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Abstract. Healthy soils provide multiple functions that importantly contribute to human wellbeing, including primary 

production, climate and water regulation, and supporting biodiversity. These functions can partially be combined and some 

functions also clearly trade-off: this motivates soil multifunctionality research. Society needs scientists to help assess which 10 

soils are best for which soil functions and to determine appropriate long-term management of any given soil for optimal 

function delivery. However, for both tasks science lacks coherent tools and in this paper I propose a way forward.  

Critically, we lack a common measurement framework that pins soil functioning measurements on a common scale. 

Currently the field is divided with respect to the methods we use to measure and assess soil functioning and indicators 

thereof. Only three indicator variables (SOM, acidity, and available P) were commonly measured (>70% of schemes) across 15 

65 schemes that aim to measure soil health or quality, and no biological measure is implemented in more than 30% of the 

65 schemes. This status quo prevents us from systematically comparing across and within soils; we lack a soil 

multifunctionality benchmark.  

 We can address these limitations systematically by setting a common measurement system. To do this, I propose 

to use latent variable modelling based on a common set of functional measurements, to develop a common ‘IQ test for soils’. 20 

I treat soil functions as latent variables, because they are complex processes that cannot be measured directly, we can only 

detect drivers and consequences of these complex processes. Latent variable modelling has a long history in social, economic 

and psychometric fields, where it is known as factor analysis. Factor analysis aims to derive common descriptors – the factors 

– of hypothesized constructs by linking measurable response variables together on a common scale.  

Here, I explain why such a new approach to soil multifunctionality and soil health is needed and how it can be 25 

operationalized. The framework developed here is an initial proposal, the issue of soil multifunctionality is too complex and 

too important to be addressed in one go. It needs to be resolved iteratively by groups of scientist working intensively 

together. We need to bring our best science together, in a collaborative effort, to develop progressively more refined ways 

of sustainably managing one of humanity’s most precious resources: our soils. 

 30 
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1 Introduction 

Human actions are perturbing the Earth system beyond its planetary boundaries, particularly for biodiversity, climate and 

flows of phosphorus and nitrogen, while we also need to provide sustainable social livelihoods across the globe (Fanning et 

al., 2022; Lade et al., 2020; Steffen et al., 2015). Agricultural production is a main driver of environmental problems, due 

land use change, depletion of freshwater resources, and pollution of aquatic and terrestrial ecosystems (Springmann et al., 35 

2018). In addition, modern agriculture will have to adapt to global limits on mineral phosphorus supply (Blackwell et al., 

2019) and increasing regulation of pesticide use (Tang and Maggi, 2021). This means land-bound agriculture will have to 

increasingly rely on the internal functional capacity of soils, e.g. to recycle nutrients and supress diseases, and thus soil health. 

Likewise, regulation of the climate, through carbon sequestration and reducing greenhouse gas emissions (Lehmann et al., 

2020), and the provision of habitat for aboveground biodiversity, to bend the curve of biodiversity loss (Leclère et al., 2020), 40 

are directly and indirectly linked to soil health. Furthermore, soil biodiversity importantly contributes to climate change 

adaptation, by facilitating water storage in soils through modifying soil organic matter (Lal, 2020), and achieving ONE Health 

through removal of contaminants and preventing disease spread (Wall et al., 2015). Indeed, soil and soil health are at the 

heart of achieving many of the UN Sustainable Development Goals for 2030 (Keesstra et al., 2016; Lal et al., 2021) and the 

European Green Deal (Montanarella and Panagos, 2021). 45 

 

Soil health, defined here as ‘the continuing capacity of soils to deliver the multiple soil functions on which society depend’, 

takes centre stage in policy and practise with respect to soils worldwide (Van der Putten et al., 2023; Veerman et al., 

2020), and I use the term interchangeably with soil multifunctionality. However, currently the field is divided with respect 

to the methods we use to measure and assess soil functioning and indicators thereof. Only three indicator variables (SOM, 50 

acidity, and available P) were commonly measured (>70% of schemes) across 65 schemes that aim to measure soil health or 

quality, and no biological measure is implemented in more than 30% of the 65 schemes (Bünemann et al., 2018). Indeed, 

until very recently there was no national or European level monitoring system that could address the key functions of soils 

comprehensively (Creamer et al., 2022; Van Leeuwen et al., 2017), although steps in this direction are now being taken 

(Norris et al., 2020; Orgiazzi et al., 2022; Zwetsloot et al., 2021), for instance in the EU’s Soil Health Benchmarks project 55 

(https://soilhealthbenchmarks.eu). It is clear that further harmonization in methods and quantification is urgently needed.  

 

Partly, I think this plethora of methods and approaches stems from an oversimplified, often correlational, understanding of 

the causal linkages driving soil multifunctionality, equipment availability in laboratories involved, and a decades old policy 

pressure to deliver easy to implement indicators fast (Creamer et al., 2022), which prevented the zooming-out needed to 60 

better understand the soil systematically (Harris et al., 2022). Indeed, what we need are: “new analytical and conceptual 
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approaches […] that capture systems characteristics of soil health, in order to operationalize [..] monitoring soil health” 

(Lehmann et al., 2020). However, systemic perspectives that integrate soil functions and responses are in their infancy (Vogel 

et al., 2018). It is unclear how to manage the soil functions (Baveye et al., 2016), and how to link functions to soil processes 

(Vogel et al., 2018, but see Creamer et al., 2022). Integrating all soil processes is highly complex, because soil properties 65 

are spatially heterogenous and the interactions in soil are typically non-linear (Vogel et al., 2018).  Soil biology is a key missing 

ingredient, and its complexity is paralyzing the soil health literature (Creamer et al., 2022; Lehmann et al., 2020; Van 

Leeuwen et al., 2017). We know that soil biodiversity drives soil multifunctionality (Delgado-Baquerizo et al., 2016; 

Wagg et al., 2014), but the causal relation to soil functioning for many organisms is not clear (Creamer et al., 2022). Many 

soil microbial variables measured are hard to interpret and are insufficiently benchmarked to allow inferences about soil 70 

health (Fierer et al., 2021). Furthermore, most research focuses on soil health in an agricultural context (Debeljak et al., 2019; 

Fierer et al., 2021), but we also need to understand and quantify it in forestry, nature management, drinking water 

production areas, industrial and urban areas, which are strongly underrepresented (Norris et al., 2020; Orgiazzi et al., 2022). 

 

To move forward, we first need to know what kind of information society needs from soil science. In this context I think the 75 

main research tasks are: 

1. Determine which soils are best for which function (FAO and ITPS, 2015), and which functions can be combined 

(synergies) and which cannot (trade-offs), 

2. Determine the functional shape of the interrelations among soil functions.  

3. Determine the mechanistic drivers of the multiple functions of soils over a long-term perspective. 80 

4. Determine how multifunctionality of individual soils can be optimized. 

5. Develop a simple and effective indicator set to monitor status and trends of soil functions and multifunctionality. 

When we know these, we can start the spatial optimization of multifunctional soil use (van Wijnen et al., 2012), and if we 

understand the long-term impacts and dynamics with respect to the functions and their drivers we can do so for long-term 

sustainable use.  85 

 

To do these tasks well, we need to get organized as a scientific community. First and foremost, we need to set a common 

measurement system for the multiple functions of soil. We need a balanced set of indicators, that reflect soil biology, 

chemistry and physics, but that are geared towards soil functioning (Lehmann et al., 2020). So far, selection of soil biological 

indicators was driven by well-known methods, feasibility in general laboratories and costs, but they should be based on 90 

sound understanding of how the indicators link to soil functioning mechanistically (Creamer et al., 2022; Lehmann et al., 

2020; Vogel et al., 2018). New proposals typically try to go from soil processes to functions in one go, but soil is complex 
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(Young and Crawford, 2004) and so far this approach has been defeated by this complexity. In many cases, the drivers of soil 

functions, either direct or indirect, are used implicitly or explicitly as proxies for the functions themselves. For example, soil 

nutrient content is used as a proxy for soil fertility (Daou and Shipley, 2019), or microbial biomass as a proxy for carbon 95 

storage (Wiesmeier et al., 2019), which in both cases do contribute to the function, but are not nearly a complete description 

of it. We can make steps forward by formally separating the causes and consequences, the predictors and the indicators, of 

soil functioning and by linking them to the underlying processes and environmental and management context. I propose that 

we can do so by applying latent variable models and structural causal modelling to soil multifunctionality research. 

