

1 From small scale variability to mesoscale stability in surface 2 ocean pH: implications for air-sea CO₂ equilibration

3 Louise Delaigue^{1,2}, Gert-Jan Reichart^{1,3}, Li Qiu⁴, Eric P. Achterberg⁴, Yasmina Ourradi¹, Chris
4 Galley^{5,6}, André Mutzberg⁴ and Matthew P. Humphreys¹

5 ¹Department of Ocean Systems (OCS), NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, 1790 AB
6 Den Burg (Texel), the Netherlands

7 ²Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV, 06230 Villefranche-sur-Mer,
8 France

9 ³Department of Earth Sciences, Utrecht University, 3584 CS Utrecht, The Netherlands

10 ⁴GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany

11 ⁵Department of Earth Sciences, Memorial University of Newfoundland, St. John's, NL, A1B 3X5, Canada

12 ⁶Department of Earth and Environmental Sciences, University of Ottawa, Ottawa, ON, K1N 6N5, Canada

13 Correspondence to: Louise Delaigue (louise.delaigue@imev-mer.fr)

14 **Abstract.** One important aspect of understanding ocean acidification is the nature and drivers of pH variability in
15 surface waters on smaller spatial (i.e., areas up to 100 km²) and temporal (i.e., days) scales. However, there has been
16 a lack of high-quality pH data at sufficiently high resolution. Here, we describe a simple optical system for
17 continuous high-resolution surface seawater pH measurements. The system includes a PyroScience pH optode
18 placed in a flow-through cell directly connected to the underway supply of a ship through which near-surface
19 seawater is constantly pumped. Seawater pH is measured at a rate of 2 to 4 measurements min⁻¹ and is cross-
20 calibrated using discrete carbonate system observations (total alkalinity, dissolved inorganic carbon and nutrients).
21 This setup was used during two research cruises in different oceanographic conditions: the North Atlantic Ocean
22 (December-January-December 2020-January 2021) and the South Pacific Ocean (February-April 2022). By
23 leveraging this novel high-frequency measurement approach, Our findings reveal fine-scale fluctuations in surface
24 seawater pH across the North Atlantic and South Pacific Oceans. While temperature is a significant abiotic factor
25 driving these variations, it does not account for all observed changes. Instead, our results highlight the interplay
26 between temperature, biological activity, and waters with distinct temperature-salinity propertieswater masses on
27 pH. Notably, the variability differed between the two regions, suggesting differences in the dominant factors
28 influencing pH. In the South Pacific, biological processes appeared to be mostly responsible for pH variability,
29 while in the North Atlantic, additional abiotic and biotic factors complicated the correlation between expected and
30 observed pH changes. Although surface seawater pH exhibited fine-scale variations, it remained relatively stable
31 over a 24-hour cycle due to reequilibration with atmospheric CO₂. Thus, for the regions and time periods studied,
32 ocean basin scale analyses based on discrete samples collected during traditional research cruise transects would
33 still capture the necessary variability for global CO₂ cycle assessments and their implications. While our findings
34 indicate that broader ocean-basin scale analyses based on lower-resolution datasets can effectively capture surface
35 ocean CO₂ variability at a global scale, they also highlight the necessity of fine-scale observations for resolving
36 regional processes and their drivers, which is essential for improving predictive models of ocean acidification and
37 air-sea CO₂ exchange.

38 1 Introduction

39 Ocean chemistry is changing due to the uptake of anthropogenic CO₂ from the atmosphere
40 (DeVries, 2022). The uptake of atmospheric CO₂ by the ocean's surface increases hydrogen ion
41 concentration, a process known as ocean acidification, which has led to a 30–40% rise in
42 hydrogen ion concentration (i.e. surface seawater acidity) and a corresponding pH decrease of
43 ~0.1 since around 1850. The uptake of atmospheric CO₂ by the ocean's surface causes a rise in
44 the ocean's hydrogen ion concentration, a process commonly referred to as ocean acidification.
45 As a result, the hydrogen ion concentration of surface ocean seawater has increased by 30–40%,
46 which corresponds to a pH decrease of approximately 0.1 since around 1850 (Gattuso et al.,

Formatted: French (France)

Formatted: Subscript

Formatted: Subscript

Formatted: Subscript

47 2015; Jiang et al., 2019; Orr et al., 2005). These changes have already significantly impacted
48 marine organisms, especially marine calcifiers (Doney et al., 2020; Gattuso et al., 2015; Osborne
49 et al., 2020), and pH is projected to decline by ~0.3 by 2100 (Figueroa et al., 2021).

50
51 High-resolution studies of surface ocean carbonate chemistry and air-sea CO₂ exchange have
52 significantly advanced our understanding of the upper ocean's carbon cycle. To understand these
53 impacts and the underlying mechanisms more precisely, high-resolution studies have
54 significantly advanced our understanding of the upper ocean's carbon cycle. However, gaps
55 remain, particularly at fine spatio-temporal scales (e.g., variability over hours and a few
56 kilometers). At these scales, changes in pH over short time periods can be an important control
57 on the ocean's buffering capacity and response to CO₂ uptake, highlighting the need for further
58 detailed observations (Cornwall et al., 2013; Egilsdottir et al., 2013; James et al., 2020; Qu et al.,
59 2017; Wei et al., 2022).

Formatted: Subscript

60
61 Advancements in the last decade and a half have enhanced the capacity for accurate and precise
62 in-situ pH measurements. For example, Martz et al. (2010) developed an autonomous sensor
63 tailored for continuous deployment in marine environments that allows recording of high-
64 resolution pH fluctuations. Autonomous surface vehicles in coastal upwelling systems have also
65 been used to capture intricate partial pressure of CO₂ ($p\text{CO}_2$) and pH dynamics, even in complex
66 environments where rapid biogeochemical changes occur due to natural phenomena like
67 upwelling (Chavez et al., 2018; Cryer et al., 2020; Possenti et al., 2021). Staudinger et al. (2018)
68 also developed an optode system capable of simultaneously measuring oxygen, carbon dioxide,
69 and pH in seawater. This system was designed for extended deployment (i.e. days) in marine
70 environments, enabling continuous monitoring (with measurement intervals between 1 second
71 and 1 hour) of these parameters. Additionally, Sutton et al. (2019) detailed the implementation of
72 autonomous seawater $p\text{CO}_2$ and pH time series from 40 surface buoys, broadening the scope of
73 observations at fixed time series sites. Staudinger et al. (2019) introduced fast and stable optical
74 pH sensor materials specifically for oceanographic applications, enhancing the ability to measure
75 pH under various environmental conditions.

76
77 These technological advancements have facilitated significant scientific progress. Field
78 measurements conducted using submersible spectrophotometric sensors have revealed fine-scale
79 variations in pH in coastal waters and shed light on localized acidification processes (Cornwall et
80 al., 2013). The implementation of autonomous seawater $p\text{CO}_2$ and pH time series as described by
81 Sutton et al. (2019) has enhanced our ability to characterize sub-seasonal variability in the ocean.
82 These efforts represent important progress that can be built upon to further understand fine-scale
83 ocean dynamics.

84
85 Fine spatio-temporal scale variability in surface ocean pH is hard to capture because it is driven
86 by a complex interplay of processes, including physical mixing, biological activity (i.e.
87 photosynthesis and respiration), thermal variability, and air-sea CO₂ fluxes (Faassen et al., 2023;
88 Hofmann et al., 2011; Price et al., 2012). Physical mixing moderates surface oceanic pH by
89 redistributing dissolved CO₂, nutrients, and heat throughout the water column. Mixing also
90 mitigates extreme pH fluctuations by diluting surface concentrations of CO₂ during periods of
91 high biological activity or temperature-induced CO₂ release (Egea et al., 2018; Li et al., 2019).
92 Photosynthetic activity can decrease CO₂, leading to an increase in pH during daylight hours,

93 while respiration dominates at night, releasing CO₂ and lowering pH (Fujii et al., 2021; Jokiel et
94 al., 2014). Warmer waters decrease CO₂ solubility and increase pH, while cooler waters increase
95 solubility, promoting CO₂ uptake and decreasing pH, although the timescale of these processes
96 differs, with some changes occurring instantaneously and others after equilibration (Zeebe &
97 Wolf-Gladrow, 2001). Instantaneous changes are driven by physical and chemical reactions,
98 while equilibration processes involve longer-term adjustments such as air-sea gas exchange and
99 the mixing of surface waters with deeper layers (Emerson & Hedges, 2008). When atmospheric
100 CO₂ exceeds oceanic CO₂, the ocean takes up CO₂, lowering pH; conversely, when atmospheric
101 CO₂ decreases below oceanic CO₂, outgassing occurs, raising pH
102 increased atmospheric CO₂ boosts oceanic CO₂-uptake, lowering pH, while reduced atmospheric CO₂ would decrease
103 oceanic CO₂, raising pH (Caldeira & Wickett, 2005; Orr et al., 2005). Although each of these
104 processes has its distinct impact on pH, their combined effects regulate the ocean's carbon cycle
105 and its interaction with the atmosphere.

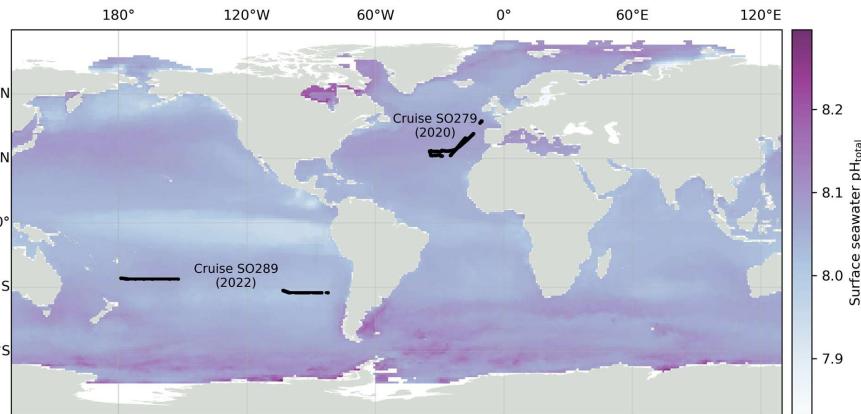
106 Recent studies on air-sea CO₂ equilibration timescales have highlighted significant regional
107 variations, particularly between the North Atlantic and South Pacific Oceans (Jones et al., 2014).
108 In the North Atlantic, equilibration timescales for CO₂ between the atmosphere and the ocean's
109 surface mixed layer vary significantly with latitude. In regions above 55°N, these timescales can
110 extend up to 18 months, while at lower latitudes, such as around 30°N, they range from 3 to 6
111 months In the North Atlantic, deeper mixed layers and unstable oceanic conditions lead to longer
112 equilibration timescales compared to temperate or tropical regions, ranging from 3 to 6 months
113 for the average North Atlantic latitude, and up to 18 months for regions above 55°N (Jones et
114 al., 2014). These long equilibration timescales reduce the extent to which the ocean can buffer
115 short-term changes in surface pH. On pentadal and longer timescales, the air-sea CO₂ flux in the
116 North Atlantic is driven primarily by changes in ΔpCO₂, while gas transfer velocity plays a more
117 significant role only on interannual and shorter timescales (Couldey et al., 2016).

118
119
120 Cooler temperatures at higher latitudes increase CO₂ solubility, resulting in higher dissolved
121 inorganic carbon (DIC), and upwelling brings DIC and total alkalinity (TA)-rich deep waters to
122 the surface (Wu et al., 2019). These factors further increase the amount of CO₂ that needs to
123 equilibrate-exchange with the atmosphere, further prolonging equilibration times. The South
124 Pacific, with its shallower mixed layers and higher average surface temperatures, facilitates
125 shorter equilibration times and enhances CO₂ uptake rates (i.e. 3 to 4 months; Jones et al., 2014).
126 Wu et al. (2019) also showed that high biological productivity in these areas significantly
127 impacts DIC, potentially reducing surface DIC more quickly.

128
129 Here, we test a high-frequency optical system to investigate how surface seawater pH varies
130 across fine spatio-temporal scales, focusing on changes occurring over areas up to 100 km² and
131 timescales of hours to days Here, we investigate how surface seawater pH varies on fine spatio-
132 temporal scales (i.e. areas up to 100 km², and days) across different ocean basins (i.e., North
133 Atlantic and South Pacific Oceans) and identify abiotic and biotic factors driving these
134 variations. We use direct, high-frequency measurements of surface seawater pH and estimate TA
135 to resolve the rest of the carbonate system. This novel setup provides new insights into . These
136 data are used to analyse how key biogeochemical processes, such as temperature, hydrodynamic
137 mixing and biological activity, influence fine-scale spatio-temporal variability in pH.

Formatted: Subscript

Formatted: Subscript


Formatted: Subscript

Formatted: Subscript

Formatted: Superscript

Formatted: Font: Not Bold

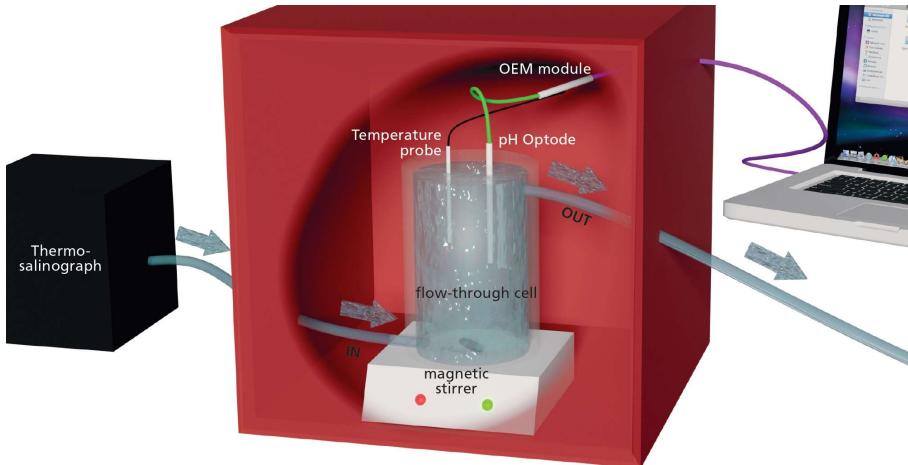
Formatted: Font: Not Bold

138 **2 Materials and Procedures**139 **2.1 Study areas**

140
141 **Figure 1.** Locations of pH measurements during two oceanographic cruises used in this study: SO279 in the
142 North Atlantic (December 2020 [to January 2021](#)) and SO289 in the South Pacific (February–April 2022).
143 Surface seawater [pH on the total scale](#) pH_{total} for December 2022 from the OceanSODA product is shown in
144 the background (Gregor & Gruber, 2020).

145 Two datasets from separate oceanic regions were used: research expeditions SO279 in the North
146 Atlantic Ocean and SO289 in the South Pacific Ocean, both on the German R/V Sonne (Fig. 1).

147
148
149 Expedition SO279 in [January to](#) December 2020, conducted in the Azores Region of the North
150 Atlantic Ocean (Fig. 1), was part of the NAPTRAM research program investigating the transport
151 pathways of plastic and microplastic debris (Beck et al., 2021). The data collection included
152 discrete samples from the CTD rosette ($n=77$; (Delaigue et al., 2021a), with measurements of
153 DIC, TA and nutrients (silicate, phosphate ammonium, nitrite, and nitrate + nitrite); discrete
154 samples from the underway water system (UWS; $n=51$; (Delaigue et al., 2021b) also measuring
155 these parameters; and a high-resolution UWS timeseries of ocean surface pH (over 43,000
156 datapoints; (Delaigue et al., 2021c).


157
158 The South Pacific GEOTRACES Cruise SO289, from Valparaiso (Chile) to Noumea (New
159 Caledonia) under the GEOTRACES GP21 initiative, was conducted [from between 18](#) February
160 [and 08 to](#) April 2022 (Fig. 1; (Achterberg et al., 2022). The data collection also included [discrete](#)
161 [carbonate chemistry and nutrient samples](#) [the same parameters as SO279, from the with discrete](#)
162 [samples from the CTD rosette](#) ($n=395$; (Delaigue, Ourradi, Ossebar, et al., 2023), discrete
163 samples from the UWS ($n=32$; (Delaigue, Ourradi, et al., 2023a) and another high-resolution
164 UWS timeseries of ocean surface pH from the optode system (over 78,000 datapoints; (Delaigue,
165 Ourradi, et al., 2023b).

