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Abstract. 

Surface roughness is an important factor to consider when modelling mass fluxes at the Greenland Ice Sheet (GrIS) surface 

(i.e., surface mass balance, SMB). This is because it can have important implications for both sensible and latent heat fluxes 

between the atmosphere and the ice sheet and near-surface ventilation. While surface roughness can be quantified from ground-10 

based, airborne and spaceborne observations, satellite radar datasets provide the unique combination of long-term, repeat 

observations across the entire GrIS and insensitivity to illumination conditions and cloud cover. In this study, we investigate 

the reliability and interpretation of a new type of surface roughness estimate derived from the analysis of Ku- and Ka-band 

airborne and spaceborne radar altimetry surface echo powers by comparing them to contemporaneous laser altimetry 

measurements. Airborne data are those acquired during the 2017 and 2019 CryoVEx campaigns while the satellite data (ESA 15 

CryoSat-2, CNES/ISRO SARAL, and NASA ICESat-2) are those acquired in November 2018. Our results show that because 

surface roughness across the GrIS is primarily scale-dependent, a revised empirical mapping of quantified radar backscattering 

to surface roughness gives a better match to the coincident laser altimetry observations than an analytical model that assumes 

scale-independent roughness. We also show that the radar altimetry-derived surface roughness is best interpreted as the 

wavelength-baseline linear projection of the scale-dependent surface roughness observed at hundreds of meter scales and is 20 

therefore not representative of individual small-scale features. These results provide critical context for interpreting the datasets 

and evaluating their applicability in modelling GrIS SMB. 

1 Introduction 

The satellite mass balance history of the Greenland Ice Sheet (GrIS) is a record of the balance between loss of snow, firn and 

ice due to runoff, evaporation, sublimation, erosion, and calving, and gain in the way of new precipitation (Otosaka et al., 25 

2023; The IMBIE Team, 2020). It is the primary means of understanding Greenland’s recent (e.g., 1990’s-present) contribution 

to global sea-level rise and forms the basis for understanding ice sheet evolution in the future (Bamber et al., 2019; Edwards 

et al., 2021; Goelzer et al., 2020). There are three geodetic ice sheet mass balance observations: gravimetry, input-output, and 

altimetry (Otosaka et al., 2023). Gravimetric mass balance is based on monitoring changes in the gravity field across the ice 
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sheet as mass lost through melting/discharge and new snow results in minute but detectable gravity fluctuations. The input-30 

output method compares the quantity of material added or lost to an ice sheet’s surface (surface mass balance, SMB) to the 

amount of ice flowing through peripheral fluxgates. Finally, the altimetric mass balance approach is based on converting 

changes in ice sheet surface elevation (i.e., volume changes) to changes in mass. Critically, both the input-output and altimetry-

based mass balance approaches require model-based estimates of the ice sheet SMB, which in the former defines the net mass 

change across the ice sheet surface and in the latter, the non-mass change component of the observed surface elevation change 35 

(i.e., due to firn compaction). Regardless, to quantify GrIS mass balance using either the input-output or altimetry approaches, 

insight into pan-ice sheet SMB is paramount and is typically derived using numerical regional climate models (RCMs) 

(Alexander et al., 2019; Boberg et al., 2022; Bougamont et al., 2005; Ettema et al., 2009; Medley et al., 2022; Vernon et al., 

2013). 

Numerical estimates of GrIS SMB represent the intersection of climate and subsurface models; the climate model generates 40 

the forcing (e.g., temperature, precipitation, etc.) applied to the ice sheet’s surface (Van Den Broeke et al., 2023), while the 

subsurface model propagates it into the near-surface conditions. In this framework, a critical parameter to constrain is the 

roughness of the ice sheet surface as it modulates the energy balance between the atmosphere and the subsurface via sensible 

and latent heat fluxes along with near-surface ventilation (i.e., interstitial airflow through snow/firn) (Albert and Hawley, 2002; 

Amory et al., 2016; Braithwaite, 1995; Jakobs et al., 2019; Smeets and Van Den Broeke, 2008; van Tiggelen et al., 2021; Van 45 

Der Veen et al., 2009; Van Tiggelen et al., 2023). Outside of affecting atmosphere-ice sheet heat fluxes, surface roughness can 

also denote different morphogenetic areas of the ice sheet (Nolin et al., 2002; Van Der Veen et al., 2009), steer incipient 

supraglacial meltwater flow in the ablation zone (Cathles et al., 2011), and affect conventional laser and radar altimetry 

measurements of surface elevation change (Herzfeld et al., 2000; Van Der Veen et al., 2009; Yi et al., 2005). 

Compared to other SMB-relevant parameters (e.g., temperature, precipitation, short-/longwave radiation, wind speed, etc.) 50 

surface roughness is unique because 1) it can be dependent on the scale over which it is quantified and 2) there are a variety 

of different metrics that have been used (Shepard et al., 2001). The most direct means of measuring GrIS surface roughness is 

with extremely local (i.e., meter-long) comb gauges/snow blades that produce centimetre-scale, one-dimensional replicas of 

the snow surface (Albert and Hawley, 2002; Jezek, 2007). Relevant statistical descriptions for surface roughness (e.g., peak-

to-peak amplitude, roughness wavelengths, etc.) can then be quantified from these replicas. To extend the meter-scale local 55 

comb gauge/snow blade measurements, Herzfeld et al. (2000) developed a towed sensor capable of measuring surface 

elevations at fine spatial scales along profiles hundreds of meters in length. While ground-based surface roughness 

measurements yield the finest spatial sampling, their large-scale applicability is limited as they are very time-consuming and 

subject to site accessibility (e.g., remoteness, weather, etc.) issues.  

Furthermore, acquiring data on regional or pan-GrIS scales is extremely relevant for SMB flux calculations (Van Den Broeke 60 

et al., 2023). For this, remote sensing via airborne or satellite methods is the sole viable option. Photogrammetry and laser 

scanning from the air (i.e., drones, helicopters, planes) have each been used in regional surface roughness studies (Nolin et al., 

2002; van Tiggelen et al., 2021; Van Der Veen et al., 2009). Still, similar to the in-situ methods, accessibility throughout the 
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year remains a challenge due to weather and illumination conditions. Satellite remote sensing can acquire data across the GrIS 

throughout the year and, while optical and laser methods are still sensitive to illumination conditions (e.g., during the polar 65 

night) and cloud cover, respectively, radar techniques can operate year-round. GrIS surface roughness has been derived from 

various datasets collected by different satellites, including US Navy Geosat (Davis and Zwally, 1993), NASA ICESat (Yi et 

al., 2005), NASA ICESat-2 (van Tiggelen et al., 2021), and NASA Terra (Nolin et al., 2002). It is important to consider though 

that while satellite remote sensing datasets can be used to characterise surface roughness over large areas, the horizontal 

sampling of the roughness is typically much coarser than ground-based methods. For example, the horizontal scales over which 70 

roughness is measured can vary from 1 m (van Tiggelen et al., 2021) to 10 km (Yi et al., 2005).  

