write which day the data were 
acquired. If you cannot fit it reasonably in the 
text, because it was different dates for 
different palsas, I suggest you put it in Table 1 
– dates for image and Lidar acquisition. 

Changed We have added the specific dates of data 

acquisition in line 141. The UAS-LiDAR data 

were collected on August 27, 2022 (summer) 

and March 23, 2023 (winter). Snow depth 

measurements were conducted on March 23, 

2023, for Puolikkoniva and Pousu, and on 

March 24, 2023, for Peera. 

Additionally, we have included the exact 

dates of LiDAR data acquisition in Table 1 to 

ensure clarity and consistency. 

46. Several of the Figures have such small text 
that they are difficult to read. Eg Fig 3. 

Changed We have increased the font size for Figures 3, 

6, 7 and 8.  

47. Section 3 – Is August the season for maximum 
thaw? It’s not September? Does Verdonen et 
al. 2023 state that August is the max ALT?  If 
it is August, I think you should more 
specifically say the end of August.  If you 
aren’t sure or don’t have a reference to back 
it up, then maybe it is more reasonable to say 
that the end of August is near max ALT. 

Changed We agree that this statement requires greater 

accuracy. We have revised it to indicate that 

the maximum ALT is typically reached 

between the end of August and mid-

September, depending on annual weather 

conditions and the onset of the freezing 

season. 

48. Line 231 – 240 feel like they belong in the 
section describing the RF model. 

Changed We agree and moved this part to the 

description of the RF algorithm and modelling 

data preparation. 

49. Line 231/232 – Was the 10-fold cross-
validation done when creating the initial RF 
model, or was this something that was done 
afterwards and used as the “validation” data 
presented in Figure 8? If it is the latter, you 
cannot say that it was used to reduce over-
fitting in the model? There is an option in 
Random Forest to use cross-validation to 
create the model, and that is one tool of 
several to reduce over-fitting. Other ways to 
reduce over-fitting is to limit tree depth, -- by 
the way, in Section 3.2 you mention target 
node depth, but I don’t see in the caret 
package what that refers to. Is it “maxdepth”? 
In that case I suggest you name the 
parameter in parentheses.   

Changed/ 

Answered 

See Appendix A.  

50. Line 236/237 – What are “the initially 
calculated values”? You are using the insitu 
data to train a RF model and then evaluating 
the model based on a cross-validation that 
using that same insitu data. See my point #2 
under “Larger issues”. 

Changed/ 

Answered 

See Appendix A. 

51. Line 273/274 – “Only a few narrow structures 
with significantly higher snow can be 
recognized based on the UAS LiDAR data” – I 
do not know what this sentence is about. 

Changed Our intention was to highlight that only small 

areas within the study region exhibit 

significantly higher snow depths in the UAS-

LiDAR dataset. To clarify this, we have revised 

the sentence as follows: 



 

Appendix 

In this section, we provide additional information addressing comments #4, 5, 10, 16, 22, 23, 24, 44, 49, 50, 54, 

56 from Reviewer 1 and #5, 6, 8, 10, 38, 40, 41, 52, 53, 63, 66 from Reviewer 2. 

We sincerely appreciate your insightful comments and suggestions, which have significantly contributed to 

improving both the modelling approach and the overall quality of the manuscript. 

“On the other hand, only small areas with 

significantly higher snow depth in the UAS-

LiDAR dataset compared to the RF dataset are 

detectable in certain regions surrounding the 

palsas.” 

52. Line 281 and Fig 7 and Table 3 – I don’t think 
we need to see all 3 model runs, just the best 
one. 

Changed We agree and changed the text, figure and 

table accordingly. See comment #31 and 

Appendix A. 

53. Line 285 – rather confusing that it is stated 
that Elevation was removed, and now it is 
important. Also Fig 7 text is impossible to 
read because it is so small. 

Changed/ 

Answered 

Please refer to our previous responses 

regarding the removal of the initial model 

runs. As a result, it is no longer necessary to 

elaborate on the exclusion and 

reintroduction of the Elevation parameter. 