 100 

My aim with this paper is to propose a new methodology for measuring soil functioning and soil multifunctionality. It is based 

on the well-established technique of latent variable modelling commonly used in psychometry, economics and the social 

sciences at large. In parallel to my work presented here, Maaz et al. (2023) have also used latent variable models to represent 

soil health, however, our approaches are quite distinct. They rely on a mixture of stocks, environmental conditions and 

properties as indicators for soil health, while my aim is to link to the soil functions themselves. The next step after setting a 105 

valid measurement framework will be to develop a causal model of how trade-offs and synergies among soil functions are 

mechanistically regulated. If we define soil health as the continuing capacity of soils to deliver the multiple soil functions on 

which society depends, then what are soil functions? Here, I define soil functions as soil processes, physical, chemical, or 

biological in nature, acting singly or in combination. These functions can be beneficial for human society, but can also be 

involved in the internal functioning of ecosystems, without direct human benefits, i.e. soil functioning for the sake of the 110 

ecosystem itself. For consistency, perhaps ‘soil functions on which society depends’ should be called ‘soil services’, as a 

specific form of ecosystem services.  

2 Conceptual approach to soil multifunctionality 

Great mathematical frameworks now exist to combine multiple functions into one aggregate measure of multifunctionality 

(Byrnes et al., 2014, 2023), and they could be used to signal that ‘something is wrong’ with soil functioning. However, 115 

understanding which soils perform all functions best in aggregate, e.g. the highest average soil function, is not informative 

enough to guide sustainable use of soils (Bradford et al., 2014; Lehmann et al., 2020). We need to know which soils perform 

which functions well, and to what extend the functions can be combined or not in a single soil. So instead of focussing on 

univariate summary statistics of multifunctionality, we need to come up with a multivariate, but still simple and 

communicable, representation for soil multifunctionality (Lehmann et al., 2020; Zwetsloot et al., 2021). Multivariate models 120 

of multifunctionality have been developed, including network approaches that can be valuable in exploratory investigations 

(Siwicka et al., 2021). Others developed elegant multivariate models to estimate the influence of different drivers on 
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functions and interrelations among functions (Dooley et al., 2015). However, all these approaches are correlational in nature, 

leaving the causal relationships that induced these correlations potentially unexamined (Shipley, 2016). I think this is 

problematic, because of 1) potential paradoxes in the data that no amount of big data can resolve (e.g. Simpsons paradox) 125 

and 2) difficulties in generalizing the results of analyses to other contexts. Posing a mechanistic model that links soil functions 

a priori, which is iteratively improved in the face of new data, can resolve both of these issues. In addition, hypothesizing 

such mechanistic models will help in stabilizing the set of measured ‘functions’ now rampant in the literature, by excluding 

those indicators that are actually stocks or ecosystem properties and not processes (Garland et al., 2021; Lehmann et al., 

2020). Confronting the hypothesized models with data and proposing improvements can be done with structural equations 130 

modelling (Box 1). But, how to organize the complexity of soils and soil functioning in one model? 

 

Box 1. Causal inference, structural equation modelling, and latent variables – a short introduction 

“Correlation is not causation” is a central piece of endemic wisdom we scientists throw at one another on a regular basis. 

However, its complement “causation implies correlation” is much less known, due to Karl Pearson’s (Pearson, 1911) crusade 135 

on causality. Nevertheless, it is the central concept in modern causal analysis (Pearl, 2009; Shipley, 2016). The modern causal 

revolution arose from the pioneering work of population geneticist Sewall Wright, who developed path analysis (Wright, 

1921, 1934), a method to estimate causal effects from observational data. His method was ignored by statisticians and 

biologists for decades, because it did not fit with the views of the dominant schools of statistics headed by Karl Pearson and 

Ronald A. Fisher (Shipley, 2016). Instead, the method was refined within economics, sociology, political science and 140 

psychology (e.g. Jöreskog, 1967). 

 

Path analysis was transformed into structural equations modelling (SEM), which uses maximum likelihood (ML) estimation 

to test causal multivariate hypotheses. The multivariate hypotheses are specified as a graph, specifically a directed acyclical 

graph, which captures the hypothesized causal relationships among the variables involved. The central idea is beautifully 145 

simple: if the specified causal hypothesis is true then we can predict which variables should be correlated and which not, the 

latter are considered to be conditionally independent. In fact, the method depends on predicting the covariance matrix of 

the variables, comparing it to the observed covariance matrix and testing the model fit (using an ML χ2 test). If the model 

does not fit the data (e.g. χ2 p < 0.05) then the hypothesized causal graph is rejected. If there is no lack of fit, then one 

concludes that the data are consistent with the causal processes hypothesized (until in the next paper someone else proves 150 

you wrong, of course). For SEM to work it needs to assume linear relationships and multivariate normal distributions of the 

variables involved, but it comes with the major advantage that it can estimate latent variables. Latent variables (LVs) are 

variables that were not measured or even cannot be measured. LVs are a way to measure the unmeasurable! 
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LVs are extremely important concepts, as many things cannot be measured (Shipley, 2016). For instance, we cannot measure 155 

air temperature, which is the average kinetic energy of the molecules in the air, we can only measure its effects on e.g. the 

expansion of mercury in a capillary column (a mercury thermometer), or the change in electrical voltage in a thermocouple. 

These observed variables are of course causally linked to the latent quantity temperature, but they are observed with 

measurement error. Misspecifying this dependence relation in a causal model, thus conflating air temperature (‘heat’) with 

the readings of your thermometer (translated to °C), can lead to an erroneous test of the causal model, because it leads to a 160 

different expected covariance structure and thus different conditional independence claims. Latent variable models (LVMs) 

are a way to get around this problem by specifying that the observed variable (thermocouple voltage) is caused by the latent 

quantity of interest (air temperature), but it is observed with error and therefore correlated but not identical. This situation 

is treated by ‘measurement models’ (Fig. 1), a subsection of LVMs developed in the social sciences. To parameterize and test 

a single LV, four indicator variables need to be measured to have sufficient degrees of freedom, although this can be relaxed 165 

if the model entails multiple causally related LVs. LVs are also used to represent more hypothetical variables, e.g. concepts 

such as genes, atoms and intelligence are examples of latent variables. These examples are successful latent concepts, there 

are also problematic ones, such as  ‘ether’. Choosing, developing and justifying latent variables is, perhaps, the most difficult 

aspect of structural equation modelling. 