166 **2.2 Integrated Shipboard-shipboard Optode System for Continuous pH**
167 **Measurements**

168 We used a pH optode (PHROBSC-PK8T, for pH range 7.0 – 9.0 on the total scale; PyroScience
169 GmbH), made of a robust cap adapter fiber with a stainless-steel tip (length=10cm,
170 diameter=4mm) and disposable plastic screw cap with an integrated pH sensor. The total scale
171 accounts for sulfate ion dissociation in seawater, providing a more accurate representation of
172 carbonate system equilibria compared to other pH scales commonly used in marine chemistry.
173 Unless explicitly stated otherwise, all references to pH in this manuscript refer to pH on the total
174 scale. The manufacturer-reported accuracy of the optode is ± 0.05 for pH 7.5–9.0 and ± 0.1 for pH
175 7.0–7.5 after a two-point calibration, with a precision of ± 0.003 at pH 8.0.

176
177 -The optode was connected to a meter combined with a pressure-stable optical connector (optical
178 feed-through; OEM module Pico-pH-SUB; PyroScience GmbH; Fig. 2). Briefly, the optical pH
179 sensor is constructed using the PyroScience REDFLASH technology, which uses a pH neutral
180 reference indicator and a pH responsive luminescent dye. These elements are activated using a
181 specifically tuned orange-red light with a wavelength ranging between 610-630 nm, which
182 triggers a bright luminescence emission in the near-infrared (NIR) band, spanning from 760-790
183 nm. At elevated pH, the fluorescence from the pH marker is diminished, leaving only the NIR
184 emission of the reference indicator noticeable. As the acidity increases, the pH marker is
185 protonated, which results in a heightened NIR luminescence that is detected along with the
186 emissions of both indicators. The measurement approach uses red excitation light modulated in a
187 sinusoidal manner, leading to a similar modulation of the NIR emission, albeit with a phase
188 discrepancy. This phase variation is registered by the PyroScience OEM module and
189 subsequently converted into a total pH measurement.

190
191 Automatic temperature compensation of the optical pH sensor was achieved using a flexible
192 Teflon-coated temperature probe (Pt100 Temperature Probe, PyroScience GmbH; Fig. 2)
193 soldered onto the OEM module. The optode was placed in a closed flow-through cell directly
194 connected to the underway supply of the ship through which seawater was pumped at a constant
195 rate (6 L/min for SO279 and 9 L/min for SO289; 2.5 m depth) and stirred using a magnetic
196 stirrer (Fig. 2). The entire setup was kept inside a closed box to isolate the optical instrument
197 from any other light source (Fig. 2). All seawater first went through a thermo-salinograph close
198 to the water source, which also measured salinity, temperature and chlorophyll-a fluorescence
199 (chl-a), before going through the pH setup (Fig. 2).

202
203 **Figure 2.** Schematic representation of the optical continuous pH measurement system. Arrows indicate the
204 direction of flow-through tubing. The system consists of the following components: a thermo-salinograph;
205 a flow-through cell; a magnetic stirrer; a fiber-based pH optode; a flexible Teflon-coated temperature probe;
206 a fiber-optic meter OEM module Pico-pH-SUB and a portable computer. All elements inside the red box are in
207 the dark to avoid any light disturbance.

208 2.3 Initial calibration and underway measurements

209 Direct measurements of surface water (~3 m depth) pH were carried out at a frequency of 2
210 measurements min⁻¹ for the North Atlantic cruise and 4 measurements min⁻¹ for the South Pacific
211 cruise.

212 A one-point calibration of the temperature probe was performed against a thermometer inside a
213 water bath (Lauda Ecoline RE106). A two-point calibration of the pH sensor was **performed**
214 **conducted following the manufacturer's recommended procedure**, using PyroScience pH buffer
215 capsules (pH 2 or pH 4 for the acidic calibration point, pH 10 or pH 11 for the basic calibration
216 points). **While these calibration points deliberately fall far outside the sensor's operating range**
217 **from pH 7-9 in order to characterize its maximum and minimum responses are far from typical**
218 **surface ocean pH (~8.1), this approach ensures sensor linearity across its operational range (pH**
219 **7.0–9.0) and follows the manufacturer's specifications.** Buffers were prepared by dissolving each
220 capsule's powder into 100 mL MilliQ water.
221 **A pH offset adjustment was made using certified reference material (CRM, batches #189, #195**
222 **and #198; provided by Andrew Dickson, Scripps Institution of Oceanography).**

223 To further refine the accuracy of the measurements, a pH offset adjustment was applied using
224 certified reference material (CRM, batches #189, #195, and #198; provided by Andrew Dickson,
225 Scripps Institution of Oceanography). Although CRMs do not provide direct certified pH values,
226 we calculated pH_{CRM} from the CRM TA and DIC using the carbonate system equilibrium
227 constants from Lueker et al. (2000). This pH_{CRM} value was then used to adjust the optode-based
228 pH measurements to improve accuracy and align them with discrete observations.
229
230

Formatted: Font: Not Bold

Formatted: Font: Not Bold

Formatted: Subscript

Formatted: Font: Not Bold

Formatted: Font: Not Bold

Formatted: Subscript

Formatted: Font: Not Bold

231 To assess the robustness of the pH optode, resolution surface measurements of partial pressure of
232 CO₂ (pCO₂) and pH (samipH) were added as points of comparison. The pH optode, pCO₂ sensor,
233 and samipH sensor were all installed on the same surface seawater supply, which was
234 continuously pumped from approximately 2.5 m depth into the sink of the underway laboratory
235 during the cruise. The PyroScience pH sensor received water from a split of this same supply,
236 ensuring all sensors were sampling the same source water.

Formatted: Subscript

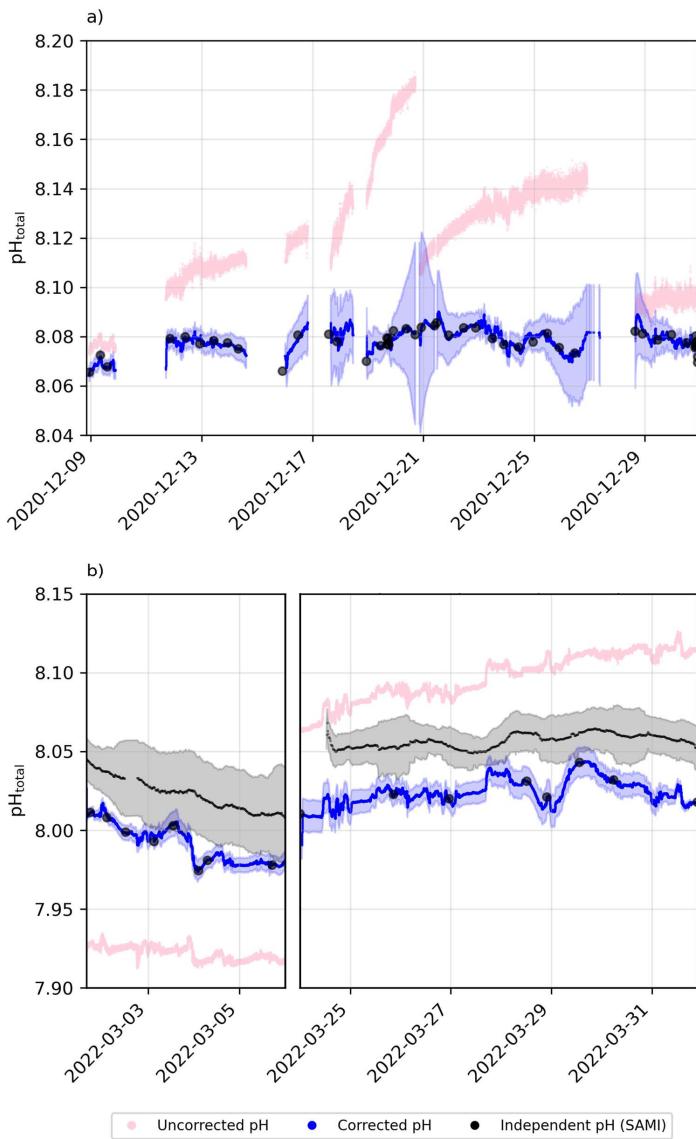
Formatted: Subscript

Formatted: Subscript

237
238 Surface pCO₂ was measured using a factory-calibrated commercial sensor (HydroC, 4H-JENA
239 Engineering GmbH, Germany)(Fietzek et al., 2014) at a 1-minute sampling interval. An
240 automatic zero-point calibration was performed every 6 hours to correct for sensor drift. The
241 recorded pCO₂ values were subsequently adjusted following (Takahashi et al., 2006) to reflect in
242 situ sea surface temperature.

243
244 Surface pH, reported on the total scale, was measured using a factory-calibrated sensor (Sunburst
245 Sensors, USA) at 15-minute intervals. The pH data were calibrated using sea surface salinity and
246 temperature according to the equations provided by Liu et al. (2011) and Millero (2007),
247 respectively.

248 2.4 Discrete sampling and analysis for other CO₂ parameters


249 The underway seawater system was sub-sampled from the cell every 12 hours via silicone tubing
250 for TA and DIC following an internationally established protocol (Dickson et al., 2007). TA was
251 sampled in Azlon™ HDPE wide neck round 150 mL bottles filled to the neck and poisoned with
252 50 µL saturated HgCl₂. DIC was sampled into Labco Exetainer® 12 ml borosilicate vials and
253 poisoned with 15 µL saturated HgCl₂. Samples were stored at 4 °C whenever possible and kept
254 in the dark until analysis.

255
256 All TA and DIC analysis was carried out at the Royal Netherlands Institute for Sea Research,
257 Texel (NIOZ). The analysis was calibrated using certified reference material (CRM, batches
258 #189, #195 and #198; provided by Andrew Dickson, Scripps Institution of Oceanography). TA
259 was determined using a Versatile INstrument for the Determination of Total inorganic carbon
260 and titration Alkalinity (VINDTA 3C #017 and #014, Marianda, Germany). The instrument
261 performed an open-cell, potentiometric titration of a seawater subsample with 0.1 M
262 hydrochloric acid (HCl). Results were then recalculated using a modified least-squares fitting as
263 implemented by Calkulate v3.1.0 (Humphreys and Matthews, 2024). DIC concentrations were
264 determined using either the VINDTA system (SO279 samples and part of SO289 samples) or the
265 QuAAtro Gas Segmented Continuous Flow Analyzer (CFA, SEAL Analytical; SO289 samples).
266 Briefly, the VINDTA measures DIC by acidifying a seawater sample, which releases CO₂ that is
267 then quantified through a coulometric titration cell. Similarly, the QuAAtro CFA uses
268 acidification to liberate CO₂, which then discolours a slightly alkaline phenolphthalein pink
269 coloured solution which is measured spectrophotometrically at 520 nm (Stoll et al., 2001).

270
271 For cruise SO279, nutrient samples were gathered using 60 mL syringes made of high-density
272 polyethylene, which were connected to a three-way valve by tubing, drawing directly from the
273 CTD-rosette bottles to avoid air exposure. Immediately upon collection, the samples were taken
274 to the laboratory for processing, where they were filtered through a dual-layer filter with pore
275 sizes of 0.8 and 0.2 µm. All samples were stored at -20°C in a freezer except Si, which were

276 stored at 4°C in a cold room until analysis back at NIOZ. Nutrients were analysed using a
277 QuAAstro Continuous Flow Analyser. Measurements were made simultaneously on four channels
278 together Si, PO₄, NH₄, NO₃, and NO₂. All measurements were calibrated with standards diluted
279 in low nutrient seawater (LNSW) in the salinity range of the stations (approx. 34 – 37) to ensure
280 that analysis remained within the same ionic strength. Prior to analysis, all samples were brought
281 to laboratory temperature in about one to two hours. To avoid gas exchange and evaporation
282 during the runs with NH₄ analysis, all vials including the calibration standards were covered with
283 Parafilm under tension before being placed into the auto-sampler, so that the sharpened sample
284 needle easily penetrated through the film leaving only a small hole. Silicate samples were
285 measured separately on a TRAACS Gas Segmented Continuous Flow Analyser (manufactured
286 by Bran+Lubbe, now SEAL Analytical) following Strickland and Parsons (1972). A sampler rate
287 of 60 samples per hour was also used for all analyses. Calibration standards were diluted from
288 stock solutions of the different nutrients in 0.2 µm filtered LNSW diluted with de-ionised water
289 to obtain approximately the same salinity as the samples and were freshly prepared every day.
290 This diluted LNSW was also used as the baseline water for the analysis and in between the
291 samples. Each run of the system had a correlation coefficient of at least 0.9999 for 10 calibration
292 points. The samples were measured from the lowest to the highest concentration, i.e., from
293 surface to deep waters in order to reduce carry-over effects. Concentrations were recorded in µM
294 at an average container temperature of 23.0 °C and later converted to µmol/kg by dividing the
295 recorded concentration by the sample density, calculated following Millero and Poisson (1981).
296

297 For cruise SO289, nutrient analysis was carried out on seawater from every Niskin bottle
298 triggered at various depths during each cast. The seawater was transferred into 15 mL
299 polypropylene vials. Each container and its cap were rinsed three times with seawater before
300 filling. If immediate analysis was not possible, samples were stored in a fridge at 4 °C in the
301 dark. Macro nutrients were analyzed onboard using a segmented flow injection analysis with a
302 Seal Analytical QUAATRO39 auto-analyzer that includes an XY2-autosampler. For nanomolar
303 nutrient analysis, a modified setup with 1000 mm flow cells was employed. The setup was
304 designed to analyze four channels: total oxidized nitrogen (TON), silicate, nitrite, and phosphate,
305 using methods outlined in QuAAstro Applications: Method Nos. Q-068-05 Rev. 11, Q-066-05
306 Rev. 5, Q-070-05 Rev. 6, and Q-064-05 Rev. 8, respectively. To ensure analytical consistency
307 and validate the data, each run was checked against Certified Reference Material for Nutrients in
308 Seawater (RMNS). Nutrient analyses were further validated using KANSO CRM, with specific
309 lot numbers for macromolar and nanomolar nutrient concentrations.

310
 311 **Figure 3.** Underway pH drift correction using $\text{pH}_{\text{total(TA/DIC)}}$ subsamples for a) cruise SO279 and b) cruise
 312 SO289. Raw pH measurements (pink); corrected pH values and uncertainty from bootstrapping (blue);
 313 subsample $\text{pH}_{\text{total(TA/DIC)}}$ depicted as black circles. Independent pH from the SAMI sensor is shown in black
 314 for the South Pacific cruise (SO289).

315 **2.5 Post-cruise correction**

316 To ensure the reliability of the dataset, an initial screening was conducted to identify and flag
 317 unreliable continuous pH data points, primarily attributable to optode stabilization issues.
 318 Specifically, data points recorded during documented periods of particularly high seasrough
 319 weather, when air intrusion into the underway system was reported, were flagged as unreliable
 320 due to the resulting abrupt and erratic drift patterns inconsistent with expected optode and
 321 surface ocean pH behavior. Specifically, data points exhibiting unreasonable drift patterns,
 322 inconsistent with expected optode and surface ocean pH behavior, were flagged as unreliable.