For clarity regarding our initial approach: 

Elevation was excluded in the second model 

run because all other input parameters were 

derived from it. This step was taken to assess 

whether Elevation might introduce bias into 

the modelling results. After analysing the 

outcomes, we found no indication of such 

bias and subsequently decided to retain 

Elevation as an input parameter in the final 

model. 

54. Line 295 and Table 4 – these areas of “Top”, 
etc, could you have a figure somewhere – 
maybe supplemental where these areas are 
shown?  Do we know the number of samples 
(n) in each group? 

Changed/ 

Answered 

See Appendix A and E. 

55. Line 323 also Line 346 – Fig 9? Changed Thank you for the note, we have changed 

that. 

56. Figure 9 – Is B (Slope in degrees) based on the 
DSM? Is this valid then to calculated slope 
based on vegetation? 

Changed See Appendix A. 

57. Line 404/405 – I guess you are referring to 
reflectance of the lidar from the snow/ice 
surface? If so I think you should have a 
reference here. 

Changed We agree and have added a reference to 

Deems et al. (2013), which investigates the 

influence of reflectance and scattering by 

snow and ice surfaces on the accuracy of 

LiDAR sensors. 



Appendix A 

To ensure high-quality modelling results and accurate snow depth distribution maps derived from UAS-LiDAR, 

we implemented your recommendations, including the removal of vegetation from the LiDAR-derived products 

and a re-evaluation of the modelling approach. 

Additionally, we incorporated hyperparameter tuning and cross-validation to determine the most suitable 

parameter settings for the Random Forest model. To further improve model robustness and prevent overfitting, 

we also adjusted the data splitting strategy by testing the RF model on an independent external dataset. 

 

1. Removal of vegetation from UAS-LiDAR DSM 

 

Our initial decision to retain vegetation in the modelling process assumed that small and dense vegetation, as 

present in our study sites, is difficult to remove - even from point clouds. Testing several vegetation filter 

algorithms, such as the Cloth Simulation Filter (CSF) and Statistical Outlier Removal (SOR) in CloudCompare, 

confirmed this assumption, as the vegetation was not properly removed in the resulting products. 

Additionally, we considered that vegetation significantly influences snow depth distribution by enhancing snow 

retention capacity. Therefore, we initially decided to include vegetation in the modelling process, expecting it to 

be beneficial for RF modelling. 

However, based on your suggestions, we tested the Progressive Morphological Filter (PMF) Algorithm as 

described by Zhang et al. (2003) and Jacobs et al. (2021) and obtained satisfactory results with an effective 

removal of vegetation. We applied PMF filtering using the following parameters: 

 

 Window sizes: 0.5, 1, 2, and 3    

 Thresholds: 0.05, 0.1, 0.3, and 0.5 

The extracted ground and vegetation points were saved in point cloud format. Using CloudCompare, we 

generated a DTM for each palsa using the Rasterize function. Empty cells within the point clouds were 

interpolated with a triangle max edge length value of 5.0. 

The newly created DTMs were then used to recalculate the snow depth distribution for all three test sites in GIS, 

following the methodology described in the manuscript. In our initial calculations, all negative values were set to 

zero. However, in this revised approach, we retained negative values to highlight areas where either the LiDAR 

sensor produced inaccuracies or surface degradation occurred between the summer and winter flights. 

Based on these refined DTMs, we recalculated all input parameters used in the final RF model run in SAGA GIS. 

The following 12 parameters were included: Aspect, Elevation, Channel Network Base Level, Channel Network 

Distance, Negative Openness, Positive Openness, Relative Slope Position, Slope, Topographic Position Index, 

Valley Depth, Wind Effect, Wind Exposition. 

A detailed description of these parameters is provided in Table 2. We have now focused on a single model run, 

and accordingly, we have removed descriptions of other parameters from the manuscript to ensure clarity and 

consistency. 