 170 

Recently, the SEM toolbox was expanded with a new estimation and testing method based on d-seperation. D-seperation is 

a criterion used to derive conditional independence claims, specifying which variables should not be correlated given the a 

priori specified causal model (Shipley, 2000, 2016). The d-separation based approach is flexible and can fully accommodate 

non-normal data, non-linear functional relationships and nested sampling structures, as it works not with the whole 

covariance matrix, but instead it looks at each d-seperation independence claim separately (using partial correlations in its 175 

most simple form) and combines this to test the whole causal model using a Fisher’s exact C-test (C for combined, the d-sep 

test; Shipley, 2000). The logic is the same as for ML-based SEM. Given an a priori causal model one tests for the conditional 

independence of variables predicted by the model.  

 

Note, the methods of SEM and LVM are implemented mathematically as regression models, but it is important to realize that 180 

the interpretation of SEM is much stronger than for ordinary regression models. Ordinary regression models are simple tools 

aiming only to predict the effect of X on Y. The goal is prediction, not primarily understanding, although the latter is often 

attempted. Causal interpretation of regression models is problematic, because parameter estimates and significance depend 

strongly on the included variables and even their order. In fact, misrepresenting the underlying causal structure can easily 

lead to entirely the wrong qualitative conclusions, e.g. in the situation called Simpson’s paradox (see Supplementary Code at 185 

https://github.com/JasperWubs/SoilMFv0.1), which no amount of data will resolve. SEM, however, is different. It is different 
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not because of its mathematics, it is different because it relies on an a priori causal hypothesis to be tested with data. The a 

priori is crucial, when SEM software is used to find the ‘best’ fitting model by means of model selection tools (e.g. AIC), then 

Wrights philosophy falls apart and SEM becomes just another regression tool only to be used for explorative data analysis 

and hypothesis generation. So, as an analyst using SEM, you get one, and only one, epistemologically sound shot at testing 190 

your causal hypothesis. Of course, upon arduously collecting data and then rejecting your model, there is immense 

temptation to update the model by including new, not a priori specified, causal relationships and presenting the updated 

model in the resultant paper as if it were the original a priori model. This is a posteriori discovery and again only suitable for 

exploration and hypothesis generation, not for direct causal interpretation. Therefore, I am strongly in favour of 

implementing a strict requirement that SEM used for causal hypothesis testing is preceded by the publication of the a priori 195 

model in a curated, time-stamped, repository. Any updates to the model should be fully reported in the paper, because 

newly discovered links require further testing. In this way, our causal models can be transparently developed and updated. 

For both SEM and LVM excellent textbooks, reviews and manuals exist (see Grace, 2006; Grace et al., 2010, 2012; Shipley, 

2016), as well as for other tools in the causal analysis toolkit (Pearl, 2009). This summary is a condensed version of key points 

in Shipley (2016). 200 

 

/End of Box 1. 

 

 

Before we can model interacting soil functions mechanistically, we need a common framework to measure them. For this 205 

we have to move beyond using simple indicators, since the processes driving the different functions of soils are complex. Soil 

fertility, for instance, is a complex soil function that drives the process of primary production. It is complex because many 

factors contribute to it (Daou and Shipley, 2019) and it changes through time. Higher nutrient availability, but also water 

content, soil texture and structure interact to shape how well plants grow in a soil. Furthermore, plant species and cultivars 

respond differently to the different drivers of soil fertility, e.g. some prefer nitrate over ammonium, others are salt or drought 210 

tolerant, some can puncture compacted soils and other species not (Grime, 2001). So while it is well possible to build a soil 

fertility model for individual crops, by accounting for their limiting factors for growth and estimating the functional 

relationships to these factors, this is much more difficult to quantify in general with predictive value for all plant and crop 

species in a community simultaneously (Daou and Shipley, 2019).  

 215 

Nevertheless, we can borrow the data analytic machinery used in the social sciences to estimate these complex soil traits. In 

psychology, economy and other social disciplines, complex properties are measured using latent variable models, and 

specifically a subsection called ‘measurement models’, that allow an analyst to infer the status of the complex property by 
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modelling the responses that the property induces (Fig. 1). A well know example is the IQ test that aims to quantify the 

complex and hard to measure trait intelligence (Spearman, 1904). It does this by fitting a measurement model to the 220 

measurable outcomes of intelligence, namely a person’s ability to solve particular puzzles in a limited time. Daou & Shipley 

have successfully adapted this methodology for quantifying generalized soil fertility (Daou et al., 2021; Daou and Shipley, 

2019, 2020), and I propose that we expand their framework to include all major functions of soil, so we can study soil 

multifunctionality more systematically, I propose an IQ-test for soils. 

 225 

 
Figure 1: The two parts of the full soil functioning model. 

a) The two parts of the full soil functioning model including drivers (D1-Dy) and response variables (V1,j-V4,j), their error 

variances (Ei,j) and the latent variable representing a single soil function (SFj). See Box 1 for an introduction to structural 

equation modelling and latent variable modelling. Part one concerns the latent variable measurement sub model involving i 230 

indicators measured on each of j soils for each soil function (SF).  For example, in the case of primary production the indicators 

are the growth responses (RGRij) of four different species used to estimate values for the latent variable generalized soil 

fertility (FGj). The E’s represent mutually independent measurement errors. See Supplementary Information for an 

implementation of the model on Dutch soil samples. Part two concerns the structural equations sub model. It consists in 

specifying the causal structure linking the y soil and non-soil variables, drivers (D1 to Dy), that cause SF. For soil fertility, for 235 

example, this could be NO3 concentration, water holding capacity and compaction. b) Analogy of the soil function metrics to 
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quantifying temperature of a water body as a latent variable using four differently operating thermometers. The latent 

‘temperature’ is estimated using a measurement model based on readings from a liquid alcohol and a mercury thermometer, 

based on column height measurements, a resistance thermometer, which responds to temperature by a change in electrical 

resistance, and a thermocouple, which responds to temperature by a change in electrical voltage. By combining these 240 

different measurements a more accurate picture for temperature can be generated, given they are all adequate measures 

of temperature. Note, combining a good with a poor indicator does not lead to improved accuracy, this is why indicators in 

LVMs need to be correlated to a good extend. This figure and the example are adapted from Daou and Shipley (2019). 

 

3 Selecting soil functions and boundary conditions 245 

Following the Functional Land Management (FLM) framework (Debeljak et al., 2019; Schulte et al., 2014; Zwetsloot et 

al., 2021), I focus on four main soil functions of direct importance to society (Fig. 2). The IQ-test for soils will focus on the 

soil functions: 1) primary production, driven by soil fertility, 2) climate regulation, consisting of carbon storage and reducing 

greenhouse gas emissions (or net GHG consumption by soil), 3) water regulation, composed of water storage and purification 

of contaminants, and finally 4) provision of habitat for biodiversity, focussing initially on plant diversity. See proposals for 250 

expansion to other species groups in the discussion. I exclude nutrient cycling, that is included in the FLM, because I think it 

is not a soil function beneficial to society in and of itself. Instead, I see it as a structuring principle, nutrient cycling determines 

where nutrients are ‘invested’ and thus which functions ‘thrive’ (see also Schröder et al. 2016). Additionally, direct issues 

with nutrients for society, e.g. low soil fertility and nitrate leaching, are captured under the other soil functions, respectively 

primary production and water purification in these examples. 255 
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Figure 2: Soils support human wellbeing in four main areas (blue circles), here excluding direct and indirect contribution to human 
health.  