Recently, Scanlan et al. (2023) presented a new approach for characterising the monthly variability in surface roughness across 

the GrIS via the strength of radar altimetry surface echoes. Their approach is based on the Radar Statistical Reconnaissance 

(RSR) method (Grima et al., 2012, 2014a, 2022). As the name implies, RSR is a statistical approach that allows for the observed 

strength of radar echoes to be decomposed into their coherent and incoherent components and, when combined with a 75 

backscattering model, be used to derive the relative dielectric permittivity and RMS height of the surface. Initially developed 

to study Mars (Grima et al., 2012, 2022), the RSR method has also been applied to airborne VHF measurements of polar ice 

masses (Chan et al., 2023; Grima et al., 2014a, b, 2016, 2019; Rutishauser et al., 2016) and Ku-band radar altimetry 

measurements of the surface of Titan (Grima et al., 2017). Where Scanlan et al. (2023) outline how the RSR method has been 

implemented for the analysis of Ku-/Ka-band radar altimetry measurements and performs a preliminary qualitative 80 

interpretation, this study focuses more intensely on the GrIS surface roughness results, with the specific goal of validating their 

derivation and interpretation. Only once the foundation of the surface roughness results has been solidified, can their 

applicability with respect to SMB modelling be explored.  

In this study, the reliability of the Ku- and Ka-band surface roughness estimates derived from the RSR analysis of radar 

altimetry surface echoes is assessed by comparing them to conventional surface roughness metrics derived from laser altimetry 85 

measurements. This comparison is performed at both 1) locations of simultaneous airborne radar and laser altimetry collected 

as part of the 2017 and 2019 ESA CryoVEx campaigns in central Greenland as well as 2) at a set of locations spanning the 

Greenland ice sheet using satellite (i.e., ESA CryoSat-2, CNES/ISRO SARAL, and NASA ICESat-2) datasets acquired in 

November 2018. The satellite comparison focuses on November 2018 as the RSR results are generated monthly (Scanlan et 

al., 2023) and November 2018 is one of the first full months where ICESat-2 was completely operational following its launch 90 

two months earlier. We perform the comparison of radar and laser altimetry-derived surface roughness for both the airborne 

and spaceborne cases for two reasons: first, because the spatial resolution of the airborne datasets is much finer than the 

spaceborne datasets and second because the spatial coverage of the satellite data is much broader than that of the airborne 

datasets. Therefore, considering both yields a more complete understanding of the radar altimetry-derived surface roughness 

results. 95 
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2. Datasets 

2.1 CryoVEx Altimetry 

The series of CryoVEx (CryoSat Validation Experiment) campaigns operated by ESA focus on 1) validating satellite altimetry 

measurements over ice sheets and sea ice by way of repeated satellite ground track under flights and 2) supporting the design 

of future satellite altimetry missions (e.g., ESA CRISTAL, Sentinel-3 Next Generation Topography (S3NG-T)). To this end, 100 

through its history, the CryoVEx nadir-pointed airborne altimetry sensor package has included versions of different altimeters, 

but the most important for this study (Table 1) are ESA’s Ku-band (13.5 GHz centre frequency, 0.1098 m range resolution) 

ASIRAS radar, the MetaSensing Ka-band (34.525 GHz centre frequency, 0.165 m vertical resolution) KAREN radar, and the 

Riegl LMS Q-240i-60 Airborne Laser Scanner (ALS; 904 nm wavelength). All altimetry measurements are supported by 

precise aircraft positioning by combined GPS and INS (inertial navigation system) navigation solutions. In addition to the 105 

airborne platform, CryoVEx campaigns also include a substantial ground component tasked with installing corner reflectors 

on the surface and taking in-situ measurements (e.g., density) in the shallow subsurface along the aircraft/satellite ground track.  

This study uses March/April 2017 (Skourup et al., 2019) and April 2019 (Skourup et al., 2021) CryoVEx data (ESA, 2022a, 

b) collected along the EGIG line in central Greenland. Specifically, it focuses on ASIRAS, KAREN, and ALS measurements 

surrounding positions of the in-situ measurements performed at the T5, T9, T12, T19, T30, and T41 locations in 2017 as well 110 

as T9, T12, T21, and T35 locations in 2019. Both the ASIRAS and KAREN data have been subject to post-acquisition SAR 

(synthetic aperture radar) processing to minimise the size of their respective footprints in the alongtrack (3 m and 5 m, 

respectively) and crosstrack (10 m and 12 m, respectively) directions. The ALS data have been processed into 200-300 m wide 

swaths following the aircraft ground track, with individual ground height measurements spaced at one-meter by one-meter 

intervals. 115 

2.2 Satellite Altimetry 

For decades, satellite radar and laser altimetry have been the method-of-choice for acquiring the ice sheet surface elevation 

change (SEC) measurements that feed long-term mass balance monitoring efforts (Abdalati et al., 2010; Markus et al., 2017; 

Otosaka et al., 2023; Schröder et al., 2019; Schutz et al., 2005; The International Altimetry Team, 2021). Of particular interest 

in this study (Table 1) are the Ku-band radar altimetry datasets from the SIRAL instrument (13.575 GHz centre frequency, 120 

320 MHz bandwidth) on-board the ESA CryoSat-2 spacecraft (Phalippou et al., 2001; Rey et al., 2001; Wingham et al., 2006) 

as well as the Ka-band measurements from the AltiKa instrument (35.75 GHz centre frequency, 500 MHz bandwidth) on-

board the CNES/ISRO SARAL spacecraft (Steunou et al., 2015; Verron et al., 2015). Laser altimetry measurements come 

from the ATLAS instrument (532 nm wavelength) on-board the NASA ICESat-2 spacecraft (Abdalati et al., 2010; Markus et 

al., 2017). 125 

Leveraging the results of Scanlan et al. (2023), because CryoSat-2 operates in two different acquisition modes while over 

Greenland, this study makes use of both Low-Resolution Mode (LRM) Level 1B (L1B) and SAR Interferometric (SARIn) 
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Full-Bit Rate (FBR) CryoSat-2 Baseline-D data products. The LRM data products cover the GrIS interior, where CryoSat-2 

waveforms are stacked from an individual 1.97 kHz pulse repetition frequency (PRF) to a constant data rate of 20 Hz. Across 

the GrIS margins, the CryoSat-2 SARIn data products contain reflected waveforms from 18.181 kHz PRF, 64-pulse bursts 130 

(burst repetition frequency of 21 Hz) acquired by both CryoSat-2 receive antennas. The FBR data are preferred to higher level 

SARIn data products (e.g., Level 1) as they have not yet been subject to any SAR focusing. The SARAL Sensor Geophysical 

Data Record (SGDR) data products are similar to CryoSat-2 LRM products in that initially 3.8 kHz PRF waveforms are 

averaged alongtrack in 25 ms (40 Hz) intervals. Finally, this study makes use of ATL06 ICESat-2 data products providing 

geo-located surface heights across the GrIS in 20-meter increments. 135 

 

Table 1: Summary of the airborne and satellite radar and laser altimetry datasets used to derive surface roughness as part of 
this study. 

