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Abstract. Simulating aerosol chemistry and interactions (ACI) is crucial in climate and atmospheric model, yet 15 

conventional numerical schemes are computationally intensive due to stiff differential equations and iterative methods 

involved. While artificial intelligence (AI) have demonstrated the potential in accelerating photochemistry simulations, it has 

not been applied for simulating the full ACI processes which encompass not only chemical reactions but also other processes 

such as nucleation and coagulation. To bridge this gap, we develop a novel Artificial Intelligence Model for Aerosol 

Chemistry and Interactions (AIMACI), focusing initially on inorganic aerosols. Trained based on conventional numerical 20 

scheme, it has been validated both offline and online coupled into three dimensional numerical atmospheric model. Results 

demonstrate that AIMACI are not only comparable to those with the conventional numerical scheme in spatial distributions, 

temporal variations, and evolution of particle size distribution of 8 aerosol species including water content in aerosols, but 

also exhibits robust generalization ability, reliably simulating one month under different environmental conditions across 

four seasons despite being trained on limited data from merely 16 days. Remarkably, it exhibits a ~5× speedup with a single 25 

CPU and ~277× speedup with a single GPU compared to conventional numerical scheme. While global long-term 

simulations have not yet been implemented, AIMACI’s robust generalization capability, coupled with our easily plug-and-

play solution, paves the way for its coupling into global climate models for further testing in near future. This advancement 

promises to enhance the precision and efficiency of atmospheric aerosol simulations in climate modeling. 
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1 Introduction 30 

Atmospheric aerosols, which consist of a suspension of solid and liquid particles in the air, exert a profound influence 

on Earth's climate system and air quality (Charlson et al., 1992). Their multifaceted impacts are evident in their capacity to 

alter the Earth's radiation balance through the scattering and absorption of solar and longwave radiation, as well as in their 

role as cloud condensation nuclei that influence the formation and characteristics of clouds (Li et al., 2022; Twomey, 1974). 

The presence of atmospheric aerosols extends its reach to environmental well-being, with implications that span visibility, 35 

human health, and the integrity of ecological ecosystems (Arfin et al., 2023; Pöschl, 2005). Numerical models stand as 

indispensable analytical tools, pivotal for comprehending the aforementioned phenomena, and are instrumental in air quality 

management and the formulation of mitigation strategies for climate change. However, coupling aerosol chemistry and 

interactions into these models poses a significant computational challenge (Carmichael et al., 1999; Ebel et al., 2006). This is 

primarily due to the requirement to solve a complex set of stiff nonlinear differential equations governing aerosol processes, 40 

coupled with the use of implicit integration schemes to ensure numerical stability (Sandu et al., 1997a, b). Furthermore, to 

accommodate the diverse methodologies for describing the evolution of particle size distribution (PSD), some aerosol 

processes may require repeated calculations (Wang et al., 2022). For example, when employing a discrete model, the 

coagulation collision frequency functions need to be computed for each discrete size (Zhang et al., 2020). Consequently, the 

computational burden is significantly amplified. This computational intensity often creates a dilemma, as it competes with 45 

other priorities in numerical modeling, such as enhancing spatial resolution (Gu et al., 2022), recognized as helpful for 

minimizing uncertainties in numerical models. Numerous numerical models opt for simplified or even deactivate aerosol 

chemistry and interactions scheme during long-term simulations, particularly in high-resolution atmospheric and climate 

models, introducing considerable uncertainties into the simulation results (Lee et al., 2016; Zhang et al., 2020). Consequently, 

there is a pressing need to achieve rapid, accurate, and stable simulation of atmospheric aerosol chemistry and interactions 50 

within numerical models.  

Over the past few decades, extensive research efforts have been dedicated to striking a tradeoff between the accuracy 

and computational efficiency in simulating aerosol chemistry and interactions. Researchers have primarily approached this 

challenge from two distinct perspectives: one is the exploration of various methodologies for describe the evolution of PSD. 

For instance, in the discrete model, the PSD is divided into discrete sizes, with calculations performed for each individual 55 

size. This approach yields the most precise results but also demands the highest computational resources (Landgrebe and 

Pratsinis, 1990; Zhao et al., 2013b). The moment model, which tracks the lower-order moments of an unknown aerosol 

distribution, is particularly well-suited for scenarios where the size distribution is lognormal (Pratsinis, 1988). Concurrently, 

researchers have been engaged in employing diverse methodologies to solve the system of stiff differential equations. For 

example, the Multicomponent Taylor Expansion Method (MTEM) has been developed to compute activity coefficients in 60 

aqueous atmospheric aerosols (Zaveri et al., 2005). This method offers an efficient non-iterative solution for systems rich in 
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sulfate aerosols. The Adaptive Step Time-split Euler Method (ASTEM) leverages several key characteristics of the 

atmospheric gas-particle partitioning, systematically reducing stiffness while preserving the integrity of the numerical 

solution (Zaveri et al., 2008). Despite these advancements significantly improving the computational efficiency of simulating 

aerosol chemistry and interactions, current progress remains far from sufficient. 65 

An alternative approach is to utilize artificial intelligence (AI) schemes to replace conventional numerical schemes in 

atmospheric and climate models, which could potentially bring about a transformative impact. Recent studies by Liu et al. 

(2021) developed an AI scheme based on a Residual Neural Network (ResNet) algorithm for simulating atmospheric 

photochemistry, achieving a nearly 10.6× increase in computational efficiency. However, they adopted a hybrid approach, 

combining the numerical scheme for radicals and oxidants with the AI scheme for volatile organic compounds (VOCs). Kelp 70 

et al. (2022) employed an online training strategy to refine an AI scheme for a simplified Super-Fast chemistry scheme (12 

species) in atmospheric models, achieving stable simulations over a year with a nearly 5× speedup. Yet, this method 

necessitated a complex preparation process, involving training 48 separate AI model for each chemical species across four 

seasons. Sharma et al. (2023) developed a physics-informed AI approach to study isoprene epoxydiols in acidic aqueous 

aerosols over the Amazon rainforest, halving computational costs but requiring training separate AI model for each size bin. 75 

Xia et al. (2024) have taken a step further by developing an AIPC scheme leveraging the Multi-Head Self-Attention 

algorithm to simulate a full complex atmospheric photochemistry with a unified AI model. When coupled with three-

dimensional (3D) numerical models, their approach not only reliably simulates the continuous spatiotemporal evolution of 

74 chemical species over 15 consecutive days but also achieved a nearly 8× speedup. 