323
 324 pH_{obs}TA, DIC values were calculated from TA and DIC UWS discrete samples) using
 325 PyCO2SYS (Version 1.8.2; (Humphreys et al., 2022)), with the carbonic acid dissociation
 326 constants of Lueker et al. (2000), the bisulfate dissociation constant of Dickson (1990), the total
 327 boron to chlorinity ratio of Uppström (1974), and the hydrogen fluoride dissociation constant of
 328 Dickson and Riley (1979). Lueker et al. (2000) These calculated values were then aligned with
 329 the continuous pH dataset to determine the offset between pH_{obs} subsamples and the continuous
 330 optode-based pH measurements (Fig. 3) and were then aligned with the continuous pH data to
 331 calculate the offset between the pH_{TA, DIC} subsamples and the continuous pH data (Fig. 3). A
 332 Piecewise Cubic Hermite Interpolating Polynomial (PCHIP; (Fritsch & Carlson, 1980) was fitted
 333 to the offset as a way to continuously correct pH variations across the entire pH timeseries (Fig.
 334 3). While continuous recalibration of the optode was not possible, a two-point calibration,
 335 supplemented by a third-point correction using a CRM, was performed prior to deployment (see
 336 Section 2.3). Additionally, discrete underway TA and DIC samples, collected twice daily when
 337 possible, were used to assess and correct for drift in the optode measurements. However, it
 338 appears that the sensor drifted significantly faster than this, so over timescales of days and longer
 339 the accuracy of the measurement is dependent on the correction to the TA and DIC samples
 340 The manufacturer specifies a drift of <0.005 pH units per day at 25 °C, though drift may vary
 341 slightly with temperature. During our deployments, seawater temperatures ranged from 13.4°C
 342 to 22.0 °C in the North Atlantic and from 19.8°C to 27.7 °C in the South Pacific. While the
 343 cooler North Atlantic conditions may have reduced drift rates slightly, temperatures during the
 344 South Pacific cruise were close to or above 25 °C for extended periods, and full manufacturer-
 345 specified drift is likely to have occurred. Even if drift remained at the nominal rate of 0.005 pH
 346 units per day, this would amount to a cumulative offset of up to 0.175 pH units over ~5 weeks
 347 (SO279) and 0.28 pH units over ~8 weeks (SO289), in line with the deviation observed in our
 348 raw data (Fig. 3). Notably, even with a recalibration during the cruise, drift before and after that
 349 point would still introduce offsets. Thus, over timescales of days and longer, the accuracy of the
 350 measurement is dependent on the correction to the TA and DIC samples.

351
 352 To further assess the robustness of our drift correction, we compared our optode-corrected pH
 353 and derived fCO₂ values with independent continuous measurements from autonomous sensors
 354 (Figs. S1 and S2). The corrected optode pH exhibited a lower mean deviation (~0.008) from
 355 discrete pH (TA/DIC) measurements than the independent spectrophotometric SAMI sensor
 356 (~0.02 pH units), indicating that our correction effectively minimized drift-related inaccuracies
 357 (Fig. S1). The overall scatter between the optode-corrected and SAMI-measured pH was modest
 358 (RMSD = 0.0329), suggesting reasonable consistency despite inherent sensor measurement
 359 noise. Similarly, calculated fCO₂ from corrected optode pH showed a larger mean deviation
 360 (~12.7 μatm) compared to directly measured fCO₂ (~5 μatm; Fig. S2). The relatively higher

Formatted: Subscript

Commented [LD1]: CG: Best to avoid brackets within brackets.

Commented [LD2R1]: This will be fixed one I get rid off the EndNote formatting!

Formatted: Subscript

Formatted: Not Highlight

Formatted: Not Highlight

Formatted: Not Highlight

361 RMSD (30.76 μatm) reflects variability in calculated fCO_2 arising from uncertainties in
 362 alkalinity estimates and carbonate system calculations rather than fundamental flaws in the
 363 optode pH correction itself (Fig. S2). Thus, these validations collectively confirm that our
 364 corrected pH data represent a reliable improvement over raw optode measurements, suitable for
 365 robust biogeochemical analysis.

Formatted: Not Highlight

366 The overall post-cruise correction of pH involved an adjustment of approximately 0.4 to bring
 367 the continuous measurements in line with discrete carbonate system observations. However,
 368 despite this magnitude of correction, the internal variability within each cycle remains robust,
 369 with observed diel fluctuations consistently within ~ 0.01 . This fine-scale variability aligns with
 370 expected temperature-driven pH changes and is distinguishable from random noise. The
 371 measurement uncertainty of $\sim \pm 0.01$ means that while some small-scale variations approach the
 372 uncertainty threshold, the structured nature of the observed diel trends—rather than random
 373 scatter—supports their validity. If these variations were purely noise, we would not expect to see
 374 systematic agreement with temperature fluctuations across multiple cycles and regions. To
 375 further assess the robustness of these signals, we conducted a signal-to-noise ratio (SNR)
 376 analysis (see Supplementary Information). SNR values exceeded 1 when pH was modeled based
 377 on temperature (and salinity) in the North Atlantic, indicating that observed diel variability
 378 surpassed measurement noise and reflected true environmental signals. In contrast, SNR values
 379 remained below 1 in the South Pacific, suggesting that pH variability there was closer to the
 380 uncertainty threshold and less clearly distinguishable from noise.

382 2.6 Estimation of other biogeochemical parameters

383 TA was estimated for the continuous pH dataset using the empirical equations presented by Lee
 384 et al. (2006). For the North Atlantic, the corresponding equation was used (see Fig. S34 in
 385 supplementary information):

$$386 \text{TA}_{\text{NA}} = 2305 + 53.97(\text{SSS} - 35) + 2.74(\text{SSS} - 35)^2 - 1.16(\text{SST} - 20) \quad (1)$$

$$+ 0.040(\text{SST} - 20)^2$$

387 In contrast, the (Sub)tropics equation (SBT, Eq. 2) was applied for the South Pacific region, as
 388 the cruise mostly followed the 32.5°S longitude and this equation was determined to offer the
 389 best fit to the local temperature (SST) and salinity (SSS) equation (see Fig. S43 in supplementary
 390 information):

$$391 \text{TA}_{\text{SBT}} = 2305 + 58.66(\text{SSS} - 35) + 2.32(\text{SSS} - 35)^2 - 1.41(\text{SST} - 20) \quad (2)$$

$$+ 0.040(\text{SST} - 20)^2$$

392 TA estimates were used together with pH to solve the rest of the marine carbonate system (i.e.
 393 DIC and fCO_2) using PyCO2SYS (Version 1.8.2; (Humphreys et al., 2022), with the carbonic
 394 acid dissociation constants of Lueker et al. (2000), the bisulfate dissociation constant of Dickson
 395 (1990), the total boron to chlorinity ratio of Uppström (1974), and the hydrogen fluoride
 396 dissociation constant of Dickson and Riley (1979).

397 While direct TA measurements were collected twice daily, their limited temporal resolution
 398 made them unsuitable for continuous carbonate system calculations. The empirical TA equations

Commented [LD3]: MPH: are they the Lee eq or did I refit them to my data? Did I check this against my TA data?

Commented [LD4R3]: No I just used the Lee et al equations given data is in the open ocean for both regions

401 from Lee et al. (2006) provided a high-resolution dataset that allowed for more comprehensive
 402 system reconstructions. A comparison of measured and estimated TA values (see Fig. S3 in
 403 supplementary information) shows good agreement, with deviations generally within the
 404 uncertainty of carbonate system calculations.

405 2.7 Projected pH variability

406 The derived parameters pH_{temp} , pH_{sal} , and $pH_{temp,sal}$ were calculated while holding TA and DIC
 407 constant at the average values of each **diurnal/diel** cycle, where TA was estimated following Lee
 408 et al. (2006) and DIC was derived from measured underway pH and estimated TA. This
 409 approach allowed us to assess the expected pH response to changes in temperature and salinity
 410 alone, without introducing additional assumptions about concurrent variations in carbonate
 411 chemistry.

412
 413 Similarly, pH_{TA,fCO_2} was computed while holding TA and fCO_2 constant at their daily mean
 414 values. fCO_2 was derived from measured pH and estimated TA, ensuring that the calculation
 415 reflects equilibrium conditions for given waters with distinct temperature-salinity properties
 416 while allowing temperature and salinity to vary independently. This formulation enables direct
 417 comparisons of observed pH to expected values under different scenarios, helping to disentangle
 418 the relative influences of abiotic drivers (temperature, salinity) versus processes such as air-sea
 419 CO_2 exchange and biological activity.

420
 421 Our approach maintains consistency by using a single set of carbonate chemistry parameters (TA
 422 and DIC) as the baseline for assessing temperature and salinity influences. While pH is initially
 423 used to estimate DIC, the subsequent calculations isolate the effects of temperature and salinity
 424 without assuming variability in TA or DIC. This method enables direct comparisons between
 425 observed and expected pH, providing a clearer framework for distinguishing abiotic influences
 426 from biological processes and air-sea CO_2 exchange.

427
 428 These calculations allowed for the exploration of changes in pH under varying environmental
 429 conditions by solely altering either temperature, salinity, or both simultaneously. pH_{TA,fCO_2} was
 430 also computed while holding TA and fCO_2 constant at their daily mean values but with varying
 431 temperature and salinity to model the pH distribution under fully equilibrated conditions. All
 432 calculations were done using the same **options configuration** in PyCO2SYS described in Sect.
 433 2.6.

434 2.8 Identification of full **diurnal/diel-diel** cycles

435 To account for the influence of geographic location on temporal measurements, timestamps from
 436 Coordinated Universal Time (UTC) were converted to Local Solar Time (LST). This conversion
 437 was necessary to align time-sensitive data with the true solar position at each measurement
 438 location, thereby facilitating more accurate comparisons of environmental data across different
 439 geographic regions and improving the analysis of **diurnal/diel-diel** processes.

440
 441 The conversion process involved calculating the mean longitudinal position for each date within
 442 the dataset. Subsequently, a time offset was determined based on the average longitude,
 443 assuming a standard rate of Earth's rotation. This offset was then applied to the original UTC
 444 timestamps, resulting in a modified dataset with timestamps adjusted to reflect LST:

Formatted: Font: Not Bold

Formatted: Subscript

Formatted: Font: Italic

Formatted: Subscript

Formatted: Font: Italic

Formatted: Subscript

Formatted: Subscript

Formatted: Subscript

445

$$\text{DateTime}_{\text{LST}} = \text{DateTime}_{\text{UTC}} + \left(\frac{\text{Longitude}_{\text{mean}}}{15} \right). \quad (3)$$

446 Following the conversion to LST, the dataset was further processed to isolate complete
 447 **diurnaldiel** cycles to ensure that only data representing full 24-hour cycles were included. The
 448 North Atlantic dataset included 7 complete **diurnaldiel** cycles, while the South Pacific dataset
 449 included 11 complete **diurnaldiel** cycles.

450 2.9 Uncertainty propagation

451 2.9.1 Uncertainty in pH measurements and post-correction

452 **To provide a comprehensive uncertainty estimate, we considered multiple sources of potential**
 453 **error. The manufacturer-reported accuracy (± 0.05 for pH 7.5–9.0, ± 0.1 for pH 7.0–7.5)**
 454 **represents a systematic bias that was addressed through calibration against discrete CRM**
 455 **samples and is not appropriate for inclusion as a random uncertainty. Likewise, the reported**
 456 **precision (± 0.003 at pH 8.0) reflects the repeatability of the measurements but does not quantify**
 457 **the full range of uncertainty for error propagation.** The final uncertainty in pH measurements was
 458 estimated by combining uncertainties from two main sources: (1) the uncertainty in the TA and
 459 DIC measurements used to calculate $\text{pH}_{\text{obsTA, DIC}}$ and (2) the correction of the UWS pH
 460 measurements using $\text{pH}_{\text{obsTA, DIC}}$.

461 **Formatted: Subscript**

462 **Formatted: Subscript**

463 First, the precision in TA and DIC were determined based on the RMSE from repeated
 464 measurements of a known standard water sample in the laboratory (NIOZ; 0.92 $\mu\text{mol/kg}$ and
 465 1.95 $\mu\text{mol/kg}$, respectively). Then a Monte Carlo simulation was applied to the calculated
 466 $\text{pH}_{\text{obsTA, DIC}}$ to obtain a pH_{RMSE} for each subsample $\text{pH}_{\text{obsTA, DIC}}$.

467 **Formatted: Subscript**

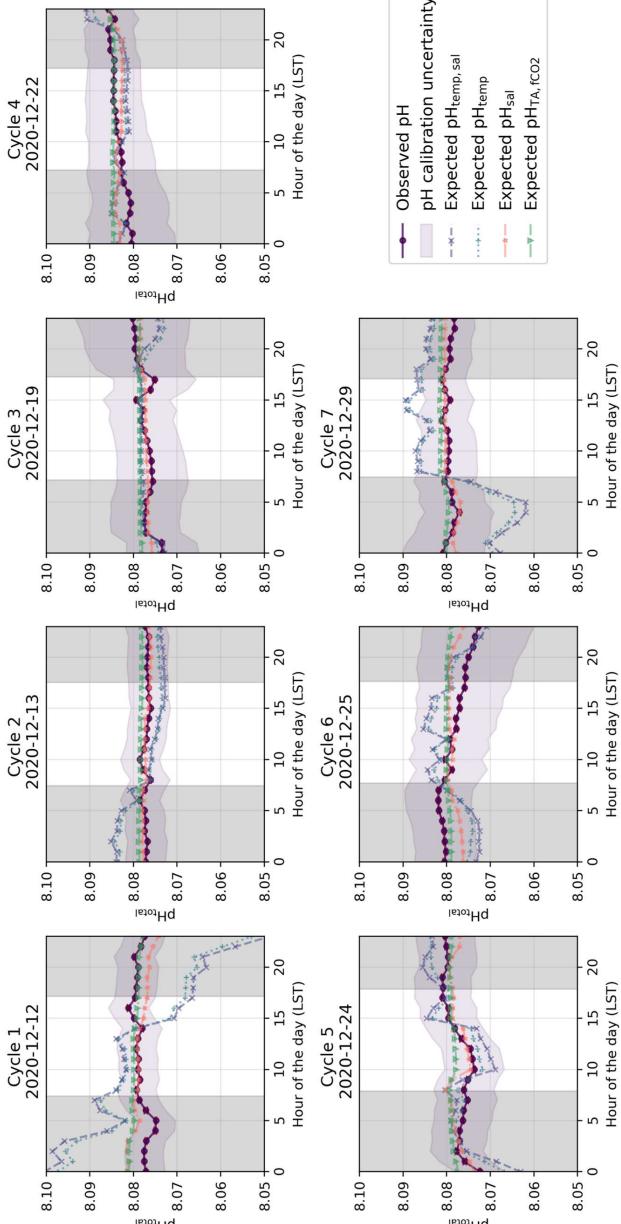
468 Next, the pH measurements obtained from the optode were corrected using $\text{pH}_{(\text{TA, DIC})}$ from the
 469 discrete measurements of TA and DIC. The uncertainty in the pH correction was assessed using
 470 a bootstrapping approach ($n=1000$ iterations), where a fraction (50%) of the discrete samples was
 471 randomly omitted in each iteration and the selected fraction of the discrete samples varied within
 472 its own pH_{RMSE} .

473 The variation in each subsample's $\text{pH}_{\text{obsTA, DIC}}$ captured the likely variability in TA and DIC
 474 measurements, while omitting different subsets of data allowed for the estimation of how
 475 sensitive the pH correction is to which set of subsamples are used for calibration.