 Instrument Altimeter 
Type 

Radar Centre 
Frequency Wavelength Derivation of 

Surface Roughness 
Maximum RSR 
Search Radius 

Airborne       

 

CryoVEx 
ASIRAS Radar 13.5 GHz 2.22 cm RSR n/a 

CryoVEx 
KAREN Radar 34.525 GHz 0.86 cm RSR n/a 

CryoVEx ALS Laser n/a 904 nm Surface heights n/a 
Satellite       

 

ESA CryoSat-2 
SIRAL Radar 13.575 GHz 2.21 cm RSR LRM: 50 km 

SARIn: 25 km 
CNES/ISRO 
SARAL AltiKa Radar 35.75 GHz 0.84 cm RSR 40 km 

NASA ICESat-2 
ATLAS Laser n/a 532 nm Surface heights n/a 

 

3. Methods 140 

3.1 Quantification of Surface Roughness from Laser Altimetry 

As alluded to previously, there is no best, single method for measuring surface roughness as it can be both scale-dependent as 

well as scale-independent and multiple metrics have been put forward in the literature. Shepard et al. (2001) provide a thorough 

overview of various surface roughness metrics and how they can relate to one another. With the horizontal scale dependence 

of surface roughness a distinct possibility, this study adopts the strategy of Steinbrügge et al. (2020) and quantifies surface 145 

roughness by way of the RMS deviation. 

https://doi.org/10.5194/egusphere-2024-2832
Preprint. Discussion started: 24 September 2024
c© Author(s) 2024. CC BY 4.0 License.



6 
 

 
Figure 1: Simplified diagram demonstrating how to derive an RMS deviation [𝑣(∆𝑥)] profile that quantifies surface roughness 

as a function of horizontal baseline (∆𝑥). The profile comprises the RMS of height deviations [i.e., elevations minus a 

background plane; 𝑧(𝑥!)] considering all combinations of points with a similar horizontal baseline. The RMS deviation profile 150 

[b)] can be derived from profile data (i.e., as demonstrated here) as well as two-dimensional surface elevation datasets. 

 

Figure 1 presents a simplified overview of how to calculate the RMS deviation at various baselines from a set of measured 

surface elevations along a profile. First, a constant background plane is removed from the measured surface elevations, yielding 

a profile of surface deviations [𝑧(𝑥!) in Figure 1a]. Then the differences in height deviation are calculated for the 𝑛 possible 155 

combinations of points along the profile that are spaced some defined horizontal distance (i.e., baseline) apart (e.g., ∆𝑥", ∆𝑥#, 

and ∆𝑥$ in Figure 1). The RMS deviation for that specific baseline is then the RMS of all those height deviation differences 

following 

𝑣(∆𝑥) = )"
%
∑ [𝑧(𝑥!) − 𝑧(𝑥! + ∆𝑥)]#%
!&" /

"/#
.  (1) 

Finally, the RMS deviation profile (Figure 1b) presents how the RMS deviations vary as a function of the range of horizontal 160 

baselines considered (i.e., the horizontal scale dependency in surface roughness). While Figure 1 presents the derivation of the 

RMS profile from a one-dimensional profile of surface elevations, the procedure can also be expanded to two-dimensional 

surface elevation datasets. In such an application, it is possible to derived both isotropic (i.e., baselines in all directions 

considered equally) and anisotropic (i.e., baselines restricted to only certain azimuth/cardinal directions) RMS deviation 

profiles. When presented in log-log space, it is common for the RMS deviation profiles (Figure 1b) to exhibit a piecewise 165 

linear behaviour (Steinbrügge et al., 2020). 

3.2 Radar Statistical Reconnaissance (RSR) Implementation and Calibration 

As RSR is based on the statistical distribution of measured surface echo powers, the first step in implementation is to extract 

those surface echo powers from the measured waveforms. The same surface detection and extraction approach is applied to 

the CryoVEx (ASIRAS and KAREN) and satellite (CryoSat-2 and SARAL) datasets and follows Scanlan et al. (2023). The 170 
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leading edge is defined as the point of maximum, integrated rate of change in the waveform amplitude when derived over 

different proportions of the receive window. For the airborne data, individual rates of change in the receive waveform 

amplitude are calculated over two and four percent of the receive window length, while for the satellite data, amplitude 

derivatives over three, six and nine percent of the waveform receive windows are used. The extracted surface echo power is 

then the maximum power observed within the five percent of the range window following the re-tracked leading edge position. 175 

One feature relevant to the analysis of the airborne ASIRAS data is that the amplitudes provided in the CryoVEx data products 

have been normalized. Representative waveform amplitudes (𝐴()*) are generated from the normalized amplitudes (𝐴%+(,) 

following  

𝐴()* = 𝐴%+(, ∗ 10-. ∗ 𝐹𝐴𝐶/ ∗ 20/1! ,  (2) 

where 𝐹𝐴𝐶/ and 𝐹𝐴𝐶2 are the Linear Scale Factor A and Power of 2 Scale Factor variables reported in the ASIRAS data 180 

products. Once extracted, ASIRAS and KAREN surface power amplitudes are omitted from further analysis if the measured 

roll is greater than 1.5 degrees to limit the potential effects of off-nadir instrument pointing. For the satellite data, CryoSat-2 

SARIn echo powers are removed if there is a marked CAL4 flag, while for SARAL, the altimetric range (>1000 km), a trailing 

edge variation flag, and a large average waveform off-nadir angle (>0.10 degrees-squared) are all used to remove possibly 

erroneous surface echo powers. Finally, the satellite surface echo powers are also corrected for the nadir surface slope (Scanlan 185 

et al., 2023) using the 500 m ArcticDEM (Porter et al., 2018), while the more local CryoVEx data are not. 

