Point-by-point replies to the question and comments by Reviewer 1

Dear Reviewer 1,

we are pleased to submit the replies to your questions and are thankful for the insightful comments

and many good suggestions, as well as we are grateful for your time and effort in providing valuable

feedback. We believe that addressing the issues raised by you, have now substantially improved our

manuscript.

We hope our answers meet your approval. Your comments and our point-by-point responses are

presented below. Please note, that we added a detailed description of a new RF modelling approach

in the appendix A.

2. Why was a Digital Surface Model and not a
Digital Terrain Model used for calculating the
ground in the no-snow data, and how does

Reviewer #1 comments Action Response
1. The paper “Comparing High-Resolution Snow | Answered We appreciate your recognition of the
Mapping Approaches in Palsa Mires: UAS relevance of our study and acknowledge the
Lidar vs Machine Learning” by A. Stormer et concerns raised regarding the optimism of the
al. aims to quantify the accuracy and
. . Random Forest model results. In response to
efficiency of mapping snow depth over three ]
palsas in northern Finland, in a spatially your suggestions, we have conducted an
continuous raster-based map. Specifically, additional model run incorporating the
they choose two methods to compare: 1) recommended adjustments. Specifically, we
using a Lidar sensor on a drone with two have removed vegetation from the initial
acquisition dates of data (no snow and snow), DSM and applied hyperparameter tuning as
and 2) modelling'snow depth based splely on well as cross-validation to the Random Forest
@ dlg.ltal eIevat|.0n mOdeI. and u,?mg the model. The updated results, which provide a
machine learning algorithm Random
Forest”. In situ data of snow depth are more robust evaluation, are presented in
collected and used for training and validation. Appendix A.
It is an interesting idea, and the need of
mapping snow-depths over permafrost
features is of great interest. It is also hard
work, as noted by the authors in the
Discussion, and the contribution of this paper
will be of use for those wishing to map snow
cover over terrain that has large variations
over short distance, such as palsas. The
conclusion was that the Random Forest
model gave superior results as compared to
the UAV Lidar. However, | have some major
questions about the process and conclusions
that must be addressed, as | question the
overly optimistic result presented from the
Random Forest model. The two larger issues
to be addressed are below, followed by
general and specific comments.
Larger issues that need to be addressed: Changed/ We have provided detailed answers to the
two larger issues in Appendix A.
Answered




this affect the snow-depth measurements,
and even the topographic derivatives used in
the RF Model?

If the authors used cross-validation and
present it as the accuracy of the model, then
this result is over-optimistic and the
comparison of UAV-Lidar to the Random
Forest model result is biased and not a fair
comparison to make.

1- Use of a DSM to represent ground level - It
appears that the authors have made a Digital
Surface Model (DSM) from the Lidar point
data to represent the ground, rather than
create a Digital Terrain Model (DTM) from the
Lidar data. The DSM represents the height of
all objects on the surface, and if there are
shrubs on the palsas (which is typically the
case in degraded palsas), they may be 35-50
cm tall. Therefore if a DSM was used to
represent the ground in August, while insitu
snow-depth measurements were taken from
the ground up, the reported snow-depth will
be highly affected by the height of the
vegetation, and this will then vary over the
whole surface of the palsa. If the authors have
a reason for using a DSM rather than DTM, it
is not clear in the article, and it needs to be
motivated. Using a DSM will result in error in
the snow depth measurements as presented.
To create a DTM from your existing data is not
difficult. If you look at the paper by Jacobs et
al.,, 2021, you will see reference to papers
that discuss the potential errors of snow
depth measurements when DSMs are used.

In addition if the DSM was used to calculate the
Topographic derivatives used as input parameters to
the RF model, are these derivatives valid?

Changed/

Answered

See Appendix A.

2- Cross validation - As | understand what has
been done, the results of snow-depth for UAV
Lidar and RF Modelling have been evaluated
differently. In the case of UAV Lidar, the in
situ data act as a fully independent data set
used for calculating RMSE and the accuracy of
the snow-depth measurements. In the case of
the RF Modelling, the in situ data are used for
training of the model, and the validation of
the model as presented (see Fig 8) seems to
have been made using a 10-fold cross-
validation. In any case, the latter means that
the data used to create the model are also
used to evaluate the model. Cross-validation
is never an assessment of the resulting map
accuracy but is an assessment of the fit of the
model. So it is no surprise that the authors get
seemingly much better results for the RF

Changed/

Answered

See Appendix A.




Model —the comparison is biased in the favor
of the RF Model. Figure 8 shows this clearly,
and to me is misleading. So the conclusion, as
in the Results on Line 367/368, that the RF
Model is showing its strength without high
bias, | think is not valid.

The only way to fairly compare the assessments of
these two would be to develop a model using in situ
data from one palsa and apply the RF model developed
to the other two palsas and assess the accuracy using
the in situ data from those two palsas. Or, you could
take insitu data from half of each palsa and developing
training and accuracy datasets. (Note that if you
consider taking a random selection of the insitu data
for training/accuracy it is not optimal, since you will
have spatial autocorrelation issues due to the
proximity of the points, which is why the previous
suggestions are better. )

Other general

6. The title: Rather than using the term | Changed We agree with your suggestion to change the
“Machine Learning”, I think it would be better specific term “Machine Learning" to
to refer to this as “Modelling”, because it “Modelling”.
doesn’t make sense to me to compare it to
the specific algorithm that is used, but rather
that you have created a model to predict
snow depth.

7. There have been scientific articles that have | Changed We acknowledge the importance of previous
mapped snow with UAV Lidar, eg, Jacobs, J.M. studies that have applied UAV LiDAR for snow
et al., 2021 “Snow depth mapping with depth mapping and appreciate your
unpiloted aerial system lidar observations: a . - . .