Climate and water regulation are, respectively, further divided into the carbon storage and reducing greenhouse gas (GHG) 260 

emissions subfunctions, and water storage and purification subfunctions (light blue circles), because of the very different 

causal mechanisms in play. The four soil functions are all interrelated, some trading-off, others acting in synergy, because 

they all depend on the same basic resources (nutrients, energy, water). I hypothesize that the soil’s plant-microbe-soil 

stoichiometry (green oval with orange operator sign) determines which functions are preferentially expressed by any given 

soil. How this regulation plays out is conditional on the geochemistry of the soil, mainly its mineralogy. Measuring the 265 

functions on a common scale and studying their interrelations using a common causal framework will help us determine how 

to manage soils for optimal multifunctionality.  

 

 

The FLM framework was originally designed to integrate over relatively large spatial scales (Schreefel et al., 2022; Schulte 270 

et al., 2014) and uses decision trees, partly based on expert judgement, to generate assessments of the different soil 

functions on a semi-quantitative scale (Low-medium-high, Soil Navigator DSS; Debeljak et al., 2019). In addition, the 

assessment of different functions is partly based on the same information (Zwetsloot et al., 2021), e.g. SOM is a component 

in four out of five functions. How those pre-specified modelling relations affect the observed trade-offs and synergies among 

functions is unclear. While I think the efforts made using FLM (and the associated Soil Navigator Decision Support System; ) 275 

has great value for society in recommending changes based on the best knowledge today, I also believe we need to deepen 

our mechanistic understanding of the interrelations of the soil functioning and how they can be optimized. For this, I propose 

https://soilnavigator.eu/
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we need a measurement and modelling framework that 1) allows quantitative assessment of soil functions, based on 

independent data, and 2) assesses functions and drivers at small spatial and temporal resolution (Bradford et al., 2016, 2017; 

Fierer et al., 2021). 280 

 

Many processes in soil depend on factors external to soil, such as temperature and water inputs. This contributes to the 

challenge in using many biological soil health indicators (Fierer et al., 2021), as they can become highly variable in time and 

space. To get around that, it was proposed to incubate soils under standard conditions, so that only factors internal to a soil 

would contribute to the observed functioning (Daou and Shipley, 2019). This is the approach I take here as well, and as such 285 

the proposed measurement system is focussed on estimating potential soil functioning and multifunctionality, under a set 

of soil-external conditions optimal for plant growth. Below, I provide suggestions on how to link these measures to actual in-

situ rates of soil functioning. Nevertheless, I think this focus on the intrinsic – even though not time invariant – potential soil 

functioning is important, as it can give the method predictive value for expected in-situ soil functioning irrespective of the 

weather conditions that materialize during the growing season. 290 

4 The IQ test for soils - a proposal  

Here, I outline a proposal for a standardized soil multifunctionality assay that addresses the key soil functions in the 

functional land management framework (Schulte et al., 2014). The method is based on incubations of intact soil cores, 

subjected to several treatments, and measuring responses that are indicative of the underlying soil functions (Fig. 3; Table 

1). The methods assume that all soils are sampled in the same way and incubated under standardized conditions, including 295 

temperature, light, watering regime, and air humidity, to ensure comparability (see Table 2 for a proposal). The goal is to 

estimate the intrinsic capacity of each soil for performing each soil function. 
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Figure 3: Design diagram of the soil function measurement setup, version 0.1. 300 

A soil sampling team will collect 32 soil monoliths (60 mm x 25 cm deep, ~22.6 L soil) per soil. The monoliths are used to 

quantify primary production (a) 8 green monoliths, 2 per bio-assay plant species, climate regulation (b) 4 orange monoliths, 

one for each substrate addition treatment, water regulation (c) 4 blue monoliths, for water storage and purification 

measurements and for supporting plant biodiversity (d) 16 coloured monoliths, each colour represents an indicator plant 

(the same as in a) for which direct and indirect plant-soil feedback (PSF) is estimated in phase 2 (P2) on each of four soils 305 

conditioned during phase 1 (P1). The monoliths are incubated for 90 days under standard incubation conditions (Table 2). As 

such the measurements target the capacity of a soil to deliver key soil functions under optimal conditions for plant growth. 

For both primary production and biodiversity functions plant harvest days are fixed (indicated in days after the species name) 

and based on plant dry mass. Likewise, upon substrate addition (t0) gaseous efflux of CO2, N2O and CH4 are measured on 

fixed days, with intensive sampling in the first 14 days, and then less frequent sampling until day 90. In addition, microbial C 310 

and C in soil fractions (aggregates) is measured after 70 and 90 days. The water regulation measurements can be done 

independently in this setup and can potentially be shifted in time, but are now placed at the end of the 90 day period to 

spread the workload over time. However, infiltration and leaching measurements will be conducted over a fixed time period.  
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Table 1. Proposed approach to standardized quantification of the multiple functions of soils. The proposed indicators for 

each (sub-)function are used to fit a LVM that approximates the generalized soil function. RGR = relative growth rate (g g-1 315 

day-1), C/N =  carbon/nitrogen ratio,  

Function Sub-

function 

Method Specification

s 

Challenges External validation Citation 

Primary 

production 

Soil fertility Bio-assay 

with 4 

indicator 

plant 

species 

selected 

across plant-

trait space, 

using two 

harvest dry 

mass RGRs 

are 

determined 

4 bio-assay 

species: 

- Festuca 

rubra 

- Trifolium 

pratense 

- Arabidopsis 

thaliana 

- Triticum 

aestivum 

Up to 50 

days. 

Current 

species all high 

light, salt 

intolerant 

species. 

Biomass production 

using ingrowth cores 

in the field 

(Daou 

and 

Shipley, 

2019, 

2020) 

Climate 

regulation 

Carbon 

stabilizatio

n 

Soil 

incubation 

with 4 

substates 

that differ in 

C/N ratio. 

 

Measure: 

- Respiration 

- Microbial 

biomass C 

4 substrates: 

- Sawdust 

(C/N >100) 

- Legume 

(common 

bean, C/N 

~20-25). 

- Farmyard 

manure (C/N 

~30-40) 

- Control 

Standardizatio

n of substrate 

quality 

- C content in bulk 

soil and aggregate 

fractions 

- Microbial biomass C 

by chloroform 

fumigation-extraction 

 

(Doetterl 

et al., 

2015; 

Laub et 

al., 

2022; 

Vance et 

al., 

1987) 

This 

study 
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by 

chloroform 

fumigation-

extraction 

(after 70 

days) 

- C content 

in bulk soil 

and water 

stable 

aggregate 

fractions 

(after 90 

days) 

 

 

Gas 

exchange, 

measure t0, 

2-3, 4-6, 14 

days 

intensively, 

then to 90 

days less 

frequently 

 

 

GHG 

emission 

reduction 

Measure 

N2O, CH4 

- Indicators 
are fluxes in 
the four 
substates 
treatments 
 

GHG emissions in situ (Gentile 

et al., 

2008) 

This 

study 

 

Water 

regulation 

Water 

storage 

- Water 

infiltration 

- Water-

retention 

curves using 

suction cups 

- Water 

repellency 

- Add fixed 

volume of 

water in 

cylinder on 

top of soil, 

measure 

time to 

infiltration. 

Well 

established 

Field based water 

content 

(Doerr 

et al., 

2000) 

This 

study 
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using water 

drop 

penetration 

time (WDPT) 

method 

- Add water 

to saturation 

and lower 

moisture 

content 

using suction 

cups. 

