
Review of “Insights into Greenland Ice Sheet Surface roughness from Ku-/Ka-band 

Radar Altimetry Surface Echo Strengths” submitted to The Cryosphere in 2024 by Kirk 

M. Scanlan et al. 

This study focuses on the quantification of surface topographic roughness of the Greenland ice 

sheet using CryoSat-2 and SARAL satellite radar measurements. The Radar Statistical 

Reconnaissance (RSR) method, developed in a recent publication by the same authors, is used 

for this purpose. The derived roughness properties are compared against airborne radar and 

laser scanner data from two campaigns, and with ICESat-2 ATL06 (20m intervals) data. The 

main question is whether the surface roughness can be accurately estimated using spaceborne 

radar, the main motivation being that the surface roughness is an important yet poorly 

constrained parameter for SMB models. This makes this study relevant for The Cryosphere. 

This study is also original, as novel insights are presented regarding the estimation of surface 

roughness using satellite radar datasets, such as the empirical correction for the RSR method 

(Eq. 4) that gives a better match with ICESat-2 data, and the unique spatio-temporal analysis 

of surface roughness (Fig. 10), which form a basis of future work using such data. The potential 

significance of this work is also high, since improved estimation of ice sheet roughness 

properties allow not only for potential improved SMB modelling but also improved radar 

postprocessing. The employed datasets and methods are sound, as far as I can assess as a non-

radar expert. 

Overall, the paper is well written. It makes use of adequate referencing from the remote sensing 

and SMB modelling perspectives, although it could benefit from more referencing in the field 

of the snow bedform quantification. Some examples are given below.  The introduction allows 

for the non-remote sensing expert to understand the overall topic. However, the methods and 

results sections are long and, in some places in the methods, technical terms are introduced 

which do not appear to be very relevant for the results. On the other hand, there is no mention 

on how the laser scanner and ICESat-2 data were processed and filtered, even though these 

data are used as reference. The results are very interesting, yet I have some concerns which are 

listed below. The discussion is a relevant and a welcome part as it presents the main limitation 

of the novel results for improved SMB modelling.  However, some more work is required to 

make this radar roughness estimation useful for SMB modeling, which I recommend should be 

done or at least discussed more quantitively before final publication. Is there absolutely no way 

to use spaceborne radar for improved roughness estimation relevant for SMB models ? At 

present a constant aerodynamic roughness value is still chosen over the entire ice sheet in 

climate models.  

To summarise, I would recommend publication after the main comments are clarified, and once 

the derived roughness can be (indirectly) used for SMB modelling. 

Author Response: We’d like to begin by sincerely thanking the anonymous reviewer for 

volunteering their time to review and comment on our manuscript. We are deeply grateful and 

appreciative of their efforts. In the following, we have gone through and responded to each of 

the comments raised and outlined how we have revised our manuscript in response. We believe 



that going through and addressing each of the reviewer’s comments has helped us immensely 

in improving the manuscript. 

Our sincerest thanks once again to the reviewer for taking the time to review our work and help 

us improve on it and its relevance to TC. 

Major comments 

This study uses an airborne laser scanner (ALS) and ICESat-2 ATL06 data at 20m resolution 

as independent reference data. First of all, it is not clear what the accuracy of the ALS data is, 

and how the 1m effective ALS resolution (L114) relates to the resolution required to detect the 

relevant surface features in the areas of interest (sastrugi, snow dunes, etc…). Even with ~1m 

resolution and ~10cm vertical accuracy, the ALS is limited in capturing all the scales relevant 

for SMB modelling, which is the main aim of this work (according to the introduction). 

Therefore, I would invite the authors to also critically assess the ALS data in relation to the 

physical processes of interest.  

Author Response: Thank you for the comment. The vertical accuracy of the ALS system was 

mistakenly omitted from the manuscript. As the reviewer rightly points out, this accuracy is on 

the order of 10 cm based on cross-over differences (Skourup et al., 2019, 2021). This will be 

included in the revised version along with a brief summary of some of the more salient points 

related to ALS processing as suggested by the reviewer in one of their minor comments below. 