. ) suggestion. Our initial focus was primarily on
case study in Durham, New Hampshire, q . he feasibili ¢ deoth
United States” in The Cryosphere. emon'stratut\gt e feasibility of snow e?t
(https://doi.org/10.5194/tc-15-1485-2021). modelling using Random Forest and assessing
While this may be the first paper to be its implications for palsas. However, as the
published using UAV Lidar for snow on a study evolved, the focus shifted more
review and refer to articles that have Random Forest modelling and LiDAR-based
generally applied UAV Lidar mapping of snow . .

snow depth estimation. In response to your
over other landscape types.

suggestion, we have incorporated additional
references on UAV LiDAR-based snow depth
mapping. Specifically, we adopted the
vegetation removal approach inspired by
Jacobs et al. (2021) and further reviewed
relevant studies, including those by Avanzi et
al. (2020) and Harder et al. (2020).

8. Section 2.1 is lacking a description of | Changed We have added a description of the typical

vegetation heights on the palsas.

heights of common palsa vegetation. Dwarf
birches are 15 and 60 cm (Betula nana) and
dwarf shrubs 5 — 20 cm, while sphagnum




moss (up to 3 cm) and lichens (<3 cm) are
considerably smaller. These height estimates
are based on our field observations.

The following points all refer to Section 3.1 — Data

collection
9. Did you Post-Process the UAV Lidar data with | Changed/ We used RINEX data for post-processing the
RINEX data from a base station? If so, what LiDAR flight trajectory in POSPac. For both
was the base station (ie, source of the RINEX | Answered datasets, we obtained the RINEX data from
data)? the National Land Survey of Finland (NLS)
CORS station in Kilpisjarvi (KILP 2147250.4266
820562.0462 5930136.8831). Further details
can be found on the NLS website. This
information has been incorporated into the
newly added paragraph 3.1.1 (see comment
#17).
10. Parameters for the UAV flights are needed, | Changed/ We have included additional details about the
eg, flying altitude, were cross-wise flights LiDAR flights in the newly added paragraph
used? Knowing the directions of the flight | Answered

lines is important because there are some
Lidar measurements of 0 cm snow depth, and
50-60 cm snow depth in the insitu data, and
it might be explained (possibly?) by not
acquiring Lidar data in multiple angles — but |
am not sure what has been done.

3.1.1 (see comment #17).

The flight altitude during the summer data
collection was 30 m for each palsa, while in
winter, the flight altitude was 60 m. All flights
had a 50% side overlap. Cross-flights were not
conducted, as we determined that they
would not provide additional valuable data
due to the specific environmental conditions
(flat terrain with low vegetation). The flight
direction was primarily along the longitudinal
axis of the palsas, except for the summer
flight over Peera palsa, which followed an
east-west orientation. To improve clarity, we
have included the flight trajectories in Figure
4 (see Appendix C). Additionally, we have
provided point density values for each flight
in m2.

The RGB flights were conducted using an
Autel EVO Il Pro V2 UAV at a flight altitude of
80 m, with a 75% side overlap for each flight.
Initially, we had stated that the orthophotos
were acquired with the integrated RGB
sensor of the LiDAR mapper. However, this
was a misunderstanding, and we have now
corrected this statement. The orthophotos do
not contribute specific data to the analysis
but were solely used for figure creation.

Regarding the occurrences of 0 cm snow
depth in the UAS-LIDAR data: These values




result from our initial processing step, in
which we set all negative values in the
computed DSM to zero. This aspect is now
explicitly mentioned in Appendix A, and we
have adjusted this approach in the updated
modelling.

11.

Line 151/152 says that GCPs were set out.
Was this for both the Lidar and the RGB
images? How many GCPs? And then, what
was the horizontal and vertical accuracy of
your data — both the Lidar and the RGB
images?

Changed/

Answered

For all winter flights (LiDAR and RGB) and
palsa sites, four GCPs were used, positioned
around the palsa. The accuracy for each GCP
is between 1-2 cm.

We have established several permanent GCPs
(measured with RTK-GPS) located on known
points of large stones in the study sites.
Permanent GCPs have been established
because we are monitoring changes in the
palsas by collecting drone data annually since
past 8 years. The accuracy of these RTK-GPS-
measured GCPs is between 1-2 cm. For all
UAS-LIDAR summer flights we utilized these
GCP’s: three for Peera, 20 for Pousu, and 30
The RGB flights were
conducted using the drone's internal RTK

for Puolikkoniva.

system. However, we consider the accuracy
of these flights to be not relevant in the
context of this study, as the orthomosaics are
used solely for overview purposes.

We have added this information to section
3.1.1.

12.

Line 153 — Change orthopictures to images,
since the raw images are not orthorectified
yet. That’s a later step.

Changed

We agree and changed the term.

13.

Line 157/158 “Structure from Motion
techniques were not applied...” | do not
understand why this sentence is here. If you
created an orthophoto, which you say you do
in the next sentence, then you have applied
photogrammetric image matching (how you
define SfM and if you define it differently
than photogrammetric image matching
determines what term you like to use). But
why even say what you haven’t done? State
what you have done to produce the
orthophoto.

Changed

We acknowledge the potential for
misunderstanding and have clarified our
statement in lines 157/158. Specifically, we
used SfM techniques solely for the creation of
orthophotos. As noted in comment #10, there
was an initial misunderstanding regarding the
generation of the orthophotos. We have now
revised this section to ensure clarity and

accuracy.

14.

Line 164 — | think you mean snow depth
rather than snow cover.

Changed

We agree and changed the term.

15.

Line 166 — RTK-GPS.