While the studies discussed above have highlighted the impressive performance of AI algorithms in capturing highly 80 

nonlinear relationships between different chemical species and reproducing complex spatiotemporal distributions, to date, no 

AI-based scheme exists for simulating the aerosol chemistry and interactions in 3D numerical models. Unlike 

photochemistry which only involves chemical reactions between species, the full aerosol chemistry and interactions 

encompasses numerous other intricate processes such as nucleation, coagulation, thermodynamics. Furthermore, since the 

PSD of an aerosol significantly influences aerosol behavior, an accurate depiction of the evolution of PSD is as critical as the 85 

precise simulation of concentration of aerosol species. These factors collectively present a heightened challenge for the 

development of an AI scheme capable of simulating the full atmospheric aerosol chemistry and interactions. The feasibility 

of establishing such an AI scheme for aerosols remains an open question. 

To bridge this gap, in this study, we have developed a novel Artificial Intelligence Model for Aerosol Chemistry and 

Interactions, termed AIMACI, which is based on the Multi-Head Self-Attention algorithm and has been online coupled with 90 

a 3D numerical atmospheric model. As the first step, this study focuses on inorganic aerosols, because the chemistry of 

organic aerosols (i.e., secondary organic aerosols) still has large uncertainties and lacks a convincing numerical scheme for 

AI scheme to emulate, which certainly deserves further investigation in future. The results demonstrate that, compared to 

conventional numerical schemes, the AIMACI scheme: (1) accurately reproduces the spatiotemporal distributions and the 

evolution of PSD of different aerosol species, (2) has robust generalization ability, reliably simulating one month under 95 
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different environmental conditions across four seasons despite training on a limited dataset of just 16 days, and (3) achieves 

significantly computational speed-ups of approximately 5× on a single CPU and 277× on a single GPU. These advancements 

hold great promise for the future of climate modeling, enabling fast, accurate, and stable simulations of aerosol chemistry 

and interactions, thereby reducing uncertainties stemming from simplified representations of these processes. The structure 

of this paper is organized as follows: Section 2 provides a detailed description of the Weather Research and Forecasting with 100 

Chemistry (WRF-Chem) model and the establishment of the AIMACI scheme. Section 3 discusses the results, and Section 4 

presents the conclusion, outlining the implications of our findings for the field. 

2 Methods 

2.1 WRF-Chem Model and MOSAIC Scheme 

In this study, we utilize the updated version of WRF-Chem developed by the University of Science and Technology of 105 

China (USTC) for conducting all simulations. This USTC version of WRF-Chem boasts additional functionalities compared 

to the publicly released version, including the capability to diagnose radiative forcing of aerosol species, land-surface-

coupled biogenic volatile organic compound emissions, and aerosol-snow interactions (Du et al., 2020; Hu et al., 2019; 

Zhang et al., 2021; Zhao et al., 2013a, b, 2014, 2016). 

The conventional numerical scheme of aerosol chemistry and interactions adopted in this study for comparison is the 110 

MOSAIC (Model for Simulating Aerosol Interactions and Chemistry) (Zaveri et al., 2008) scheme within WRF-Chem, 

coupled with the CBM-Z (Carbon Bond Mechanism Version Z) photochemistry scheme (Zaveri and Peters, 1999). The 

MOSAIC scheme stands out for its innovative approach to address the long-standing issues in solving the dynamic 

partitioning of semivolatile inorganic gases (HNO3, HCl, and NH3) to size-distributed atmospheric aerosol particles. It has 

been validated against a benchmark model version utilizing a rigorous solver for the integration of stiff differential equations, 115 

demonstrating both computational efficiency and high fidelity (Zaveri et al., 2008). The MOSAIC scheme used in this study 

treats all the major aerosol species important at urban, regional, and global scales, including sulfate (SO42-), nitrate (NO3-), 

chloride (Cl-), carbonate (CO32-), ammonium (NH4+), sodium (Na+), calcium (Ca2+), black carbon (BC), organic carbon 

(OC), other inorganic mass (OIN), mineral dust, methanesulfonic acid (MSA) and liquid water content of aerosol (Water). It 

employs a sectional approach, dividing the PSD into 4 discrete size bins in this study. The first, second, third, and fourth size 120 

bins are set to be 0.039~0.156, 0.156~0.625, 0.625~2.5, and 2.5~10.0 μm in diameter, respectively. In addition, it further 

considers the impact of marine biogenic sources of dimethyl sulfide on atmospheric aerosols and aqueous aerosol processes. 
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2.2 Learnable AIMACI Scheme 

2.2.1 Scheme Construction 

Previous attempts into the substitution of conventional numerical schemes with AI schemes have predominantly utilized 125 

simple AI algorithms, such as Random Forest Regression (Keller and Evans, 2019). This preference stems from the complex 

challenge of coupling sophisticated AI algorithms, often written in Python, with numerical models coded in Fortran. While 

some studies have explored the use of advanced AI algorithms, such as Fully Connected Neural Networks (Sharma et al., 

2023) and Residual Neural Networks (Kelp et al., 2018, 2020, 2022; Liu, 2021; Wang et al., 2022), these have occasionally 

encountered difficulties when dealing with high-dimensional input variables and have demonstrated limitations in accurately 130 

simulating highly nonlinear systems (Xia et al., 2024). 

In this study, with an AI algorithm, we, first time, attempt to emulate a sophisticated scheme of aerosol chemistry and 

interactions (i.e., the MOSAIC scheme), which encompasses a range of highly nonlinear processes such as chemical 

reactions, nucleation, coagulation, thermodynamics and phase equilibrium, gas-particle partitioning, and particle transfer 

(Zaveri et al., 2008). Given the complexity of these interactions, there is a clear need for AI algorithms with superior 135 

representational capacity for nonlinear systems. Xia et al. (2024) have highlighted that the Multi-Head Self-Attention 

(MHSA) algorithm excels in capturing the intricate chemical relationships among different species. It offers not only high 

simulation accuracy and computational efficiency but is also less susceptible to the increase in the number of chemical 

species. 