 

 

 

 

 

 



2. Splitting data into training and test datasets 

 

In the initial study design, we used the entire buffered SDin-situ dataset to extract the input parameters from the 

raster stack, resulting in a data frame with 5222 points. We then split this dataset into 70% training and 30% test 

data. However, this approach introduced a risk of overfitting, as each SDin-situ point was represented an average 

of 28 times in the dataset. Consequently, many points appeared in both the training and test datasets, reducing 

the independence of the validation process. 

To address this issue, we revised our study design by first separating 70% of the point features from each SDin-situ 

dataset for training and 30% for testing. Only after this separation did we extract the input parameter values for 

the training dataset, ensuring a clear distinction between training and validation data. The test dataset was 

reserved exclusively for model validation. The following extract from the R script illustrates these steps: 

 

 

After extracting the input parameters from the raster stack, the final dataset consisted of: 

 Training dataset: 3,645 points (Puolikkoniva: 1,983; Pousu: 905; Peera: 757) 

 Test dataset: 1,577 points (Puolikkoniva: 836; Pousu: 401; Peera: 340) 

To prevent errors and miscalculations, all NoData values were removed from the datasets, resulting in a final 

training dataset of 3,504 points and a final test dataset of 1,548 points for further modelling and validation. 

 

3. Hyperparameter tuning and cross validation 

 

To determine the optimal values for mtry, min.node.size, and sample fraction, we performed hyperparameter 

tuning using the mlr package in R (Bischl et al., 2016). 

To prevent overfitting, we restricted the search range for min.node.size to 10–15 and for sample fraction to 0.7–

0.85, following the recommendations of Probst et al. (2019) and Breiman (2001). Allowing an unlimited search 

range initially resulted in better model performance, but at the cost of reduced generalization, indicating signs 

of overfitting. We selected the final search range based on multiple test runs with different settings. 

For cross-validation, we tested different fold sizes to identify the most effective configuration. The best results 

were achieved using a 4-fold cross-validation. The following R script extract provides details on the tuning 

process: 

 



 

The final tuned hyperparameters were as follows: 

 mtry: 9 

 min.node.size: 10 

 sample fraction: 0.79 

 

4. Permutation Importance (PI) 

 

In our initial study design, we conducted the RF modelling once and directly used the permutation importance 

(PI) values provided by the model. 

In our revised approach, we refined this process by repeating the calculation 100 times to obtain a mean PI 

value for each input parameter, ensuring more robust and reliable importance rankings. 

The following R script extract details the implementation of this approach: 

 



 
 

We modified Figure 7 to display only the 12 selected parameters along with their respective mean PI values over 

100 iterations. Additionally, we normalized the values, setting the most important parameter (Topographic 

Position Index) to 1. 

 

 

Figure 7. Overview of normalized mean Permutation Importance values from RF modelling over 100 iterations. 

 

5. Final results and validation 

Both the RF-based and UAS-LiDAR-based results were validated using the initially separated test dataset. 

Additionally, we conducted three further RF model runs, where in each iteration, two palsa sites were used as 

the training dataset, and one was used as the test dataset. This approach further validated the generalization 

capability of the model. 



The validation results indicate that the RF-based approach now exhibits lower peak accuracies compared to the 

initial study design. However, by reducing overfitting, the results are more plausible and robust, while still 

achieving high accuracy and outperforming the UAS-LiDAR-based approach: 

 

 

 

 

 

 

 

 

We recalculated all metrics for different point groups and included the number of points per group. These groups 

were classified visually, based on orthophotos, slope data, and elevation characteristics of the respective 

locations. 

The results show that the accuracy differences between RF and UAS-LiDAR-based approaches are now less 

pronounced. However, in certain categories, such as Thermokarst and Open Area, the UAS-LiDAR-based results 

show lower accuracy, likely due to measurement inaccuracies caused by water surfaces and irregularities in areas 

with higher vegetation. 

 

 

 

 

 

 

 

 

 

 

 

Figures 5, 6, 8, and 9 have been updated based on the new results. 