Changed

We agree and added “GPS”.

16.

It says on line 173 that there are randomized
points on the edges of Puolikkoniva, but | do
not see very many of these (maybe 5 at

Changed/

In Puolikkoniva, 20 randomized points are
located at the edges, which corresponds to
one fifth of the total point dataset for this




most?). In hindsight, | would guess that you | Answered palsa. We consider this distribution to be

would want to have made cross-wise adequate.

transects on this palsa. Take this up in the

Discussion if so. To provide a clearer visualization of the point
distribution, we have added an additional
figure to the appendix, categorizing the
points by classes. In this figure, we have also
included an orthophoto without snow cover
to enhance the visibility of point distribution
in the most extreme areas. Furthermore, we
have adjusted the point style to improve
differentiation and recognition (Appendix E).

Reference (in situ) data
17. | think you need a separate section to | Changed/ We have revised the manuscript to create a

describe Reference data collection — either clearer structure for data collection. In

two sub-sections under 3.1 or else 3.1 for UAS | Answered particular, we have introduced two separate

data c-ollection and 3.2 for Reference data subsections: 3.1.1 for data collection at

collection. Under the reference data ] . . .

collection, there should be a better universities of applied sciences and 3.1.2 for

description regarding how the insitu snow the collection of reference data.

depth measurements were made,

specifically, was the GPS Z-measurement In response to your suggestion, we have

made from the ground level? Was it a expanded the description of the reference

yardstick, and was a level used to make sure data collection. The snow depth

it was normal to the surface? measurements were carried out with a heavy
wooden vyardstick. GPS-Z measurements
were not taken from the ground, as this
approach is subject to large uncertainties. In
addition, no level was used to ensure that the
measurements were perpendicular to the
surface. These methodological details were
explicitly mentioned in the revised section to
improve transparency and reproducibility.

18. For the insitu data you need at some point to | Changed/ We have expanded our discussion on the
say that these also may have errors and what uncertainties associated with snow depth
these errors may be caused by, and how they | Answered

may affect your result. Since the RF model is
completely based on the insitu data, the
errors of the insitu data are simply
propagated, but do not affect the evaluation.
For validating the Lidar data derived snow
depths, the potential measurement errors of
the insitu data are only accounted for in the
evaluation.

lines 409-411. In this
revision, we have explicitly acknowledged

measurements in

that measurement errors not only influence
the modelling results but also affect their
evaluation.

statistical We have critically

assessed the extent of this impact.

However, we still consider that manual snow
depth measurement is the most accurate
method available, with only minor deviations.
Given the overall reliability of this approach,
we do not expect these uncertainties to
significantly affect the conclusions of the
study.




19.

Also, think about whether the section on UAS
data collection is only about data collection or
if you want to describe the processing of the
data here —in which case you might just name
it “UAS data” or “UAS data collection and
processing”.

Changed

We agree with your suggestion and have
3.1.1 to “UAS Data
Collection and Processing” to better reflect its

renamed section
content. As noted in previous comments, we
have also expanded this section to include
additional details on both the data collection
and processing procedures.

20.

The in situ data particularly in the case of the
largest palsa Puolikkoniva were run in two
transects lengthwise along the palsa, but not
crosswise, over the edges where the deepest
accumulation of snow may have been.
Therefore the values where some of the
largest differences are between the Lidar and
the RF Model cannot really be assessed,
making the assessment incomplete — the
shortcoming must be acknowledged.

Answered

We respectfully disagree with this point. As
discussed in comment #28, we believe that
our dataset is well-suited for the objectives of
this study. Our
included data points in key areas of the palsa,

measurement strategy
such as the summit, steep slopes, and internal
trenches, ensuring that the primary variations
in snow depth were captured.

However, we acknowledge that extreme
values may still have been missed due to the
inherent limitations of in situ snow depth
We have addressed this
in the discussion part about

measurements.
explicitly
limitations.

21.

Also the Lidar may measure extremes in
snow-depths, while the model will not if it
does not have representative data for the
extremes. Therefore there will be more
variability in the Lidar data, but we cannot tell
which is “wrong”.

Answered

As mentioned in response to the previous

comment, we believe that our dataset
adequately captures most of the extreme
snow depth variations. However, we
acknowledge that some extreme values may
not have been fully represented in the model
in the

collection. Therefore, we address this issue in

due to limitations in-situ data
the limitations section and emphasize the
differences in variability between LiDAR

measurements and the RF model.

Section 3.2 — RF algorithm

22.

The authors state on Line 189 that no explicit
hyperparameters were specified. So this
means that they were not analyzed, although
the outcome of the model is what is being
assessed as the main objective of the article.
It is not difficult to assess the
hyperparameters using Grid-Search or
another comparable function.

Changed/

Answered

See Appendix A.

23.

Permutation mode was used for variable
importance — do you know how this works? Is
it a single run of the RF model? When you run
Pl repeatedly, do the same variables have the
same importance? The random nature of RF
often requires running variable importance
(or in this case PI) many times (eg, 100) and
taking an average. Even then, one needs to be

Changed/

Answered

See Appendix A.




careful with their interpretation of variable
importance.

24,

For Line 187-188 - I'm not really sure what
you have done with the model and the in situ
data. You state that you have split 70%
training and 30% test. Is this used by RF for
internal cross-validation of the model (if you
split the data 70/30 in the RF model, then it is
likely this is how it is being used). Is this done
with replacement? If you have removed 30%
of the data for independent evaluation, then
you need to clearly state this, but | don’t think
this is what you have done.

Changed/

Answered

We separated the dataset into 70% training
data, which was used for the Random Forest
model, and 30% test data. The test dataset
was not utilized for internal cross-validation
but was exclusively used to compute
performance metrics, including RMSE, R?,
MAE, and standard deviation. Further details
on this methodology are provided in

Appendix A.