476 **Formatted: Subscript**

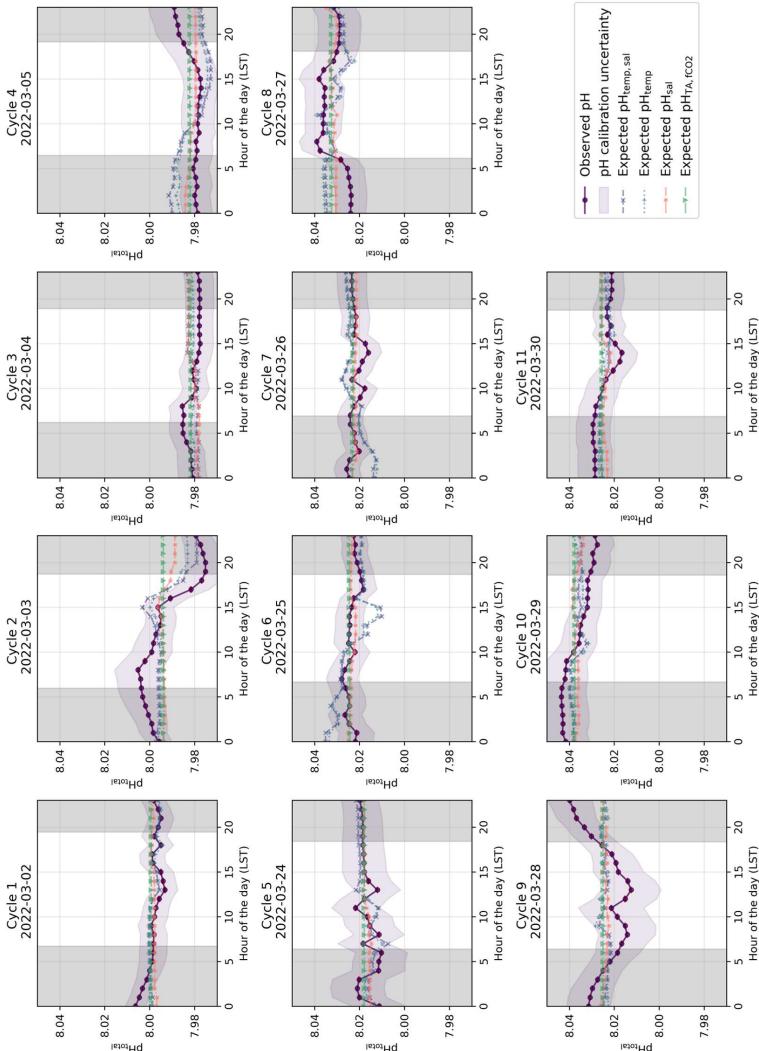
477 2.9.2 Uncertainty in pH **diurnaldiel** patterns

478 To ensure the observed patterns in pH over the full 24-hour cycles were not artifacts of sampling
 479 bias or other anomalies, a Monte Carlo simulation ($n = 1000$ iterations) was employed on each
 480 **diurnaldiel** cycle's hourly data analysis. This simulation randomly selected 50% of the data
 481 points for each hour (i.e. 50% of 120 hourly measurements for the North Atlantic dataset and
 482 50% of 240 hourly measurements for the South Pacific dataset), repeatedly calculating the mean
 483 pH to assess the consistency and robustness of the hourly trends. This component of the
 484 uncertainty proved insignificant (i.e., errors bars were smaller than the symbols in Fig. 4 and 5).


484 **2.10 CO₂ air-sea flux dynamics**

485 The difference in pCO₂ between the air and ocean surface dictates the direction of gas exchange
 486 and determines whether the ocean acts as a CO₂ source or sink to the atmosphere. This CO₂
 487 exchange between the air and sea, referred to as Air-Sea CO₂ fluxes, can be were computed
 488 based on the relationship:

489
$$F = k_w \times K_0 \times (pCO_{2_{SW}} - pCO_{2_{air}}) \quad (4)$$


490 where F represents the flux of CO₂ across the air-sea interface, k_w is the gas transfer velocity,
 491 K_0 is the solubility constant and $pCO_{2_{SW}}$ is the partial pressure of CO₂ in sea water, representing
 492 the concentration of dissolved CO₂ that is in equilibrium with the atmosphere and $pCO_{2_{air}}$ is the
 493 partial pressure of CO₂ in the atmosphere above the ocean surface. For the fluxes, a positive
 494 value shows the ocean acts as a source (i.e., releasing CO₂ to the atmosphere), while a negative
 495 value shows it acts as a sink (i.e., absorbing CO₂ from the atmosphere). The parameterisation
 496 from Ho et al. (2006) was used to determine the gas transfer velocity. All fluxes were computed
 497 using the pySeaFlux package (v2.2.2; (Fay et al., 2021)).

498 Flux calculations were performed for each complete diurnal cycle, followed by the
 499 computation of the mean flux for each cycle. Additionally, the mean flux for the diurnal cycle
 500 was also calculated from the daily mean inputs (wind speed, temperature, salinity, and
 501 pCO_2), and specifically computed for the hours 12 AM and 12 PM (LST) to examine temporal
 502 variations within each cycle (Fig. 9).

Figure 4. Identified diel cycles for cruise SO279 in the North Atlantic Ocean. Dark purple lines show observed pH (pH_{obs}), dashed grey lines show mean observed pH over the full diel cycle, and black lines show overall mean pH for all diel cycles combined for that cruise. The remaining shows expected pH using varying temperature and salinity ($\text{pH}_{\text{temp, sal}}$; dashed light purple lines), varying temperature alone (pH_{temp} ; dashed blue lines), varying salinity alone (pH_{sal} ; dashed orange lines) and constant TA and CO_2 ($\text{pH}_{\text{TA, CO}_2}$; dashed green lines). Grey areas are night hours.

Figure 4. Identified diurnal cycles for cruise SO279 in the North Atlantic Ocean. Dark purple lines show observed pH. Dashed grey lines show mean observed pH over the full diurnal cycle, and black lines show overall mean pH for all diurnal cycles combined for that cruise. The remaining shows expected pH using constant TA and DIC (averaged for each respective diurnal cycle) and varying temperature and salinity (dashed light purple lines), varying temperature alone (dashed blue lines), varying salinity alone (dashed orange lines) and constant TA and CO_2 (dashed green lines). Grey areas are night hours.

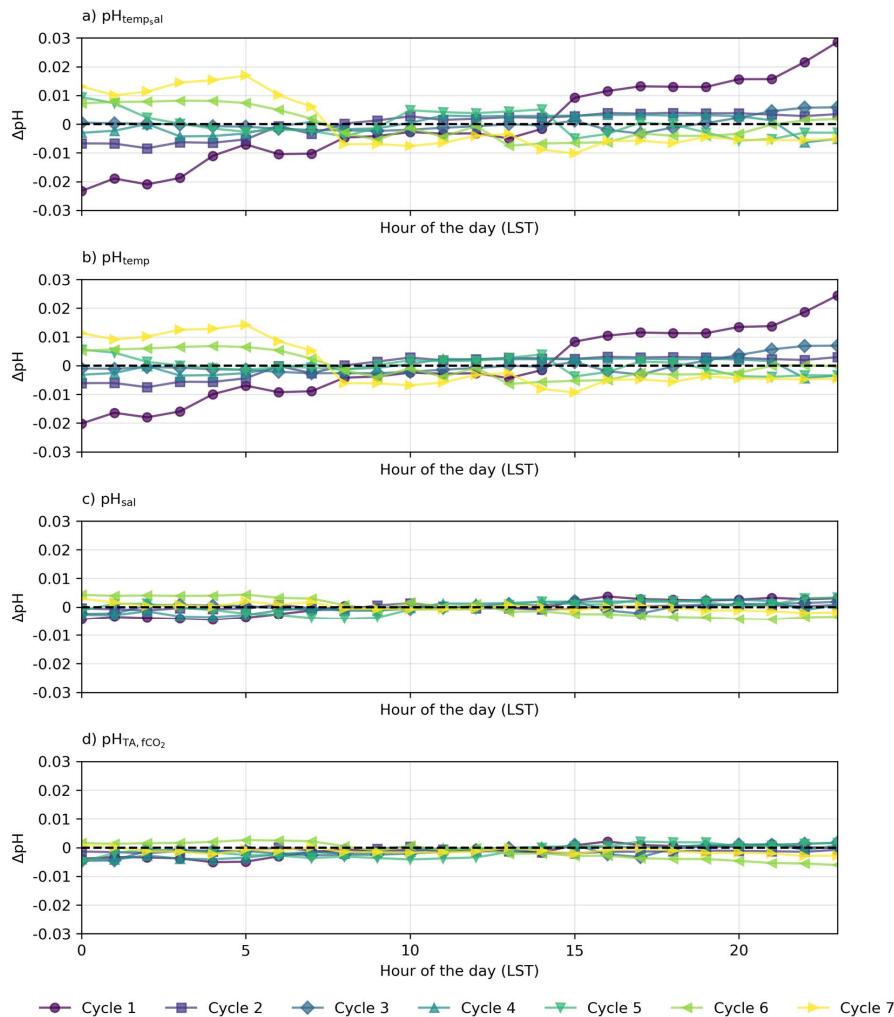
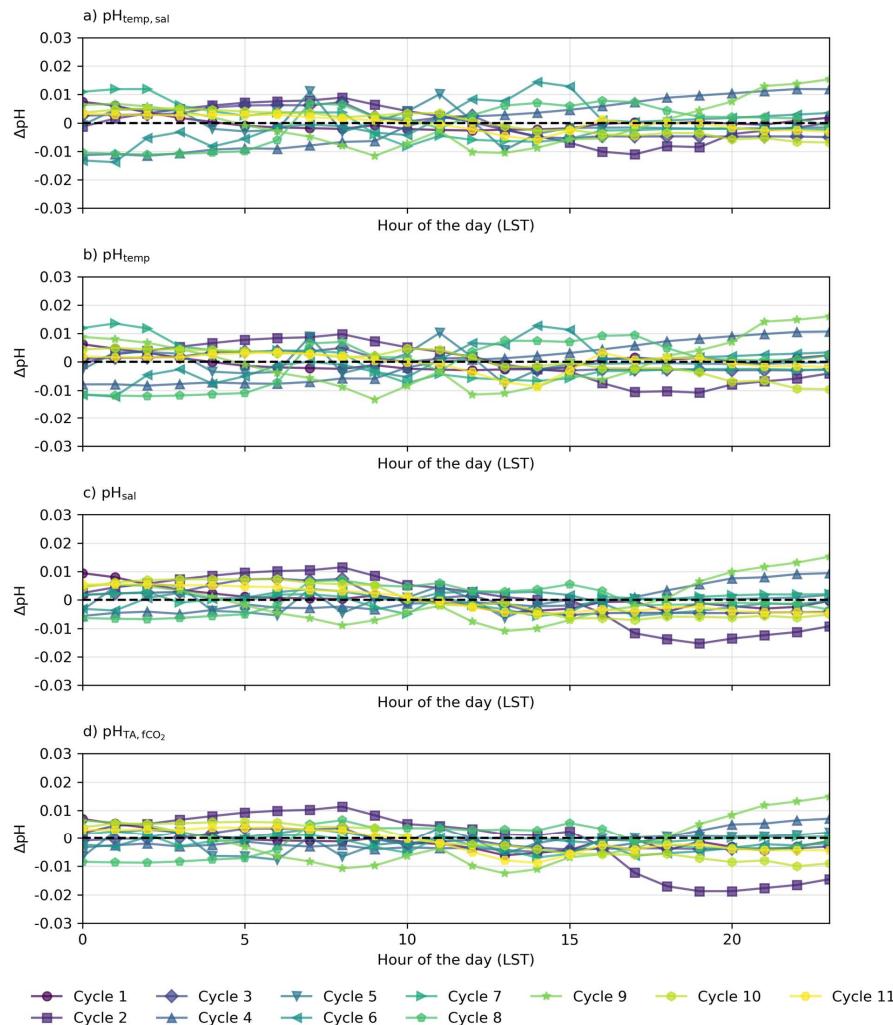

Figure 4. Identified diel cycles for cruise SO289 in the South Pacific Ocean. Dark purple lines show observed pH (pH_{obs}), dashed grey lines show mean observed pH over the full diel cycle, and black lines show overall mean pH for all diel cycles combined for that cruise. The remaining shows expected pH using varying temperature and salinity ($pH_{temp, sal}$; dashed light purple lines), varying temperature alone (pH_{temp} ; dashed blue lines), varying salinity alone (pH_{sal} ; dashed orange lines) and constant TA and fCO_2 (pH_{TA, fCO_2} ; dashed green lines). Grey areas are night hours.

Figure 5. Identified diurnal cycles for cruise SO289 in the South Pacific Ocean. Dark purple lines show observed pH, dashed grey lines show mean observed pH over the full diurnal cycle, and black lines show overall mean pH for all diurnal cycles combined for that cruise. The remaining shows expected pH using constant TA and DIC (averaged for each respective diurnal cycle) and varying temperature and salinity (dashed light purple lines), varying temperature (dashed blue lines), varying salinity alone (dashed orange lines) and constant TA and fCO_2 (dashed green lines).


Commented [LD5]: Intercomparison of cycles --> calibration error is important

Intercomparison of hours --> maybe there is uncertainty in the hourly means too / maybe not significant but this needs to be at least mentioned in the discussion

Eg. Monte Carlo --> doing the hourly mean using different amounts of points (max 120 per hour) for example taking 60 points at random for one hour and doing it 1000 times --> that's a different error, that's the error in the trend, not in the absolute values / can indicate it with a different color of fill between or even as small error bars

514

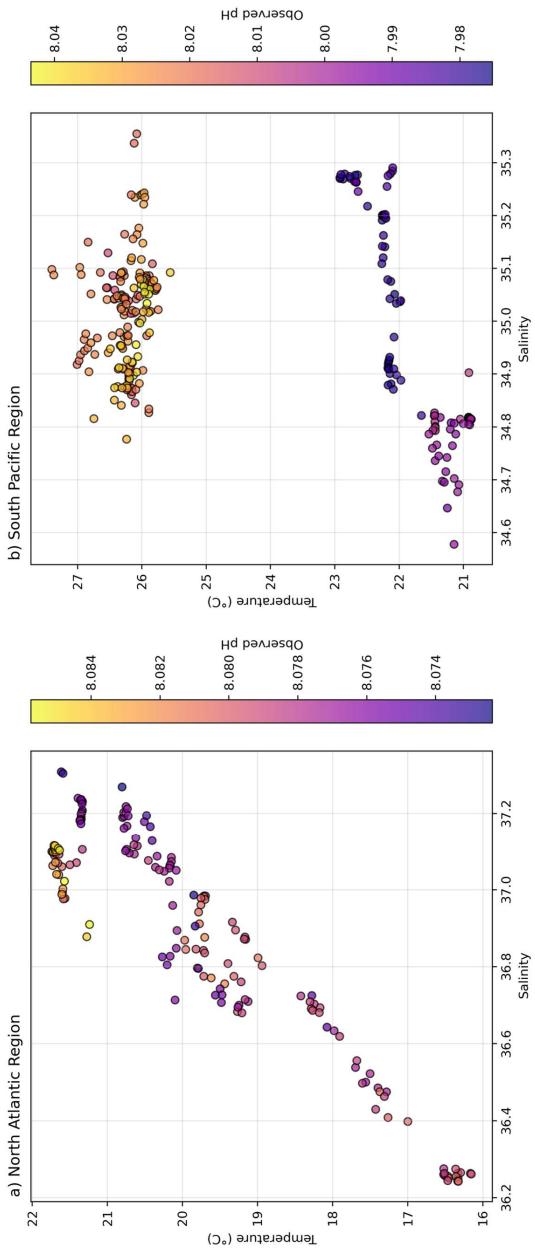
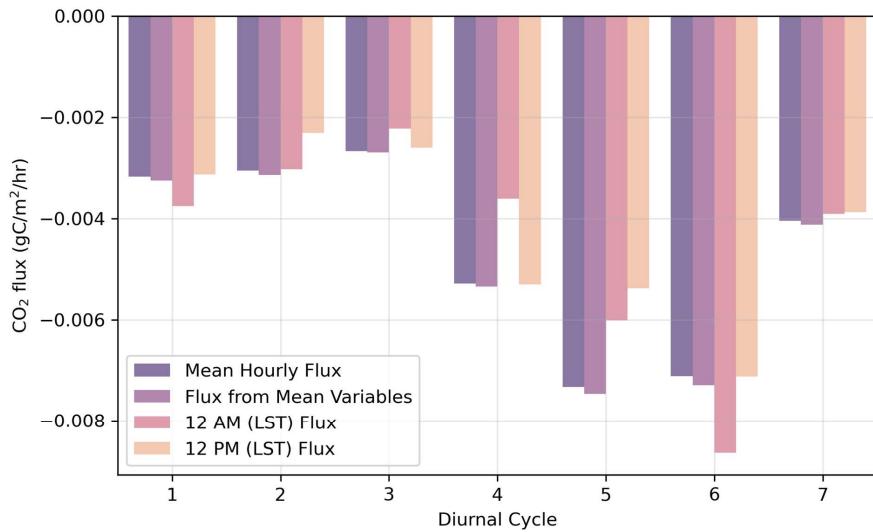
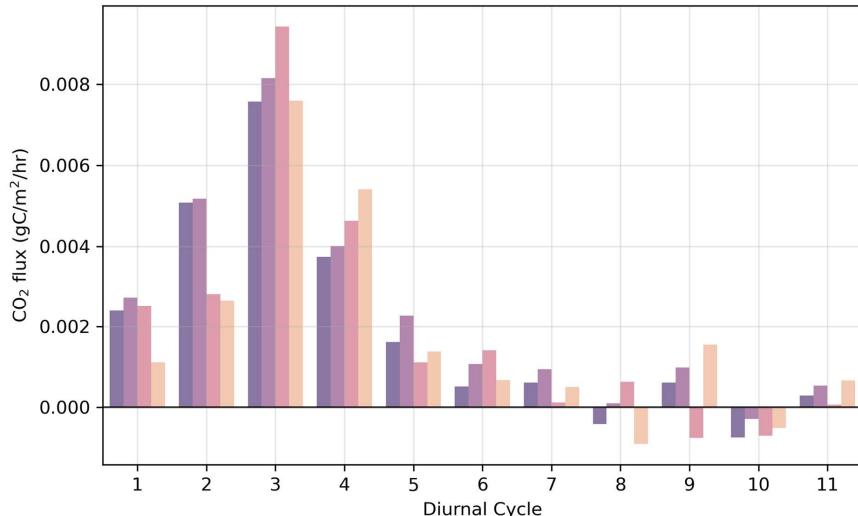