We also realize that it is not clear in the manuscript if we performed the processing of the 

CryoVEx data or if it was done beforehand. The data we collected from ESA (cs2eo.org) are 

already processed, so none of what is described in Section 2.1 are things we have implemented 

for this study but are features of the available datasets. 

Regarding the latter comment, at it’s core, what we want to get out of this study is the correct 

way to interpret the roughness measurements derived from the RSR analysis of CryoSat-2 and 

SARAL surface echo powers. Why we believe this is valuable is because 1) we’ll then have a 

tractable long-term monthly record of surface roughness across the entire Greenland Ice Sheet 

and 2) based on that interpretation, our roughness results may be relevant for SMB modelling. 

Our approach is to rely on contemporaneous airborne and satellite laser altimetry datasets to 

establish the correct framing of the RSR results, not to assess the viability of every surface 

roughness dataset for SMB modelling. However, we agree that by the end of the manuscript, 

we will have analysed different datasets and are in a position to comment on their relevance to 

SMB modelling. We will revise Section 6.1 to also include a broader statement on the relevance 

of all the altimetry-based roughness results. 

Actions Taken:  

In reference to the reviewer comment on ALS accuracy and data processing, the following 

change has been made in Section 2.1. 

This study uses March/April 2017 (Skourup et al., 2019) and April 2019 (Skourup et al., 2021) 

CryoVEx data (ESA, 2022a, b) collected along the EGIG line in central Greenland. 

Specifically, it focuses on ASIRAS, KAREN, and ALS measurements surrounding positions of 



the in-situ measurements performed at the T5, T9, T12, T19, T30, and T41 locations in 2017 

as well as T9, T12, T21, and T35 locations in 2019. All CryoVEx datasets are available having 

already undergone thorough data processing (Skourup et al., 2019, 2021). Both the ASIRAS 

and KAREN data have been subject to post-acquisition SAR (synthetic aperture radar) 

processing to minimise the size of their respective footprints in the alongtrack (3 m and 5 m, 

respectively) and crosstrack (10 m and 12 m, respectively) directions. The ALS data have been 

calibrated, had outliers removed, and organized processed into 200-300 m wide swaths 

following the aircraft ground track. Individual ALS, with individual ground height 

measurements are spaced at one-meter by one-meter intervals and have a vertical accuracy of 

~10cm (Skourup et al., 2019, 2021). 

The following new paragraph has been added in Section 6.1 to comment more broadly on the 

relevance of the altimetry-based surface roughness results we are seeing through our analysis. 

If at some point, the scale-dependence of surface roughness that is demonstrated in this study 

does become more of a consideration in GrIS SMB and surface heat flux modelling, the RSR 

results will likely have more direct applicability. Taking a broader view of all the airborne and 

satellite altimetry (i.e., radar and laser) datasets analysed in this study, they all point to GrIS 

surface roughness being, at least for some baselines (e.g., 200 m to 3 km), scale dependent. 

While there are isolated local areas where roughness is not strongly dependent on the 

horizontal distance over which it is measured (e.g., immediately surrounding T30 and T41 

in Figures 2-4), when considering the broader regional conditions, scale dependent 

roughness appears commonplace (as implied by Figures 7 and 8). This challenges current 

SMB models that incorporate surface roughness via a single spatially homogeneous value 

(e.g., the aerodynamic roughness length). An avenue for future research is then to integrate 

the effects of scale-dependent roughness into numerical SMB and heat flux models and 

assess their predictions of ice sheet evolution against reality. At this point, the roughness 

results derived from the RSR analysis of CryoSat-2 and SARAL surface echo powers will 

likely have more direct applicability. It should be noted that quantifying surface roughness 

at the scale of individual features (e.g., sastrugi, hummocks) will be challenging for standard 

satellite measurements (e.g., ICESat-2 ATL06 land heights, Figure 4) and integration with 

more specialized analyses or alternative datasets (e.g., LiDAR, UAV photogrammetry, etc.) 

are likely to be required (van Tiggelen et al., 2021). 

