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Abstract. Questions of landscape scale in coupled channel-hillslope landscape evolution have been a significant focus of

geomorphological research for decades. Studies to date have suggested a characteristic landscape length that marks the shift

from fluvial channels to hillslopes, limiting fluvial incision and setting the length of hillslopes. The representation of real-

world landscapes in slope-area plots, however, makes it challenging to identify the exact transition from hillslopes to channels,

owing to the existence of an intermediary colluvial valley region. Without a rigorous explanation for the scaling of the channel5

hillslope transition, the use of computational models, which are forced to implement a finite grid resolution, is limited by

the scaling of the physical parameters of the model relative to the grid resolution. Grid resolution is also tied to the width of

channels, which is undetermined without a rigorous explanation of where channels begin.

Building on existing work, we demonstrate the existence and implications of the characteristic landscape length and its

relationship to grid resolution. We derive the characteristic landscape length as the horizontal length in a one-dimensional10

landscape evolution framework required to form an inflection point. On a two-dimensional domain, channel heads form in

steady state at the characteristic area, the square of the characteristic length, independent of grid resolution. We present a

box-counting fractal definition using the grid resolution, revealing that the dimension of the contributing drainage region on

steady-state hillslopes is expressed as a multifractal system. In sum, channels have contributing drainage areas, therefore a

dimension of two, whereas, by definition, unchannelized locations or nodes have a dimension between zero and two, so not a15

well-defined area. This conceptualization aligns with the observed scaling of channel width. It also importantly suggests that

real-world landscapes have something analogous to the concept of a grid resolution, as this paper demonstrates. In doing so,

our works clarifies several unresolved properties of channel-hillslope coupling, with potential for substantially improving the

accuracy of coupled landscape evolution models in replicating landscape forms.

1 Introduction20

Landscape evolution models (LEMs) are quantitative theories that describe the physical processes shaping geomorphic pat-

terns. Coupled channel-hillslope LEMs combine both fluvial and hillslopes processes, each described by individual mathemat-

ical statements called geomorphic transport laws. A central, yet poorly understood aspect of these coupled LEMs is channel

initiation, setting the transition between hillslopes and channels (Tucker and Hancock, 2010; Dietrich et al., 2003). In real-
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world landscapes, this transition is often described in terms of stochastic perturbations and time-dependent behavior (Smith25

and Bretherton, 1972; Howard and Kerby, 1983; Del Vecchio et al., 2023). Given the prohibitive timescales of landscape evo-

lution, the computational evaluation of LEMs is essential for elucidating landscape evolution over extended periods, further

providing insights into the interconnected dynamics of hillslope and channel evolution (Tucker and Hancock, 2010).

Selecting a finite grid resolution is essential for both computationally evaluating two-dimensional coupled channel-hillslope

LEMs and interpreting real-world topography from digital elevation models (DEMs). Scaling grid resolution relative to phys-30

ically derived parameters or topography presents several challenges. The widely-used stream-power incision model (Howard

and Kerby, 1983; Howard, 1994; Whipple and Tucker, 1999) requires contributing drainage area as a proxy for discharge.

When stream-power incision is combined with linear diffusion (Culling, 1960), the scaling of contributing drainage area across

grid resolutions inconsistently affects hillslopes, with presumably parallel flow paths, and channels, where flow paths converge

(Pelletier, 2010; Hergarten, 2020; Hergarten and Pietrek, 2023; Bernard et al., 2022). Previous efforts have addressed this is-35

sue by proposing criteria for channel initiation (Hergarten, 2020; Hergarten and Pietrek, 2023), but the scaling relationships

between the physically-derived model parameters and channel initiation remain unclear. Instead, computational models often

implement a physically-derived or arbitrarily chosen threshold for drainage area or slope-area, below which stream-power

erosion is absent (Perron et al., 2008; Tucker and Bras, 1998; Campforts et al., 2017). However, some studies have suggested

that the value of the channelization thresholds themselves depends on grid resolution (Montgomery and Dietrich, 1992; Ariza-40

Villaverde et al., 2015; Tarboton et al., 1991), and some studies have questioned the necessity of using a threshold altogether

(Perron et al., 2008; Theodoratos et al., 2018). Grid resolution also complicates the modeling of channels with large drainage

areas where the expected channel widths exceed the pixel width (Pelletier, 2010; Hergarten, 2020).