Figure 8. T/S diagram with observed pH for a) the North Atlantic region and b) the South Pacific region.

a) North Atlantic Region

b) South Pacific Region

523
524 **Figure 9. Sensitivity analysis of mean CO₂ flux compared to flux calculated from mean inputs, fluxes for 12
525 AM (LST) and fluxes for 12 PM (LST). Top panel a) shows cruise SO279 in the North Atlantic while bottom
526 panel b) shows cruise SO289 in the South Pacific.**

527 **3 Results and Discussion**

528 We first analyse the effects of temperature and salinity on pH across different diurnal/diel cycles
 529 and regions (Sect. 3.1) using high-resolution pH data enabled by our novel optical measurement
 530 system. We examine the pH expected from temperature and salinity variations alone ($\text{pH}_{\text{temp,sal}}$),
 531 disregarding changes in TA or DIC. If pH_{obs} (i.e., corrected underway pH measurements using
 532 discrete TA and DIC subsamples) aligns with $\text{pH}_{\text{temp,sal}}$, it suggests that recent temperature
 533 changes, such as day-night cycles, primarily control pH. In this context, “recent” is relative to the
 534 air-sea CO_2 equilibration timescale, i.e., temperature change that happened recently enough that
 535 its effect on pH has not been modified by subsequent gas exchange. Next, we assess the
 536 influence of water-mass hydrographic variations on pH by considering $\text{pH}_{\text{TA,CO}_2}$, which accounts
 537 for constant fCO_2 instead of DIC alongside constant TA and varying temperature and salinity.
 538 Alignment of pH_{obs} with $\text{pH}_{\text{TA,CO}_2}$ indicates that slower or long-ago processes control pH. For
 539 example, an observed change in temperature may be due to spatial variability, with the ship
 540 passing through different waters with distinct temperature-salinity properties water masses that
 541 have had different temperatures for long enough to reequilibrate with atmospheric CO_2 . By
 542 leveraging the high-frequency resolution of our measurement system, We we then explore the
 543 role of biological activity and its interaction with abiotic factors by looking at the discrepancies
 544 between pH_{obs} and both $\text{pH}_{\text{temp,sal}}$ and $\text{pH}_{\text{TA,CO}_2}$ (Sect. 3.2). Finally, we distinguish between
 545 temporal and spatial variability in our measurements (Sect. 3.3), considering implications for air-
 546 sea CO_2 equilibration timescales at fine spatio-temporal scales (Sect. 3.4).

Formatted: Font: Not Bold

547 **3.1 Influence of temperature and salinity**548 **3.1.1 Basin-scale comparison**

549 The diurnal/diel cycles of pH observed in the North Atlantic and South Pacific Oceans are
 550 significantly influenced by temperature. In the North Atlantic, observed pH stays within ± 0.01 of
 551 $\text{pH}_{\text{temp,sal}}$, supporting the role of temperature and salinity in driving pH changes (Fig. 6).
 552 However, in the South Pacific, where SNR values for temperature and salinity-driven pH
 553 changes remain below 1, observed fluctuations may not exceed measurement noise, making it
 554 uncertain whether these variations reflect true environmental signals or instrument variability
 555 (Fig. 7; Table S2 in Supplementary Information). In most cycles, observed pH stays within ± 0.01
 556 of $\text{pH}_{\text{temp,sal}}$, thus indicating that temperature and salinity together drive pH changes (Fig. 6 and
 557 7). However, despite this, the systematic nature of diel fluctuations—seen across multiple
 558 cycles and their correlation with expected temperature-driven trends—suggests they are
 559 meaningful rather than random variability.

Formatted: Subscript

560 Salinity alone does not appear to strongly influence pH in any observed cycle. For both ocean
 561 basins, pH_{sal} typically remains close to the mean pH of each cycle, rather than impacting the
 562 observed pH significantly. This consistency suggests that daily salinity variations do not exert a
 563 primary influence on the observed pH (Fig. 4 and 5; Fig. 6c; Fig. 7c; Tables S1 and S2 in
 564 Supplementary Information). Thus, the rest of this section focuses on the effect of temperature
 565 on the observed pH.

566 On short timescales (minutes and faster), temperature influences pH by affecting the dissociation
 567 of carbonic acid (H_2CO_3) into bicarbonate (HCO_3^-) and carbonate (CO_3^{2-}) ions. As temperature

570 changes, the dissociation constants of carbonic acid change, which in turn alters the
 571 concentrations of these ions and the overall pH of the solution. This dependency shifts the
 572 equilibrium of these species with changing temperature and affects pH over short timescales (i.e.,
 573 seconds to minutes; (Egleston et al., 2010; Stumm & Morgan, 2012). However, the overall
 574 response can be lessened by the stabilizing effect of alkalinity, which keeps the pH steady
 575 despite temperature changes (Frankignoulle, 1994; Middelburg et al., 2020). The alkalinity of
 576 seawater allows the carbonate system and other weak acid-base equilibria to maintain pH by
 577 absorbing or releasing protons, which reduces the impact of temperature changes on pH
 578 (Dickson & Millero, 1987; Egleston et al., 2010). Typically, the most pronounced temperature
 579 fluctuations—highest temperatures during daylight and lowest at night—occur in surface waters.
 580 This is due to surface waters' lower thermal inertia and direct exposure to the atmosphere. In
 581 contrast, deeper waters have a smaller thermal response because they are insulated from direct
 582 atmospheric influence and have a higher heat capacity, which buffers them against rapid
 583 temperature changes.

584 In the North Atlantic, the observed variability in pH generally matches the calculated pH_{temp} and
 585 $\text{pH}_{\text{temp,sal}}$, with most cycles' residuals within ± 0.01 (Fig. 4 and Fig. 6a and b, Cycles 2, 3, 4, 5 and
 586 6). This agreement suggests that temperature and salinity together explain most of the observed
 587 short-term variations. However, some cycles show more pronounced deviations. However, some
 588 cycles match better than others. Cycle 3 demonstrates a particularly strong a consistent alignment
 589 between observed pH and expected $\text{pH}_{\text{temp,sal}}$ throughout the day, with minimal oscillations
 590 around the mean (mean residuals $<$ for $\text{pH}_{\text{temp,sal}}$ of less than -0.001 ; Fig. 4; Fig. 6a and b). A
 591 similar pattern is observed in, while Cycle 4 also exhibits minimal variation, where pH variations
 592 are minimal (residuals range from -0.007 to 0.003 for $\text{pH}_{\text{temp,sal}}$, with a mean of less than -0.001 ;
 593 Fig. 4). In contrast, in Cycle 5, pH_{obs} and $\text{pH}_{\text{temp,sal}}$ show close agreement throughout the day with
 594 residuals close to zero, indicating a stable match despite slight deviations from that day's cycle
 595 mean.

596
 597 Cycle 6 also displays more pronounced daily fluctuations in pH_{temp} and $\text{pH}_{\text{temp,sal}}$ with residuals
 598 from -0.008 to $+0.008$ (Fig. 6) but that still closely follow pH_{obs} (within the ± 0.01 residuals; Fig.
 599 4). In the South Pacific, pH variability follows a different pattern. While some cycles similar
 600 patterns are evident in (eg. Cycles 1, 3, 4, and 6) show a similar agreement between observed pH
 601 and $\text{pH}_{\text{temp,sal}}$ (Fig. 5), overall, the influence of temperature appears weaker than in the North
 602 Atlantic, with consistent and minimal fluctuations around the cycle mean (Fig. 5). Cycle 3 in
 603 particular shows most stability, with all expected pH values remaining within a narrow range of
 604 the observed pH (i.e. mean residuals for $\text{pH}_{\text{temp,sal}}$ of less than 0.001 ; Fig. 5; Fig. 7a and b).
 605 Similarly, in Cycles 4, 10 and 11, pH_{obs} closely match $\text{pH}_{\text{temp,sal}}$ across the day, and exhibit
 606 minimal residuals (< 0.01 ; Fig. 5 and 7a and b). The SNR analysis (see Text S1 in
 607 Supplementary Information) confirms this, with North Atlantic temperature-driven pH
 608 fluctuations exceeding noise (SNR = 1.39 for $\text{pH}_{\text{temp,sal}}$, 1.20 for pH_{temp}), while all pH variations
 609 in the South Pacific remain below SNR = 1 (see Tables S1 and S2 in Supplementary
 610 Information). This suggests that in the South Pacific, observed fluctuations may be more
 611 influenced by noise than by real temperature-driven variability. However, the persistence of
 612 systematic diel fluctuations suggests that meaningful signals are still present.

614
 Formatted: Subscript

Formatted: Not Superscript/ Subscript

615
 Formatted: Subscript

Formatted: Subscript

615 The physical oceanographic context of each basin likely contributes to these differences. In the
 616 North Atlantic, significant mixing due to ocean currents, eddies, and upwelling introduces
 617 substantial variability in temperature, salinity, and pH across different waters with distinct
 618 temperature-salinity properties (Fig. 6a and b; see Fig. S6 in Supplementary Information). The
 619 Gulf Stream and North Atlantic Drift contribute to this complexity, which may help maintain
 620 stronger temperature-driven pH changes by continuously exposing surface waters to variable
 621 thermal forcing (Liu & Tanhua, 2021). In contrast, the South Pacific exhibits more predictable
 622 hydrographic dynamics, driven largely by advection and mixing within large-scale gyres and
 623 trade wind systems (Vallis, 2017). This results in a more stable and homogeneous water column,
 624 where observed pH fluctuations remain closer to the measurement uncertainty (Fig. 7).

625 3.1.2 Diel pH variability

626 Beyond the basin-scale differences, a key feature of the observed pH cycles is the variability
 627 between daytime and nighttime conditions. In both basins, temperature changes between day and
 628 night are expected to drive corresponding pH shifts due to the temperature dependence of the
 629 carbonate system.

630 In the North Atlantic, observed pH generally follows expected temperature-driven changes, with
 631 pH_{temp} and $\text{pH}_{\text{temp,sal}}$ showing higher values at night and lower values during the day due to the
 632 inverse relationship between temperature and pH (Fig. 4, Fig. 6). For example, in Cycles 3 and 6,
 633 the residuals between observed and expected pH remain small throughout the day, reinforcing
 634 the dominance of temperature as a control mechanism. However, in some cycles (e.g., Cycle 1),
 635 nighttime pH remains elevated beyond what would be expected from temperature alone,
 636 suggesting the influence of additional processes such as biological activity or air-sea CO_2
 637 exchange.

638 In the South Pacific, similar diel patterns are present but exhibit greater variability across cycles.
 639 Some cycles (e.g., Cycle 8) show clear daytime decreases and nighttime increases in pH,
 640 consistent with temperature-driven changes (Fig. 5). However, in other cases (e.g., Cycle 9),
 641 observed pH departs from the expected diel pattern, indicating that other factors may be
 642 influencing short-term variability.

643 The persistence of nighttime pH anomalies in both basins raises questions about equilibration
 644 timescales. While temperature-driven changes in pH and CO_2 occur rapidly in response to
 645 solubility and speciation shifts, CO_2 equilibration between the atmosphere and ocean occurs over
 646 much longer timescales (weeks to months; (Jones et al., 2014)). This means that pH adjustments
 647 due to temperature occur almost instantly, but whether they persist over a full diel cycle depends
 648 on the history of the hydrographic properties. If waters have recently equilibrated with the
 649 atmosphere, its pH should closely follow $\text{pH}_{\text{temp,sal}}$. However, if these waters have undergone
 650 rapid temperature shifts without sufficient time for equilibration, observed pH may diverge from
 651 temperature-based expectations. This highlights the interplay between rapid thermodynamic
 652 effects and longer equilibration processes, particularly in regions like the North Atlantic, where
 653 mixing introduces additional complexity.

654 Ultimately, our observations suggest that while temperature is a dominant driver of diel pH
 655 changes, the extent to which these changes persist overnight depends on the physical
 656

657 Formatted: Heading-Secondary

658 Formatted: Subscript

659 Formatted: Subscript

660 Formatted: Font: Not Bold

661 Formatted: Font: Not Bold, Italic

662 Formatted: Font: Not Bold

663 Formatted: Subscript

664 Formatted: Font: Not Bold

665 Formatted: Subscript

666 Formatted: Font: Not Bold

667 Formatted: Subscript

668 Formatted: Font: Not Bold

669 Formatted: Subscript

670 Formatted: Font: Not Bold

671 Formatted: Subscript

660 characteristics of the surface waters and their equilibration history. In the North Atlantic, where
 661 mixing is more dynamic, the system appears to re-equilibrate more readily, whereas in the South
 662 Pacific, longer equilibration timescales may contribute to greater deviations from expected pH
 663 patterns.

664
 665 However, notable discrepancies occur in pH observations versus calculated pH_{temp} and $\text{pH}_{\text{temp,sal}}$
 666 in the North Atlantic. Specifically, in Cycle 1, while pH_{obs} remains relatively stable, there are
 667 significant daily fluctuations in pH_{temp} and $\text{pH}_{\text{temp,sal}}$, with residuals ranging from -0.023 to 0.029
 668 and a mean of less than -0.001 (Fig. 4; Fig. 6a, b, and c). Cycles 5 and 7 also show discrepancies:
 669 although pH_{obs} generally matches the cruise mean across all cycles, $\text{pH}_{\text{temp,sal}}$ exhibits greater
 670 deviations, indicating that some other process has eliminated the temperature signal in the
 671 observed pH (Fig. 4; Fig. 6a and b). In the South Pacific, similar patterns emerge. Cycle 5 shows
 672 significant hourly fluctuations in pH_{obs} , which closely track the deviations in pH_{temp} and
 673 $\text{pH}_{\text{temp,sal}}$, markedly diverging from the more stable pH_{sal} (Fig. 5; Fig. 7a and b). Additionally, in
 674 Cycle 2, the initial excess and subsequent shortfall in pH_{temp} and $\text{pH}_{\text{temp,sal}}$, with residuals from
 675 -0.011 to 0.008, suggest a comparable moderated effect by solar heating (Fig. 4). This pattern is
 676 consistent with observations in the North Atlantic. This overriding influence, likely due to solar
 677 heating, impacts the diurnal/diel pH fluctuation patterns, particularly in cycles where pH_{temp} and
 678 $\text{pH}_{\text{temp,sal}}$ start higher and decrease throughout the day.