Therefore, here we innovate by pioneering a novel Artificial Intelligence Model for Aerosol Chemistry and Interactions 140 

(AIMACI), leveraging the MHSA algorithm. The MHSA algorithm, serving as the foundational architecture of state-of-the-

art transformer models, has been successfully deployed in domains such as Natural Language Processing and Computer 

Vision, achieving significant advancements (e.g. Vaswani et al., 2017; Liu et al., 2021; Bi et al., 2023). It is distinguished by 

its ability to globally attend to input variables and conduct parallel calculations across multiple heads. This attribute 

empowers it to adeptly navigate the curse of dimensionality and capture overarching dependencies, while effectively 145 

enhancing computational efficiency. 

Figure 1 provides a schematic representation of the AI model architecture utilized within the AIMACI scheme, 

showcasing the integration of MHSA algorithm in our hybrid atmospheric model with physics and AI schemes (physics-AI 

hybrid model). The AI model architecture is intricately designed with three principal components, each serving a distinct 

function in the simulation process: (1) Input Embedding Layer: This initial layer receives meteorological variables and 150 

chemical species as input features. The input embedding layer is designed as a fully connected layer, which maps the raw 

input data into a higher-dimensional space where interdependencies between variables can be more effectively captured. (2) 

Integrator: As the core of the AI model, it is composed of 2 identical blocks, each of which contains two sub-layers: a multi-

head attention layer and a feed-forward layer. We apply residual connections around each of these two sub-layers, followed 

by layer normalization. This integrator is responsible for learning the complex and high nonlinear processes of aerosol 155 
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chemistry and interactions within the data and integrate them over time. (3) Output Representation Layer: Following the 

integrator, it also implemented as a fully connected layer. This layer translates the processed information from the integrator 

into chemical concentrations, providing the output targets for the simulation. Furthermore, the AI model is complemented by 

pre-processing and post-processing steps, such as min-max normalization, to constitute the comprehensive AIMACI scheme. 

 160 

Figure 1: The model architecture employed in the Artificial Intelligence Model for Aerosol Chemistry and Interactions (AIMACI). 

In the hybrid atmospheric model with physics and AI schemes, we only use AI schemes for simulating aerosol interactions and 

chemistry, and the rest maintain the original numerical schemes. 
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2.2.2 Training and Testing Procedure 

To generate the training, validation, and test datasets, we conducted the WRF-Chem simulations over East China, 165 

spanning the period from 2019-03-01 00:00 UTC to 2019-03-19 23:00 UTC. The simulation result was segmented as follows: 

the initial 16 days from 2019-03-02 00:00 UTC, were designated as the training set, the penultimate day served as the 

validation set, and the final day constituted the test set. The simulation was configured with a 0.2° horizontal resolution, 

covering 140 × 105 grid cells within the geographical bounds of 107.1° E to 127.9° E and 19.7° N to 47.5° N, and featured 

49 vertical layers extending up to 50 hPa. A dynamic time step of 2 minutes and a chemical time step of 1 hour were 170 

employed. Concentrations of aerosol and gas species pertinent to gas-particle partitioning were recorded hourly, along with 

key meteorological variables influencing chemistry: temperature, pressure, air density, and water vapor mixing ratio. Each 

training sample included 65 input features (4 meteorological variables, 5 gas species, and 14 aerosol species with 4 size bins) 

and 37 output targets (5 gas species and 8 aerosol species with 4 size bins). It should be noted that in the AIMACI scheme's 

simulation of aerosol processes, the concentrations of other inorganic mass (OIN), mineral dust, black carbon (BC), organic 175 

carbon (OC), calcium (Ca2+), and carbonate (CO32-) are not altered. Consequently, these aerosol species are not output 

variables. However, they play a significant role in affecting the acidity or alkalinity of the atmospheric environment, which 

in turn influences the formation of aerosols. Therefore, these species are necessary as input variables to ensure that the model 

accurately reflects the conditions affecting aerosol production. A comprehensive list of variables used for training the 

AIMACI scheme is presented in Table 1. 180 

After training, the AIMACI scheme was flexibly coupled into WRF-Chem, utilizing TorchScript and Libtorch tools 

officially provided by PyTorch. This coupling approach encapsulates the AIMACI scheme within a static library, 

minimizing alterations to the original codebase while offering a lightweight, adaptable, and easily plug-and-play solution. It 

is not only efficient but also versatile, capable of encapsulating a wide range of complex AI algorithms and coupling them 

with diverse atmospheric and climate models. 185 

Furthermore, we conducted three sets of additional experiments to comprehensively evaluate the performance of the 

AIMACI scheme: (1) predictions were made on the test dataset prior to coupling the scheme with WRF-Chem; (2) a 10-day 

continuous simulation was performed from a period outside the training phase following the coupling of the AIMACI 

scheme into WRF-Chem; (3) a month-long continuous simulation was carried out under different environmental conditions 

across all four seasons. Through the analysis of spatial distributions, temporal series, and the evolution of PSD, we aimed to 190 

assess the AIMACI scheme's potential on climate research applications. 
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Table 1 Input and output variables of Artificial Intelligence Model for Aerosol Chemistry and Interactions (AIMACI) 195 

Type Input variables Output variables 

Meteorological variables 

temperature - 

air density - 

pressure - 

water vapor mixing ratio - 

Gas species 

H2SO4 H2SO4 

HNO3 HNO3 

NH3 NH3 

HCL HCL 

MSA MSA 

Aerosol species 

SO4
2- [Size:1-4] SO4

2- [Size:1-4] 

NO3
- [Size:1-4] NO3

- [Size:1-4] 

NH4
+ [Size:1-4] NH4

+ [Size:1-4] 

Na+ [Size:1-4] Na+ [Size:1-4] 

Cl- [Size:1-4] Cl- [Size:1-4] 

MSA[Size:1-4] MSA[Size:1-4] 

Water[Size:1-4] Water [Size:1-4] 

Num [Size:1-4] Num [Size:1-4] 

OIN [Size:1-4] - 

DUST [Size:1-4] - 

OC [Size:1-4] - 

BC [Size:1-4] - 

Ca2+ [Size:1-4] - 

CO3
2- [Size:1-4] - 

 