Prior research has also explored the characteristic landscape length that distinguishes hillslopes from channels and defines

the width of first-order valleys (Montgomery and Dietrich, 1992; Tarboton et al., 1988; Perron et al., 2008; Horton, 1945).45

This length is thought to be associated with the flow-path length from topographic maxima to inflection points with maximum

steepness, differentiating convex summits and concave-up valleys (Willgoose et al., 1991; Tarboton et al., 1991; Roering et al.,

2007). Additionally, research indicates that this length scale corresponds to the square root of the contributing area at channel

heads (Montgomery and Dietrich, 1992; Tarboton et al., 1988; Perron et al., 2008; Tucker and Bras, 1998). Researchers working

on this problem have long noted three distinct regions—from hillslopes, intermediate colluvial valleys, and channels—in slope-50

area plots. In particular, they have been intrigued by the curved region associated with debris flows and shallow landslides,

corresponding to unchannelized colluvial valleys with relatively constant slopes (Montgomery and Foufoula-Georgiou, 1993;

Stock and Dietrich, 2006; Struble et al., 2023; McGuire et al., 2023). The connection between the intermediate region and

debris flows is problematic, however, because curved slope-area plots appear in models and real-world landscapes without

debris flows.55

In this work we analytically derive the characteristic landscape length from a one-dimensional analysis. We define a fractal

box-counting definition using the characteristic landscape length and the pixel width as a measure. Unchannelized nodes, those

with contributing drainage less than the characteristic length squared, do not have a well-defined contributing drainage area,

instead varying with the grid resolution according to their fractal dimension. We demonstrate that this corresponds to both
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computational simulations and real-world topography using Gabilan Mesa in California. Finally, we propose directions for60

computational models and suggest that real-world landscapes have a property analogous to a grid resolution.

2 Detachment-Limited, Linear Diffusion Landscape Evolution

Landscape evolution models for erosional drainage-basin evolution have a storied history. The simplest, most applicable model

assumes detachment-limited stream-power (Howard, 1994; Whipple and Tucker, 1999) and linear diffusion (Culling, 1960).

∂z

∂t
= U −KAm|∇z|n + D∇2z (1)65

On a two-dimensional domain, topographic elevation, z, is a function of the horizontal coordinates x and y, as well as time

t. This model is based on three fundamental parameters: K, D, and U . Erodibility, K, modulates the strength of the stream-

powered erosion. Diffusivity, D, characterizes the strength of gravity-driven erosive processes. The uplift rate, U , represents

the effects of base-level forcing, such as uplift or base-level fall. We assume that K, D, and U are constant in both space and

time.70

Stream-power incision corresponds to the term KAm|∇z|n. A, the contributing area, a proxy for discharge in steady-state

landscapes, is calculated for each (x,y) node on the two-dimensional domain using flow-routing vectors in the direction of

steepest descent of z, such that A is a function of x, y, z, and t. |∇z| is the norm of the gradient of z. Stream-powered erosion is

assumed to be detachment-limited, meaning that sediments, once detached, are not redeposited within the domain. For Eq. (1),

with contributing drainage area A, we set m = 1
2 , within the typical range of 0.4 to 0.55 observed for real-world topography75

(Whipple and Tucker, 1999). Throughout this work we set n = 1, inducing linear behavior of stream-powered erosion and in

the range suggested by empirical studies (Whipple and Tucker, 1999; Lague, 2014).

Linear diffusion (Culling, 1960), representative of mixing processes such as soil creep and bioturbation, assumes that the

diffusive flux, qd, is directly proportional to the gradient of z, given as qd = D|∇z|. The divergence of the diffusive flux, D∇2z

can be positive or negative, indicating erosion in concave-down profiles and deposition in concave-up profiles. Linear diffusion80

accurately models soil-mantled landscapes with cohesive sediments and gradients significantly lower than the angle of repose

(McKean et al., 1993). However, it fails to represent sediment fluxes accurately on hillslopes where local slopes approach a

critical slope (Roering et al., 1999).