679
 680 While changes in pH and f/CO_2 due to temperature change occur virtually instantaneously (i.e.,
 681 seconds to minutes), CO_2 -equilibration between the atmosphere and the ocean is considerably
 682 slower (i.e., weeks to months; Jones et al. (2014)). This means that the timescale of temperature
 683 change significantly influences how a water masses' pH adjusts to temperature changes
 684 (Takahashi et al., 2009). For instance, when a water mass cools during the night, it quickly alters
 685 pH and causes CO_2 -undersaturation due to increased solubility, so observed pH would agree with
 686 pH_{temp} (Feely et al., 2008). However, as the ship travels through different water masses that vary
 687 in temperature, but are each in equilibrium with the atmosphere, observed pH may not align with
 688 pH_{temp} or $\text{pH}_{\text{temp,sal}}$ calculated based on temperature shifts alone. This raises an issue regarding
 689 the timescales of temperature change in relation to chemical equilibration, as it is uncertain
 690 whether these changes provide the system enough time for f/CO_2 (and DIC) to shift and maintain
 691 equilibrium with the atmosphere, or if they happen more rapidly, such that disequilibrium
 692 remains.

693
 694 In the North Atlantic, significant mixing due to ocean currents, eddies, and upwelling introduces
 695 substantial variability in temperature, salinity, and pH across different water masses (Fig. 6a and
 696 b). This variability is further influenced by the Gulf Stream and North Atlantic Drift, which
 697 create complex structures of distinct water masses (Liu & Tanhua, 2021). These dynamic
 698 conditions adjust the rate of CO_2 absorption or release, impacting the timescale over which
 699 ocean-atmosphere equilibrium is achieved. But in this ocean basin, $\text{pH}_{\text{TA,CO}_2}$ (i.e. proxy for gas-
 700 exchange equilibrium) follows pH_{obs} very closely, indicating that temperature changes have been
 701 sufficient for the system to reach re-equilibration. This is true both for individual cycles'
 702 diurnal/diel distributions (Fig. 4), and when comparing the cycles' residuals together, which are
 703 virtually zero (Fig. 6d), even during temperature gradient crossings (Fig. S4).

704

705 In contrast, the South Pacific displays more predictable water mass dynamics primarily driven by
 706 physical processes like mixing and advection, which introduce water masses with consistent
 707 temperatures, salinities, and pH, resulting in a more homogeneous water column. This stability is
 708 influenced by large scale gyres and trade winds, contributing to the uniformity of surface waters
 709 (Vallis, 2017). This is reflected by the consistent pH_{obs} . Residuals are further from zero although
 710 most cycles fall within ± 0.01 , indicating a lesser degree of re-equilibration (Fig. 7).

711
 712 Thus, this implies that, in both ocean basins, gas exchange plays a significant role in stabilizing
 713 pH for all cycles by re-equilibrating with atmospheric CO_2 despite temperature fluctuations –
 714 although it likely does more so in the North Atlantic than in the South Pacific. To first order, this
 715 also suggests that the temperature change happened long enough ago for re-equilibration.
 716 However, the rates of gas exchange in the North Atlantic and South Pacific are from 3 to 6
 717 months and 3 to 4 months, respectively (Jones et al., 2014). Thus, the consistency between
 718 $\text{pH}_{\text{TA/CO}_2}$ and pH_{obs} likely represents the crossings of water masses that are in equilibrium with
 719 the atmosphere and that equilibrated a long time ago (i.e., weeks to months) with different TA,
 720 DIC, and temperature baselines. Thus, the observed temperature changes as the ship traverses
 721 different water masses are likely attributable to spatial variations rather than an immediate
 722 response to recent temperature shifts. However, some pH cycles observed do not fully conform
 723 to these patterns, suggesting that other factors could be influencing the pH beyond the effects of
 724 temperature and gas exchange alone.

725
 726 Ultimately, although we observe temperature-induced variations throughout each diurnal/diel
 727 cycle, when comparing all cycles' pH_{obs} , pH_{temp} and $\text{pH}_{\text{temp,sal}}$ within both ocean basins, residuals
 728 are well within ± 0.02 (Fig. 6a and b and Fig. 7a and b). Thus, despite observed 24-hour
 729 fluctuations, pH remains relatively stable with respect to temperature variations across both
 730 ocean basins. This stability implies that even though there are short term fluctuations in pH due
 731 to temperature changes, overall the pH stays relatively consistent, and thus a stable ocean-
 732 atmosphere CO_2 equilibrium.

733 3.2 Influence of biological activity

734 While temperature and salinity effects on pH have been addressed in Sect. 3.1, deviations from
 735 expected patterns may be shaped by biological processes. The process of photosynthesis during
 736 daylight consumes CO_2 , leading to a rise in pH, whereas respiration and decomposition at night,
 737 which release CO_2 , lower pH (Falkowski, 1994; Falkowski & Raven, 2013). The balance
 738 between photosynthesis and respiration hence affects pH, and should result in a diurnal/diel pH
 739 cycle. However, biological signals in the open ocean are often weaker than in coastal or
 740 upwelling regions due to lower phytoplankton biomass and primary production rates (Behrenfeld
 741 & Falkowski, 1997; Johnson et al., 2010). As a result, strong diel biological pH signals are not
 742 typically expected in oligotrophic oceanic waters. These biological processes can also influence
 743 the rate at which CO_2 equilibrates between the ocean and atmosphere. For instance, intense
 744 photosynthetic activity during daylight hours can rapidly deplete seawater $p\text{CO}_2$ in surface
 745 waters, potentially accelerating seawater CO_2 uptake from the atmosphere. Conversely,
 746 nighttime respiration can increase $p\text{CO}_2$, slowing the outgassing process and thus extending the
 747 equilibration timescale. However, given an equilibration timescale of months, these day and
 748 night changes likely get averaged out over longer periods, resulting in an overall steady-state
 749 CO_2 flux and pH when observed over longer temporal scales.

750 These biological processes are particularly evident in some cycles from the North Atlantic where
 751 the expected $\text{pH}_{\text{temp,sal}}$ changes due to temperature and salinity do not align with the observed
 752 data, but do follow the distribution expected from biological activity (Fig. 4). However, the
 753 strength of these pH variations should be interpreted with caution, as biological activity in open-
 754 ocean regions tends to be relatively low (Longhurst, 2010). The North Atlantic subtropical gyre,
 755 for instance, has low rates of primary productivity (Baines et al., 1994; Tilstone et al., 2003),
 756 which suggests that biological-driven pH variations would be relatively small. This is especially
 757 evident for Cycle 1, which shows an increase in pH during daylight hours and a decrease in pH
 758 during night hours, with a peak in pH in late afternoon and the lowest pH occurring in the early
 759 morning before sunrise (Fig. 4). Other cycles likely reflect the combined impact of biological
 760 processes and temperature effects, as the observed pH does not fully align with the distribution
 761 expected from any of temperature, salinity or biological activity (Fig. 4 and 6). This is also
 762 evident in the South Pacific Ocean, where some cycles show significant variability within
 763 pH_{obs} that are not mirrored by the expected $\text{pH}_{\text{temp,sal}}$ changes (Fig. 5, Cycles 2, 8). For example,
 764 Cycle 2 exhibits significant deviations in pH with higher observed values in the morning and a
 765 drop in the afternoon, indicating biological influence (Fig. 5). Although this suggests a potential
 766 biological influence, the SNR values remain below 1 across all expected pH estimates, making it
 767 unclear whether the observed fluctuations are truly driven by biological activity or simply fall
 768 within the instrument's noise threshold (Table S2 in Supplementary Information).
 769

770 The interplay between photosynthesis during the day and respiration at night, with possible
 771 contributions of other biological processes, may be behind the more pronounced peaks and
 772 troughs of Cycles 2 and 9 (Fig. 6; Duarte and Agusti (1998). Nitrogen fixation consumes
 773 hydrogen ions, increasing pH, whereas denitrification releases hydrogen ions, thereby decreasing
 774 pH (Richardson, 2000; Zehr & Kudela, 2011). However, without nutrient and oxygen data, we
 775 cannot directly assess whether these processes also impacted the observed pH.
 776

777 Although biological activity likely accounts for some variability, not all cycles exhibit the same
 778 residual, presumably biotic pattern of variation (Fig. 4 and 5). This aligns with expectations, as
 779 phytoplankton biomass and primary productivity in open-ocean regions can be highly variable,
 780 and biological impacts on carbonate chemistry are typically more pronounced in coastal or
 781 upwelling systems (Duarte & Agusti, 1998; Williams & Follows, 2003). Moreover, the SNR
 782 results indicate that in the North Atlantic, temperature-driven processes dominate short-term pH
 783 variability, while the contribution of biological activity remains unclear due to overlapping
 784 influences (see Table S1 in Supplementary Information). In the South Pacific, where all signals
 785 fall below the noise threshold (SNR < 1; Table S2 in Supplementary Information), the observed
 786 pH fluctuations may be driven by measurement uncertainty rather than a clear biological or
 787 temperature-driven signal.
 788

789 This variability further complicates assessments of air-sea CO_2 equilibration, as localized
 790 biological conditions may transiently alter CO_2 dynamics, influencing the timescale for reaching
 791 equilibrium. This is more obvious in the South Pacific, where some cycles display more
 792 pronounced night-time stability (Fig. 5, Cycles 3, 6, 7 and 11), while others have noticeable day-
 793 time fluctuations that could align with photosynthetic activity, which typically increase during
 794 daylight hours (Fig. 5, Cycle 8; (Duarte & Agusti, 1998; Raven & Johnston, 1991). Cycle 8 in
 795

796 the South Pacific shows a peak in observed pH around midday, likely due to increased
 797 photosynthesis, followed by a decrease in the evening (Fig. 5). Other cycles do not show this
 798 pattern as clearly (i.e., they even show a decrease of pH during the day), suggesting that, for
 799 some cycles, respiration may dominate over photosynthesis also during daytime (Fig. 5). For
 800 example, Cycle 9 displays significant variations in pH throughout the day, with notable
 801 decreases during daylight hours (Fig. 5). Additionally, as some cycles appear to conform to
 802 temperature-based pH expectations, the only minor deviations observed suggest biological
 803 activity to be minor or represent a balanced biological system where photosynthesis and
 804 respiration are in near-equilibrium (Fig. 5, Cycles 3 and 6).
 805

806 Despite the strong impact of both abiotic and biotic factors on pH, some cycles exhibit fine-scale
 807 trends that cannot be solely attributed to temperature fluctuations or biological activity. The fine-
 808 scale trends observed, especially in Cycles 1 and 7 (Fig. 4), exceed what can be attributed to
 809 temperature-induced changes alone and cannot be explained by biological activity, given the
 810 atypically high carbon fixation rates required to explain the pH offsets (Basu & Mackey, 2018;
 811 Wang et al., 2023). Indeed, the required biological carbon fixation would need to exceed 687 mg
 812 C m⁻³ day to explain the offset (Text S72). Typical rates in open ocean waters are much lower,
 813 generally ranging from 50 to 150 mg C m⁻³ day⁻¹ in nutrient-poor regions and can reach up to
 814 1000 C m⁻³ day⁻¹ in upwelling zones during phytoplankton blooms, which is not the case here
 815 (Basu & Mackey, 2018; Wang et al., 2023).
 816

817 Comparing the impact of biological activity based on the offsets between pH_{temp} and pH_{obs} with
 818 chlorophyll-a fluorescence data also shows no clear pattern (Fig. S42 and S53). This is expected
 819 as fluorescence does not necessarily reflect instantaneous photosynthetic activity. Instead,
 820 fluorescence primarily indicates the presence and abundance of phytoplankton. Therefore, while
 821 fluorescence can provide insights into the overall biomass of phytoplankton, it does not directly
 822 correlate with photosynthesis and respiration. The absence of a clear correlation between
 823 fluorescence and the daily pH cycle, with some cycles even showing a decrease in pH during
 824 daytime, confirms that the influence of waters with distinct temperature-salinity
 825 propertiesdifferent water masses is important in shaping the local high-resolution pH profiles.

826 3.3 Variability and stability in spatio-temporal pH patterns

827 The North Atlantic is characterized by complex interactions among water masses, leading to
 828 higher turbulence and susceptibility to rapid and significant changes in water mass properties and
 829 circulation patterns, influenced by both past and present climatic conditions (Lynch-Stieglitz,
 830 2017; Gebbie, 2014). This complexity is partly due to the Atlantic Meridional Overturning
 831 Circulation (AMOC), which is sensitive to various climate perturbations and has historically
 832 undergone significant reorganizations, especially during climatic transitions such as the Last
 833 Glacial Maximum (Curry and Oppo, 2005; Duplessy et al., 1988). As examined in Sect. 3.1,
 834 considerable spatial variability is observed in the North Atlantic (Fig. 8 and Fig. S68), and this
 835 heterogeneity introduces complexity in deciphering the relative contributions of abiotic and
 836 biotic factors to pH fluctuations (Gruber & Sarmiento, 2002). Residual plots for the North
 837 Atlantic suggest that the observed discrepancies between pH_{obs} and both pH_{temp} and pH_{temp,sai} are
 838 insignificant, indicating that variability in surface water mass characteristics—which include but
 839 are not limited solely to temperature and salinity—do not dominate the observed pH variability
 840 (Fig. 6 and 8; (Dumousseaud et al., 2010)). The SNR results further confirm that temperature-

841 driven pH fluctuations are real signals in this region (SNR > 1; Table S1 in Supplementary
 842 Information), supporting their role as key drivers of diel pH variability. Therefore, the hourly
 843 fluctuations in pH_{obs} and the observed discrepancies between pH_{obs} and $pH_{temp/sal}$ across various
 844 cycles in this ocean basin may not be attributed to pronounced spatial variability (Fig. 4). The
 845 T/S diagram also demonstrates this spatial variability, showing a wide range of pH values
 846 correlated with differing salinity and temperature profiles across waters with distinct
 847 temperature-salinity properties various water masses (Fig. 8), reinforcing that spatial dynamics
 848 do not significantly influence pH variation in this region. This is also supported by the relative
 849 stability observed in Cycle 4, where the ship's consistent positioning (i.e. on station) highlights
 850 the role of temporal variability rather than spatial variability (Fig. S64). Although water could
 851 still be moving spatially around the ship, the variability could be due to some degree to different
 852 waters masses-rather than being limited to true in-situ temporal variability.
 853

854 In contrast, the South Pacific cruise predominantly exhibits a stable transit through more
 855 homogeneous surface waters as no SST gradient is observed, although it is not entirely free from
 856 disruptions (Fig. 8 and Fig. S75; Qu and Lindstrom (2004)). This suggests a minor-limited role of
 857 interactions between diverse surface waters-masses. Despite the hourly fluctuations observed, all
 858 diurnaldiel cycles in the South Pacific tend to cluster closely around the mean pH for their
 859 respective 24-hour periods, reflecting substantial stability within each cycle but considerable
 860 variability across different days, particularly evident among consecutive cycles (Fig. 5). This
 861 underscores a clear temporal delineation of diurnaldiel cycles influenced by DIC changes (Fig.
 862 5). However, the SNR results indicate that all expected pH fluctuations in this region remain
 863 below the uncertainty threshold (SNR < 1; Table S2 in Supplementary Information), making it
 864 difficult to determine whether observed fluctuations reflect true environmental variability or are
 865 primarily within the measurement uncertainty.

866 3.4 Implications for air-sea CO_2 fluxes

867 Our findings indicate that while temperature and salinity predominantly govern diurnaldiel pH
 868 fluctuations, additional variability arises from surface watermass dynamics and biological
 869 activity. Temperature rapidly affects pH, but the slower rate of CO_2 equilibration with the
 870 atmosphere moderates its impact on air-sea CO_2 fluxes. Although biological processes markedly
 871 influence daily pH cycles, they do not fully account for the observed variability, especially in
 872 cases where unusually high carbon fixation rates would be required to explain observed pH
 873 (Sect. 3.2). Notably, the North Atlantic acted as a net sink of CO_2 , whereas the South Pacific was
 874 a net source to the atmosphere during the study period.