Similarly, at 20m resolution and >10cm vertical accuracy, the ICESat-2 ATL06 will evidently 

be even more limited limited in quantifying roughness features such as sastrugi and all the way 

down to the radar wavelength scale. Hence, I am skeptical about the interpretation of the 

empirical correction to the RSR method in Eq. 4. I would argue that this is an empirical or 

“data-based” correction that generates a better match of CryoSat-2 and SARAL data with 

ICESat-2 data, but it is not formally proved in this study that this correction allows for a more 

accurate roughness quantification. For this, roughness data at all the relevant scales (1cm – 

100m) should be used, as obtained though terrestrial LiDAR, UAV photogrammetry , eddy 

covariance data or even manual probing. 



Author Response: Thank you for the comment. This is a subtle point of our results that we as 

authors have continually struggled with tyring to communicate clearly. We do not contend that 

our results nor ICESat-2 ATL06 products can recover feature-scale surface roughness. In fact, 

the smallest baseline in the RMS deviation that is recovered from along-track ICESat-2 ATL06 

data is on the order of tens of meters. We rely on ATL06 though because it is a 

contemporaneous, ice sheet-wide and standard data product that we can compare our results 

against. Future studies could go into the ATL03 (photo-cloud data) to get to higher resolutions, 

however this is outside the scope of the here presented study. 

What we observe is that our radar-based roughness results tend to align with a piecewise linear 

portion of the RMS deviation profiles derived from laser altimetry (e.g., Figure 2c and 2d). 

This linear portion lies within a range of baselines that should be reliably recoverable from 

both the ALS and ATL06 datatsets. The empirical correction of Equation 4 is meant to more 

reliably recover that agreement (e.g., Figures 7 and 8).  

What this means though is that the roughness results we derive through the RSR analysis are 

not the true roughness values at the radar wavelength baseline. They are the projection of the 

larger baseline scale dependent behaviour to the wavelength scale. Based on the ALS data 

(Figure 2), we know there is often an inflection point in the RMS deviation profiles near 100 

m baselines, which leads to our ‘projected’ wavelength scale RSR roughness likely 

underestimating the true value. But the RSR results remain representative of roughness at the 

larger baselines.  

We agree that this very subtle but important point doesn’t come across as clearly as we would 

have liked in the manuscript. We will modify Section 6.1 to try and make it clearer and a pointer 

that other datasets will be needed to fill these gaps is included in the revisions made to the 

reviewers previous comment. 

Actions Taken:  

The following changes have been made in Section 6.1. 

Instead, for the Ku- and Ka-band airborne and satellite radar altimetry data, RSR surface 

roughness is best interpreted not as the true wavelength-scale RMS deviation, but the 

projection of the scale-dependent behaviour observed at baselines between hundreds of 

metres and a few kilometres to the wavelength scale as the wavelength-scale projection of the 

true RMS deviation profile behaviour observed between 200 and 700 m baselines. The 

implication is then that the SARAL and CryoSat-2 RSR surface roughness results only have 

physical meaning far beyond the individual roughness feature scales currently considered 

critical in heat flux and SMB studiesmodelling. As such, they have no direct role to play in the 

improvement of current GrIS SMB modelling. The relevance only at long baselines is likely 

also the reason why the surface roughness timeseries presented in Figure 10 do not exhibit the 

strong seasonal variability that has been reported in derivations of aerodynamic roughness 

lengths (Smeets and van den Broeke, 2008; van Tiggelen et al., 2021, 2023). 

Furthermore, in Section 4 (L252-253), a main result of this work is given based on the match 

that is found between the RSR derived roughness from the airborne radars, and the RMS 



roughness from ALS “at larger baselines (e.g. between 200 and 700 m)” (L249). Perhaps this 

is a lack of understanding of the RSR algorithm on my part, but I do not understand how the 

radar RSR roughness and the laser RMS roughness are related to each other.  These two 

methods seem fundamentally very different and sensitive to different scales of surface 

roughness: ~radar wavelength scale (cm) for radar RSR, and >100 m for ALS and ICESat-2 

RMS, depending on the (arbitrary?) choice of the extrapolation interval. Hence the found match 

between RSR and RMS “between 200 and 700 m” in Fig 2 could as well be a coincidence, or 

the result of the postprocessing, such as how the data was detrended (L154). At least it does 

not seem to be physically based.  Perhaps the authors could explain this better and perform a 

sensitivity test by varying the extrapolation intervals (e.g. 50-500m, 200m-600m, 300-1000m, 

etc…) and detrending methods (linear, polynomial, high-pass filtering,...) 