We define distinct height (H) and length (L) dimensions, in alignment with prior dimensional analyses (Theodoratos et al.,

2018). For steady-state topography, the horizontal dimension pertains to the two-dimensional domain, while the vertical dimen-85

sion serves as the function’s codomain, organized so that erosion balances uplift everywhere. In Eq. (1), D has fundamental

dimension L2T−1, and U has fundamental dimension HT−1. The combination m = 1
2 and n = 1 preserves the fundamental

dimension of K as a rate ([K] = T−1).
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2.1 One Horizontal Dimension

With two horizontal dimensions, contributing drainage area scales inconsistently with grid resolution owing to differences90

in flow routing between hillslopes and channels. As noted by Pelletier (2010), Hergarten (2020), and Hergarten and Pietrek

(2023), hillslopes are thought to have parallel flow paths, whereas channels have convergent flow paths. On hillslopes, the

width of the parallel flow paths is a function of grid resolution, whereas regions with convergent flow are relatively unaffected

by changes in grid resolution. In order to address this inconsistency, we first consider the one-dimensional equivalent to the

landscape evolution model presented in Eq. (1):95

dz

dt
= U −K|x|

∣∣∣∣
dz

dx

∣∣∣∣+ D
d2z

dx2
(2)

With the boundary length ℓ:

− ℓ

2
< x <

ℓ

2

|x|, a length, is a proxy for the amount of the accumulated precipitation across the one-dimensional domain. The exponent

m = 1 preserves the fundamental dimension of K as T−1 in the one-dimensional framework. Bonetti et al. (2020) present

a non-dimensionalization of Eq. (2), using characteristic length lĉ = ℓ, characteristic height hĉ = U
K , and characteristic time

tĉ = 1
K . Therefore x

lĉ
= x̂, z

hĉ
= ẑ, and z

tĉ
= t̂, resulting in:100

dẑ

dt̂
= 1− |x̂|

∣∣∣∣
dẑ

dx̂

∣∣∣∣+ (CI)−1 d2ẑ

dx̂2
(3)

−1
2

< x̂ <
1
2

CI , the channelization index, is a Péclet number, explaining the competition between advection and diffusion (Perron et al.,

2008; Anand et al., 2023; Bonetti et al., 2020).

CI =
ℓ2K

D
(4)
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Table 1. Symbols and variable definitions used in the study

Symbol Dimension Description

x, y L Horizontal Coordinates

z H Elevation

t T Time

K 1
T

Erodibility

D L2

T
Diffusivity

U H
T

Uplift

A L2 Contributing Area

δ L Pixel Width

ℓ L Boundary Length

r L Linear-Diffusion Characteristic Length

|∇z| H
L

Norm of Gradient of z

∇2z H
L2 Laplacian of Elevation

tĉ, tc̃ = 1
K

T Characteristic Times

hĉ,hc̃ = U
K

H Characteristic Heights

t̂, t̃, ẑ, z̃, etc 1 Dimensionless Operators

Figure 1. Equation 3 solved for various values of CI . As noted in Anand et al. (2023), asymptotically large values of CI , concave-down

profiles are locally preserved near x̂ = 0 for asymptotically large values of CI . Inflection points are plotted with dots. The value CI ≈ 6.828

sets the distance between the inflection points equal to the boundary length.
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Figure 1 plots the numerically evaluated steady-state profiles of Eq. (3) for various values of CI . Larger values of CI manifest105

in narrower hillslope profiles relative to the boundary size 3, formed by the relative strength of advective processes over diffu-

sive processes. The computational granularity necessary for accurate numerical evaluation is a function of the channelization

index, CI . Larger values of CI require a finer resolution to accurately represent the concave-down region around x̂ = 0.

As noted by Litwin et al. (2022a), the channelization index (CI ) is a dimensionless boundary length. The intrinsic length of

Eq. (2) corresponds to a group involving D, since [D] = L2T−1. To solve for this intrinsic length, we consider the fixed points110

of Eq. (3) (Howard, 1994). The fixed point of ẑ, where dẑ
dx̂ = 0, is located at the top of the ridge at x̂ = 0. For x̂ = 0, stream-

powered erosion does not occur, so the steady-state dimensionless erosion at the top of the ridge is C−1
I · d2ẑ

dx̂2 =−1 (Roering

et al., 2007). Inflection points, fixed points of dẑ
dx̂ , occur at the sides of the ridge where |x̂|

∣∣ dẑ
dx̂

∣∣= 1. These inflection points

mark the transition from concave-down to concave-up profiles. We denote r as the length between x = 0 and the inflection

points of Eq. (2), identical to the characteristic hillslope length given in prior works (Roering et al., 2007; Perron et al., 2008;115