Formatted: Subscript

875 CO_2 fluxes were calculated for each complete diurnaldiel cycle (Fig. 9). The flux calculations
 876 were performed by computing the mean flux for each cycle from daily mean inputs (wind speed,
 877 temperature, salinity, and $p\text{CO}_2$) and specifically for the hours 12 AM and 12 PM (LST) to
 878 examine temporal variations within each cycle (Fig. 9). Despite different methods of calculation,
 879 the CO_2 fluxes remained relatively consistent, indicating that the variations in pH and thus CO_2
 880 flux do not significantly affect the air-sea CO_2 exchange in either basin.
 881

882 This consistent result shows that, despite the processes influencing pH in these two ocean basins
 883 during the study period, air-sea CO_2 exchange over longer timescales (e.g., months) can dampen
 884 short-term pH variability, resulting in relatively low variability across short spatiotemporal scales

Formatted: Subscript

886 (kilometers/day). This consistent result shows that despite the processes influencing pH in these
 887 two ocean basins during the study period, the surface ocean's interaction with atmospheric CO₂
 888 over longer timescales (eg. months) can minimize the effect on pH, leading to relatively low
 889 variability on short spatiotemporal scales (kilometers/day).

890 4. Conclusions

891 High-resolution pH data enabled by our novel optical measurement system is crucial provides
 892 valuable insights for understanding the subtle yet important variations in into the complex and
 893 variable nature of ocean surface water ocean pH across different regions. Our observations in the
 894 North Atlantic and South Pacific show that pH fluctuates on diel and hourly timescales, with
 895 variations driven not only by temperature but also by the interplay between waters with distinct
 896 temperature-salinity properties and biological activity. These factors do not operate in isolation,
 897 making it difficult to attribute pH changes to a single dominant driver. Diurnal Diel cycles and
 898 hourly fluctuations in pH, with varying magnitudes, can be observed in both the North Atlantic
 899 and South Pacific basins. Variability in pH is influenced not only by temperature but also by
 900 interactions between various water masses and biological activity. These factors together drive
 901 observed pH fluctuations, often diverging from predictions based solely on temperature.
 902 However, although the processes responsible for these pH variations are well-understood, high-
 903 resolution data highlight the challenge of identifying a dominant factor at the fine scale due to
 904 their complex interplay.

905
 906 In both the North Atlantic and South Pacific, the close correlation between pH_{TA,CO₂} and
 907 observed pH across diurnal diel cycles suggests a significant role of gas exchange in stabilising
 908 pH despite temperature fluctuations. The temperature changes must therefore have happened
 909 more slowly than the air-sea CO₂ equilibration timescales for these ocean basins. The observed,
 910 relatively constant pH is likely due to the ship passing through different water masses that had
 911 already equilibrated with the atmosphere.

912
 913 Although the processes governing pH variability are well-understood, our high-frequency
 914 measurements demonstrate the challenge of disentangling their contributions at fine spatial and
 915 temporal scales. This underscores the importance of continuous, high-frequency measurements,
 916 which reveal the heterogeneity in surface pH that lower-resolution datasets might miss. In both
 917 basins, the close correlation between pH_{TA,CO₂} and observed pH across diel cycles suggests that
 918 air-sea CO₂ exchange plays a key role in stabilizing pH despite temperature fluctuations. The
 919 observed pH stability implies that the ship primarily encountered waters that had already
 920 equilibrated with atmospheric CO₂, reinforcing the idea that temperature-driven pH changes
 921 alone are not always sufficient to explain variability in surface ocean carbonate chemistry.

922
 923 Thus, despite short term fluctuations in pH, there were no major changes in ocean-atmosphere
 924 CO₂-disequilibrium, indicating that, for the regions and time periods studied here, broader ocean-
 925 basin scale analyses based on lower resolution datasets would still be able to capture the
 926 necessary variability in surface ocean CO₂-chemistry for accurate global CO₂-cycle assessments.

927
 928 While our results indicate that fine-scale variability in these regions was relatively subtle—and
 929 may not significantly impact large-scale assessments—this insight could only be gained through
 930 high-resolution observations. This approach not only reveals the complexity of pH regulation but

Commented [LD6]: Needs to mention timescale and space vs time issues for air sea gas exchange and co2 eq

Commented [LD7R6]: Thus, in regions like the North Atlantic, where deep water formation and upwelling might be prevalent, CO₂ equilibration times could be extended due to the constant influx of deeper, CO₂-rich waters. Conversely, in the South Pacific, especially in areas with less intense upwelling and warmer temperatures, CO₂ equilibration could occur more rapidly.

Formatted: Subscript

Formatted: Subscript

Formatted: Subscript

931 also provides valuable insight into the fine-scale physical and biological interactions that shape
932 surface ocean chemistry. Importantly, although lower-resolution datasets may be sufficient for
933 capturing broad-scale patterns in surface ocean CO₂ chemistry, our findings highlight the critical
934 role of high-frequency measurements in refining regional understanding and improving
935 predictive models of ocean acidification and air-sea gas exchange.

Formatted: Subscript

936 *Data availability.* The hydrographic and biogeochemical data presented here, together with the
937 processing code will be is freely available online at <https://github.com/louisedelaigue/NA-SP-HIGH-RES-PH>, by the time of publication.

939 *Supplement.* The supplement related to this article is available online.

940 *Author contributions.* LD and MPH conceptualized the project. CG, AM, LQ, EPA, LD, MPH
941 and YO curated the data. LD, MPH and GJR performed the investigation. LD conceptualized the
942 methodology, used the necessary software, visualized the data and prepared the original draft of
943 the paper. LD, GJR, MPH, YO and-and CG reviewed and edited the paper.

944 *Competing interests.* The contact author has declared that neither they nor their co-authors have
945 any competing interests.

946 *Disclaimer.* Publisher's note: Copernicus Publications remains neutral with regard to
947 jurisdictional claims in published maps and institutional affiliations.

948 *Acknowledgements.* We are grateful to the officers and crew of the R/V *Sonne* and technical
949 support from GEOMAR for their support and assistance, and the opportunity to join cruises
950 SO279 and SO289. Special acknowledgment goes to Paul Battermann who greatly assisted in the
951 sampling aboard the FS Sonne during SO289. Funding for cruise SO289 came from the BMBF
952 (grant 03G0289NA) to EPA. We thank Karel Bakker and Sharyn Ossebaar for their help in the
953 lab – this work would not be possible without them. LD also wishes to thank Sorbonne
954 Université and the Institut de la mer de Villefranche (France), in particular the OMTAB team,
955 for hosting her during the later stage of this research project, as well as Jean-Pierre Gattuso,
956 Pierrick Lemasson and Elsa Simon for the many brainstorming sessions. Figure 2 schematic
957 made by cartographic design - faculty of Geosciences - Utrecht University.

958 **References**

959 Achterberg, E. P., Steiner, Z., & Galley, C. G. (2022). South Pacific GEOTRACES Cruise No.
960 SO289, 18 February 2022–08 April 2022, Valparaiso (Chile)–Noumea (New Caledonia),
961 GEOTRACES GP21.

962 Baines, S. B., Pace, M. L., & Karl, D. M. (1994). Why does the relationship between sinking
963 flux and planktonic primary production differ between lakes and oceans? *Limnology and*
964 *Oceanography*, 39(2), 213–226.

965 Basu, S., & Mackey, K. R. M. (2018). Phytoplankton as Key Mediators of the Biological Carbon
966 Pump: Their Responses to a Changing Climate. *Sustainability*, 10(3), 869.
967 <https://www.mdpi.com/2071-1050/10/3/869>

968 Beck, A., Borchert, E., Delaigue, L., Deng, F., Gueroun, S., Hamm, T., Jacob, O., Kaandorp, M.,
969 Kokuhennadige, H., & Kossel, E. (2021). NAPTRAM-Plastiktransportmechanismen,
970 Senken und Interaktionen mit Biota im Nordatlantik/NAPTRAM-North Atlantic plastic

971 transport mechanisms, sinks, and interactions with biota, Cruise No. SO279, Emden
972 (Germany)–Emden (Germany), 04.12.2020–05.01.2021.

973 Behrenfeld, M. J., & Falkowski, P. G. (1997). Photosynthetic rates derived from satellite-based
974 chlorophyll concentration. *Limnology and Oceanography*, 42(1), 1-20.

975 Caldeira, K., & Wickett, M. E. (2005). Ocean model predictions of chemistry changes from
976 carbon dioxide emissions to the atmosphere and ocean. *Journal of Geophysical Research: Oceans*, 110(C9).

977 Chavez, F. P., Sevadjian, J., Wahl, C., Friederich, J., & Friederich, G. E. (2018). Measurements
978 of pCO₂ and pH from an autonomous surface vehicle in a coastal upwelling system.
979 *Deep Sea Research Part II: Topical Studies in Oceanography*, 151, 137-146.
980 <https://doi.org/https://doi.org/10.1016/j.dsr2.2017.01.001>

981 Cornwall, C. E., Hepburn, C. D., McGraw, C. M., Currie, K. I., Pilditch, C. A., Hunter, K. A.,
982 Boyd, P. W., & Hurd, C. L. (2013). Diurnal fluctuations in seawater pH influence the
983 response of a calcifying macroalga to ocean acidification. *Proceedings of the Royal
984 Society B: Biological Sciences*, 280(1772), 20132201.
985 <https://doi.org/doi:10.1098/rspb.2013.2201>

986 Couldrey, M. P., Oliver, K. I., Yool, A., Halloran, P. R., & Achterberg, E. P. (2016). On which
987 timescales do gas transfer velocities control North Atlantic CO₂ flux variability? *Global
988 Biogeochemical Cycles*, 30(5), 787-802.

989 Cryer, S., Carvalho, F., Wood, T., Strong, J. A., Brown, P., Loucaides, S., Young, A., Sanders,
990 R., & Evans, C. (2020). Evaluating the Sensor-Equipped Autonomous Surface Vehicle C-
991 Worker 4 as a Tool for Identifying Coastal Ocean Acidification and Changes in
992 Carbonate Chemistry. *Journal of Marine Science and Engineering*, 8(11), 939.
993 <https://www.mdpi.com/2077-1312/8/11/939>

994 Delaigue, L., Ourradi, Y., Bakker, K., Battermann, P., Galley, C., & Humphreys, M. P. (2023a).
995 *Discrete underway surface seawater dissolved inorganic carbon and total alkalinity for
996 R/V Sonne cruise SO289* (Version V2) NIOZ. <https://doi.org/doi:10.25850/nioz/7b.b.vf>

997 Delaigue, L., Ourradi, Y., Bakker, K., Battermann, P., Galley, C., & Humphreys, M. P. (2023b).
998 *Underway surface seawater high-resolution pH time series for R/V Sonne cruise SO289*
999 (Version V2) NIOZ. <https://doi.org/doi:10.25850/nioz/7b.b.uf>

1000 Delaigue, L., Ourradi, Y., Ossebar, S., Battermann, P., Galley, C., & Humphreys, M. P. (2023).
1001 *CTD seawater dissolved inorganic carbon and total alkalinity for R/V Sonne cruise
1002 SO289* (Version V6) NIOZ. <https://doi.org/doi:10.25850/nioz/7b.b.tf>

1003 Delaigue, L., van Ooijen, J., & Humphreys, M. P. (2021a). *CTD seawater dissolved inorganic
1004 carbon, total alkalinity and nutrients for R/V Sonne cruise SO279* (Version V2) NIOZ.
1005 <https://doi.org/doi:10.25850/nioz/7b.b.kc>

1006 Delaigue, L., van Ooijen, J., & Humphreys, M. P. (2021b). *Discrete underway surface seawater
1007 dissolved inorganic carbon, total alkalinity and nutrients for R/V Sonne cruise SO279*
1008 (Version V2) NIOZ. <https://doi.org/doi:10.25850/nioz/7b.b.lc>

1009 Delaigue, L., van Ooijen, J., & Humphreys, M. P. (2021c). *Underway surface seawater high-
1010 resolution pH time series for R/V Sonne cruise SO279* (Version V2) NIOZ.
1011 <https://doi.org/doi:10.25850/nioz/7b.b.mc>

1012 DeVries, T. (2022). The Ocean Carbon Cycle. *Annual Review of Environment and Resources*,
1013 47(1), 317-341. <https://doi.org/10.1146/annurev-environ-120920-111307>

1014

1015 Dickson, A., & Millero, F. J. (1987). A comparison of the equilibrium constants for the
 1016 dissociation of carbonic acid in seawater media. *Deep Sea Research Part A.*
 1017 *Oceanographic Research Papers*, 34(10), 1733-1743.

1018 Dickson, A. G. (1990). Standard potential of the reaction: $\text{AgCl}(\text{s}) + 12\text{H}_2\text{O}(\text{g}) = \text{Ag}(\text{s}) + \text{HCl}(\text{aq})$,
 1019 and the standard acidity constant of the ion HSO_4^- in synthetic sea water from
 1020 273.15 to 318.15 K. *The Journal of Chemical Thermodynamics*, 22(2), 113-127.
 1021 [https://doi.org/https://doi.org/10.1016/0021-9614\(90\)90074-Z](https://doi.org/https://doi.org/10.1016/0021-9614(90)90074-Z)

1022 Dickson, A. G., & Riley, J. P. (1979). The estimation of acid dissociation constants in sea-water
 1023 media from potentiometric titrations with strong base. II. The dissociation of phosphoric
 1024 acid. *Marine Chemistry*, 7(2), 101-109. [https://doi.org/https://doi.org/10.1016/0304-4203\(79\)90002-1](https://doi.org/https://doi.org/10.1016/0304-4203(79)90002-1)

1025 Dickson, A. G., Sabine, C. L., & Christian, J. R. (2007). *Guide to best practices for ocean CO₂*
 1026 *measurements*. North Pacific Marine Science Organization.

1027 Doney, S. C., Busch, D. S., Cooley, S. R., & Kroeker, K. J. (2020). The Impacts of Ocean
 1028 Acidification on Marine Ecosystems and Reliant Human Communities. *Annual Review of*
 1029 *Environment and Resources*, 45(Volume 45, 2020), 83-112.
 1030 <https://doi.org/https://doi.org/10.1146/annurev-environ-012320-083019>

1031 Duarte, C. M., & Agusti, S. (1998). The CO₂ balance of unproductive aquatic ecosystems.
 1032 *Science*, 281(5374), 234-236. <https://doi.org/10.1126/science.281.5374.234>

1033 Dumousseaud, C., Achterberg, E. P., Tyrrell, T., Charalampopoulou, A., Schuster, U., Hartman,
 1034 M., & Hydes, D. J. (2010). Contrasting effects of temperature and winter mixing on the
 1035 seasonal and inter-annual variability of the carbonate system in the Northeast Atlantic
 1036 Ocean. *Biogeosciences*, 7(5), 1481-1492. <https://doi.org/10.5194/bg-7-1481-2010>

1037 Egea, L. G., Jiménez-Ramos, R., Hernández, I., Bouma, T. J., & Brun, F. G. (2018). Effects of
 1038 ocean acidification and hydrodynamic conditions on carbon metabolism and dissolved
 1039 organic carbon (DOC) fluxes in seagrass populations. *PLOS ONE*, 13(2), e0192402.
 1040 <https://doi.org/10.1371/journal.pone.0192402>

1041 Egilsdóttir, H., Noisette, F., Noël, L. M. L. J., Olafsson, J., & Martin, S. (2013). Effects of pCO₂
 1042 on physiology and skeletal mineralogy in a tidal pool coralline alga *Corallina elongata*.
 1043 *Marine Biology*, 160(8), 2103-2112. <https://doi.org/10.1007/s00227-012-2090-7>

1044 Egleston, E. S., Sabine, C. L., & Morel, F. M. (2010). Revelle revisited: Buffer factors that
 1045 quantify the response of ocean chemistry to changes in DIC and alkalinity. *Global*
 1046 *Biogeochemical Cycles*, 24(1).

1047 Emerson, S., & Hedges, J. (2008). *Chemical oceanography and the marine carbon cycle*.
 1048 Cambridge University Press.