Author Response: Thank you for the comment. We will start with the second half of the 

reviewers comment first.  

First, we want to centre our analysis with a common surface roughness metric. Detrending 

elevation measurements with a constant linear background slope is the standard first step when 

calculating the RMS deviation, such that the mean value is zero (Shepard et al., 2001). That is 

why we default to that option instead of other approaches (e.g., polynomial, high-pass filtering 

etc.). We will include a citation in Section 3.1 to support the use of a linear background removal.  

Second, the 200-700 m interval is not arbitrary but relates directly to the observed piecewise 

linear behaviour of the RMS deviation profiles derived from ALS and ICESat-2 ATL06 data 

(Figures 2 and 4). This range encompasses where the RMS deviation profiles exhibit a constant 

slope. Changing the extrapolation intervals outside of this range means moving away from that 

observed and repeated linear behaviour, the projection of which roughly aligned with the initial 

interpretation of the CryoVEx RSR results (i.e., scale-independent RMS heights). We will 

revise Section 4.1 to strengthen the reasoning behind our choice of interval. 

Turning to the first half of the reviewer’s comment, we consider roughness as a spectrum, 

sensitive to the distance over which it is measured (hence our use of the RMS deviation) as 

opposed to single constant number. In this way, the radars and lasers sample the same spectrum 

but in different ways. Roughness for radars is typically expressed relative to the short 

wavelengths but the illuminated portion of the surface can be substantial (meters to kilometres 

depending on application and processing) and for RSR analysis we are pulling together radar 

echo powers that can be 10’s of kilometres apart. The purpose of this study is to use the more 

generally accepted laser surface roughness to establish an objective version of that spectrum; 

thereby providing a framework for interpreting the radar results. 

Actions Taken:  

The following citation has been added in Section 3.1. 

Figure 1 presents a simplified overview of how to calculate the RMS deviation at various 

baselines from a set of measured surface elevations along a profile following Shepard et al. 

(2001). 



The following revisions have been made in Section 4.1 to strengthen the reasoning behind our 

choice of extrapolation interval. 

The continuation of the piecewise linear trends in RMS deviation from baselines less than 50 

m to the radar wavelengths would overestimate the RSR results by roughly two orders of 

magnitude. However, projecting the linearthat more scale-dependent behaviour at 

longerlarger baselines (e.g., between 200 and 700 m) yields the dashed lines in Figures 2cb 

and 2dc, which closely intersect with the initial valuesRMS heights derived from the ASIRAS 

and KAREN. This suggests that surface roughnessthe RMS heights derived through the RSR 

analysis of CryoVEx radar altimetry surface echo powers are not scale-independent RMS 

heights, butshould be interpreted as the wavelength-scale projection of surface roughness 

behaviour observed at long baselinesand not the RMS deviation at the wavelength scale. It 

should be noted, however, that this interpretation assumes that there are no further inflexion 

points at baselines smaller than those that can be accessed via the ALS data. 

Finally, as a non-radar expert yet interested in improved SMB modelling, I am hoping that the 

estimated RSR roughness (with values between 0.01 mm and 1 mm on the ice sheet) could be 

translated to a more useful metric (such as standard deviation of heights, average obstacle 

height, etc... ), which is then directly compared and shown as a map together with the same 

metric as estimated from ICESat-2 in Figure 10. It becomes clear at the end in section 6.1 that 

this new map can’t unfortunately be used directly for aerodynamic roughness calculations, and 

I agree, yet I would invite the authors to make this clearer from the start and in the 

abstract/conclusion, and propose possible alternatives to overcome this limitation. Could this 

not be expected before the analysis, given the large footprint of the satellite radars? 

Author Response: Thank you for the comment. The purpose of this study is to explore whether 

this expectation (i.e., RSR roughness being relevant to determining aerodynamic roughness) is 

valid or not. If the ‘objective’ surface roughness had proven scale-independent (e.g., a flat RMS 

deviation profile) and could be quantitatively linked to the radar results, then the RSR results 

could have had direct meaning for SMB calculations. Alas this turned out not to be the case; 

however, we do not think we could have made this assertion before performing the exercise. 