Willgoose et al., 1991). For CI ≈ 4 +2
√

2≈ 6.828, the inflection points of dz
dx occur at ± ℓ

2 , thus ℓ = 2r. Solving for r:

r =

√
D

K
(
√

2
2

+ 1)∝
√

D

K
(5)

For the remainder of this paper, we adopt r as the characteristic landscape length, proportional to the characteristic length-

scale
√

D
K used in several prior studies (Perron et al., 2008; Theodoratos et al., 2018). r can also be solved for from Eq. (2) as

a first-order ordinary differential equation in dz/dx (Appendix A).120

2.2 Two Horizontal Dimensions

On a two-dimensional domain, stream-power linear diffusion landscape evolution is dependent on three horizontal lengths: the

landscape length r, the boundary length ℓ, and the pixel width δ. The explicit dependence on δ is controversial. On a two-

dimensional domain, δ is not only correlated with numerical error, as on a one-dimensional domain, but also sets the width of

linear elements, such as channels. Considering these three lengths—the boundary length, the pixel width, and r—a minimum125

of two dimensionless groups can be formed, without unnecessarily rescaling the other dimensional quantities (Buckingham,

1914). This approach maintains the characteristic height as U
K , diverging from the approach of Litwin et al. (2022b).

Bonetti et al. (2018) define specific area, a, a length, as the contributing area per unit contour width in the limit approaching

zero contour width (Bonetti et al., 2018; Gallant and Hutchinson, 2011). Specific area, satisfying the conservation of a unitary

precipitation rate, is expressed as:130

−∇ ·
(

a∇z

|∇z|

)
= 1 (6)

Given δ, an infinitesimally small contour width cannot be achieved, and thus a is not well-defined. In the following analysis,

the specific drainage area a is defined as a = A
δ , while noting that the specific drainage area is implicitly dependent on the

grid resolution (Litwin et al., 2022b; Costa-Cabral and Burges, 1994). Using the D8 flow routing algorithm on a square pixel
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(Tarboton et al., 1988), both the flow length and contour width between diagonal pixels measure
√

2δ diagonally, whereas along135

the cardinal directions, both metrics equal δ. With the D∞ algorithm on a square pixel, the contour width and the flow length

between neighboring pixels is always δ (Gallant and Hutchinson, 2011). Throughout this paper we use the D∞ algorithm to

bypass complexities in cardinal and diagonal directions and to accurately model flow-routing on divergent hillslopes.

The exponent m = 1
2 , applied to contributing area A in Eq. (1), is commonplace for two reasons. First, assuming n = 1, the

scaling of channel slopes with the square root of drainage area is consistently observed in bedrock channels and large drainage140

basins (Leopold and Maddock Jr, 1953). Additionally, the choice m = 1
2 ,n = 1, preserves the fundamental dimension of K as a

rate. The landscape evolution models in the form of Eq. (1) with m = 1
2 do not explicitly address the role of flow width (Perron

et al., 2008). Previous attempts to account for the channel width have sought to normalize the fluvial erosion component by a

factor of w
δ , where w is the channel width (Howard, 1994; Perron et al., 2008). Channel widths are observed to scale with the

square root of drainage area Leopold and Maddock Jr (1953), thus w
δ ∝

√
A
δ .145

∂z

∂t
= U −

√
A

δ
K
√

A|∇z|+ D∇2z (7)

= U −Ka|∇z|+ D∇2z (8)

Rescaling the stream-powered erosion by
√

A
δ defines the specific drainage area, a, a length, as the discharge source term,

preserving the dimension of K. This normalization implies that fluvial erosion is proportional to contributing area, and thus

discharge, assuming a uniform precipitation rate. The calculation of a with contour width δ is appropriate for unchannelized150

nodes, such that erosion occurs by overland flow and therefore the minimum contour width is δ. We first explore the impli-

cations of Eq. (8) for unchannelized nodes. The use of a ensures that the contributing drainage of parallel locally parallel on

hillslopes are independent of pixel width, thereby conforming to a one-dimensional framework. We will show that parallel

flows occur locally for at the inflection point, a = r. For nodes without a = r, the specific drainage area is implicitly dependent

on δ. This dependence is unavoidable but can be reconciled through an additional dimensionless group.155

2.3 Dimensional Analysis

As previously noted, considering the three horizontal lengths ℓ, δ, and r entails at least two dimensionless groups. Non-

dimensionalizing Eq. (8) with lc̃ = r, hc̃ = U
K , tc̃ = 1

K , such that a
lc̃

= ã, x
lc̃

= x̃, y
lc̃

= ỹ, z
hc̃

= z̃, and t
tc̃

= t̃ results in:

∂z̃

∂t̃
= 1− r

δ
Ã
∣∣∣∇̃z̃

∣∣∣+ D

r2K
∇̃2z̃ (9)

= 1− ã
∣∣∣∇̃z̃

∣∣∣+
(√

2
2

+ 1

)−1

∇̃2z̃ (10)160

with boundary length:

ℓ

lc̃
=

ℓ

r
= ℓ ·

√
K

D(
√

2
2 + 1)

∝
√

(CI)
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Therefore, by considering the form with the dimensionless area, this yields two dimensionless groups related to the horizontal

length scales:

Π1 =
r

δ

With the second appearing in the boundary condition:

Π2 = ℓ ·
√

K

D(
√

2
2 + 1)

The dimensionless group r
δ represents the number of pixels of contributing drainage, though not necessarily individual pixels

(with multiple flow-direction routing algorithms), required to form an inflection point. Identical values of this dimensionless165

group create a consistent scaling break in steady-state slope-area space. With increased resolution, the inflection point occurs for

fewer pixels of contributing area, but the same specific drainage area calculated using contour width δ. The dimensionless ratio
ℓ
r denotes the boundary relative to r, and is proportional to the square root of the channelization index. These dimensionless

groups function similarly to two controls of a microscope: one control alters the proximity of the microscope to the specimen,

effectively changing the boundary size, and another that adjusts the resolution through the focus of the lenses. The effect of170

these groups is demonstrated through computational simulations in the following section.

3 2-Dimensional Results

We completed steady-state numerical simulations using Anand et al. (2023)’s Landlab-equipped (Hobley 2017) Jupyter note-

book, using D∞ algorithm (Anand et al., 2020) and implicit diffusion. Our simulations follow Eq. (8), with specific drainage

area calculated using δ as a contour width.175

Inflection points occur at a = r (Fig. 2). The specific drainage area value a = r2

δ , features local fluvial power-law scaling

according to −m
n =− 1

2 , with slope decreasing steadily with the square root of specific drainage area. For specific drainage

area much greater than a = r2

δ , the gradient scales with the specific drainage area according to −m
n =−1. The significance of

the specific drainage area a = r2

δ is explained in the following section.

Larger values of ℓ
r induce larger boundary sizes relative to r, therefore portraying more hillslopes and larger stream orders180

(Fig. 3). The dimensionless group r
δ controls the magnification (Fig. 4). Nodes with drainage area exceeding A = r2 are shown

with yellow dots. For different values of δ, the resolution changes, but the images stay largely the same.
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Figure 2. Slope-specific drainage area plot for the simulated topography shown in Fig. 3 for ℓ = 1000. The specific drainage area a = r,

shown with the red line, has the steepest slope. The specific drainage area value r2

δ
, shown in orange, represents the transition to fluvial

power-law scaling, with slope decreasing steadily with contributing area. This value is resolution independent as an area, but not as a length.
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Figure 3. Computational simulation results varying ℓ for δ = 10, K = 2.5e−5yr−1, D = 7e−2m2yr−1, U = 3.6e−3myr−1. The corre-

sponding channelization indices, CI = l2K
D

, are approximately 22, 89, and 357. These simulations preserve the dimensionless group r
δ

, the

ratio of the characteristic length to the pixel width. Larger values of CI , given the same r value, imply a resized boundary length, ℓ. Channels

form for A = r2, shown with yellow dots.
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Figure 4. Computational results varying δ for U = 1e−3myr−1, D = 5e−2m2yr−1, K = 2.5e−4yr−1. Nodes with drainage area ex-

ceeding a = r2

δ
are shown with yellow dots. Varying δ with r

ℓ
constant produces similar results. With decreasing r

δ
, maximum elevation

decreases, since topographic maxima have specific drainage area δ. This presents a possible benefit for subtracting δ from a, thus counting

the number of links (Rodríguez-Iturbe et al., 1997). We forgo this approach for simplicity.
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4 Fractal Analysis

In the steady-state simulations presented in Fig. 3 and Fig. 4, channel heads are located at a≈ r2

δ . This value is well-defined

as an area, r2, as hypothesized by Montgomery and Foufoula-Georgiou (1993), but not as a δ-derived specific drainage area.185

On a discrete grid with pixel width δ, points, with dimension zero, have an area of δ2, formed by a length and width of δ.