1049 Faassen, K. A. P., Nguyen, L. N. T., Broekema, E. R., Kers, B. A. M., Mammarella, I., Vesala,
 1050 T., Pickers, P. A., Manning, A. C., Vilà-Guerau de Arellano, J., Meijer, H. A. J., Peters,
 1051 W., & Luijkh, I. T. (2023). Diurnal variability of atmospheric O₂, CO₂, and their
 1052 exchange ratio above a boreal forest in southern Finland. *Atmos. Chem. Phys.*, 23(2),
 1053 851-876. <https://doi.org/10.5194/acp-23-851-2023>

1054 Falkowski, P. G. (1994). The role of phytoplankton photosynthesis in global biogeochemical
 1055 cycles. *Photosynthesis Research*, 39(3), 235-258. <https://doi.org/10.1007/BF00014586>

1056 Falkowski, P. G., & Raven, J. A. (2013). *Aquatic photosynthesis*. Princeton University Press.

1057 Fay, A. R., Gregor, L., Landschützer, P., McKinley, G. A., Gruber, N., Gehlen, M., Iida, Y.,
 1058 Laruelle, G. G., Rödenbeck, C., Roobaert, A., & Zeng, J. (2021). SeaFlux: harmonization

Formatted: French (France)

Formatted: French (France)

Formatted: French (France)

Field Code Changed

1060 of air-sea CO₂ fluxes from surface pCO₂ data products using a standardized approach.
 1061 *Earth Syst. Sci. Data*, 13(10), 4693-4710. <https://doi.org/10.5194/essd-13-4693-2021>

1062 Fietzek, P., Fiedler, B., Steinhoff, T., & Körtzinger, A. (2014). In situ quality assessment of a
 1063 novel underwater p CO₂ sensor based on membrane equilibration and NDIR
 1064 spectrometry. *Journal of Atmospheric and Oceanic Technology*, 31(1), 181-196.

1065 Figuerola, B., Hancock, A. M., Bax, N., Cummings, V. J., Downey, R., Griffiths, H. J., Smith, J.,
 1066 & Stark, J. S. (2021). A Review and Meta-Analysis of Potential Impacts of Ocean
 1067 Acidification on Marine Calcifiers From the Southern Ocean [Review]. *Frontiers in*
 1068 *Marine Science*, 8. <https://doi.org/10.3389/fmars.2021.58445>

1069 Frankignoulle, M. (1994). A complete set of buffer factors for acid/base CO₂ system in seawater.
 1070 *Journal of Marine Systems*, 5(2), 111-118.

1071 Fritsch, F. N., & Carlson, R. E. (1980). Monotone Piecewise Cubic Interpolation. *SIAM Journal*
 1072 *on Numerical Analysis*, 17(2), 238-246. <https://doi.org/10.1137/0717021>

1073 Fujii, M., Takao, S., Yamaka, T., Akamatsu, T., Fujita, Y., Wakita, M., Yamamoto, A., & Ono,
 1074 T. (2021). Continuous Monitoring and Future Projection of Ocean Warming,
 1075 Acidification, and Deoxygenation on the Subarctic Coast of Hokkaido, Japan [Original
 1076 Research]. *Frontiers in Marine Science*, 8. <https://doi.org/10.3389/fmars.2021.590020>

1077 Gattuso, J.-P., Magnan, A., Billé, R., Cheung, W. W., Howes, E. L., Joos, F., Allemand, D.,
 1078 Bopp, L., Cooley, S. R., & Eakin, C. M. (2015). Contrasting futures for ocean and society
 1079 from different anthropogenic CO₂ emissions scenarios. *Science*, 349(6243), aac4722.

1080 Gruber, N., & Sarmiento, J. L. (2002). Large-scale biogeochemical-physical interactions in
 1081 elemental cycles. *The Sea*, 12, 337-399.

1082 Ho, D. T., Law, C. S., Smith, M. J., Schlosser, P., Harvey, M., & Hill, P. (2006). Measurements
 1083 of air-sea gas exchange at high wind speeds in the Southern Ocean: Implications for
 1084 global parameterizations. *Geophysical Research Letters*, 33(16).

1085 Hofmann, G. E., Smith, J. E., Johnson, K. S., Send, U., Levin, L. A., Micheli, F., Paytan, A.,
 1086 Price, N. N., Peterson, B., Takeshita, Y., Matson, P. G., Crook, E. D., Kroeker, K. J.,
 1087 Gambi, M. C., Rivest, E. B., Frieder, C. A., Yu, P. C., & Martz, T. R. (2011). High-
 1088 Frequency Dynamics of Ocean pH: A Multi-Ecosystem Comparison. *PLOS ONE*, 6(12),
 1089 e28983. <https://doi.org/10.1371/journal.pone.0028983>

1090 Humphreys, M. P., Lewis, E. R., Sharp, J. D., & Pierrot, D. (2022). PyCO2SYS v1.8: marine
 1091 carbonate system calculations in Python. *Geosci. Model Dev.*, 15(1), 15-43.
 1092 <https://doi.org/10.5194/gmd-15-15-2022>

1093 James, R. K., van Katwijk, M. M., van Tussenbroek, B. I., van der Heide, T., Dijkstra, H. A., van
 1094 Westen, R. M., Pietrzak, J. D., Candy, A. S., Klees, R., Riva, R. E. M., Slobbe, C. D.,
 1095 Katsman, C. A., Herman, P. M. J., & Bouma, T. J. (2020). Water motion and vegetation
 1096 control the pH dynamics in seagrass-dominated bays. *Limnology and Oceanography*,
 1097 65(2), 349-362. <https://doi.org/https://doi.org/10.1002/lno.11303>

1098 Jiang, L.-Q., Carter, B. R., Feely, R. A., Lauvset, S. K., & Olsen, A. (2019). Surface ocean pH
 1099 and buffer capacity: past, present and future. *Scientific reports*, 9(1), 1-11.

1100 Johnson, K. S., Riser, S. C., & Karl, D. M. (2010). Nitrate supply from deep to near-surface
 1101 waters of the North Pacific subtropical gyre. *Nature*, 465(7301), 1062-1065.

1102 Jokiel, P. L., Jury, C. P., & Rodgers, K. S. (2014). Coral-algae metabolism and diurnal changes
 1103 in the CO₂-carbonate system of bulk sea water. *PeerJ*, 2, e378.
 1104 <https://doi.org/10.7717/peerj.378>

1105 Jones, D. C., Ito, T., Takano, Y., & Hsu, W. C. (2014). Spatial and seasonal variability of the air-
 1106 sea equilibration timescale of carbon dioxide. *Global Biogeochemical Cycles*, 28(11),
 1107 1163-1178.

1108 Lee, K., Tong, L. T., Millero, F. J., Sabine, C. L., Dickson, A. G., Goyet, C., Park, G. H.,
 1109 Wanninkhof, R., Feely, R. A., & Key, R. M. (2006). Global relationships of total
 1110 alkalinity with salinity and temperature in surface waters of the world's oceans.
 1111 *Geophysical Research Letters*, 33(19).

1112 Li, A., Aubeneau, A. F., King, T., Cory, R. M., Neilson, B. T., Bolster, D., & Packman, A. I.
 1113 (2019). Effects of vertical hydrodynamic mixing on photomineralization of dissolved
 1114 organic carbon in arctic surface waters. *Environmental Science: Processes & Impacts*,
 1115 21(4), 748-760.

1116 Liu, X., Patsavas, M. C., & Byrne, R. H. (2011). Purification and characterization of meta-cresol
 1117 purple for spectrophotometric seawater pH measurements. *Environmental Science &*
 1118 *Technology*, 45(11), 4862-4868.

1119 Longhurst, A. R. (2010). *Ecological geography of the sea*. Elsevier.

1120 Lueker, T. J., Dickson, A. G., & Keeling, C. D. (2000). Ocean pCO₂ calculated from dissolved
 1121 inorganic carbon, alkalinity, and equations for K1 and K2: validation based on laboratory
 1122 measurements of CO₂ in gas and seawater at equilibrium. *Marine Chemistry*, 70(1-3),
 1123 105-119.

1124 Martz, T. R., Connery, J. G., & Johnson, K. S. (2010). Testing the Honeywell Durafet® for
 1125 seawater pH applications. *Limnology and Oceanography: Methods*, 8(5), 172-184.
 1126 <https://doi.org/https://doi.org/10.4319/lom.2010.8.172>

1127 Middelburg, J. J., Soetaert, K., & Hagens, M. (2020). Ocean Alkalinity, Buffering and
 1128 Biogeochemical Processes. *Reviews of Geophysics*, 58(3), e2019RG000681.
 1129 <https://doi.org/10.1029/2019rg000681>

1130 Millero, F. J. (2007). The marine inorganic carbon cycle. *Chemical reviews*, 107(2), 308-341.

1131 Millero, F. J., & Poisson, A. (1981). International one-atmosphere equation of state of seawater.
 1132 *Deep Sea Research Part A. Oceanographic Research Papers*, 28(6), 625-629.

1133 Orr, J. C., Fabry, V. J., Aumont, O., Bopp, L., Doney, S. C., Feely, R. A., Gnanadesikan, A.,
 1134 Gruber, N., Ishida, A., Joos, F., Key, R. M., Lindsay, K., Maier-Reimer, E., Matear, R.,
 1135 Monfray, P., Mouchet, A., Najjar, R. G., Plattner, G.-K., Rodgers, K. B.,...Yool, A.
 1136 (2005). Anthropogenic ocean acidification over the twenty-first century and its impact on
 1137 calcifying organisms. *Nature*, 437(7059), 681-686. <https://doi.org/10.1038/nature04095>

1138 Osborne, E. B., Thunell, R. C., Gruber, N., Feely, R. A., & Benitez-Nelson, C. R. (2020).
 1139 Decadal variability in twentieth-century ocean acidification in the California Current
 1140 Ecosystem. *Nature Geoscience*, 13(1), 43-49. <https://doi.org/10.1038/s41561-019-0499-z>

1141 Possenti, L., Humphreys, M. P., Bakker, D. C. E., Cobas-García, M., Fernand, L., Lee, G. A.,
 1142 Pallottino, F., Loucaides, S., Mowlem, M. C., & Kaiser, J. (2021). Air-Sea Gas Fluxes
 1143 and Remineralization From a Novel Combination of pH and O₂ Sensors on a Glider
 1144 [Original Research]. *Frontiers in Marine Science*, 8(1210).
 1145 <https://doi.org/10.3389/fmars.2021.696772>

1146 Price, N. N., Martz, T. R., Brainard, R. E., & Smith, J. E. (2012). Diel Variability in Seawater pH
 1147 Relates to Calcification and Benthic Community Structure on Coral Reefs. *PLOS ONE*,
 1148 7(8), e43843. <https://doi.org/10.1371/journal.pone.0043843>

1149 Qu, L., Xu, J., Sun, J., Li, X., & Gao, K. (2017). Diurnal pH fluctuations of seawater influence
 1150 the responses of an economic red macroalga *Gracilaria lemaneiformis* to future CO₂-

Formatted: French (France)

induced seawater acidification. *Aquaculture*, 473, 383-388. <https://doi.org/https://doi.org/10.1016/j.aquaculture.2017.03.001>

Qu, T., & Lindstrom, E. J. (2004). Northward intrusion of Antarctic Intermediate Water in the western Pacific. *Journal of Physical Oceanography*, 34(9), 2104-2118.

Raven, J. A., & Johnston, A. M. (1991). Mechanisms of inorganic-carbon acquisition in marine phytoplankton and their implications for the use of other resources. *Limnology and Oceanography*, 36(8), 1701-1714.

Richardson, D. J. (2000). Bacterial respiration: a flexible process for a changing environment. *Microbiology*, 146(3), 551-571.

Staudinger, C., Strobl, M., Breininger, J., Klimant, I., & Borisov, S. M. (2019). Fast and stable optical pH sensor materials for oceanographic applications. *Sensors and Actuators B: Chemical*, 282, 204-217. <https://doi.org/https://doi.org/10.1016/j.snb.2018.11.048>

Staudinger, C., Strobl, M., Fischer, J. P., Thar, R., Mayr, T., Aigner, D., Müller, B. J., Müller, B., Lehner, P., Mistlberger, G., Fritzsche, E., Ehgartner, J., Zach, P. W., Clarke, J. S., Geißler, F., Mutzberg, A., Müller, J. D., Achterberg, E. P., Borisov, S. M., & Klimant, I. (2018). A versatile optode system for oxygen, carbon dioxide, and pH measurements in seawater with integrated battery and logger. *Limnology and Oceanography: Methods*, 16(7), 459-473. <https://doi.org/https://doi.org/10.1002/lom3.10260>

Stoll, M., Bakker, K., Nobbe, G., & Haese, R. (2001). Continuous-flow analysis of dissolved inorganic carbon content in seawater. *Analytical Chemistry*, 73(17), 4111-4116.

Strickland, J. D. H., & Parsons, T. R. (1972). A practical handbook of seawater analysis.

Stumm, W., & Morgan, J. J. (2012). *Aquatic chemistry: chemical equilibria and rates in natural waters*. John Wiley & Sons.

Sutton, A. J., Feely, R. A., Maenner-Jones, S., Musielwicz, S., Osborne, J., Dietrich, C., Monacci, N., Cross, J., Bott, R., Kozyr, A., Andersson, A. J., Bates, N. R., Cai, W. J., Cronin, M. F., De Carlo, E. H., Hales, B., Howden, S. D., Lee, C. M., Manzello, D. P.,...Weller, R. A. (2019). Autonomous seawater pCO₂ and pH time series from 40 surface buoys and the emergence of anthropogenic trends. *Earth Syst. Sci. Data*, 11(1), 421-439. <https://doi.org/10.5194/essd-11-421-2019>

Takahashi, T., Sutherland, S. C., Feely, R. A., & Wanninkhof, R. (2006). Decadal change of the surface water pCO₂ in the North Pacific: A synthesis of 35 years of observations. *Journal of Geophysical Research: Oceans*, 111(C7).

Tilstone, G. H., Figueiras, F., Lorenzo, L. M., & Arbones, B. (2003). Phytoplankton composition, photosynthesis and primary production during different hydrographic conditions at the Northwest Iberian upwelling system. *Marine Ecology Progress Series*, 252, 89-104.

Uppström, L. R. (1974). The boron/chlorinity ratio of deep-sea water from the Pacific Ocean. *Deep Sea Research and Oceanographic Abstracts*, 21(2), 161-162. [https://doi.org/https://doi.org/10.1016/0011-7471\(74\)90074-6](https://doi.org/https://doi.org/10.1016/0011-7471(74)90074-6)

Vallis, G. K. (2017). *Atmospheric and oceanic fluid dynamics*. Cambridge University Press.

Wang, X., Yin, Z., Chen, J., & Liu, J. (2023). Phytoplankton Carbon Utilization Strategies and Effects on Carbon Fixation. *Water*, 15(11), 2137. <https://www.mdpi.com/2073-4441/15/11/2137>

Wei, Z., Zhang, Y., Yang, F., & Long, L. (2022). Diurnal fluctuations in seawater pCO₂ amplify the negative effects of ocean acidification on the biotic performance of the calcifying

Formatted: French (France)

1196 macroalga *Halimeda opuntia* [Original Research]. *Frontiers in Marine Science*, 9.
1197 <https://doi.org/10.3389/fmars.2022.968740>

1198 Williams, R. G., & Follows, M. J. (2003). Physical transport of nutrients and the maintenance of
1199 biological production. In *Ocean biogeochemistry: The role of the ocean carbon cycle in
1200 global change* (pp. 19-51). Springer.

1201 Wu, Y., Hain, M. P., Humphreys, M. P., Hartman, S., & Tyrrell, T. (2019). What drives the
1202 latitudinal gradient in open-ocean surface dissolved inorganic carbon concentration?
1203 *Biogeosciences*, 16(13), 2661-2681. <https://doi.org/10.5194/bg-16-2661-2019>

1204 Zeebe, R. E., & Wolf-Gladrow, D. A. (2001). *CO₂ in seawater: equilibrium, kinetics, isotopes*.
1205 <http://site.ebrary.com/id/10190754>

1206 Zehr, J. P., & Kudela, R. M. (2011). Nitrogen cycle of the open ocean: from genes to
1207 ecosystems. *Annual Review of Marine Science*, 3, 197-225.

1208

1209