- place drops 

on soil 

surface and 

measure 

time to 

penetration. 

 Water 

purification 

- Leachate 

collected 

after 

induced 

leaching 

event 

- Measure 

contaminant 

quantity in 

chemical lab 

- Optional: 

Measure 

ecotoxicity 

of leachate 

(and soil). 

4 

treatments: 

- Nutrients: 

NO3 + PO4 

- Heavy 

metals: Cd + 

Pb 

- Pesticides: 

Glyphosate     

+ Fluopyram 

Safe laboratory 

procedures for 

personnel and 

safe disposal 

of toxic waste 

Field based lysimeter 

experiment 

(Enell et 

al., 

2016; 

Lehman

n et al., 

2020; 

Schulte 

et al., 

2014) 

This 

study 
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Biodiversit

y 

Plant 

diversity 

Phase 1: 

relative 

abundance 

(contributio

n to 

evenness) 

Phase 2: 

bipartite Is 

coefficient & 

dominant 

eigenvalue 

among all 

the species 

Two times 

45d  

 

 

 

Is four plant 

species 

sufficient? 

 

Measure PSF in in-

growth cores and 

observe biodiversity 

(Bever, 

2003; 

Mack et 

al., 

2019; 

Mack 

and 

Bever, 

2014) 

This 

study 
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Table 2. Proposal for standardized incubation conditions and mesocosm setup. 320 

Factor Settings 

Light 16:8 h day:night, 225 µmol light quanta m-2 s-1 at plant level 

Temperature 26.5° ±2°C (mean ±SD) 

Air relative 

humidity 

31% ± 8%. 

Watering  

 

Add 20 mL water 3 times per week; Monday, Wednesday, Friday. 

 

Soil corer Gouge augur, 60 mm diameter, >25 cm long 

Container PVC tube, diameter 60 mm x 25 cm deep (707 cm3) 

Containers per 

soil 

32 soil cores = containers 

 

4.1 Primary production 

For primary production, I follow the method developed by Daou and Shipley (2019), where they assessed generalized soil 

fertility. They used four plant species as standard bio-assay indicators that span a wide range in ecological life history 

strategies (Table S1). Using intact soil cores incubated under fixed environmental conditions in a growth cabinet they 325 

estimated the relative growth rates (RGR) of each of the species on each soil. They used that information to fit a 

measurement model, a specific type of latent variable model, which estimates the values of the latent variable generalized 

soil fertility (FG). The measurement model can be thought of as a kind of principal components analysis, but with more 

constraints imposed on the solution, e.g. that there is one common axis that all four indicator species map onto. They have 

applied their method successfully to Canadian and French soils with herbaceous plant communities (Daou et al., 2021; 330 

Daou and Shipley, 2019), showing that their FG metric outperforms other metrics as predictors of primary plant production 

in mixed communities. With the help of Judith Nugteren (then intern at NIOO-KNAW), we applied their method to Dutch 

grassland soils and our analysis confirms key aspects of their method (see Supplementary Information). We found that, soils 

expected to be more fertile based on prior knowledge score higher on the generalized fertility index (FG) and the scores are 

on the same numerical scale as those of Daou and Shipley (2019), the fertility score is sensitive to fertilizer treatments 335 

(Hoagland solution), and replicate soil samples give similar scores indicating a good level of repeatability. 
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To be representative of generalized soil fertility, and thus primary productivity, the indicator species have to be as 

ecologically different as possible in order to capture the maximum diversity in responses while being able to grow them 

together in the same abiotic conditions (light, temperature, soil water levels). Daou and Shipley used herbaceous species of 340 

open grassland habitats and chose phytometer species that were (1) as different as possible according to their ecology and 

taxonomy, (2) have seeds that are easy to acquire by researchers worldwide, and (3) have seeds from recognizable, 

reproducible, and stabilized varieties. The selected species (Table S1), cover an interesting gradient of plants, with different 

root-associated mutualists, growth rates and life span. However, all of them require high light, are salt intolerant, and they 

do not reflect extreme soil acidities (Lamontagne and Shipley, 2022). The question is thus if indeed these four species are 345 

the optimal ones to select when used in an integrated assessment of soil multifunctionality aiming to be applied worldwide? 

 

4.2 Climate regulation 

Climate regulation as a soil function has to be split into two sub-functions (Table 1) due to the large differences in soil 

processes involved: on the one hand carbon storage and on the other preventing emissions of other greenhouse gases 350 

(mainly N2O and CH4; Van de Broek et al., 2019). Carbon is stabilized long-term in the soil when it is fixed to mineral particle 

matrix or bound in aggregates by microbes (Cotrufo et al., 2019; Lavallee et al., 2020; Lehmann and Kleber, 2015). 

This happens through microbial biochemical transformations of rhizodeposits, litter and microbial necromass (Kou et al., 

2023; Sokol et al., 2022). The extend to which this happens depends on physico-chemical quality of substrate inputs and 

the soil matrix properties (Georgiou et al., 2022). Nitrous oxide emissions mainly result from microbial transformations of 355 

fertilizers containing reactive nitrogen (Tian et al., 2020; Van de Broek et al., 2019; Zhou et al., 2017), while methane 

emissions mainly occur under anaerobic conditions when soils are waterlogged and methanogen activity is high (Dalal and 

Allen, 2008; Levy et al., 2012). However, soils can also be sinks of methane and nitrous oxide, through methanotrophy and 

nitrous oxide consumption (Dutaur and Verchot, 2007; Gatica et al., 2020; Tian et al., 2020).  

 360 

I think we can estimate both sub-functions using a single incubation setup (Table 1, Fig. 3), where we use substrate additions 

to elicit soil responses. We can estimate carbon stabilization, and thus storage, capacity by incubating a set of four standard 

substrates that vary widely in their biogeochemical quality. High N substrates will also induce N2O efflux. From low to high 

quality, I propose to use sawdust (C/N >100), farmyard manure (FYM; C/N ~30-40), common bean (Phaseolus vulgaris, C/N 

~20-25), and a control where nothing is added (only basal respiration). Upon substrate addition, the soils will be incubated 365 

at the same conditions as above (Table 2) and gas efflux will be regularly sampled for ~90 days, with intensive sampling for 
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the first 14 days. Using a gas chromatograph also suitable for quantifying CO2, N2O and CH4 all three major greenhouse gases 

could be monitored simultaneously. Since CO2 efflux may not reflect the longer term C fate, I also propose to measure soil 

microbial C, using chloroform fumigation-extraction (Vance et al., 1987) and C content of soil fractions (bulk soil, large 

macroaggregates (LMA, > 2 mm), small macroaggregates (SMA, 2–0.25 mm), microaggregates (MiA, 0.25–0.053 mm), and 370 

free particles of the silt and clay fraction (SiCl, < 0.053 mm), not included in aggregates; Laub et al., 2022; Six et al., 2000). 

Microbial C and C in soil fractions will be determined on samples taken on day 70 and 90 respectively (Laub et al., 2022) 

and analysed using a CN analyser. For substantial CH4 production to occur anaerobic conditions are needed, so sampling for 

CH4 efflux will need to be combined with the water storage measurements where soil cores are wetted till saturation. 