Topographic maxima have zero-dimensional contributing drainage area, δ2. Lines, with no width, have width δ. Resolution-

independent lengths on steady-state topography correspond to the inflection points, a = r for linear diffusion. Using the D∞
algorithm, these lengths correspond to flow routing lengths, rather than Euclidean lengths. The flow directions for nodes

with a = r are locally parallel in limδ→0, separating zones of topographic divergence (a < r), from topographic convergence190

(a > r). Areas on two-dimensional grids are resolution independent. Numerical simulations (Fig. 3 and Fig. 4) indicate that

these contributing areas correspond to nodes with A = r2, such that the contributing area is convergent to a point, i.e. a channel

head. In these simulations according to Eq. (8), channels, linear elements which by definition have width δ, form downstream

from these channel heads.

Figure 5. Schematic diagram of the non-fractal dimension drainage regions. On landscapes, lengths do not correspond to Euclidean lengths,

but instead flow lengths. Areas are not necessarily square-shaped.
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4.1 Fractal Definition195

The resolution-independent dimension of unchannelized nodes, with a≤ r2

δ , is not necessarily an integer. Nodes in locations

with flow directions of partial convergence or partial divergence have non-integer, or fractal dimension. The dimension of

unchannelized nodes with integer dimension, using δ as a contour width, have:

a =
(r)Df

δDf−1
(11)

Df is the box-counting fractal dimension, commonly defined as:200

Df =
log(number of self-similar pieces)

log(magnification factor)

Solving for Df ,

Df =
log(a

δ )
log( r

δ )
(12)

The numerator log(a
δ ) is a number of contributing pixels. The denominator, log( r

δ ) is the magnification factor, one of the

dimensionless groups, referring to number of contributing pixels at the inflection point. This fractal dimension is similar to

definitions of Péclet numbers given in previous studies (Theodoratos et al., 2018; Hooshyar et al., 2020). Figure 6 shows the205

fractal dimension of the contributing drainage plotted for the parameters given in Fig. 2.
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Figure 6. Simulation result for U = 1e−3myr−1, D = 5e−2m2yr−1, K = 2.5e−4yr−1, δ = 2, ℓ = 100 plotted according to the fractal

dimension, Df (Eq. 12). Channel heads, with drainage area r2, have dimension two. Colluvial valleys correspond to 1 < Df < 2. River

segments have dimension two when accounting for channel width.
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Equation (12) indicates that nodes with locally divergent flow near hilltops exhibit a contributing drainage region with

fractal dimension between 0 and 1. Unchannelized nodes with locally convergent flow have a contributing drainage region with

fractal dimension between 1 and 2, corresponding to unchannelized valleys (Fig. 6). This explanation clarifies the properties

of unchannelized nodes but does not extend to channelized nodes.210

Equation (12) suggests that for channelized nodes, with a≥ r2

δ , Df exceeds two for a calculated using δ as a contour width.

Several studies have demonstrated that the fractal dimension of channel networks, as measured by their length-to-bifurcation

ratios, approaches two for large stream orders (Tarboton et al., 1988; Rinaldo et al., 1998; La Barbera and Rosso, 1989;

Rodríguez-Iturbe et al., 1997). While these fractal definitions may be independent, it would be unconventional for the box-

counting fractal dimension of a region on a two-dimensional surface to exceed two. For river segments observed on nature,215

channel width scales with the square root of drainage area (Leopold and Maddock Jr, 1953). Letting δ be the channel width at

the channel head:

w =
δ

r

√
A (13)

Box-counting with δ-sized pixels for river nodes downstream of the channel head captures only the contributing nodes for a

fraction of the contour width of the channel. Using w as the contour width for river nodes, A = aw ·w, where aw is the specific220

contributing area corresponding to contour width w. Substituting aw for a and w for δ in the numerator of Df , as defined for

hillslopes, Df = 2 for all channels. The ratio r
δ remains constant, the dimensionless magnification factor set by the parameters

of the model.

w =
(

δ

r

)2

· aw Df =
log
(

aw

w

)

log
(

r
δ

) (14)

5 Confirmation and Discussion225

Gabilan Mesa is a frequent subject for studies of linear-diffusion advection landscape evolution, featuring soil mantled hill-

slopes with cohesive soils and uniform steady-state topography. Debris flows and shallow landsliding are uncommon. Gabilan

Mesa also has low gradients in most places relative to the critical slope, supporting the assumption of linear diffusion (Perron

et al., 2008, 2009). Our data originate from a 2015 DEM, as utilized by (Grieve et al., 2016). These data include channel

heads using the Pelletier algorithm (Pelletier, 2013), as implemented by the LSDTopoTools (Pelletier, 2013), which estimates230

channel head locations from contour curvature. Floodplains were manually mapped and excluded. We did not need to run a

sink-filling algorithm, since Gabilan features very little topographic roughness.