2.3 Evaluation metric 

In this research, a comprehensive evaluation of the AIMACI scheme's effectiveness was conducted utilizing three 

recognized statistical measures. For every species examined, the calculation of the Pearson correlation coefficient (R2), the 

root mean square error (RMSE) and the normalized mean bias (NMB) was performed. 200 

                   ↑ (𝑅2) =
( ∑ ∑ 𝐿(𝑖)(𝑐𝑖,𝑗 − 𝑐̅) (𝑐̂𝑖,𝑗  

− 𝑐̂̅)) 2
𝑁𝑙𝑜𝑛
𝑗=1

𝑁
𝑙𝑎𝑡 

𝑖=1

∑ ∑ 𝐿(𝑖)(𝑐𝑖,𝑗 − 𝑐̅) 2 ×  ∑ ∑ 𝐿(𝑖)(𝑐̂𝑖,𝑗  
− 𝑐̂̅) 2

𝑁𝑙𝑜𝑛
𝑗=1

𝑁
𝑙𝑎𝑡 

𝑖=1

𝑁𝑙𝑜𝑛
𝑗=1

𝑁
𝑙𝑎𝑡 

𝑖=1

                                         (1) 
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                                 ↓ 𝑅𝑀𝑆𝐸 =  √
∑ ∑ 𝐿(𝑖)(𝑐̂𝑖,𝑗 

−𝑐𝑖,𝑗) 2
𝑁𝑙𝑜𝑛
𝑗=1

𝑁
𝑙𝑎𝑡 

𝑖=1

𝑁𝑙𝑎𝑡 ×𝑁𝑙𝑜𝑛
                                                                          (2)  

                                     ↓ 𝑁𝑀𝐵 =
∑ ∑ 𝐿(𝑖)

𝑁𝑙𝑜𝑛
𝑗=1

(𝑐̂𝑖,𝑗 
−𝑐𝑖,𝑗)

𝑁
𝑙𝑎𝑡 

𝑖=1

∑ ∑ 𝐿(𝑖)𝑐𝑖,𝑗
𝑁𝑙𝑜𝑛
𝑗=1

𝑁
𝑙𝑎𝑡 

𝑖=1

                                                                               (3)  

 

In above, 𝐿(𝑖) =  𝑁𝑙𝑎𝑡 × 
cos 𝜑𝑖

∑ cos 𝜑𝑖
𝑁𝑙𝑎𝑡
𝑖=1

 is the weight at latitude 𝜑𝑖 , 𝐶̂ denotes the concentration simulated by the AIMACI 205 

scheme, 𝐶 denotes the concentration simulated by the MOSAIC scheme, ↑ denotes higher values are better, ↓ denotes lower 

values are better. 

2.4 Computational configuration 

A primary incentive for coupling AI schemes into atmospheric and climate models is the pursuit of substantial 

computational acceleration. However, such acceleration is not inherently guaranteed, as demonstrated by Keller et al. (2019). 210 

Consequently, it is imperative to meticulously compare the temporal expenditure of AI schemes against those of traditional 

numerical schemes. 

In this study, we undertook a comparative analysis of the computational time required by the numerical scheme and the 

AIMACI scheme for simulating aerosol chemistry and interactions in 720,300 discrete grid cells, which roughly corresponds 

to a global simulation at 2.5° × 2.5° horizontal resolution with 72 vertical layers. To ensure a holistic and unbiased 215 

assessment of the speedup achieved, we measured the computational time by averaging the duration of 24 consecutive daily 

simulations. Both schemes were tested utilizing a single CPU core and additionally evaluated the AIMACI scheme with a 

GPU-accelerated scenario using a single GPU. The computational hardware employed in our tests consisted of an Intel Xeon 

Scalable 8358 CPU and an NVIDIA A100-80G GPU. 

3 Results 220 

3.1 Offline Single-step Simulations with the AIMACI Scheme 

Before coupling the AIMACI scheme with the 3D numerical model WRF-Chem for continuous simulation, we first 

evaluated its performance on a test dataset that was separate from the training data. The test dataset, as detailed in previous 

sections, comprises a series of 3D spatial outcomes taken at 24-hourly intervals on March 19, 2019. It provides 

representative samples that span a wide range of meteorological conditions and species concentrations. The evaluation on 225 

this dataset provides insight into the AIMACI scheme's performance in various atmospheric conditions. Table 2 presents the 

statistical metrics for all simulated species, offering a comprehensive assessment of the scheme's simulation capabilities. 
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The results are promising with an average R² of 0.99 for all 37 evaluated species. This high degree of correlation 

indicates a strong consistency between the simulations with the AIMACI scheme and the MOSAIC scheme (hereinafter 

referred to as numerical scheme). The average NMB for these species is 0.95%, reflecting only a slight deviation from the 230 

numerical scheme's outcomes and highlighting the AIMACI scheme's impressive accuracy in simulating aerosol chemistry 

and interactions. Atmospheric aerosols significantly impact the climate system through direct radiative forcing, such as 

scattering and absorption of solar radiation, and indirect radiative forcing, such as serving as cloud condensation nuclei 

(CCN) (Bellouin et al., 2020). As depicted in Table 2, major aerosol species that play key roles in these processes, including 

sulfates, nitrates, ammonium, sea salt (e.g., sodium and chloride) (Lohmann and Feichter, 2005), are all accurately simulated 235 

by the AIMACI scheme. This is crucial for the future coupling the AIMACI scheme into climate models for precise climate 

simulations. 

 

Table 2 Statistical metrics on the test dataset of Artificial Intelligence Model for Aerosol Chemistry and Interactions (AIMACI) 

(The RMSE of different species has different unit: aerosol (μg/kg), num (kg-1), gas (ppmv)). 240 

Number Variable R2 RMSE NMB(%) 