We agree though that the outcomes of the study will have to be more clearly stated in the 

Abstract and will adjust it as such. 

Actions Taken:  

The following changes have been made to the Abstract to more clearly communicate the results 

of the study. 

Surface roughness is an important factor to consider when modelling mass fluxes at the 

Greenland Ice Sheet (GrIS) surface (i.e., surface mass balance, SMB). This is because it can 

have important implications for both sensible and latent heat fluxes between the atmosphere 

and the ice sheet and near-surface ventilation. While surface roughness can be quantified from 

ground-based, airborne and spaceborne observations, satellite radar datasets provide the 

unique combination of long-term, repeat observations across the entire GrIS and insensitivity 

to illumination conditions and cloud cover. In this study, we investigate the reliability and 



interpretation of a new type of surface roughness estimate derived from the analysis of Ku- and 

Ka-band airborne and spaceborne radar altimetry surface echo powers by comparing them to 

contemporaneous laser altimetry measurements. Airborne data are those acquired during the 

2017 and 2019 CryoVEx campaigns while the satellite data (ESA CryoSat-2, CNES/ISRO 

SARAL, and NASA ICESat-2) are those acquired in November 2018. Our results show GrIS 

surface roughness is typically scale dependent. A that because surface roughness across the 

GrIS is primarily scale-dependent, a revised empirical mapping betweenof quantified radar 

backscattering andto surface roughness gives a better match to the coincident laser altimetry 

observations than an analytical model that assumes scale-independent roughness. Surface 

roughness derived from the radar surface echo powers are best interpreted not as the 

wavelength-scale RMS deviation representative of individual features, but the continued 

projection of scale-dependent roughness behaviour observed at hundreds of meter baselines 

down to the radar wavelength. This implies that the relevance of these roughness estimates 

to current SMB modelling efforts is limited, as surface roughness is treated as a homogenous 

and scale independent parameterWe also show that the radar altimetry-derived surface 

roughness is best interpreted as the wavelength-baseline linear projection of the scale-

dependent surface roughness observed at hundreds of meter scales and is therefore not 

representative of individual small-scale features. These results provide critical context for 

interpreting the datasets and evaluating their applicability in modelling GrIS SMB. 

Despite the limitations, perhaps an assumption could be made that the RMS between a certain 

scale range  (e.g. 1 cm – 100m) is relevant for surface drag calculations, which can be indirectly 

estimated from the RSR or RMS algorithms. A typical roughness height from CryoSat-2, 

SARAL and ICESat-2 for these scales could be plotted as the final result, thereby paving the 

way for improved SMB modelling. 

Author Response: Thank you for the comment. While we’d really like to provide a metric that 

is directly relevant to SMB modelling efforts (it would be a highlight of the study), at this time 

we just do not think the available data supports it. The ATL06 ICESat-2 data and our 

understanding of our RSR results really don’t really have much to say on surface roughness at 

scales less than 100 m, which is where a lot of models place their emphasis. A key takeaway 

from this work though is to highlight the scale-dependency in surface roughness that, to our 

knowledge, is currently not represented in SMB modelling at all. The preceding revisions in 

response to the reviewer comments have tried to accentuate this point. 

Actions Taken:  

Revisions made in response to previous reviewer comments have tried to highlight the scale 

dependency in surface roughness observed in the remote sensing datasets. 

Other comments 

Title: Consider removing “Insights into” . 

Actions Taken: We have revised the title following the reviewer’s suggestion.  



Insights into Greenland Ice Sheet Surface Roughness from Ku-/Ka-band Radar Altimetry 

Surface Echo Strengths 

L16: (mentioned in Major comments) As far as I understand, it is an assumption by the authors 

and not a proved result that the revised empirical correction gives a better match to ICESat-2 

because the “surface roughness across the GrIS is primarily scale-dependent”. The better match 

is obtained by construction. 

Author Response: Thank you for the comment. We believe we have responded to this specific 

comment while considering the major comment above. And note that scale dependent surface 

roughness is not implied by the RSR results but by the RMS deviation profiles derived from 

ICESat-2. The better match in this specific case is shown in Figure 7 where the SPM 

consistently overestimates roughness while the empirical fit does not. 