Figure 7 plots the gradient by drainage area for the section of the DEM shown in Fig. 8. The characteristic length corre-

sponding to the inflection point is 62m, the drainage area of which varies by a factor of δ across resolutions (Bernard et al.,

2022). The drainage area of channel heads is resolution-independent. Figure 8 confirms that this corresponds to the location of235

channel heads as identified by the contour curvature method of Pelletier (2013). While D can be consistently defined by hilltop
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Figure 7. Log-log plot of slope by drainage area for nodes in Fig. 8, corresponding to 1, 5, and 10 meter pixels. The binned median is

plotted in a magenta dashed line. The characteristic length is 62m. The minimum drainage area, corresponding to topographic maxima is

δ2. The drainage area of the inflection point is 62δm2. Channel heads have the characteristic area of contributing drainage area which is

resolution-independent.

curvature, K is a relatively free parameter. There are several approaches for determining K, such as by drainage density or

by channel steepness as ksn = (U/K)−m/n. However, this would assume that erodibility is constant throughout the domain

(both hillslopes and channel networks). For this reason, as well as the potential for weakly nonlinear diffusion, we refrain

from defining the characteristic length as r in this case-study. Nonetheless, the coherence between the topographic analyses240

presented in Fig. 7 and Fig. 8 and the mathematical framework derived from computational results confirms the utility of our

theory (Bras et al., 2003).
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Figure 8. A section of Gabilan Mesa visualized by plotting the fractal dimension, Df , for each node. Subsequent plots were generated

by resampling the topographic elevation from the original 1m DEM to 5m and 10m resolution. The D-infinity algorithm calculated flow

accumulation for every pixel. The fractal dimension is calculated according to Eq. (12), using the characteristic length of 62 m, derived

from Fig. 7. Channelized pixels, those with A > (62m)2, and thus a fractal dimension of greater than two, are highlighted in orange. This

algorithm is resolution independent up to greater numerical error on coarser resolutions. Pelletier-algorithm (Pelletier, 2013) derived channel

heads are marked with yellow stars, demonstrating a surprising correspondence between the channel head methods. Nodes with a fractal

dimension of one separate regions of topographic divergence from topographic convergence.

5.1 Spatially Resolving Channel Width

The numerical simulations shown in this paper correspond to Eq. (8), with specific area calculated with contour width δ. These

simulations have channel slopes that scale according to a concavity of m
n = 1, rather than a concavity of m

n = 1
2 , because the245

scaling in channel width is confined to a single pixel. Previous approaches, as given by Pelletier (2010), assume that pixel

widths exceed channel widths throughout the simulated domain, such that pixel elevations represent the channel elevation

within the pixel, rather than the average elevation. This results in the form A
w for channels, producing the correct scaling for

channel slope but forgoing the spatial representation of widening channels. Rather than assuming that pixel widths exceed

channel widths throughout the domain, we propose instead that models should assume that channel widths exceed the pixel250

width, with the pixel width equal to the channel head width. With this assumption, flow partitioning across multiple pixels could

accommodate widening channels (Gailleton et al., 2024), enabling the precise depiction of both river longitudinal profiles and

widths.

6 Arbitrary r
δ

For large δ relative to r, landscapes are largely self-similar (Anand et al., 2023; Hergarten, 2020), with concave-down hill-255

slope profiles restricted to single pixels. These simulations converge to purely fluvial topography for r
δ → 0, with channel

scaling-behavior occurring instantly. Likewise, previous works considered δ as an arbitrary value, seeking relationships to

vary between δ (Pelletier, 2010). We suggest no such abstraction to vary between δ for numerical simulations. Real-world

landscapes typically feature r≫ δ, introducing computational challenges that can be mitigated by choosing a small ℓ
r .
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6.1 Physical Merit to δ260

In computational models, the channel head, with upstream contributing drainage r2, marks the beginning of channels, linear

elements of width δ. In limδ→0, channel heads are points, resulting in precisely linear channels regardless of the area scaling.