 375 

A key challenge here is how to standardize the substrates. The best way would be to implement a standard protocol to 

purposely cultivate the needed substrates directly, e.g. grow common bean in potting soil under standard conditions, 

harvest, dry and apply on a mass-basis. For sawdust and farmyard manure this is less straight forward. Instead of FYM, 

compost may be an alternative, however, for both nutrient content varies among suppliers. Alternatively, a set of 

synthetically produced compounds varying in their C/N ratio could be used, to better standardize the substrate input, but 380 

they need to have sufficient complexity to reflect real world conditions. 

 

4.3 Water regulation 

Water regulation has been defined as “the capacity of the soil to remove harmful compounds and the capacity of 

the soil to receive, store and conduct water for subsequent use and to prevent droughts, flooding and erosion” 385 

(Wall et al., 2020). Water storage is the result of a balance between infiltration and runoff during precipitation 

events, holding water in the soil matrix, and losses to evapotranspiration and percolation to deeper soil layers 

and aquifers. Water purification is concentrated on the breakdown and sequestration of harmful compounds 

(Keesstra et al., 2012; Wall et al., 2020).  

 390 

For water storage capacity I propose to measure infiltration rate, water repellence (hydrophobicity), and to estimate the 

water retention curve, including water holding capacity. Infiltration is the key input for water in most systems, but lack of 

infiltration may also importantly impact soil functioning by generating horizontal soil runoff and erosion, and alternatively 

by waterlogging. To capture these elements a substantial water influx needs to be tested. Water repellence can easily be 

tested using the water drop penetration time (WDPT) method (Doerr et al., 2000), and reflects an important soil property 395 

when they are extremely dry or upon burning, preventing infiltration (Stoof et al., 2011). The water retention curve can be 



20 
 

estimated using standard protocols, see e.g. ISO 11274:2019 (https://www.iso.org/standard/68256.html), e.g. estimating 

parameters of the non-linear van Genuchten model. Based on the retention curves estimated values for field capacity (−33 

kPa), and permanent wilting point Pw (-1,500 kPa) will be used in the fitting of a latent variable model for water storage 

capacity. 400 

 

With respect to purification (natural attenuation), the EU Water Framework Directive focuses on nutrients, pesticides and 

trace elements for groundwater mediated contamination (European Parliament and the Council, 2006). Following 

Lehmann et al. (2020) and Wall et al. (2020), I propose to measure NO3 (Nolan and Stoner, 2000), NH4 and P in the leachate 

collected after applying a standardized amount of polluted water to the soil core to estimate nutrient retention capacity. The 405 

scale used will be % recovery of introduced amount of each nutrient upon measurement using an continuous flow analysis 

AutoAnalyzer. For purification and retention of pesticides (Froger et al., 2023; Tang and Maggi, 2021) water polluted 

with Glyphosate and Fluopyram will be added to the soil cores and concentrations measured in the collected leachate. 

Glyphosate (https://sitem.herts.ac.uk/aeru/ppdb/en/Reports/373.htm) is a commonly used herbicide. It is the most leached 

pesticide globally (Tang and Maggi, 2021) and dominantly found in a French national survey (Froger et al., 2023), despite 410 

being characterized as relatively immobile and low leachable in soils. It is moderately toxic to earthworms, fish, crustaceans 

and birds and is, still, approved for used in the EU. Also its major biodegradation product aminomethylphosphonic (AMPA) 

needs to be quantified, as it is also toxic to earthworms. Fluopyram 

(https://sitem.herts.ac.uk/aeru/ppdb/en/Reports/1362.htm) is a fungicide, with nematicidal side effects, highly leachable 

and moderately toxic to aquatic life and earthworms. It is approved in the EU, and frequently found in France (Froger et al., 415 

2023). Both pesticides can be quantified using reversed phase high-performance liquid chromatography coupled to a 

quadrupole mass spectrometer (HPLC-MS/MS; Froger et al., 2023). To estimate heavy metal retention I propose to measure 

Pb and Cd concentrations in leachate collected upon application of standardized polluted water to the soil cores. These two 

elements can be used to  predict cation heavy metal behaviour, known to negatively affect soil organisms and plants 

(Nagajyoti et al., 2010; de Vries et al., 2007), in general. Both can be estimated using flame atomic absorption 420 

spectrometry (FAAS; America Public Health Association, 2017). The required input concentrations of the pollutants for 

sensitive indicator use need to be derived empirically. 

 

While I think the response quantification (the indicators) should best be done by assessment of the chemical concentrations 

in the leachate, this can be expensive and unfeasible for less resource rich labs. As an alternative I propose to conduct bio-425 

assays on aquatic life. For instance, algal growth can be used to quantify responses to nutrient leaching and ecotoxicology 

protocols (e.g. using Daphnia spp.) can be used to assess the toxic potential of the soil leachate. I think the nutrient leachate 

https://www.iso.org/standard/68256.html


21 
 

needs to contain all assessed nutrients in combination to avoid specific nutrient limitations for the algae. For the toxicity 

tests each compound (heavy metal, pesticide) needs to be tested separately to estimate their pure impact. However, it is 

known that mixtures are most toxic for soil biodiversity (Beaumelle et al., 2023) and so a treatment where aliquots of each 430 

contaminant are mixed may be critical for extrapolation to field conditions. Furthermore, how direct chemical quantification 

and ecotoxicology tests need to be compared across studies requires further study. Likewise, it is an open question whether 

responses to such different chemicals can be captured effectively by a single latent variable. Luckily, measurement model 

evaluation procedures will quickly inform the researcher if a further division into sub functions is needed. 

 435 

The impacts of leached contaminants also depends on the subsoil characteristics (Brookfield et al., 2021), so the topsoil flux 

estimated here does not inform on the whole impact of a soil on its aqueous surroundings. Indeed, models are needed that 

predict the fate of such leached contaminants in a given soil and landscape. Luckily, subsoils are primarily governed by abiotic 

properties and processes, less so by biological processes, and modelling could thus be more straightforward. 

 440 

4.4 Supporting biodiversity 

For biodiversity, I focus on a soil’s potential for supporting plant diversity. Plant diversity within a given location, on the scale 

of the interacting plants (Casper et al., 2003), is maintained by preventing or delaying competitive exclusion (Fukami and 

Nakajima, 2013; Hardin, 1960). In most terrestrial communities this is importantly mediated by soil-borne antagonists (Bever 

et al., 2015; Mack et al., 2019), the net effects of which can be quantified by measuring the soil’s plant-soil feedback (Bever, 445 

2003; Van der Putten et al., 2013). 

 

Plant-soil feedback (PSF) is typically measured using a two-phase greenhouse experiment. In the first phase plants are grown 

to condition the soil, i.e. they change the soil community and abiotic conditions in their species-specific way (Van der Putten 

et al., 2013). In particular they increase the abundance of their associated soil-borne antagonists and mutualists. In the 450 

second or feedback phase, individuals from the same species or a different species are grown in the soil and the difference 

in biomass they produce across differently conditioned soils provides information on net plant-soil feedback. Such data can 

be used to predict long term coexistence of species using relatively simple mathematical models, that have recently been 

extended from pairwise to multi-species models (Bever et al., 1997; Mack et al., 2019). These models can be parametrized 

by measuring PSF in a full-factorial soil conditioning and feedback design. Here, I propose to implement such a design for an 455 

artificial community of four plant species, having two growth phases of 45 days each (Fig. 3). From the model we can estimate 

the net pairwise interaction coefficient (Is) among the species pairs, but also the real part of the dominant eigenvalue among 
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all the species, which is a predictive measure for coexistence and stability in the face of local species extinctions (Mack et al., 

2019). 