Fundamentally, how the RSR method is implemented is the same for all the radar altimetry datasets. The set of radar surface 

echo amplitudes closest to some defined location is used to construct a density function and the statistical descriptors of the 

homodyned K-distribution fit define the coherent (𝑃3) and incoherent (𝑃%) powers (Grima et al., 2014a). For the CryoVEx case, 

the locations are defined as the positions of in-situ density measurements along the EGIG line (Skourup et al., 2019, 2021). 190 

The choice to focus exclusively on the immediate area surrounding in-situ measurements allows for the rapid check of the 

reliability of the RSR approach when applied to CryoVEx data by way of reproducing in-situ density estimates. For both 

ASIRAS and KAREN, 𝑃3 and 𝑃% are derived from the distribution of the 1000 closest surface echo powers to each in-situ 

position (measured in EPSG:3413). For the satellite radar altimetry datasets (CryoSat-2 LRM, CryoSat-2 SARIn, SARAL), 

this study makes partial use of the results from Scanlan et al. (2023), where RSR has been applied to the 1000 closest surface 195 

echo powers surrounding nodes of a five-by-five kilometre grid spanning the GrIS. For the CryoSat-2 SARIn data, the same 

five-by-five kilometre set of grid nodes are used, but instead of 1000 samples, RSR results are derived from the 12,000 closest 

samples to overcome the apparent statistical dependence of adjacent CryoSat-2 SARIn surface echo powers noted in Scanlan 

et al. (2023). 

Two metrics are used to ensure the quality of the RSR results: first, the maximum distance one must search around the defined 200 

location to collect the required number of surface echo powers, and second, the correlation coefficient between the observed 

surface echo power histogram and the homodyned K-distribution fit. The former is irrelevant for the CryoVEx data as we 

mandate using the closest 1000 data points surrounding the in-situ locations regardless of how far they may be. For the satellite 

results, we use the following maximum search radii: 50 km for CryoSat-2 LRM, 25 km from CryoSat-2 SARIn, and 40 km for 
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SARAL (Table 1). The CryoSat-2 LRM and SARAL maximum search radii are the same as those used in Scanlan et al., 205 

(2023), while the CryoSat-2 SARIn radius has been extended to account for the increased number of echo samples considered. 

For all radar altimetry datasets, the correlation coefficient must exceed 0.96 for the RSR measurement to be considered valid 

(Grima et al., 2012, 2014b, a; Scanlan et al., 2023). 

From the quality controlled RSR results, surface roughness is derived by adopting a representative backscattering model. The 

simplest implementation of the RSR technique (Grima et al., 2012, 2014b, a; Scanlan et al., 2023) assumes incoherent 210 

backscattering from the surface follows the Small Perturbation Model (SPM) (Ulaby et al., 1982) where the surface RMS 

height can be derived from the ratio of the coherent and incoherent powers following   

𝜎4 =
5)"# $"%⁄

6789% 9#⁄
 ,  (3) 

where 𝜆  is the signal wavelength [m]. The validity bounds of the SPM are 𝑘𝜎4 < 0.3  and 𝑘𝑙 < 3  where 𝑘  is the radar 

wavenumber [m-1] and 𝑙 is the surface roughness correlation length [m]. The analytical relationship for deriving RMS height 215 

from the RSR results in Equation 3 is based on the assumption that the surface roughness correlation length is large enough 

for its influence to be neglected (Grima et al., 2012, 2014a). Note that in contrast to when deriving surface dielectric 

permittivities from the RSR results, the absolute calibration of the RSR coherent powers is not directly required to produce a 

roughness estimate (Grima et al., 2012, 2014a, b; Scanlan et al., 2023). However, as an additional check on the overall 

applicability of the RSR approach, CryoVEx RSR results have been calibrated using the contemporaneous in-situ 220 

measurements. The CryoVEx 𝑃3 and associated calibration density values vary between 2017 (189.5 dB and 0.438 g cm-3 for 

ASIRAS; 324.6 dB and 0.353 g cm-3 for KAREN) and 2019 (183.7 dB and 0.57 g cm-3 for ASIRAS; 317.25 dB and 0.5 g cm-

3 for KAREN) and are based on the same assumed Ku- and Ka-band density depth sensitivity as used in Scanlan et al. (2023). 

4. Comparisons of Radar and Laser Altimetry Surface Roughness Estimates 

4.1 Airborne CryoVEx Datasets 225 

The results of the CryoVEx RSR analysis are presented in Figure 2. All EGIG sites visited in 2017 and 2019 have been 

analysed. However, it should be noted that in the case of T35 (grey circle in Figure 2a) , which was visited in 2019, the ASIRAS 

and KAREN RSR results both failed the quality control assessment and no data from this location are presented. The 

comparison of the measured in-situ average densities (top two meters for KAREN and top four meters for ASIRAS; Scanlan 

et al., (2023)) with those derived from the RSR analysis demonstrates we can reasonably recover the in-situ densities from the 230 

remote sensing measurements after calibration (Figure 2b). Comparisons of the 2017 and 2019 surface roughness results from 

the ASIRAS, KAREN and ALS altimetry datasets are presented in Figures 2c and 2d, respectively. It is assumed that the 

ASIRAS (triangles) and KAREN (squares) RMS heights derived from Equation 3 are equivalent to the ALS RMS deviations 

at a horizontal baseline equal to the respective radar wavelength (Table 1). 
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 235 
Figure 2: Results from the analysis of 2017 and 2019 airborne CryoVEx data. The locations of the in-situ measurements along 

the EGIG line are presented in Panel a). Panel b) presents the agreement (R of 0.45) between the RSR-derived densities from 

ASIRAS (triangles) and KAREN (square) surface echoes powers with those measured in-situ. The comparison of RMS heights 

from the radar altimetry (assumed to be equivalent to the RMS deviation at the wavelength baseline) and the ALS data (circles) 

RMS deviations as a function of baseline are presented in Panels c) (CryoVEx 2017) and d) (CryoVEx 2019). The RSR-based 240 

roughness estimates align well with the projection of the piecewise linear portion of the ALS RMS deviations profiles between 

200-700 m (i.e., the grey region) to the radar wavelength baseline. 