This is not the behavior observed in nature. In the limδ→0, the topography of steady-state computational simulations minimizes

numerical error to form a smooth surface, whereas real-world landscapes feature roughness at increasingly small scales (Roer-

ing, 2008). This indicates the importance of other length scales in real-world landscapes, including the particle size (Andrle265

and Abrahams, 1989; Sangireddy et al., 2017; Sweeney et al., 2015; Dunne and Jerolmack, 2020), which are omitted from

one-dimensional analyses. Studies have shown that showed the particle size distribution is closely related to the transition from

slope-invariant colluvial valleys (i.e. 1 < Df < 2) and fluvial channels, suggesting a maximum particle size at the channel head

(Neely and DiBiase, 2023).

6.2 Nonlinear Diffusion270

Physical landscapes are influenced by a variety of processes not explicitly considered in this analysis, such as soil production

(Heimsath et al., 1997), nonlinear diffusion (Roering et al., 1999), and groundwater infiltration (Litwin et al., 2022b). The

fractal dimension of drainage region is a result of convergence and divergence on topography, and is not inherent to the

one-dimensional equation with linear diffusion. Future work should seek to generalize this work to a variety of flux laws,

such as nonlinear diffusion law in the Andrews-Bucknam form (Roering et al., 1999; Andrews and Bucknam, 1987), depth-275

dependent nonlinear diffusion (Roering, 2008), and nonlocal models (Foufoula-Georgiou et al., 2010; Furbish and Roering,

2013). For nonlinear diffusion in the form of Roering et al. (1999) and Andrews and Bucknam (1987), the characteristic length

is not proportional to
√

D
K , but also a function of uplift relative to the critical slope. Identifying the characteristic length from

topography with strongly nonlinear diffusion is inherently challenging, as hillslopes nearing the critical slope become planar

(Roering et al., 2007). Additionally, computational models incorporating nonlinear diffusion must address the effect of the grid280

resolution setting the spatial scale of the diffusion process (Ganti et al., 2012; Furbish and Roering, 2013).

6.3 Curved Slope-Area Plots

The reasons for curved-slope area plots have long been a topic of discussion in geomorphology (Montgomery and Foufoula-

Georgiou, 1993). Colluvial valleys, corresponding to curved region between hillslopes and channels in slope-area plots have

often been attributed to the role of stochastic processes, such as debris flows and shallow landslides. We showed that for285

these regions, drainage area is not a reliable metric. For analyses of natural landscapes, our theory should help elucidate

the role of debris flows and landslides (McGuire et al., 2023). For computational simulations, this intuition shows potential for

testing theories related to the frequency of forcing, both tectonic and climatic, in hillslope-channel coupled landscape evolution

(Godard and Tucker, 2021).
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7 Conclusions290

We showed that the relationship between the characteristic landscape length and grid resolution a stream-power plus linear-

diffusion landscape evolution model is expressed as a multifractal system for unchannelized nodes. Nodes with locally diver-

gent flow have a contributing drainage region with fractal dimension between 0 and 1, while unchannelized nodes with locally

convergent flow display dimensions between 1 and 2, aligning with unchannelized valleys. Channels have well-defined con-

tributing area, aligning with the observed scaling of channel width and channel slopes as the square root of drainage area. This295

finding underscores a significant parallel between computational grid resolution and real-world landscape features, the channel

head and particle width, in particular. This study serves as a foundational step towards understanding geomorphic channel-

hillslope coupling, highlighting the coherence and limitations of one-dimensional and two-dimensional landscape evolution

equations.

Code availability. Jupyter notebooks for generating the figures are provided in a Zenodo repository.300

Appendix A: Alternate Derivation of r

Let y = dz
dx , y′ = d2z

dx2 . Let x≥ 0,y ≤ 0, by symmetry. Then rearranging Eq. (2), we have the form of a first-order linear ODE

in y, which can be solved by the integrating factor method.

y′+
K

D
xy =−U

D

µ(x) = e
K
2D x2

y =−U

D
e−Kx2/2D

x∫

0

e
K
2D x̄2

dx̄ + C

Using y(0) = 0,

y =−U

D
e−Kx2/2D

x∫

0

e
K
2D x̄2

dx̄

Using y = U
Kx , the characteristic length can be solved for using a series-expansion and a root-finding algorithm.
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