 460 

4.5 A new measurement framework for soil multifunctionality 

Once the selected indicators of the multiple soil functions have been measured under standardized conditions for a range of 

soils, we can start evaluating the adequacy of the latent variable model for each function. Measurement models for the soil 

function latent variables can be fit using standard tools used in the social sciences under the term factor analysis (Grace, 

2006; Shipley, 2016), this includes ML-based estimation in R package lavaan (Rosseel, 2012). Model fit should first be 465 

assessed for the component measurement models.  

 

One of the key steps to ensure comparability across labs will be to use internal benchmarks. Benchmarks are used for 

temperature for instance by fixing the high and low end of the scale to the boiling and freezing point of water, respectively. 

We can do the same for soil functioning. For instance, for primary production I propose to use pure bare sand (e.g. standard 470 

sand used for testing cement; ISO 679:2009(en); https://www.iso.org/standard/45568.html) for the low end of the scale, 

while high quality potting soil (growing medium) can be used for the high end of the scale (Fig. 4). I predict that also the 

subfunctions water storage and purification and carbon storage capacity will be meaningfully mapped using these two 

internal benchmarks. Whether biodiversity regulation also maps to these two extremes needs to be explored. 

https://www.iso.org/standard/45568.html
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 475 
Figure 4. Using internal controls to benchmark the estimated latent variables representing soil functions. 

Here potting soil and poor sand was used to benchmark the high and low end of the generalized soil fertility scale 

respectively. The samples included 30 soils selected from within the Netherlands with contrasting fertility. Soil samples were 

taken as field homogenates and incubated in a greenhouse for 50 days. Unless explicitly stated otherwise Judith Nugteren 

and I followed the procedures of Daou & Shipley (2019). Four indicator plant species were grown in separate pots for each 480 

soil and harvested, dried and weighed at two points in time per plant species. From these data the relative growth rates per 

species and soil was estimated and used to fit a measurement model from which a single latent variable was extracted, called 

generalized soil fertility (FG). See Supplementary Information for a detailed protocol, results and discussion. 

 

 485 
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Another key step will be external validation of the proposed soil function measurement instruments. For this we can leverage 

long-term established field experiments and research networks such as the ILTER sites for arable systems (Trajanov et al., 

2019) and the Nutrient Network for (semi-)natural grasslands (Borer et al., 2017). Within these networks important soil 

functions are measured, often over time, and provide a good context for comparing the ex-situ soil function assessments, 

quantifying soil potential for soil functioning, proposed here with actual in situ measurements. I wonder to what extend the 490 

same approaches as I work out here (Section 4) can be used to assess in-situ soil functioning as well. Primary productivity 

and biodiversity regulation can be tested in the field by using in-growth cores in the field directly or using camera systems 

(rhizotrons; Downie et al., 2015). Lysimeters can be installed to assess leachate contaminations and GHG emissions can be 

measured in response to substrate additions. This would allow for an explicit 1:1 linkage with the ex-situ soil potential 

measurements, allowing for cross-global comparability, and in-situ measurements that estimate real world soil performance. 495 

This crucial step can help us build up the causal machinery to link soil intrinsic and extrinsic factors together in a common 

model to explain and predict soil multifunctionality and thus soil health in reality. 

 

With this proposal to measure the four key soil functions in hand we can put the assessment of soil multifunctionality on a 

common foundation. Naturally, this is an initial proposal and through discussion and collaboration I think it will need to be 500 

refined (see Section 5 for several key concerns and points of improvement). In Fig.  3, there is a schematic representation of 

the experimental setup needed to implement the proposed scheme. The whole process involves taking 32 soil cores per 

target soil and incubating them together for 90 days and taking various samples and measurements in the meantime. The 

setup replies on simple equipment as much as possible. However, critical infrastructure is the incubation facility, e.g. 

controlled growth cabinets or greenhouse. In addition, a gas chromatograph, CN analyser, AutoAnalyzer, HPLC and FAAS are 505 

needed. For labs without access to this high end equipment collaborations with larger labs need to be setup to conduct these 

analyses. For pollutants, using ecotoxicology approaches represents a low cost alternative, but that needs to be calibrated 

to the analytical chemistry data. It will be clear that the setup is not feasible for regular soil testing for commercial services, 

given the long-term incubation period, but that is not the intent.  

 510 

5 Practical implementation in science and beyond 

Generally, the practical and logistical choices for method selection in soil quality assessments varies depending on the 

objectives: mechanistic understanding, functional land management, and large spatial scale monitoring (Creamer et al., 

2022). However, the scheme I propose here aims to strike a balance between these three objectives. The use of 

measurement models linked to functions important to land management, standardized measurements that can be compared 515 
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across labs and thus potentially scaled up, and a flexible framework that allows the integrated study of underlying 

mechanisms, make this three-way integration possible. The question is, how well will it do all three? 

 

Currently, I propose that samples be collected as intact soil cores to preserve soil structure and macroscopic features of soil 

so the real vertical and horizontal variation are reflected in the measurements. These replicate cores need to come from 520 

small homogeneous areas, accounting for variation in microclimate, soil type, land use and management. However, it was 

shown that intact cores and homogenized soils generate almost identical pictures of soil fertility (Daou and Shipley, 2020), 

which would make for much easier sample collection and handling. Similarly, earlier studies using substrate additions 

sometimes incubate as little as 80 g of soil (Doetterl et al., 2015), this would strongly minimize substrate and soil 

requirements and may be an improvement over what I propose here. Likewise, Daou and Shipley (2019) conduct their 525 

work in a highly controlled growth cabinet, but could the data still be measured with acceptable error variances in a 

glasshouse, a screenhouse or in a common garden setup? In a common garden, of course, temperature and light cannot be 

controlled, but maybe their impact can effectively be approximated by using growing degree days as measured by a local 

weather station or temperature loggers?  

 530 

Loosening up this constraint will be important for application of the method in the Global South where high-tech facilities 

are strongly limiting. In general, the approach may be challenging to implement ‘as is’ in the Global South and in potentially 

other labs as well. Currently, the method relies on some advanced lab analytical equipment to get all the required 

measurements. Further work needs to focus on gaining meaningful measurements using simpler approaches, but they need 

to be validated against the robust methods identified here. 535 

 

What about sampling time? Do we need to include seasonal dynamics, e.g. reflecting the massive turnover of bacterial and 

fungal communities over the year (Schadt et al., 2003), or can we select a single most predictive period? I think it would 

be most valuable if we could sample in the seasonally cold and/or dry period when plant growth is most limited. Then we 

could compare in-situ soil functioning data in the field during the subsequent growing season to our prior off-season ex-situ 540 

estimates. These linkages could be used to build predictive models. An alternative would be to sample at peak season, but 

then often 1) farmers are busy on their field, 2) crops are damaged by sampling and walking, and 3) researchers are occupied 

with other field experiments and observations.  

 

Here, I propose to incubate soils under standard soil-external conditions optimal for plant growth (see Table 2), but can these 545 

conditions be applied to all soils? What about soils that experience regular waterlogging? What about soils from low- or high 
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temperature conditions, will the shift to mesic conditions cause unnatural behaviour of these soils? Can we shorten the 

protocol? For biodiversity regulation, I propose to conduct two-phase plant-soil feedback experiments (Bever, 1994; Van der 

Putten et al., 2013), but from the first phase alone we can also use the shoot biomass data to get an initial idea of the soil’s 

ability to support plant diversity, by looking at the evenness of the relative abundances (Pielou, 1966). Could that be 550 

predictive of phase 2 competitive hierarchies? 