25.

Line 184 — The dependent variable for your
model is snow-depth.

Changed

We agree, and to clarify this, we have
removed the term “dataset” in line 184.

26.

Line 185 —“Input parameters” are mentioned
here but we don’t know what they are until
later. Couldn’t you refer to Table 2 here?
Otherwise we are left wondering what the
parameters are.

Changed

We agree and added Table 2 as reference.

27.

Line 189 - delete “precise” — This is a
judgmental word — leave it to your results to
be the judge of that.

Changed

We agree and removed the word precise.

28.

In addition, RF models are sensitive to
imbalance in the training data, and also do
not extrapolate beyond the minimum and
maximum snow-depth values (or whatever
the target variable may be). How are your
results affected by this, and how might others
in the future be affected by this and what
would your recommendations be to future
applications of this method?

Answered

We acknowledge the sensitivity of Random
Forest models to imbalances in the training
data, as well as their inability to extrapolate
beyond the observed minimum and
maximum values of the target variable. To
ensure the robustness of the model, it is
crucial to capture a dataset that adequately
represents the full range of snow depths

within the study area.

A thorough understanding of the
investigation area is essential, and snow
should

target extreme locations, such as exposed

depth measurements specifically
areas on the palsa summit and accumulation
zones along the edges. However, conducting
such measurements in these environmental
conditions is both time-consuming and

labour-intensive.

For future applications of this method, we
recommend careful planning to ensure
representative data collection. This includes
identifying extreme locations in advance by
analysing orthophotos and previously
acquired digital elevation models (DEMs) to
optimize the placement of measurement

points. We have added this to our discussion.




Section 3.3 -

29.

The first sentence needs rewriting. First of all,
which “collected airborne data” is referred to
here? | assume it was the August DSM from
Lidar that was used? It is not stated. Were
these data processed differently than what
was described in Section 3.1? Declare which
DEM you are working with and say specifically
that you are creating parameters from this.
What happens if you use a DSM and create all
of these topographic derivatives as
parameters? Are those new derivatives valid,
such as Topographic Wetness Index, if they
are based on the surface elevation which
includes vegetation? This must be well-
motivated if the authors believe that there is
a valid reason for this.

Changed/

Answered

We acknowledge the need for greater clarity
in the first sentence and have specified that
we are referring to the summer dataset. To
improve transparency, we have moved this
information to the newly added section on
UAS-LiDAR processing (Section 3.1.1).

Regarding the influence of vegetation on the
derived topographic parameters, we have
addressed this aspect in previous comments
and provided further details in Appendix A.

30.

Line 210 —If a 0.3 m buffer was used were the
values for any parameters averaged within
this area?

Answered

The input parameters were not averaged
within the 0.3 m buffer areas. Instead, each
input parameter value was directly linked to
the corresponding in-situ snow depth (SDip.
situ) measurement. Consequently, each snow
depth value is associated with an average of
28 input parameter values.

For  Puolikkoniva, 100 depth
measurements were linked to a total of 2,819

snow

input parameter observations, while for
Peera and Pousu, the corresponding values
were 39 to 1,097 and 46 to 1,306,
respectively. In total, 5,222 points were
generated for the Random Forest model, with
70% used for training and 30% for validation.
This approach was chosen to reduce noise
and smooth the resulting dataset.

You can find further information in Appendix
A.

31.

Table 2 — 12 parameters were used, but 21
are in the table. Could you indicate in a way
what parameters were used?

Changed

We have described the input parameters
used for each model run in lines 205-209.

However, based on your suggestions and the
revised model design, we have decided to
focus on a single model run. As a result, we
used only 12 parameters and removed the
information related to previously unused
parameters and former model runs. The
section on input parameters and model runs
has been updated accordingly.

32.

For the Discussion: When you made the insitu
measurements, it was August, and the palsa

Changed/

We have already incorporated the findings of
Renette et al. (2024) into our discussion (lines




had likely subsided. Renette et al., 2024 show | Answered 384-387). However, based on vyour
that the difference between elevation in comments, we have expanded this discussion
September (likely maximum thaw depth of to explicitly address the potential impact of
the Active Layer) and April (minimum thaw) .
was on average 15 cm, and up to 30 cm in seasonal elevation changes on the accuracy
some areas, albeit on a taller palsa than in the of SDupar measurements. In contrast, the SDrr
study presented here. In any case, this may results should be less affected, as the
mean that trying to measure snow depth modelled snow depth is independent of
using a DTM from September may introduce seasonal elevation fluctuations.
errors if the terrain is actually elevated some
cm more than this. This is hard issue to solve Furthermore, we have considered this aspect
with UAV Lidar, since you would need to be in when refining our overall evaluation of the
place to create a DTM right after snow-melt, comparison between RF and LiDAR results. As
and all snow would need to have melted. So, . .
you need to discuss what implications this has you pomt'ed of'lt’ acc.:urately capt.urmg. show
to your results. Also, since you have RTK-GPS depth using LiDAR is only possible if data
data, and you have measured to the ground | collection  occurs  immediately  after
assume, you actually have a dataset where snowmelt, once all snow has disappeared.
you could compare the Z-measurement from
March to the DTM from August, and get an Regarding the RTK-GPS measurements, we
estimate of the difference in height between did not measure directly to the ground.
the max-thaw and min-thaw state of the During fieldwork, we observed that the thick
palsa. and frozen vegetation layer made it
challenging to reach the true ground surface
using the RTK stick. Instead, we found that
the fine yardstick provided a more accurate
way to measure snow depth. Consequently,
we are unable to compare Z-measurements
within our datasets. However, we have
incorporated this consideration into our
discussion of future research implications
(lines 386—387).
Language
33. It's my feeling that some value judgement | Changed We reviewed the manuscript for judgemental
words don’t belong in a scientific article. Such words and changed these accordingly.
as “exemplarily” on line 53.
34. Line 38 — deepening instead of growth. Line | Changed We changed these words.
58 — deeper instead of higher.
35. Otherwise some minor grammatical fixes | Changed We will have a final grammar check after
once the paper is revised can be looked over. implementing all changes to the manuscript.
Specific
36. Line 35 — it is not only bound by peatland | Changed We agree and added “and driven by climatic
presence but also climatic parameters parameters”.
37. Line 69 — “Satellite data” only names the | Changed We acknowledge the need for greater