1 H2SO4 0.97 2.99E-07 -2.10 

2 HNO3 1.00 3.61E-05 0.19 

3 NH3 1.00 4.84E-05 3.49 

4 HCL 1.00 9.68E-06 -0.41 

5 MSA 0.82 1.03E-09 0.12 

6 SO4_a01 1.00 1.14E-02 0.16 

7 NO3_a01 1.00 4.90E-02 -0.43 

8 NH4_a01 1.00 1.44E-02 -0.45 

9 Na_a01 1.00 6.10E-06 0.32 

10 Cl_a01 0.99 2.52E-03 -1.42 

11 MSA_a01 1.00 1.78E-05 5.70 

12 Water_a01 1.00 5.60E-01 0.46 

13 Num_a01 1.00 4.45E+07 -0.10 

14 SO4_a02 1.00 4.16E-02 0.38 

15 NO3_a02 1.00 7.04E-02 0.69 

16 NH4_a02 1.00 2.31E-02 0.51 

17 Na_a02 1.00 1.65E-04 0.10 

18 Cl_a02 1.00 4.63E-03 -1.25 

19 MSA_a02 1.00 1.51E-05 3.05 
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20 Water_a02 0.99 1.32E+00 1.58 

21 Num_a02 1.00 9.20E+06 0.61 

22 SO4_a03 0.94 2.90E-02 0.80 

23 NO3_a03 1.00 2.68E-02 0.89 

24 NH4_a03 1.00 5.37E-03 0.48 

25 Na_a03 1.00 2.01E-03 2.44 

26 Cl_a03 1.00 4.98E-03 1.29 

27 MSA_a03 1.00 2.94E-06 2.85 

28 Water_a03 0.99 4.11E-01 2.03 

29 Num_a03 1.00 1.05E+05 0.45 

30 SO4_a04 1.00 7.25E-04 0.27 

31 NO3_a04 0.99 5.11E-02 0.75 

32 NH4_a04 0.98 5.62E-03 -3.21 

33 Na_a04 1.00 9.19E-03 4.13 

34 Cl_a04 1.00 1.13E-02 3.28 

35 MSA_a04 0.79 2.00E-05 7.93 

36 Water_a04 0.99 1.35E+00 -3.32 

37 Num_a04 1.00 5.89E+03 2.86 

 

To illustrate the simulated results of the AIMACI scheme, we selected four key aerosol species, which include chemical 

species, liquid water content in aerosol, and number concentration of aerosols. Figure 2 presents the data density and 

distribution for column concentration of the four key aerosol species. Sulfate, derived primarily from fossil fuel combustion 

emissions, plays a crucial role in acid rain, aerosol formation, and aerosol-cloud interactions (Calvert et al., 1985; Fuzzi et al., 245 

2015; Penkett et al., 1979). Nitrate, formed through the oxidation of nitrogen oxides, is a major inorganic component of 

aerosols influencing air quality and ecosystem health (Parrish et al., 2012; Saiz-Lopez et al., 2017). Liquid water content 

within aerosols is pivotal for understanding the hygroscopic nature of particles and their ability to act as cloud condensation 

nuclei, thereby influencing cloud formation and precipitation processes (Hodas et al., 2014; Liu et al., 2019; Nguyen et al., 

2016; Wu et al., 2018). The number concentration of aerosols is a critical metric for assessing the overall aerosol loading and 250 

its direct impact on visibility, radiation balance, and climate feedback mechanisms (Spracklen et al., 2010). These four 

species collectively provide a comprehensive view of the aerosol's multifaceted role in atmospheric processes. The results 

from the numerical scheme simulations indicate that sulfate, nitrate, and liquid water content of aerosol exhibit higher 

column concentrations within 0.156 to 0.625 μm (size bin 2), whereas the number concentration is notably larger within 

0.039 to 0.156 μm (size bin 1). This indicates that, despite the greater number of smaller particles in size bin 1, their overall 255 

contribution to the total mass is less significant due to their lower individual mass compared to the larger particles in size bin 
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2. The AIMACI scheme effectively captures these nuanced aerosol characteristics, as corroborated by the exemplary R² 

values of 1.0 depicted in Figure 2, which underscore the scheme's fidelity in modeling aerosol behavior across various 

particle sizes. 

 260 

 

Figure 2: The density plot of column concentration of four key aerosol species (sulfate (SO42-), nitrate (NO3-), liquid water 

content of aerosol (Water), and number concentration of aerosol (Num)) simulated by the AIMACI scheme on the test dataset. The 

results are calculated by covering the region spanning from 109.1°E to 125.9°E and from 22.1°N to 44.9°N, with the data being 

averaged across the time dimension. The black line is the identical line (y=x), and the red line is fitted line. 265 
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3.2 Offline Single-step Simulations with the AIMACI Scheme 

Unlike offline single-step simulations, coupling the AIMACI scheme into 3D numerical models to form a physics-AI 

hybrid model for continuous simulation entails interactions and feedback with numerous other processes. Consequently, a 

thorough evaluation of the AIMACI scheme's online simulation performance is essential. We focus on its performance 

across three critical dimensions: (1) Stable and Accurate Simulation Capability: The AIMACI scheme should accurately 270 

reproduce the spatiotemporal and size distribution of various aerosol species without rapid accumulation of errors during the 

simulation process. (2) Robust Generalization Ability: The AIMACI scheme should be applicable to scenarios beyond the 

training data, such as different seasons, demonstrating its robustness in a variety of environmental conditions. (3) High 

Computational Efficiency: Compared to the conventional numerical scheme, the AIMACI scheme should offer enhanced 

computational efficiency, which is vital for high-resolution, long-term simulations. Although these requirements are often 275 

challenging to satisfy simultaneously, achieving these benchmarks is crucial for leveraging the full potential of the AIMACI 

scheme in advancing our understanding of aerosol interactions and their impact on climate change. 

3.2.1 Stable and Accurate Simulation Capability 

Coupling AI schemes into numerical models for stable and accurate simulations across multiple time steps has long 

been a formidable challenge. While the simulation errors for individual species at each time step may be minimal, they can 280 

accumulate over multiple time steps, and may even spread to other species and physical-chemical processes, leading to 

chaotic simulation outcomes at the end. Typically, simulations with sophisticated aerosol processes at high-resolution, such 

as those in WRF-Chem, are limited to a few weeks due to computational costs. In this study, we conducted a 10-day 

continuous simulation from 2019-03-20 00:00 UTC to 2019-03-30 00:00 UTC to evaluate the performance of the AIMACI 

scheme in a coupled mode.  285 

Figure 3 illustrates the spatial distribution of sulfate column concentrations across different size bins at the end of the 

10-day continuous simulation (i.e., 2019-03-30 00:00 UTC). The figure also tracks the temporal evolution of the RMSE 

throughout the simulation period. The results reveal that the high-value areas of sulfate column concentrations for different 

particle sizes exhibit a hook-like structure, stretching from the Yangtze River Economic Belt northeastward to the 

northeastern regions of China. The distinct patterns may be attributed to the complex interplay of meteorological conditions, 290 

emission sources, and atmospheric transport processes. The sulfate column concentrations are predominantly concentrated 

within the 0.156 to 0.625 μm (size bin 2), with relatively lower column concentrations in the 2.5 to 10 μm (size bin 4), which 

is consistent with the findings in Figure 2.  