 

It is immediately clear from Figure 2 that the ASIRAS and KAREN surface roughness estimates do not agree with a direct 

continuation of the shortest baseline scale laser surface roughness behaviours down to the wavelength scale. While RMS 245 

deviation typically exhibits a strong scale dependency for baselines greater than 100 m (i.e., RMS deviation increases with 

baseline), for shorter baselines, the RMS deviation profiles level off, revealing more scale-independent behaviour. The 

continuation of the piecewise linear trends in RMS deviation from baselines less than 50 m to the radar wavelengths would 
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overestimate the RSR results by roughly two orders of magnitude. However, projecting that more scale-dependent behaviour 

at larger baselines (e.g., between 200 and 700 m) yields the dashed lines in Figures 2b and 2c, which closely intersect with the 250 

RMS heights derived from the ASIRAS and KAREN. This suggests that the RMS heights derived through the RSR 

analysis of CryoVEx radar altimetry surface echo powers should be interpreted as the wavelength-scale projection of 

surface roughness behaviour observed at long baselines and not the RMS deviation at the wavelength scale. It should 

be noted, however, that this interpretation assumes that there are no further inflexion points at baselines smaller than those that 

can be accessed via the ALS data. 255 

 
Figure 3: Surface elevations [a) and b)] and height deviations [c) and d)] surrounding the T30 [a) and c)] and T41 [b) and d)] 

CryoVEx locations. The ALS data considered in deriving the corresponding RMS deviation profiles in Figure 2c come from 

within the black polygons. It is clear that T30 and T41 are sited in locally smooth regions of the GrIS. 
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 260 

Amongst the ALS results, the 2017 T30 and T41 RMS deviation profiles (Figure 2c) are unique, in that they do not exhibit the 

increased scale-dependent roughness behaviour at longer baselines. Instead, their RMS deviation profiles are flat and 

monotonic (i.e., not piecewise linear). The reason for this change in surface roughness behaviour is due to the ALS data 

surrounding T30 and T41 preferentially covering extremely smooth local areas of the GrIS. Figure 3 presents the local surface 

elevations (Figures 3a and 3b) along with the height deviations (elevations minus the constant location-specific background 265 

plane; Figures 3c and 3d) surrounding the T30 and T41 ALS datasets. Elevations are taken from the 10 m ArcticDEM mosaic 

(Porter et al., 2018) and the background plane is defined using all 10 m ArcticDEM data within 20 km of the CryoVEx in-situ 

measurement location. It is clear that the topographic variability across each of these sites is very small at T30 and essentially 

non-existent at T41. It is then not surprising that the corresponding RMS deviation profiles (Figure 2c) do not exhibit the 

increase in RMS deviation at large horizontal baselines that is observed at the other CryoVEx locations. To further emphasise 270 

the smoothness of the GrIS near T30 and T41, Figure 4 compares the ALS RMS deviation profiles with those derived from all 

ICESat-2 surface elevations within 25 km and 35 km of T30 and T41, respectively. We must use ICESat-2 data that are further 

away from the T30 and T41 because these locations are between ICESat-2 orbital ground tracks. When considering the surface 

topography over a broader area (i.e., ICESat-2), the increase in surface roughness at longer baselines is once again observed. 

It is also worth noting that the breakpoint in the RMS deviation profiles at baselines between 100 and 200 m is not being 275 

captured by the 20 m posting ICESat-2 ATL06 data. Therefore, without the small baseline insight gained from the airborne 

CryoVEx ALS data, the RSR surface roughness results could have been misinterpreted as a direct continuation of the 

monotonic ICESat-2 RMS deviation profiles. 
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 280 
Figure 4: The comparison of March/April 2017 ALS (blues) and November 2018 ICESat-2 (greens) RMS deviation profiles 

centred on locations T30 (light) and T41 (dark) along the EGIG line. There is a substantial discrepancy between the two sets 

of RMS deviation profiles in the overlapping baseline range (100 m to 1 km) further confirming that the local regions 

surrounding T30 and T41 are markedly smoother than those further afield. The anomalous behaviour in the ICESat-2 RMS 

deviation profiles at large (i.e., >4 km) baselines is related to the quick drop-off in the number of comparable surface elevations. 285 

4.2 Spaceborne Datasets 

Turning to the spaceborne altimetry datasets (i.e., ESA CryoSat-2, CNES/ISRO SARAL, and NASA ICESat-2), the first step 

is to derive RMS deviation profiles from the laser altimetry surface elevations. To maintain equivalence in the spatial 

representativeness of the radar and laser altimetry surface roughness metrics for a specific location in the five-by-five kilometre 

grid, ICESat-2 RMS deviation profiles are derived from all November 2018 surface elevations within the three different RSR 290 

surface echo power search radii for that location (maximum search radii are presented in Table 1). The number of ICESat-2 

measurements within the location-specific CryoSat-2 LRM, CryoSat-2 SARIn and SARAL search radii for November 2018 

are presented in Figure 5. As expected, because the spatial density of surface echo power measurements along an individual 

orbit (and therefore across a month) is greatest for CryoSat-2 when operating in its SARIn mode, the associated smaller search 

radii contain the fewest ICESat-2 measurements (Figure 5b).  In contrast, the lower spatial resolution (i.e., less frequent 295 

alongtrack sampling) inherent in the CryoSat-2 LRM (Figure 5a) and SARAL (Figure 5c) data requires a greater RSR search 

radius that, in turn, encompasses more ICESat-2 measurements. The cross-cutting striped patterns in Figure 5 relate to the 

specific distribution of satellite ground tracks across the GrIS in November 2018. As three different sets of ICESat-2 data are 
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used to derived three RMS deviation profiles for each location, three different background planes are also defined based on 

the local ATL06 surface elevations. 300 

 

 
Figure 5: Maps showing the number of November 2018 ICESat-2 ATL06 measurements within the contemporaneous a) 

CryoSat-2 LRM, b) CryoSat-2 SARIn, and c) SARAL RSR search radii. The quantity of ICESat-2 ATL06 surface elevations 

used to derive the RMS deviation profile for a specific location is inversely related to the alongtrack data rates of the different 305 

radar altimeters.  

 

In lieu of presenting hundreds of individual ICESat-2 RMS deviation profiles together with the CryoSat-2 and SARAL RMS 

heights (i.e., akin to Figures 2c and 2d) and following on from what has been learned from the CryoVEx results, Figure 6 

presents the comparisons of the RSR RMS heights, and the wavelength-scale RMS deviations projected from a linear fit to the 310 

RMS deviation profiles for baselines between 200 and 700 m for 328 locations across the GrIS. These 328 locations have been 

pseudo-randomly selected based solely on considerations for the computational load when performing the point-to-point 

surface deviation comparison as part of the RMS deviation profile calculation (i.e., ≤55,000 ICESat-2 surface elevations). To 

ease the comparison, all surface roughness estimates (i.e., CryoSat-2 and SARAL RSR RMS heights or ICESat-2 RMS 

deviations projected to the CryoSat-2 and SARAL wavelength scale) have been normalized by the radar signal wavelength. 315 

While there may be the suggestion of possible linear relationship between the radar- and laser-derived surface roughness 

estimates, the is clearly no 1:1 agreement. This appears to be in part due to a floor in the RSR results as they consistently fail 
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to recover the smallest ICESat-2 RMS deviations. The mean absolute error between the two sets of surface roughness estimates 

is 0.0308 𝜆 for CryoSat-2 and 0.0346 𝜆 for SARAL. 