Actions Taken: Please see the revisions made in response to the previous major comment from 

the reviewer. 

L20: Please rephrase “wavelength-baseline linear projection of the scale-dependent surface 

roughness”. 

Author Response: Thank you for the comment. We agree that was a very confusing sentence. 

We have since revised it when updating the Abstract in response to one of the reviewer’s major 

comments. 

Actions Taken: Please see the revisions made in response to the previous major comment from 

the reviewer. 

L40: Rephrase into “Numerical estimates of GrIS SMB are based on coupled 

climate/subsurface models”. 

Actions Taken: The sentence has been revised as suggested by the reviewer. 

Numerical estimates of GrIS SMB are based on coupled climate/subsurface models (van den 

Broeke et al., 2023)Numerical estimates of GrIS SMB represent the intersection of climate and 

subsurface models; the climate model generates the forcing (e.g., temperature, precipitation, 

etc.) applied to the ice sheet’s surface (van den Broeke et al., 2023), while the subsurface model 

propagates it into the near-surface conditions. 

L85: What are conventional surface roughness metrics ? 

Author Response: Thank you for the comment and re-reading this sentence again, we find it 

misleading. We state metrics in plural but ultimately only one metric is investigated as part of 

the study. We will revise the sentence to be more direct. We hope this will also address the 

reviewers comment. 

Actions Taken: The sentence has been revised as follows. 

In this study, the reliability of the Ku- and Ka-band surface roughness estimates derived from 

the RSR analysis of radar altimetry surface echoes is assessed by comparing them to RMS 



deviations (Shepard et al., 2001)conventional surface roughness metrics derived from laser 

altimetry measurements.  

Section 2.1: please include some information about the ALS data processing and accuracy (also 

mentioned in major comments) 

Author Response: Thank you for the comment. We believe we have addressed the reviewer’s 

concerns as part of our revisions to one of the reviewer’s earlier major comments. 

Figure 1: Is this actual data from the ALS ? If so, please include the location and time of this 

measurements. If not, consider using real data with a quantitative x-axis which would help the 

reader to better understand the “raw” data. 

Author Response: Thank you for the comment and to be clear, these are not real data. We have 

not gone looking for any of the raw ALS data, only the final gridded data products. Figure 1 is 

purely for demonstrating how an RMS deviation profile is constructed in the abstract. But we 

agree that having a more realistic x axis could be beneficial and will adjust the figures as such. 

Actions Taken: A revised Figure 1 has been included in the manuscript.  

 

We have also revised the figure caption to make it explicit that these are fictional data and not 

representative of any of the laser altimetry data used in this study. 

Figure 1: Simplified diagram demonstrating how to derive an RMS deviation [v(∆x)] profile 

that quantifies surface roughness as a function of horizontal baseline (∆x) for an artificial 

roughness dataset. The profile comprises the RMS of height deviations [i.e., elevations minus 

a background plane; z(x_i )] considering all combinations of points with a similar horizontal 

baseline. The RMS deviation profile [b)] can be derived from profile data (i.e., as demonstrated 

here) as well as two-dimensional surface elevation datasets. 

L154: Wouldn’t it be more consistent to filter out the same larger wavelengths using the same 

high-pass filter for all ALS and ICESat-2 data ? The background plane depends on the length 

of the dataset, which makes it hard to compare short ALS data (1 km) with longer ICESat-2 

data (10km), as done later in Figure 4. 

Author Response: Thank you for the comment. During the analysis, there was a discussion on 

how to best define the background plane for the various surface elevation datasets that we 

ultimately want to derive RMS deviations from. In the end, the decision to use individual 

dataset-specific background planes as opposed to, as the reviewer suggests, a common one is 



because of how the RMS deviation is calculated. It expects the height deviations (i.e., surface 

elevations minus background plane) to be distributed around a mean of zero. As we can see in 

Figures 3c and 3d, if we had removed the ICESat-2 background plane from the ALS data, the 

ALS height deviations would not have met this criterion (the local areas stand consistently 

higher than the background plane). The end result would have been much larger ALS RMS 

deviations, and this would have obscured the fact that relative to the more regional context, the 

areas immediately surrounding T30 and T41 are actually quite smooth. Furthermore, the RSR 

roughness is sensitive to the local area only and artificially boosting ALS roughness by 

considering different regional background plane would complicate the comparison. Finally, we 

think that highlighting that surface roughness is not a static metric but that is has multiple scale-

dependencies is valuable. We agree that our rationale for using dataset-specific background 

planes needs to be more explicit in the manuscript. 