platform. What kind of satellite data are you
referring to? Optical? Radar? That is the more
important aspect. Similar issue is on line 74
where the sensor type should be mentioned
and not just the platform which is UAS/UAV.
Look through your paper for these kind of
omissions.

specificity regarding the types of satellite data
referenced. In the respective sections, we
now explicitly state that we are referring to
both optical and radar satellite data.




Additionally, we have specified the type of
UAS sensor used in each mentioned study to
ensure clarity. These adjustments have been
implemented in lines 9, 14, 49, 71, 74, 75, and
95.

38. Line 70 — change technical limitations to | Changed We agree and changed the term.
properties

39. Line 86 —the authors mention 3 methods, but | Changed Thank you for highlighting this inconsistency.
the title takes up two. The third method We have revised our focus to explicitly center
seems to be the insitu data, but that has been on the two primary methods - LiDAR-based
used to train the RF Model, and | don’t think . . .

. snow depth estimation and RF modelling.
you are really assessing the accuracy of the . .
method, so | would stick to the two methods. Accordingly, we have adjusted the structure
of our objectives and intentions.

40. Line 89 — delete simulation. You are just | Changed We agree and deleted “simulation”.
modelling.

41. Table 1 — the photos are rather small. Can | Changed We agree and changed the caption and
they be made bigger. Put the date (day- increased the size of the images.
month-year) of the photos in the Table text.

42. Line 129 - For what year or years is that the | Changed We inserted “For the time period 1991 -
annual mean temperature? 2020, ...".

43. Line 137 — For what location is that the | Changed This value is specific to Kilpisjarvi, and we
duration of permanent snow cover? have incorporated it into the text.

44, Figure 2 — What is shown in Fig 2? It needs to | Changed/ Figure 2 presents the average monthly snow
be said clearly in the Fig text. Is this an depth (cm), temperature (°C), and
average value for 1990-2020? It would be | Answered

very helpful to know what the climate
conditions were for the years in which you
acquired the snow data. Was it a very snowy
year? Windy in the days before you visited?
Warm temperatures so that the snow melted
some? Knowing these conditions can help us
to explain any differences between the
various results, particularly if the model is
solely based on the DEM. | see you mention
this on Line 401/402.

precipitation (mm) recorded at the Kilpisjarvi
weather station for the period 1990-2020.
This timeframe was selected to align with the
30-year reference period established by the
World Meteorological Organization (WMO).
However, we recognized that the appropriate
reference period should be 1991-2020 and
have updated the accordingly
(Appendix B).

figure

The purpose of this figure is to provide a
general overview of the climatic conditions in
the study area. Since snow depth data were
collected on only two days (March 23-24,
2023) under stable weather conditions, we do
not believe that presenting weather data
from the preceding days or the entire winter
season of 2022/23 would provide additional
meaningful insights.

To clarify this, we have explicitly stated in line
141 that all snow depth measurements were
conducted on March 23-24, 2023.




45.

Line 141 — Write which day the data were
acquired. If you cannot fit it reasonably in the
text, because it was different dates for
different palsas, | suggest you putitin Table 1
— dates for image and Lidar acquisition.

Changed

We have added the specific dates of data
acquisition in line 141. The UAS-LIDAR data
were collected on August 27, 2022 (summer)
and March 23, 2023 (winter). Snow depth
measurements were conducted on March 23,
2023, for Puolikkoniva and Pousu, and on
March 24, 2023, for Peera.

Additionally, we have included the exact
dates of LiDAR data acquisition in Table 1 to
ensure clarity and consistency.

46.

Several of the Figures have such small text
that they are difficult to read. Eg Fig 3.

Changed

We have increased the font size for Figures 3,
6,7 and 8.

47.

Section 3 —Is August the season for maximum
thaw? It’s not September? Does Verdonen et
al. 2023 state that August is the max ALT? If
it is August, | think you should more
specifically say the end of August. If you
aren’t sure or don’t have a reference to back
it up, then maybe it is more reasonable to say
that the end of August is near max ALT.

Changed

We agree that this statement requires greater
accuracy. We have revised it to indicate that
the maximum ALT is typically reached
between the end of August and mid-
September, depending on annual weather
conditions and the onset of the freezing

season.

48.

Line 231 — 240 feel like they belong in the
section describing the RF model.

Changed

We agree and moved this part to the
description of the RF algorithm and modelling
data preparation.

49.

Line 231/232 - Was the 10-fold cross-
validation done when creating the initial RF
model, or was this something that was done
afterwards and used as the “validation” data
presented in Figure 8? If it is the latter, you
cannot say that it was used to reduce over-
fitting in the model? There is an option in
Random Forest to use cross-validation to
create the model, and that is one tool of
several to reduce over-fitting. Other ways to
reduce over-fitting is to limit tree depth, -- by
the way, in Section 3.2 you mention target
node depth, but | don’t see in the caret
package what that refers to. Is it “maxdepth”?
In that case | suggest you name the
parameter in parentheses.