 320 
Figure 6: Panel a) presents the locations of 328 pseudo-randomly chosen locations across the GrIS where in Panel b) RSR 

surface roughness results (CryoSat-2 as squares and SARAL as triangles) are compared to wavelength-baseline projected RMS 

deviations from ICESat-2. While there is a general positive associated between the two sets of roughness estimates, the RSR 

results do not reliably recover the smallest ICESat-2 roughness levels. The mean absolute error between the ICESat-2 and the 

CryoSat-2 and SARAL RSR-based wavelength-normalized roughness estimates are 0.0308 𝜆 and 0.0346 𝜆 respectively. 325 

5. Revising the Derivation of Surface Roughness 

5.1 An Empirical Roughness Relationship 

The clear absence of a good agreement in Figure 6 between the CryoSat-2 (LRM and SARIn) and SARAL RSR results with, 

what are taken to be, equivalent results derived from ICESat-2 necessitates a deeper investigation into the rationale for why. 

As such, building off the general relationship established by Equation 3, Figure 7 presents a two-dimensional histogram 330 

directly comparing the CryoSat-2 and SARAL coherent/incoherent power ratios (in linear units plotted on a logarithmic axis) 

with the radar wavelength-scale RMS deviation projected from the ICESat-2 RMS deviation profile between 200 and 700 m 

baselines. Following Figure 6, the projected ICESat-2 RMS deviations in Figure 7 have been normalized by the radar signal 

wavelength to facilitate the joint analysis of the Ku- and Ka-band results. The solid line in Figure 7 represents the analytical 

solution for relating the 𝑃3/𝑃% ratio to surface roughness via the SPM (i.e., Equation 3) (Grima et al., 2014a). It is immediately 335 
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clear that the analytical solution does not fit the observed relationship and leads to the surface roughness being almost 

universally overestimated. However, Figure 7 does suggest a general association between the RSR 𝑃3/𝑃%  ratio and the 

wavelength-baseline projected ICESat-2 RMS deviations. Because this association linear (when plotted in log-log space), we 

use it to define the following empirical mapping;  

𝑣(𝜆);1<=>?-# = 𝜆 ∗ A9%
9#
B
-@.B.#

∗ 10-".C@D .  (4) 340 

The overestimation of surface roughness based on the RSR 𝑃3/𝑃%  ratio when using the SPM may seem somewhat 

disconcerting; knowing its range of validity covers the smallest RMS heights (𝑘𝜎4 < 0.3). However, the SPM assumes scale-

independent surface roughness while, outside of very local areas (e.g., Figure 3), surface roughness across the GrIS appears 

strongly scale-dependent (Figures 1 and 4). As such, the SPM was likely ill-suited to the task of deriving surface roughness 

from the RSR results from the beginning. 345 

 
Figure 7: Direct comparison of the combined CryoSat-2 and SARAL coherent/incoherent (𝑃3 𝑃%⁄ ) power ratios on which RSR 

estimates of surface roughness are based and the projection of the ICESat-2 RMS deviation profile between 200 and 700 m 

baselines to the wavelength scale. As the conventional analytical model (solid line, Equation 3) leads to overestimating surface 

roughness, a new linear empirical mapping (dashed line, Equation 4) is suggested as more appropriate. 350 
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Applying this empirical relationship to deriving surface roughness estimates from the RSR outputs yields the comparison 

against the projected ICESat-2 RMS deviations presented in Figure 8. Comparing Figures 6b and Figure 8, surface roughness 

produced using the empirical mapping relation (Equation 4) clearly produces a better match than the analytical model (Equation 

3). Quantitatively, the mean absolute errors between the ICESat-2 and RSR-based wavelength-normalized roughness estimates 355 

are reduced from 0.0308 𝜆 (CryoSat-2) and 0.0346 𝜆 (SARAL) for the analytical model to 0.0119 𝜆 and 0.0174 𝜆 using the 

empirical model; the substantial reduction indicating a much better agreement between the radar and laser roughness estimates. 

Furthermore, the difference between ICESat-2 and RSR-based empirical surface roughness clusters around zero for both 

CryoSat-2 (Figure 8b) and SARAL (Figure 8c); whereas the analytical approach led to consistently greater RSR surface 

roughness. It should be noted that a similar study using a smaller number of locations in December 2018, also observed an 360 

improvement in mean absolute error using the revised empirical RSR-roughness model (Equation 4). 

 

 
Figure 8: Direct comparison of the empirical and analytical RSR and ICESat-2 surface roughness results [a)] and histograms 

of the differences in the logarithms of ICESat-2 and RSR surface roughness values for b) CryoSat-2 and c) SARAL. Using the 365 

empirical mapping between the RSR outputs and surface roughness, the mean absolute error is reduced to 0.0119 𝜆 and 0.0174 

𝜆 for CryoSat-2 and SARAL respectively. The analytical results are the same as those presented in Figure 6b. The dashed line 

in a) represents a 1:1 agreement between the radar and laser surface roughness results while the dotted lines are used to identify 

the >2s outliers in the radar and laser surface roughness estimates. 

 370 
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An interesting feature present in the radar/laser surface roughness comparison of Figure 8 is that substantial disagreements 

(i.e., >2s outliers) between the radar and laser altimetry surface roughness estimates are not symmetric and mainly occur above 

the dashed 1:1 line (i.e., an ICESat-2 surface roughness greater than that of either CryoSat-2 or SARAL). When looking at 

where these outliers occur spatially across the GrIS (Figures 9a and 9b), there is a clear clustering of locations in SE Greenland. 

That some outlying surface roughness results can be found around the GrIS periphery or at the boundary of the different 375 

CryoSat-2 acquisition modes is not unexpected, as this is where the RSR technique is known to struggle with more spatially 

heterogeneous surfaces and where there are fewer data enveloping a specific location (Scanlan et al., 2023). That being said, 

the cluster in SE Greenland is surprising as it occurs across a high elevation and inland portion of the ice sheet. Interestingly, 

the SE Greenland cluster of roughness mismatches corresponds to a location where valid (i.e., quality control passing) monthly 

(2013-2018) RSR results seem to be the rarest. This suggests that the GrIS surface in this area may be unique in some way that 380 

continuously affects the RSR results. Based on the ICESat-2 results from Figure 8, one possible explanation could be that this 

area is substantially rougher than the inland GrIS as a whole and yields distributions of radar altimetry surface echo powers 

that cannot be fit by a single homodyned K-distribution probability density function; thereby causing the RSR technique to 

fail. However, as this study focuses on understanding the RSR roughness results, a deeper assessment of the root cause for 

why the RSR technique seems to experience issues in this area is left to future work.  385 
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Figure 9: Locations of >2s outliers between the wavelength-scale RMS deviations projected from ICESat-2 and a) CryoSat-

2 and b) SARAL surface roughness estimates. The locations are plotted on top of maps showing the number of months with 

valid (i.e., quality-controlled) RSR observations for the period 2013-2018 (72 months). While some outlying roughness 

mismatches occur closer to the boundaries of the various datasets, there is a cluster in SE Greenland that corresponds with a 390 

zone of anomalously low quality RSR results. The impact of CryoSat-2 and SARAL orbital designs can be seen in the spatial 

patterns (CryoSat-2 SARIn latitudinal stripping and SARAL hatching) in the southern portions of the ice sheet. 