Actions Taken: The following revision has been made in Section 3.1. 

Figure 3 presents the local surface elevations (Figures 3a and 3b) along with the height 

deviations (elevations minus the constant location-specific background plane; Figures 3c and 

3d) surrounding the T30 and T41 ALS datasets. Elevations are taken from the 10 m ArcticDEM 

mosaic (Porter et al., 2018) and the background plane is defined using all 10 m ArcticDEM 

data within 20 km of the CryoVEx in-situ measurement location. Dataset-specific (i.e., ALS, 

ICESat-2, ArcticDEM) background planes are used to ensure all calculated height 

deviations have a mean of zero (Shepard et al., 2001) and accurately reflect the local 

conditions over which the data are acquired (needed when comparing to the RSR results). It 

is clear that the topographic variability is very small at T30 and essentially non-existent at 

T41.  

L182: How was this 1.5 degree threshold chosen? What are the potential effects of off-nadir 

instrument point on the results? 

Author Response: Thank you for the comment. The off-nadir pointing threshold was chosen 

empirically in order to identify and remove data when the aircraft is turning. 

Off-nadir pointing affects the radar echo power reflected from the ice sheet surface. The 

reflecting behaviour of the GrIS appears to be specular (i.e., mirror like), so most normally-

incident radar energy reflected from the surface comes back to the antenna. This contrasts with 

diffuse behaviour, where incident radar energy would be scattered in all directions. If the 

aircraft is turning and the antenna is pointed off-nadir, energy reflecting from a dominantly 

specular surface will not be backscattered towards the spacecraft but reflected away from it 

and the echo power will contain only the weaker, diffusely scattered component. So off-nadir 

pointing leads to reductions in surface echo powers that are not attributable to changes in GrIS 

surface conditions. That is why these measurements are identified and removed. 

That is not to say that these data are not valuable from the altimetry perspective, just that the 

power in the returned echo will be modified by a rolling aircraft. We will revise the manuscript 

to make this more explicit. 

Actions Taken: The following revisions have been made in Section 3.2. 



Once extracted, ASIRAS and KAREN surface power amplitudes are omitted from further 

analysis if the measured roll is greater than 1.5 degrees. This threshold is determined 

empirically and used to limit the potential effects of a rolling aircraft and off-nadir instrument 

pointing have on the strength of the surface echoes. 

L189: I would strongly recommend that the authors better explain how the coherent and 

incoherent powers are estimated, as these are the backbone of the methods. Perhaps some 

formulas or a schematic (possibly in the appendix) would be beneficial. 

Author Response: Thank you for the comment. The development of the RSR approach and 

all its nuances are captured in a line of papers stretching back to Grima et al. (2012). As our 

goals lie in the application of the method, we believe that getting too much into the fine details 

of how it works would clutter the study and serve as a distraction. That being said, we 

appreciate that more details would help elucidate the technique for those who have not come 

across it before. We will include revisions to this effect. 

Actions Taken: The following revisions have been made in Section 3.2. 

The set of radar surface echo amplitudes closest to some defined location is used to construct 

a histograma density function and the statistical descriptors of the homodyned K-distribution 

fit (i.e., metrics quantifying the mean and spread) define the coherent (Pc) and incoherent 

(Pn) powers (Grima et al., 2014a). 

L194-208. These sentences could be shortened while still conveying the same information and 

being clearer at the same time. 

Author Response: Thank you for the comment. We will endeavour to make this section clearer 

and more concise. 

Actions Taken: The following revisions have been made in Section 3.2. 