A notable aspect of the AIMACI scheme is its grid-based training and prediction methodology, which contrasts with 

existing AI large models such as Pangu (Bi et al., 2023) and Fengwu (Chen et al., 2023) that operate on entire fields. This 295 

approach offers a significant reduction in computational costs by avoiding the necessity for convolutional networks. 

Furthermore, the grid-based AI scheme is versatile, capable of being applied to simulations of regions of any size, without 
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constraints imposed by the size of the training area. However, this approach also presents a challenge in accurately 

simulating spatial distributions, given the potential for error propagation from neighboring grid points due to physical 

processes like transport. In Figure 3, the AIMACI scheme has successfully captured and reproduced the intricate spatial 300 

patterns of sulfate column concentrations across different particle sizes with R2 values all exceeding 0.88, even after a 

prolonged 10-day simulation. This achievement underscores the AIMACI scheme's exceptional stability and accuracy. 

Despite localized instances of underestimation or overestimation, the time series of RMSE for each size bin exhibit a stable 

trend with low values throughout the entire simulation period, suggesting that these discrepancies do not lead to runaway 

error growth. This sustained performance further substantiates the AIMACI scheme's reliability, positioning it as a robust 305 

tool for extended atmospheric and climate simulations. 

Figure 4 presents a comparison of the zonal average total concentrations (summed across all size bins) of sulfate and 

nitrate, simulated by both the numerical scheme and the AIMACI scheme, with results averaged over the entire 10-day 

simulation period. Observations from Figure 4a and 4c indicate that high concentration zones for both sulfate and nitrate are 

predominantly situated between 25°N and 40°N, coinciding with the latitude range of the Yangtze River Economic Belt. 310 

This distribution pattern is likely influenced by the significant anthropogenic emissions in this area. Through turbulent and 

convective transport processes, sulfate and nitrate from lower altitudes are transported to higher altitudes, with 

concentrations gradually diminishing with increasing altitude. In Figures 4b and 4d, the AIMACI scheme exhibits a notable 

alignment with the outcomes from the numerical scheme, as evidenced by the R² values, which are exceptionally high at 0.99 

for both sulfate and nitrate. The Root Mean Square Error (RMSE) values are 0.10 µg/kg for sulfate and 0.48 µg/kg for nitrate,  315 

suggesting that the discrepancies are minimal, further supporting the AIMACI scheme’s accuracy. Although slightly 

overestimations of sulfate and nitrate concentrations are observed in the outcomes from the AIMACI scheme, these minor 

discrepancies do not detract from the overall consistency between the two schemes. The high R² and low RMSE values 

underscore the AIMACI scheme's remarkable capability to accurately reproduce the distribution patterns of aerosols, 

affirming its reliability and effectiveness in simulating atmospheric aerosol chemistry and interactions. 320 

Figure 5 illustrates the ability of the AIMACI scheme to reproduce temporal variations of surface total concentrations 

of four key aerosol species. These results represent the calculated averages for the Yangtze River Delta region, a crucial 

urban agglomeration in China, spanning the coordinates 119.1°E to 121.9°E and 30.1°N to 31.9°N. Throughout the 

simulation period, sulfate concentrations primarily fluctuate within the range of 0 to 6 µg/kg, while nitrate concentrations 

exhibit a broader variability, predominantly ranging from 0 to 20 µg/kg. Notably, all four key aerosol species experience 325 

several instances of abrupt concentration spikes and declines. For instance, between the 11th and 30th hour of the simulation, 

the liquid water content of aerosol experiences a dramatic increase from 32.86 µg/kg to 263.47 µg/kg, followed by a sharp 

decrease to 28.72 µg/kg. Despite these pronounced fluctuations, the AIMACI scheme adeptly reproduces these features 

without introducing systematic bias, achieving R² values larger than 0.97. 

As discussed above, the AIMACI scheme 's proficiency in simulating the spatiotemporal distribution and variation trend 330 

of different aerosol species is well-established. However, accurately reproducing the evolution of the aerosol PSD is equally 
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vital, given the significant role particle size plays in dictating the interactions of aerosols with clouds and radiation`, which 

are pivotal for atmospheric processes. Figure 6 presents the PSD and frequency distribution for the surface concentrations of 

four key aerosol species simulated by the AIMACI scheme. The frequency distributions of sulfate and nitrate surface 

concentrations exhibit a relatively uniform pattern, whereas the liquid water content and number concentration of aerosols 335 

display extreme values, leading to pronounced skewness in their distributions. The AIMACI scheme accurately captures 

these distributions, although it tends to overestimate minimal concentration values that approach zero across different 

particle sizes, a minor deviation that could be addressed in future refinements. Notably, there are significant differences in 

the PSD among the aerosol species. Sulfate and nitrate concentrations peak within the 0.156 to 0.625 μm (size bin 2), 

whereas the liquid water content of aerosols is most concentrated in the 2.5 to 10.0 μm (size bin 4) and the number 340 

concentration of aerosols is predominantly found in the 0.039 to 0.156 μm (size bin 1). These findings highlight the 

complexity of accurately modeling PSD and the AIMACI scheme's commendable performance in reproducing these intricate 

patterns. 
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Figure 3: Sulfate column concentration simulations across different size bins. The left and middle panels depict the spatial 345 

distribution at the 10-day continuous simulation's end (2019-03-30 00:00 UTC), as simulated by the numerical scheme and 

AIMACI scheme, respectively. The right panel shows the temporal evolution of the hourly RMSE over the 10-day period. 
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Figure 4: Zonal mean total concentrations (summed across 4 size bins) of sulfate and nitrate between 109.1°E and 125.9°E, as 

simulated by the numerical scheme and AIMACI scheme. Results are averages over the entire 10-day simulation period. 350 
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Figure 5: Time series of surface total concentrations (summed across 4 size bins) of four key aerosol species (sulfate, nitrate, liquid 

water content of aerosol, and number concentration of aerosol), as simulated by the numerical scheme and the AIMACI scheme. 