Changed/

Answered

See Appendix A.

50.

Line 236/237 — What are “the initially
calculated values”? You are using the insitu
data to train a RF model and then evaluating
the model based on a cross-validation that
using that same insitu data. See my point #2
under “Larger issues”.

Changed/

Answered

See Appendix A.

51.

Line 273/274 — “Only a few narrow structures
with significantly higher snow can be
recognized based on the UAS LiDAR data” — |
do not know what this sentence is about.

Changed

Our intention was to highlight that only small
within the study
significantly higher snow depths in the UAS-

areas region exhibit

LiDAR dataset. To clarify this, we have revised
the sentence as follows:




“On the other hand, only small areas with
significantly higher snow depth in the UAS-
LiDAR dataset compared to the RF dataset are
detectable in certain regions surrounding the

reflectance of the lidar from the snow/ice
surface? If so | think you should have a
reference here.

palsas.”

52. Line 281 and Fig 7 and Table 3 — | don’t think | Changed We agree and changed the text, figure and
we need to see all 3 model runs, just the best table accordingly. See comment #31 and
one. Appendix A.

53. Line 285 — rather confusing that it is stated | Changed/ Please refer to our previous responses
that Elevation was removed, and now it is regarding the removal of the initial model
important. Also Fig 7 text is impossible to | Answered runs. As a result, it is no longer necessary to
read because it is so small. .

elaborate on the exclusion and
reintroduction of the Elevation parameter.
For clarity regarding our initial approach:
Elevation was excluded in the second model
run because all other input parameters were
derived from it. This step was taken to assess
whether Elevation might introduce bias into
the modelling results. After analysing the
outcomes, we found no indication of such
bias and subsequently decided to retain
Elevation as an input parameter in the final
model.

54. Line 295 and Table 4 — these areas of “Top”, | Changed/ See Appendix A and E.
etc, could you have a figure somewhere —
maybe supplemental where these areas are | Answered
shown? Do we know the number of samples
(n) in each group?

55. Line 323 also Line 346 — Fig 9? Changed Thank you for the note, we have changed

that.

56. Figure 9—1s B (Slope in degrees) based on the | Changed See Appendix A.

DSM? Is this valid then to calculated slope
based on vegetation?
57. Line 404/405 — | guess you are referring to | Changed We agree and have added a reference to

Deems et al. (2013), which investigates the
influence of reflectance and scattering by
snow and ice surfaces on the accuracy of
LiDAR sensors.

Appendix

In this section, we provide additional information addressing comments #4, 5, 10, 16, 22, 23, 24, 44, 49, 50, 54,
56 from Reviewer 1 and #5, 6, 8, 10, 38, 40, 41, 52, 53, 63, 66 from Reviewer 2.

We sincerely appreciate your insightful comments and suggestions, which have significantly contributed to

improving both the modelling approach and the overall quality of the manuscript.




Appendix A

To ensure high-quality modelling results and accurate snow depth distribution maps derived from UAS-LiDAR,
we implemented your recommendations, including the removal of vegetation from the LiDAR-derived products
and a re-evaluation of the modelling approach.

Additionally, we incorporated hyperparameter tuning and cross-validation to determine the most suitable
parameter settings for the Random Forest model. To further improve model robustness and prevent overfitting,
we also adjusted the data splitting strategy by testing the RF model on an independent external dataset.

1. Removal of vegetation from UAS-LIDAR DSM

Our initial decision to retain vegetation in the modelling process assumed that small and dense vegetation, as
present in our study sites, is difficult to remove - even from point clouds. Testing several vegetation filter
algorithms, such as the Cloth Simulation Filter (CSF) and Statistical Outlier Removal (SOR) in CloudCompare,
confirmed this assumption, as the vegetation was not properly removed in the resulting products.

Additionally, we considered that vegetation significantly influences snow depth distribution by enhancing snow
retention capacity. Therefore, we initially decided to include vegetation in the modelling process, expecting it to
be beneficial for RF modelling.

However, based on your suggestions, we tested the Progressive Morphological Filter (PMF) Algorithm as
described by Zhang et al. (2003) and Jacobs et al. (2021) and obtained satisfactory results with an effective
removal of vegetation. We applied PMF filtering using the following parameters:

e Window sizes: 0.5,1, 2,and 3
e Thresholds: 0.05, 0.1, 0.3, and 0.5

The extracted ground and vegetation points were saved in point cloud format. Using CloudCompare, we
generated a DTM for each palsa using the Rasterize function. Empty cells within the point clouds were
interpolated with a triangle max edge length value of 5.0.

The newly created DTMs were then used to recalculate the snow depth distribution for all three test sites in GIS,
following the methodology described in the manuscript. In our initial calculations, all negative values were set to
zero. However, in this revised approach, we retained negative values to highlight areas where either the LiDAR
sensor produced inaccuracies or surface degradation occurred between the summer and winter flights.

Based on these refined DTMs, we recalculated all input parameters used in the final RF model run in SAGA GIS.
The following 12 parameters were included: Aspect, Elevation, Channel Network Base Level, Channel Network
Distance, Negative Openness, Positive Openness, Relative Slope Position, Slope, Topographic Position Index,
Valley Depth, Wind Effect, Wind Exposition.

A detailed description of these parameters is provided in Table 2. We have now focused on a single model run,
and accordingly, we have removed descriptions of other parameters from the manuscript to ensure clarity and
consistency.



2. Splitting data into training and test datasets

In the initial study design, we used the entire buffered SDi,sit, dataset to extract the input parameters from the
raster stack, resulting in a data frame with 5222 points. We then split this dataset into 70% training and 30% test
data. However, this approach introduced a risk of overfitting, as each SDj,itu point was represented an average
of 28 times in the dataset. Consequently, many points appeared in both the training and test datasets, reducing
the independence of the validation process.