5.2 Spatiotemporal Patterns in Surface Roughness 

Armed with an improved understanding of surface roughness derived from analysing Ku- and Ka-band satellite radar altimetry 

surface echoes, we can now take a closer look at the resulting spatiotemporal patterns. To this end, Figure 10 presents the 395 

2013-2018 SARAL mean surface roughness (Figure 10a) as well as timeseries along two GrIS-bisecting transects: an east-

west transect in Figure 10b and a north-south transect in Figure 10c. Blank points in the timeseries (Figures 10b and 10c) 
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correspond to instances where the corresponding RSR results have been removed during the quality control step (Section 3.2) 

and these missing data have been neglected in the calculation of the 2013-2018 mean. Note that the south-eastern portion of 

the GrIS, where the RSR method seems to struggle and yields results that do not meet the quality control requirements (Figure 400 

9) can also be observed along the east-west transect as a horizontal line of missing RSR results at roughly 38º west longitude.  

 
Figure 10: 2013-2018 SARAL surface roughness mean [a)] and timeseries [b) and c)] along east-west and north-south 

transects cross-cutting the GrIS. While there is strong spatial variability in RSR-derived surface roughness across the six-year 

period (i.e., margins are rougher than the interior), the temporal variability in surface roughness is minor. The basemap in a) 405 

is the ArcticDEM mosaic (Porter et al., 2018). 

 

The spatial patterns in surface roughness are similar to those presented in Scanlan et al. (2023) and highlight the expected 

pattern of a smooth ice sheet interior that becomes progressively rougher towards the margin and in the South. The region of 

elevated surface roughness further inland from the margin at latitudes slightly less than 70º overlaps with the catchment of 410 

Sermeq Kujalleq (Jakobshavn Isbræ). What has changed in these new surface roughness results from those previously 

published is the more reliable recovery of smaller roughness values that were previously not being captured (Figure 8). 

Temporally, surface roughness along these transects exhibits no strong seasonal signal. There are some isolated, small 

variations in surface roughness (e.g., a minor increase in roughness near 69º north in mid-2015), but overall, surface roughness 

is strongly consistent through time. This is not surprising when considering the context for interpreting the RSR-derived surface 415 

roughness results that was established based on the CryoVEx analysis in Section 4.1. It is difficult to envision inducing rapidly 

repeating (e.g., annual) changes in the roughness of the GrIS surface over horizontal baselines that are hundreds of meters long 
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(i.e., those the RSR results seem to be projections of). Changes in roughness over these horizontal scales likely take place over 

longer timescales.  

6. Relevance and Implications of RSR-Derived Surface Roughness 420 

6.1 Surface Roughness by Itself 

As introduced previously, surface roughness is considered an important component in SMB and heat flux modelling studies. 

It is typically used as an input in the calculation of either the aerodynamic roughness length or the similar drag coefficient 

metric. Even though it is termed a “roughness”, the aerodynamic roughness length is conceptually different from how 

roughness is considered in the context of this study (i.e., a statistical description of the undulations in surface heights) as it 425 

quantifies the height above the ground surface at which the horizontal wind-speed profile is zero. The use of the aerodynamic 

roughness length and drag coefficient metric varies in practice: Jakobs et al. (2019) employs the aerodynamic roughness length 

as a free model tuning parameter. Amory et al. (2016) provide no direct quantifiable link between the drag coefficient and a 

description of surface roughness, only implying that the drag coefficient is impacted by the small-scale distribution of sastrugi. 

In contrast, Smeets and Van Den Broeke (2008) and van Tiggelen et al. (2023) incorporate the assumed average hummock 430 

height in their derivation of the aerodynamic roughness length across the GrIS ablation zone. In a more quantitative study 

based on airborne photogrammetry and spaceborne ICESat-2 laser altimetry, van Tiggelen et al. (2021) uses the standard 

deviation of a low-pass (<35 m wavelength) filtered, high resolution (1 m horizontal sampling) elevation profile to derive the 

aerodynamic roughness lengths over the K-transect. The overarching implication from all these studies is that it is the highly 

localized, individual surface roughness features that exert the dominating influence on the energy flux at the ice sheet surface. 435 

It is therefore the statistical descriptions of the undulations of these individual features (i.e., average height, standard deviation 

of heights) that then feed into GrIS SMB models.  

Our validation of RSR-derived SARAL and CryoSat-2 surface roughness against CryoVEx and ICESat-2 laser altimetry shows 

that the assumption of scale invariant surface roughness from Scanlan et al. (2023) is ill-suited to broad regions of the GrIS. 

Furthermore, the RSR-derived surface roughness appears to lie below the continued projection of the RMS deviation profiles 440 

to the SARAL and CryoSat-2 radar wavelength scale (Figure 2). A fact that would not have been recognized had the CryoVEx 

ALS data not been used to recover RMS deviations at baselines shorter (e.g., <40 m) then are recoverable from ICESat-2 

ATL06 surface heights (Figure 4). Had this analysis relied solely on ICESat-2 heights, the RSR surface roughness results 

would have been mistakenly interpreted as the true wavelength-scale RMS deviations (Figure 8). Instead, for the Ku- and Ka-

band airborne and satellite radar altimetry data, RSR surface roughness is best interpreted as the wavelength-scale projection 445 

of the true RMS deviation profile behaviour observed between 200 and 700 m baselines. The implication is then that the 

SARAL and CryoSat-2 RSR surface roughness results only have physical meaning far beyond the individual roughness feature 

scales currently considered critical in heat flux and SMB modelling. As such, they have no direct role to play in the 

improvement of current GrIS SMB modelling. The relevance only at long baselines is likely also the reason why the surface 
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roughness timeseries presented in Figure 10 do not exhibit the strong seasonal variability that has been reported in derivations 450 

of aerodynamic roughness lengths (Smeets and Van Den Broeke, 2008; van Tiggelen et al., 2021; Van Tiggelen et al., 2023). 