Results represent the calculated averages for the Yangtze River Delta region (119.1°E~121.9°E, 30.1°N~31.9°N). 

 355 
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Figure 6: Frequency distributions of different particle sizes for the surface concentrations of four key aerosol species (sulfate 

(SO4), nitrate (NO3), liquid water content of aerosol (Water), and number concentration of aerosol (Num)), as simulated by the 

numerical scheme and the AIMACI scheme. The last column showcases the particle size distributions of these key aerosol species 

surface concentrations. The results are calculated by covering the region spanning from 109.1°E to 125.9°E and from 22.1°N to 360 

44.9°N, with the data being averaged over the entire simulation period. 

3.2.2 Robust Generalization Ability 

In the preceding section, we have demonstrated the AIMACI scheme's remarkable success in simulating the 3D 

spatiotemporal distributions and PSD of various aerosol species concentrations. Building upon these findings, this section 

delves into an exploration of the AIMACI scheme's generalization ability under diverse environmental conditions, a critical 365 

aspect for its future integration into climate models to mitigate uncertainties stemming from oversimplified or absent aerosol 

processes. To evaluate this, we conducted a series of supplementary experiments. These experiments involved a comparative 

analysis of one-month simulations for each of the four seasons—spring, summer, autumn, and winter—between the 
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numerical scheme and the AIMACI scheme. This comprehensive evaluation ensures that the AIMACI scheme's performance 

is not limited to specific conditions but is consistently accurate across a range of environmental scenarios, thereby bolstering 370 

its applicability and reliability in climate modeling endeavors. 

Figure 7 illustrates the simulation with AIMACI scheme of monthly average surface total concentrations of nitrate for 

different environmental conditions across four seasons. The results reveal distinct seasonal variations in nitrate surface 

concentrations, with higher values observed in January and lower in July. This seasonal contrast can be primarily ascribed to 

the heightened anthropogenic emissions associated with winter heating activities, which contribute to a surge in nitrate 375 

aerosols. Conversely, the summer months are often characterized by meteorological phenomena such as the East Asian 

monsoon, marked by increased precipitation and wind velocities. These conditions enhance the atmospheric dispersion and 

removal of aerosol, thereby resulting in reduced nitrate concentrations at the surface. The spatial distribution of nitrate 

concentrations, as depicted in Figure 7, is notably concentrated between the latitudes of 25°N and 40°N, a pattern that 

remains consistent across months in different seasons. However, the specific distribution of high-concentration zones and the 380 

concentrations over the sea areas exhibit discernible differences. The AIMACI scheme, despite being trained on data from 

only 16 days in March, demonstrates a remarkable ability to reproduce these distribution characteristics across different 

environmental conditions. This is corroborated by the R² values, which larger than 0.93, indicating a strong agreement 

between the AIMACI scheme and the numerical scheme. However, the AIMACI scheme's performance in July is somewhat 

less accurate compared to other months, with some overestimations in certain areas. Based on our analysis, deviations in the 385 

AISAIC simulation results are frequently associated with the occurrence of typhoon events. Our training dataset, which 

comprises only partial data from March, may not adequately encompass the unique meteorological conditions associated 

with extreme events such as typhoons. Consequently, these omissions may contribute to the observed discrepancies in the 

simulations. To address this limitation and enhance the AIMACI scheme's accuracy, future iterations could incorporate a 

more diverse training dataset that encompasses various environmental conditions, including extreme events such as typhoons. 390 

By expanding the training dataset, the AIMACI scheme can be further refined to provide more reliable simulations, 

especially during months with unique meteorological phenomena. 

Figure 8 presents the time series of surface total concentrations of nitrate across different environmental conditions for 

the four seasons, as simulated by the AIMACI scheme for the Yangtze River Delta region. The analysis reveals that January 

exhibit more pronounced fluctuations in nitrate surface concentrations, with peaks surpassing 30 µg/kg, while other months 395 

display more rapid variations, characterized by a higher frequency of concentration peaks and troughs. Reproducing the 

hourly concentration changes poses a greater challenge than simulating multi-day average concentrations, as the averaging 

process can offset positive and negative errors, which is not the case for time series data. Nonetheless, the AIMACI scheme 

maintains high consistency with the numerical scheme, demonstrating its robust generalization capabilities. Despite 

occasional significant deviations during July simulation period, such as the notable overestimation on July 20th, these 400 

anomalies do not lead to a rapid error escalation or the disruption of subsequent simulation results. Instead, as the simulation 

progresses, the errors are gradually mitigated, bringing the AIMACI scheme's results back in close alignment with the 
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numerical scheme. This phenomenon is closely related to the interactions between aerosols and other processes within the 

physics-AI hybrid model, which differ significantly from offline simulation scenarios. 

 405 

 

Figure 7: Monthly average surface total concentrations (summed across 4 size bins) of nitrate for different environmental 

conditions across seasons, as simulated by the numerical scheme and the AIMACI scheme. 

https://doi.org/10.5194/egusphere-2024-2860
Preprint. Discussion started: 14 October 2024
c© Author(s) 2024. CC BY 4.0 License.



22 

 

 

Figure 8: Time series of surface total concentrations (summed across 4 size bins) of nitrate for different environmental conditions 410 

across seasons, as simulated by the numerical scheme and the AIMACI scheme. Results represent the calculated averages for the 

Yangtze River Delta region (119.1°E~121.9°E, 30.1°N~31.9°N). 
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3.2.3 High Computational Efficiency 

A primary motivation for the development of the AIMACI scheme is the potential for increased computational 

efficiency offered by AI schemes compared to conventional numerical schemes. However, past research has indicated that 415 

such computational efficiency gains are not always guaranteed (Keller and Evans, 2019), necessitating a direct comparison 

of the computational speeds of the AIMACI scheme and the numerical scheme. Given that the WRF-Chem, written in 

Fortran, is not conducive to GPU acceleration, we conducted offline tests of the AIMACI scheme's computational speed on a 

GPU and compared it with the numerical scheme on a CPU, where the AIMACI scheme was coupled into the WRF-Chem. 