To address this issue, we revised our study design by first separating 70% of the point features from each SDjn-situ
dataset for training and 30% for testing. Only after this separation did we extract the input parameter values for
the training dataset, ensuring a clear distinction between training and validation data. The test dataset was
reserved exclusively for model validation. The following extract from the R script illustrates these steps:

#===== Function to split training and test dataset =====
split_shapefile <- function(shp) {
set.seed(42) # Ensure rep ibiTlity
num_samples <- nrow(shp) Get the number of samples
train_indices <- sample(num_samples, size = round(0.7 num_samples)) # Select f the samples for training
test_indices <- setdiff(1:num_samples, train_indices) # The remaining 30% for testing
shp_train <- shp[train_indices, ] # Create training set
shp_test <- shp[test_indices, ] # Create te
return(list(train = shp_train, test = shp_test)) # Return the split datasets as a list
# Splitting the dataset for all three locations
Isplit_pousu <- split_shapefile(shp_pousu)
split_peera <- split_shapefile(shp_peera)
split_puolikkoniva <- split_shapefile(shp_puolikkoniva)
# combine training and test datasets for all Palsas
shp_train_all <- rbind(split_pousu$train, split_peeraStrain, split_puolikkonivastrain)
Ishp_test_all <- rbind(split_pousu$test, split_peerastest, split_puolikkonivastest) # Merge

After extracting the input parameters from the raster stack, the final dataset consisted of:

e Training dataset: 3,645 points (Puolikkoniva: 1,983; Pousu: 905; Peera: 757)
e Test dataset: 1,577 points (Puolikkoniva: 836; Pousu: 401; Peera: 340)

To prevent errors and miscalculations, all NoData values were removed from the datasets, resulting in a final
training dataset of 3,504 points and a final test dataset of 1,548 points for further modelling and validation.

3. Hyperparameter tuning and cross validation

To determine the optimal values for mtry, min.node.size, and sample fraction, we performed hyperparameter
tuning using the mir package in R (Bischl et al., 2016).

To prevent overfitting, we restricted the search range for min.node.size to 10-15 and for sample fraction to 0.7—
0.85, following the recommendations of Probst et al. (2019) and Breiman (2001). Allowing an unlimited search
range initially resulted in better model performance, but at the cost of reduced generalization, indicating signs
of overfitting. We selected the final search range based on multiple test runs with different settings.

For cross-validation, we tested different fold sizes to identify the most effective configuration. The best results
were achieved using a 4-fold cross-validation. The following R script extract provides details on the tuning
process:



#===== Hyperparameter Tuning with tuneRanger (Regression) =====

# Define the regression task
task <- makeRegrTask(data = all_train, target = "Class")

# Define the cross-validation strategy
cv_desc <- makerResampleDesc("cv", iters = 4) # 4-fold cross-validation

# Define the Random Forest learner with hyperparameters as tuning options
Tearner <- makeLearner(“regr.ranger”, num.trees = 1000)

param_set <- makeParamSet(
makeIntegerParam("mtry", lower = 2, upper = ncol(all_train) - 1), # Number of variables to consider at each split
makeIntegerParam("min.node.size", lower = 10, upper = 15), # Minimum number of observations per node
makeNumericParam(“sample.fraction”, lower = 0.7, upper = 0.85) # Proportion of samples used in each tree

)

# Define the tuning control (e.g., Bayesian optimization or random search)
control <- makeTuneControlRandom(maxit = 70) # 70 iterations for tuning

# Hyperparameter tuning with cross-validation
tuned_params <- tuneParams(
learner = learner,
task = task,
resampling = cv_desc, # 4-fold cv
par.set = param_set,
control = control,
measures = rmse # Root Mean Squared Error as the performance metric

)

# Display results
print(tuned_params)

# Best Random Forest model with tuned parameters
best_learner <- setHyperpars(learner, par.vals = tuned_params$x)

The final tuned hyperparameters were as follows:

e mtry:9
e min.node.size: 10
e sample fraction: 0.79

4. Permutation Importance (PI)

In our initial study design, we conducted the RF modelling once and directly used the permutation importance
(P1) values provided by the model.

In our revised approach, we refined this process by repeating the calculation 100 times to obtain a mean PI
value for each input parameter, ensuring more robust and reliable importance rankings.

The following R script extract details the implementation of this approach:



#========== Permutation Importance

num_repeats <- 100

importance_values <- matrix(NA, nrow = num_repeats, ncol = ncol(all_train) - 1)
for (i in l:num_repeats) {
cat("Iteration:", i, "\n")

# Train the model using the identical hyperparameters from tuning
temp_model <- ranger(
x = all_train[, -ncol(all_train)],
y = all_trainsiclass,
mtry = tuned_params$x$mtry, # Optimized mtry value
min.node.size = tuned_params$x$imin.node.size, # Optimized min.node.size
sample.fraction = tuned_params$x$sample.fraction, # Optimized sample.fraction
num.trees = 1000,
importance = "permutation”,
seed = i # Different seed per run for robustness

)

# store the feature importances in the matrix
importance_values[i, ] <- importance(temp_model)

1
J

# Compute the mean Permutation Importance over the 100 runs
mean_importance <- colMeans (importance_values)

We modified Figure 7 to display only the 12 selected parameters along with their respective mean Pl values over
100 iterations. Additionally, we normalized the values, setting the most important parameter (Topographic
Position Index) to 1.