If at some point, the scale-dependence of surface roughness that is demonstrated in this study does become more of a 

consideration in GrIS SMB and surface heat flux modelling, the RSR results will likely have more direct applicability. 

Even though the RSR surface roughness results do not appear to be relevant as direct inputs for SMB modelling, that does not 

mean they are without future intrinsic value by themselves. For example, there may be a role for directly using the radar-455 

derived surface roughness estimates to refine the retracking of the radar waveforms and improving surface height 

determinations. Furthermore, there are clear spatial heterogeneities in the RSR results (Figures 8 and 9) that warrant further 

investigation and may shed light on the nature of GrIS surface conditions. Lastly, the ever-increasing confidence in our ability 

to reliably observe GrIS surface properties from CryoSat-2 and SARAL surface echo powers provides a foundation to continue 

applying and adapting these techniques to earlier satellite remote sensing datasets (e.g., ERS-1, ERS-2 ENVISAT); thereby 460 

extending our observational timeseries. 

6.2 RSR-Derived Dielectric Permittivity 

Finally, and just as important as the surface roughness results themselves, revising the approach for calculating surface 

roughness from the coherent-incoherent power ratios will likely have on a knock-on effect on the dielectric permittivities (and 

surface densities) also derived from the RSR results. This is because the impact of surface roughness is included in an 465 

adjustment term [𝑒-E#FG'$H] applied to the specular scattering equation that relates coherent power to the Fresnel reflection 

coefficient of the surface (Grima et al., 2012, 2014a; Scanlan et al., 2023). To that end, Figure 11 presents two-dimensional 

histograms comparing November 2018 analytical and empirical relative dielectric permittivity estimates from across the GrIS 

for each radar altimetry dataset (i.e., CryoSat-2 LRM, CryoSat-2 SARIn and SARAL). As each analytical-empirical 

comparison result falls just below the dotted 1:1 line, Figure 11 highlights a slight decrease in dielectric permittivity due to the 470 

revised empirical derivation of surface roughness for each radar dataset. However, there is still a very consistent overall 

agreement between the two sets of permittivity estimates indicative more of a systematic adjustment in the results as opposed 

to a broader re-organization of spatial patterns. Individually, the variability in the analytical-empirical comparisons in Figure 

11 increases from CryoSat-2 LRM (Figure 11a) to SARAL (Figure 11c) to CryoSat-2 SARIn (Figure 11b); following to the 

degree to which the underlying datasets cover the rougher GrIS margin. 475 
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Figure 11: Two dimensional histograms demonstrating the impact of using the revised empirical model for calculating surface 

roughness from the RSR results on a) CryoSat-2 LRM, b) CryoSat-2 SARIn, and c) SARAL permittivities. Permittivities are 

slightly reduced in the empirical results due to the improved recovery of smaller surface roughness values.  

 480 

Based on Figures 7 and 8, that the analytical permittivities are larger the empirical results is not unsurprising. For the same 

coherent power (𝑃3) output from the RSR analysis, a stronger Fresnel reflection coefficient (i.e., greater permittivity contrast) 

is required to overcome the quantitatively larger reduction to coherent power associated with overestimated analytical 

roughness values (Figure 8). As the empirical mapping (Equation 4) more reliably recovers smaller roughness values, the 

roughness adjustment applied to the RSR 𝑃3 output is smaller, the corresponding permittivity contrast is reduced.  That the 485 

shift in permittivity between the analytical and empirical results is small, speaks directly to the dominantly specular nature of 

the GrIS in terms of backscattering normal incidence Ku- and Ka-band radar signals. Now that the surface roughness results 

are more reliably being derived, a deeper investigation into the revised dielectric permittivities and their relevance to improving 

our understanding of GrIS surface density evolution will be the central focus of a follow-on study. 

7. Conclusions 490 

Surface roughness is an important parameter to quantify when evaluating how the Greenland Ice Sheet responds to a changing 

climate as it affects the efficiency of heat transfer from the atmosphere, steers meltwater, and impacts conventional 

measurements of ice sheet volume change. In this study, we perform a detailed investigation into a new type of surface 

roughness estimate derived from the Radar Statistical Reconnaissance (RSR) analysis of Ku- and Ka-band airborne (2017 and 

2019 CryoVEx campaigns) and satellite (November 2018 CryoSat-2 and SARAL measurements) surface echo powers by 495 

comparing them to contemporaneous LiDAR (airborne) and ICESat-2 (spaceborne) laser surface elevations. Our results 

demonstrate that, outside of some specific local areas, Greenland Ice Sheet surface roughness is scale-dependent, with surface 

roughness increasing when quantified over larger baselines (i.e., horizontal distances) in a piece-wise pattern. It is therefore 
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important to consider surface roughness quantified over multiple scales. Against this backdrop, surface roughness derived 

from CryoVEx radar altimetry surface echo powers do not align with the extrapolation of the LiDAR RMS deviation profiles 500 

to the wavelength scale. In fact, they appear to align much better with the extrapolation of the piecewise linear portion of the 

RMS deviation profiles for baselines between 200 and 700 meters. Building on the CryoVEx results, the direct comparison 

between extrapolated ICESat-2 surface roughness RMS deviations (from the piece-wise linear portion between 200 and 700 

meters) and previously published CryoSat-2 and SARAL radar surface echo powers derived using an analytical backscattering 

model reveals that the radar-based results tend to overestimate surface roughness. In response, a new empirical approach is 505 

defined to map the RSR analysis outputs (the coherent-to-incoherent power ratio) to surface roughness. The result is both and 

marked improvement in the agreement between radar and laser roughness values as well as a greater dynamic range in surface 

roughness across the Greenland Ice Sheet; further emphasizing the transition from a smooth ice sheet interior to a rougher 

margin. 

The observed sensitivity of the spaceborne RSR results to surface roughness at hundreds of meters baselines suggests they are 510 

not well-suited to being incorporated in current surface mass balance (SMB) modelling as these models rely on the roughness 

of individual meter-scale features such as hummocks or sastrugi. However, the glaciological relevance of the RSR-derived 

surface roughness results is only just beginning to be understood. Future work will focus on investigating if these results can 

be integrated into waveform retracking and ice sheet height estimations, detecting and mapping regional changes in ice sheet 

surface behaviour, and applications to earlier remote sensing datasets to expand the current timeseries. Just as important, the 515 

revised empirical approach for estimating surface roughness from radar altimetry surface echo powers yields a decrease in the 

simultaneously derived surface permittivities; a critical piece of information for follow-on studies targeted at understanding 

the observational trends in Greenland Ice Sheet surface density. Altogether, this study provides key, fundamental insight into 

the derivation of Greenland Ice Sheet surface properties from radar altimetry surface echoes as well as the specific context for 

how the roughness values should be interpreted. 520 
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