Figure 9 demonstrates that when utilizing a single CPU core, the AIMACI scheme achieves a computational speedup of 420 

approximately 5×, with a time cost of 48.51 seconds compared to the numerical scheme's 229.74 seconds. This advancement 

is further amplified when employing a single GPU, the AIMACI scheme completes the computation in a mere 0.83 seconds, 

which is approximately 277 × faster than the numerical scheme running on a single CPU core. Although we have not yet 

tested the online simulation speed of the physics-AI hybrid model on a GPU, it is reasonable to anticipate that future 

implementation of heterogeneous computing platforms, integrating both CPUs and GPUs, will yield significant 425 

enhancements in computational efficiency. 

 

Figure 9: Comparison of computational speeds between the numerical scheme and the AIMACI scheme under different 

computational configurations. The time cost for the GPU is measured in a mode where the AIMACI scheme is not yet coupled to 

the model, while the time cost for the CPU is measured in a mode with the AIMACI scheme coupled into the model. The 430 

calculations are based on simulating the concentrations of 37 chemical species across 720,300 grid cells. 
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4 Conclusions 

This study develops and evaluates a novel Artificial Intelligence Model for Aerosol Chemistry and Interactions, termed 

AIMACI, with a special focus on addressing the long-standing challenge of significant computational burden associated with 

enabling numerical scheme for simulating atmospheric aerosol chemistry and interactions in atmospheric models. The 435 

differential equations governing aerosol chemistry are notably stiff, coupled with a stringent time integration scheme 

required for numerical stability, resulting in limited breakthroughs in simulation speed with available numerical techniques. 

While previous studies have explored AI schemes as alternatives for conventional numerical schemes for simulating 

photochemical processes in atmospheric models, the use of AI schemes for simulating aerosol chemistry and interactions has 

not been studied. Moreover, atmospheric aerosol chemistry and interaction processes encompass not only chemical reactions 440 

but also a suite of highly nonlinear processes, including nucleation, coagulation, thermodynamics and phase equilibrium, 

gas-particle partitioning, and particle transfer. This study, therefore, aim to addresses the critical question of whether an AI 

scheme can effectively supplant the entire numerical scheme for these processes, achieving both high fidelity in simulation 

accuracy and a marked increase in computational efficiency.  

To this end, the AIMACI scheme was established based on the state-of-the-art Multi-Head Self-Attention algorithm, 445 

renowned for its powerful nonlinear representation capabilities. This algorithm can efficiently capture complex reaction 

relationships between different chemical species, remaining robust even as the number of simulated species increases. In an 

offline mode, where the AIMACI scheme was not yet integrated with a 3D numerical model, it demonstrated remarkable 

statistical metrics on a test dataset, all 37 evaluated species exhibiting an average R² of 0.99, and an average Normalized 

Mean Bias (NMB) of 0.95%. This high degree of consistency between the numerical and AIMACI schemes lays a solid 450 

foundation for further online continuous simulations. 

To facilitate the coupling of the Python-written AIMACI scheme with Fortran-based numerical models, we utilized 

PyTorch's TorchScript and LibTorch tools to encapsulate the AIMACI scheme into a static library callable by the numerical 

model. This approach entails minimal changes to the existing numerical model's codebase and offers a highly flexible and 

easily plug-and-play solution for coupling AI algorithms of diverse complexities with a range of numerical models. 455 

Employing hybrid model with physics and AI schemes, we implemented additional experiments to evaluate the online 

simulation performance of the AIMACI scheme. The 10-day continuous simulation results indicate that the AIMACI scheme 

not only accurately captures the spatiotemporal distribution of various aerosol species but also effectively reproduces their 

size distributions, maintaining stability throughout the simulation period without rapid error growth. Furthermore, the 

AIMACI scheme exhibits robust generalization capabilities, applicable across various environmental conditions in all four 460 

seasons for month-long continuous simulations, despite being trained on data from only 16 days in March. The simulation 

results for nitrate's monthly average surface total concentrations and hourly time series illustrate a high degree of consistency 

with the numerical scheme. However, the AIMACI scheme's performance in July was less accurate compared to other 
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months, potentially due to the prevalence of typhoons in summer, which differ from the environmental conditions 

represented in the training data. This indicates that there is potential for further refinement to enhance the simulation 465 

accuracy of the AIMACI scheme, such as by incorporating a more diverse training dataset that includes extreme events. 

In terms of computational speed, the AIMACI scheme is approximately 5 times faster than the conventional numerical 

scheme when predicting 720,300 grid points with 37 chemical species using a single CPU core. This speedup increases 

significantly to about 277 times faster when utilizing a GPU. Future simulations on heterogeneous platforms, integrating 

both CPUs and GPUs, are expected to further improve this speedup ratio. This anticipated enhancement will enable higher 470 

spatial resolutions, extended simulation durations, and substantially reduced computation times for chemical transport 

models. 

An important outcome of this work is the first-time successful application of an AI scheme to replace entire numerical 

scheme for aerosol chemistry and interactions within the numerical model, achieving fast, accurate, and stable simulations. 

The high fidelity in reproducing the complex spatiotemporal distributions and PSD of aerosol species including water 475 

content in aerosols, coupled with a significant acceleration, highlights the potential of the AIMACI scheme in advancing 

climate modeling and atmospheric science. As the first step, we concentrate on inorganic aerosols, which are a fundamental 

aspect of atmospheric chemistry. While organic aerosols also play a crucial role, the inherent chemical complexity and the 

absence of a convincing numerical scheme for AI scheme to emulate have led us to defer their inclusion. However, the 

exploration of AI scheme for organic aerosols is firmly on our agenda for future studies, with the aim of integrating them 480 

into our comprehensive AIMACI scheme. While our application was constrained to have no global long-term simulations, 

the convenience and flexibility of the method we employed in this study—coupling the AIMACI scheme with the numerical 

model via a static library—as well as the robust generalization ability demonstrated by the AIMACI scheme, provide 

substantial promise for successfully conducting global long-term simulations in the near future. This not only helps to reduce 

uncertainties in global models due to simplified or absent detailed aerosol chemistry and interactions but also advances our 485 

comprehension of aerosol behavior, vital for climate studies and policy-making. By harnessing the power of artificial 

intelligence in conjunction with sophisticated atmospheric models, we aspire to achieve faster, more accurate, and reliable 

predictions of future climate scenarios. 
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