Figure 5 now includes the recalculated snow depth maps. We have incorporated all areas where SDLiDAR values 

are below 0, visualizing these parts in red to highlight regions where the LiDAR sensor may have measured 

incorrectly or where degradation has occurred between flights. 

Table 3. Overview of the calculated Root Mean Square Error (RMSE), Coefficient of Determination (R2), Mean 
Absolute Error (MAE) and Standard Deviation (SD) for RF- and UAS-LiDAR-based snow depth estimations. 
Additionally, external validation results (RMSE and R2) for RF-based snow depth at each palsa site (Peera RF, 
Pousu RF, Puolikkoniva RF) are provided. 

Parameter RF LiDAR UAS Peera RF Pousu RF Puolikkoniva RF 

RMSE 18.33 23.49 16.67 21.31 27.13 

R2 0.77 0.691 0.628 0.767 0.578 

MAE 13.26 17.49 - - - 

SD 18.11 20.84 - - - 

Table 4. Overview of RMSE, R2, MAE and SD divided by validation point locations within the investigation areas. 

 RMSE R2 MAE SD 

 RF LiDAR RF LiDAR RF LiDAR RF LiDAR 

On Top 

(n = 69) 
8.33 8.33 0.841 0.730 

3.84 3.84 8.32 10.83 

Edge 

(n = 66) 
13.12 13.12 0.894 0.768 

5.85 5.85 12.82 19.09 

Thermokarst 

(n = 16) 
10.99 33.73 0.893 0.592 

5.42 30.35 10.69 25.08 

Open Area 

(n = 26) 
4.54 14.23 0.926 0.519 

1.56 9.84 4.40 12.59 



 

Figure 5. Snow depth predictions based on the RF model (left) and the UAS-LiDAR (right) at site Puolikkoniva (a, b), Pousu (c, 
d) and Peera (e, f) palsas. Red points are showing the in-situ snow depth measurement locations. 

 



In Figure 6 we inserted the new calculated difference maps and we also included the parts with negative values 

in red: 

 

Figure 6. Snow depth differences between modelled and UAS LiDAR results at a) Puolikkoniva, b) Pousu and c) Peera palsas. 

Figure 8 shows the scatter plots based on the 30% test dataset. Here we used only the single values of the SDin-

situ, not considering the values within the buffer areas of the test data. We decided to do it like that, to obtain a 

very fine validation of both methods: 

 

Figure 8. Scatter plots with regression lines for UAS-LiDAR-derived and RF-modelled snow depths, based on the external test 
dataset. 



Figure 9 has been updated to reflect the new results. Additionally, we have incorporated the calculated slope 

derived from the DTM of Pousu palsa. 

 

Figure 9. Explanation of differences between UAS LiDAR-derived and RF-modelled snow depths. 



Appendix B 

 

Figure 2. Climate chart of Kilpisjärvi (FMI, 2022). Dotted line shows 2 m above ground temperature in °C, dashed line shows 
precipitation in mm and solid line shows snow depth in cm. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix C 

 

Figure 4. Snow depth measuring points within the investigation sites at Puolikkoniva (a), Pousu (b) and Peera (c) palsa 
illustrating different methods for recording snow depth (transects, randomized, crossed). 

 

Appendix D 

 

Figure A1. Histogram of SDin-situ points and respective statistics per palsa site. 

 



Appendix E 

 

Figure A2. Overview of classification of all SDin-situ points into classes Edge, On Top, Open Area and Thermokarst. 

 

Appendix F 

 

 

 

 

 

 

 

 

  

 

 

Table A3. Correlation between each input parameter and RF-modelled snow depth.  

Parameter Correlation to SDRF Parameter Correlation to SDRF 

Aspect 0.09 Relative Slope Position -0.49 

Elevation -0.12 Slope 0.08 

Channel Network Base Level -0.09 Topographic Position Index -0.87 

Channel Network Distance -0.45 Valley Depth 0.50 

Negative Openness 0.22 Wind Effect -0.55 

Positive Openness -0.50 Wind Exposition -0.80 
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