Normalized Pl Values from RF Modelling

Topographic Position Index
Wind Exposition

Elevation

Channel Network Base Level
Wind Effect

Valley Depth

Paositive Openness
Channel Network Distance
Relative Slope Position
Megative Openness

Slope

Aspect

O — ——

=
=

025 050 075 1.00
Normalized Permutation Importance

Figure 7. Overview of normalized mean Permutation Importance values from RF modelling over 100 iterations.

5. Final results and validation

Both the RF-based and UAS-LiDAR-based results were validated using the initially separated test dataset.
Additionally, we conducted three further RF model runs, where in each iteration, two palsa sites were used as
the training dataset, and one was used as the test dataset. This approach further validated the generalization
capability of the model.



The validation results indicate that the RF-based approach now exhibits lower peak accuracies compared to the
initial study design. However, by reducing overfitting, the results are more plausible and robust, while still
achieving high accuracy and outperforming the UAS-LiDAR-based approach:

Table 3. Overview of the calculated Root Mean Square Error (RMSE), Coefficient of Determination (R2), Mean
Absolute Error (MAE) and Standard Deviation (SD) for RF- and UAS-LiDAR-based snow depth estimations.
Additionally, external validation results (RMSE and R?) for RF-based snow depth at each palsa site (Peera RF,
Pousu RF, Puolikkoniva RF) are provided.

Parameter RF LiDAR UAS Peera RF Pousu RF Puolikkoniva RF
RMSE 18.33 23.49 16.67 21.31 27.13

R? 0.77 0.691 0.628 0.767 0.578

MAE 13.26 17.49 - - -

SD 18.11 20.84 - - -

We recalculated all metrics for different point groups and included the number of points per group. These groups
were classified visually, based on orthophotos, slope data, and elevation characteristics of the respective
locations.

The results show that the accuracy differences between RF and UAS-LiDAR-based approaches are now less
pronounced. However, in certain categories, such as Thermokarst and Open Area, the UAS-LiDAR-based results
show lower accuracy, likely due to measurement inaccuracies caused by water surfaces and irregularities in areas
with higher vegetation.

Table 4. Overview of RMSE, R?, MAE and SD divided by validation point locations within the investigation areas.

RMSE R? MAE SD
RF LiDAR RF LiDAR RF LiDAR RF LiDAR
On Top 3.84 3.84 8.32 10.83
8.33 8.33 0.841 0.730
(n=69)
Edge 5.85 5.85 12.82 19.09
13.12 13.12 0.894 0.768
(n=66)
Thermokarst 5.42 30.35 10.69 25.08
10.99 33.73 0.893 0.592
(n=16)
Open Area 1.56 9.84 4.40 12.59
4.54 14.23 0.926 0.519
(n=26)

Figures 5, 6, 8, and 9 have been updated based on the new results.

Figure 5 now includes the recalculated snow depth maps. We have incorporated all areas where SDyipar Values
are below 0, visualizing these parts in red to highlight regions where the LiDAR sensor may have measured
incorrectly or where degradation has occurred between flights.
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Figure 5. Snow depth predictions based on the RF model (left) and the UAS-LIDAR (right) at site Puolikkoniva (a, b), Pousu (c,
d) and Peera (e, f) palsas. Red points are showing the in-situ snow depth measurement locations.



In Figure 6 we inserted the new calculated difference maps and we also included the parts with negative values
in red:
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Figure 6. Snow depth differences between modelled and UAS LiDAR results at a) Puolikkoniva, b) Pousu and c) Peera palsas.

Figure 8 shows the scatter plots based on the 30% test dataset. Here we used only the single values of the SDjn.
situ, NOt considering the values within the buffer areas of the test data. We decided to do it like that, to obtain a
very fine validation of both methods:
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Figure 8. Scatter plots with regression lines for UAS-LIDAR-derived and RF-modelled snow depths, based on the external test
dataset.



Figure 9 has been updated to reflect the new results. Additionally, we have incorporated the calculated slope
derived from the DTM of Pousu palsa.

a) Pousu palsa site and the analysis area (red).

a)
b) Slope in degrees.

c) Differences in snow depth between RF and
LIDAR UAS approach.

d) Snow distribution based on RF approach and
highlighted cooling and warming locations.

e) Possible warming/cooling spots based on
snow distribution and areas with existing or
higher possibility of block erosion.
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Figure 9. Explanation of differences between UAS LiDAR-derived and RF-modelled snow depths.



Appendix B

Enontekid Kilpisjarvi kyldkeskus, Finland
69.03905N, 20.81379E | 474 m.a.s.l. | Climate Class: Dfc | Years: 1991 - 2020
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Figure 2. Climate chart of Kilpisjdrvi (FMI, 2022). Dotted line shows 2 m above ground temperature in °C, dashed line shows
precipitation in mm and solid line shows snow depth in cm.



Appendix C
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Figure 4. Snow depth measuring points within the investigation sites at Puolikkoniva (a), Pousu (b) and Peera (c) palsa
illustrating different methods for recording snow depth (transects, randomized, crossed).

Appendix D

Histogram of Snow Depth Measurements per Site
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Figure A1. Histogram of SDin-sity points and respective statistics per palsa site.




Appendix E
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Figure A2. Overview of classification of all SDin-sity points into classes Edge, On Top, Open Area and Thermokarst.

Appendix F

Table A3. Correlation between each input parameter and RF-modelled snow depth.

Parameter Correlation to SDgr Parameter Correlation to SDgr
Aspect 0.09 Relative Slope Position -0.49
Elevation -0.12 Slope 0.08
Channel Network Base Level -0.09 Topographic Position Index -0.87
Channel Network Distance -0.45 Valley Depth 0.50
Negative Openness 0.22 Wind Effect -0.55

Positive Openness -0.50 Wind Exposition -0.80
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