 

I am strongly in favour of reporting on the measured soil functions separately so that fellow scientists, policy makers, and 

the public can make their own assessment and overlay their own priorities with respect to the multiple functions of soil. 

However, can these measure not be combined in a single indicator? If they are combined with reports of the individual 555 

functions I think they can. There is a huge literature on multi-objective optimization methods (Pereira et al., 2022) where 

combining objectives is operationalized using explicit rules and criteria. Such optimization should be done with maximum 

transparency about how functions are weighted and combined for the aggregate index to have any practical use. Also, the 

weighing should be informed by involving multiple stakeholder group consultation, e.g. using focus group discussions 

(Bampa et al., 2019; Schulte et al., 2019). 560 

 

The methods I propose are too cumbersome to be used directly in commercial soil testing, but crucial to advance our 

foundational understanding. In order to be useful, indicators need to be conceptually relevant, sensitive to changes, 

informative for management and effective, e.g. cheap and fast (Lehmann et al., 2020). I argue that my method is conceptually 

relevant and sensitive and when the measurements are explicitly linked to environmental and management data the results 565 

can be used to inform management decisions. The effectiveness is something requiring further testing, see the preceding 

discussion for steps I want to take. Additionally we should explore how these soil functioning measurement can be 

approximated by high throughput screening techniques such as near-infrared spectroscopy, X-ray fluorescence, and 

potentially eco-acoustics and environmental DNA. 

 570 

Finally, to scale up and inform spatial planning and management choices worldwide the measurements need to be integrated 

in a strong framework, explaining the potential, the synergies and trade-offs among functions mechanistically (Fierer et al., 

2021). Including biology in these models is key (Creamer et al., 2022; Fierer et al., 2021). As recent as 2004, a map of 

known soil threats and degradation published by Science listed only physical and chemical forms of soil degradation and was 

solely focused on agricultural production (AAAS, 2004). We have moved on, but into unknown territory. The mechanistic 575 

machinery is for an important part there in the literature, but needs to be conceptually brought together for instance using 

plant-microbe-soil stoichiometry as an organizing principle. 
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6 Discussion 

In the wake of the Green Revolution, seeing widespread application of chemical fertilizers and pesticide control, the 

importance of soil science dwindled. Now, due to the threats exerted on human societies by climate change and biodiversity 580 

loss, soil has been revalued as a central nexus integrating many aspects of human wellbeing (Sigl et al., 2023). I believe that 

the study of soil multifunctionality and thus soil health should lie at the heart of this new valuation of soil and soil biodiversity, 

and should be a key focus area in order to bring humanity within the planetary boundaries (Steffen et al., 2015), while 

simultaneously developing sustainable livelihoods for all (Dearing et al., 2014; Fanning et al., 2022). That also means that we 

have to put the study of soil multifunctionality on solid empirical and theoretical footing, for which this paper develops a 585 

concrete proposal (Section 4; Fig. 3).  

 

A key improvement is that I separated causes and consequences of the soil functions. Focus on the consequences allows 

standardized measurements that can be adopted across laboratories, both foundational and applied research oriented, and 

allows them to be linked flexibly, via the estimated latent variables, to competing mechanistic frameworks through structural 590 

equations models. Linking the ex-situ functional measurements by mechanistic causal models is important also to understand 

the results within their environmental context. It is well known that soil health indicators need to be interpreted in site-

specific ways (Creamer et al., 2022; Vogel et al., 2018), and that means that a global understanding needs to account for the 

relevant site-specificities. For instance, clay content determines what range of values to expect for organic matter content 

(Lehmann et al., 2020), while soil texture shapes ecosystem recovery trajectories (Bach et al., 2010). A key question will be 595 

‘how unique are the properties and functions in this soil’ compared to the soils in our reference set. To what extend can we 

extrapolate our results meaningfully, and based on which (minimum) set of parameters? To answer these questions we need 

to bring soil functional and contextual measurements together in a common global database. 

 

6.1 Outlook 600 

There is a strong need to adjust our spatial planning of land use to best fit to the natural capabilities of soils, for which we 

need to know which soils do what functions best (Lehmann and Stahr, 2010). In addition, for optimal management we need 

to know which functions can be combined for any given soil, and at what level of performance. When both of these aspects 

are combined we can perform spatial optimization where the service delivery capacity of our soils is explicitly linked to the 

service provision required by society, e.g. under different climate and socio-economic scenarios (Pereira et al., 2010). In this 605 

way we can also get beyond the challenge of different valuation of functions by individual stakeholders (Allan et al., 2015; 

Lehmann et al., 2020; Manning et al., 2018), by organizing around societal needs in aggregate. 
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Here, I limited the soil function set to the four key functions from the land management framework (Debeljak et al., 2019; 

Schulte et al., 2014; Zwetsloot et al., 2021), however soils are involved in more functions, so should we expand the set? What 610 

about the quality of the plants produced, we could measure tissue N and vitamin content, to indicate food and feed quality? 

What about direct and indirect contributions to human health (Sun et al., 2023; Wall et al., 2015)? Can the soil suppress 

zoonoses and human disease agents? Does a well-managed soil strengthen the human-associated microbiome and immune 

systems? Does it reduce allergies? Is it a better source of therapeutics (Thiele-Bruhn, 2021)? What about crop-associated 

disease suppression (Sagova-Mareckova et al., 2022). For some extend this will be reflected in the primary production and 615 

biodiversity functions, but disease agents are often host specific. How can we generate an overall picture of the general and 

specific disease suppressiveness of a given soil? Is that only through sequencing, or can bio-assays of representative 

pathogens reflect the activity of broad suites of organisms? And habitat for soil life or the larval stages of aboveground 

arthropods? Can we find four indicator species to derive simple tests such as for plant diversity? Do we need eDNA 

sequencing to predict belowground diversity and composition? What about the predictive capabilities of these 620 

measurements? How quickly does their predictive capacity decline over time (Petchey et al., 2015)? What about resistance 

and resilience to disturbance, should experimental treatments be included in the setup (Harris et al., 2022)? I suppose an 

additional period of tier 2 testing can be implemented once the main measurements have been taken.  

 

6.2 Conclusions 625 

Here, I have worked out a simple but causally consistent methodology to quantify soil multifunctionality and thus soil health. 

The system is based on latent variable modelling (LVM), with each LVM capturing one crucial soil function; primary 

production, climate regulation (split in carbon storage and GHG emission reduction), water regulation (split in water storage 

and purification capacity) and biodiversity regulation (captured as plant diversity potential). This system makes explicit that 

soil functions are complex soil properties, contingent on many drivers, that cannot be measured directly using any device. It 630 

also explicitly separates the causes and consequences of each soil function. Using the consequences as indicators we can 

estimate the LVM factors that approximate the soil intrinsic capacity to perform each function. For example, we can estimate 

soil fertility from plant growth. I hope this can be a common point of departure in the soil health field to band together and 

organize the soil multifunctionality and soil health research more mechanistically.  
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Code availability 

R code to fit the soil multifunctionality measurement models and to analyse the Dutch generalized soil fertility model are 

available on GitHub: https://github.com/JasperWubs/SoilMFv0.1. This also includes code simulating Simpson’s paradox. 

Data availability 

The data for the generalized soil fertility test in Dutch soils is available as Supplementary Data S1 at 640 

10.6084/m9.figshare.29132744. 
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