For both ASIRAS and KAREN, RSR histograms are constructed fromP_c and P_n are derived 

from the distribution of the 1000 closest surface echo powers to each in-situ position (measured 

in EPSG:3413). For the satellite datasets,  the CryoSat-2 LRM and SARAL results are taken 

directly from Scanlan et al. (2023) (i.e., five-by-five kilometre grid, 1000 surface echo powers 

closest to each grid node). radar altimetry datasets (CryoSat-2 LRM, CryoSat-2 SARIn, 

SARAL), this study makes partial use of the results from Scanlan et al. (2023), where RSR has 

been applied to the 1000 closest surface echo powers surrounding nodes of a five-by-five 

kilometre grid spanning the GrIS. For the CryoSat-2 SARIn data, the same five-by-five 

kilometre grid isset of grid nodes are used, but instead of 1000 surface echo powerssamples, 

RSR results are derived from the 12,000 closest samples are used to overcome the apparent 

statistical dependence of adjacent CryoSat-2 SARIn surface echo powers noted in Scanlan et 

al. (2023). 

Two metrics are used to quality control ensure the quality of the RSR results: first, the distance 

to the furthest surface echo power measurement consideredmaximum distance one must 

search around the defined location to collect the required number of surface echo powers, and 

second, the correlation coefficient between the observed surface echo power histogram and the 



statisticalhomodyned K-distribution fit. The former is irrelevant for the CryoVEx data as we 

mandate using the closest 1000 data points surrounding the in-situ locations regardless of how 

far they may be. For the satellite results, search radii of 50 km, 25 km, and 40 km are used 

for the CryoSat-2 LRM, CryoSat-2 SARIn, and SARAL results respectively use the following 

maximum search radii: 50 km for CryoSat-2 LRM, 25 km from CryoSat-2 SARIn, and 40 km 

for SARAL (Table 1). The CryoSat-2 LRM and SARAL maximum search radii are the same as 

those used in Scanlan et al., (2023), while the CryoSat-2 SARIn radius is extended as more 

datapoints are beinghas been extended to account for the increased number of echo samples 

considered. A minimum correlation coefficient of 0.96 is required for all RSR resultsFor all 

radar altimetry datasets, the correlation coefficient must exceed 0.96 for the RSR measurement 

to be considered valid (Grima et al., 2012, 2014b, a; Scanlan et al., 2023). 

L200: what data selection / what metrics have been applied to ensure quality of the ICESat-2 

data ? 

Author Response: Thank you for the comment. We agree that some of the details regarding 

the handling of the ICESat-2 data were mistakenly omitted from the original manuscript. We 

will revise this in our updated version.  

Actions Taken: The following revisions have been made in Section 2.2. 

Leveraging the results of Scanlan et al. (2023), because CryoSat-2 operates in two different 

acquisition modes while over Greenland, this study makes use of both Low-Resolution Mode 

(LRM) Level 1B (L1B) and SAR Interferometric (SARIn) Full-Bit Rate (FBR) CryoSat-2 

Baseline-D data products. The LRM data products cover the GrIS interior, where CryoSat-2 

waveforms are stacked from an individual 1.97 kHz pulse repetition frequency (PRF) to a 

constant data rate of 20 Hz. Across the GrIS margins, the CryoSat-2 SARIn data products 

contain reflected waveforms from 18.181 kHz PRF, 64-pulse bursts (burst repetition frequency 

of 21 Hz) acquired by both CryoSat-2 receive antennas. The FBR data are preferred to higher 

level SARIn data products (e.g., Level 1) as they have not yet been subject to any SAR focusing. 

The SARAL Sensor Geophysical Data Record (SGDR) data products are similar to CryoSat-2 

LRM products in that initially 3.8 kHz PRF waveforms are averaged alongtrack in 25 ms (40 

Hz) intervals. Finally, this study makes use of release 005 ATL06 ICESat-2 data products 

providing geo-located surface heights across the GrIS in 20-meter increments. The quality 

summary variable included with each of the six beams in the ATL06 data products is used to 

reject lower certainty surface height measurements. 

L209-211: Is it possible that some words are missing from this sentence ? 

Author Response: Thank you for the comment. We don’t think there are words missing from 

this particular sentence, but we agree the thoughts behind it could be stated more clearly. 

Actions Taken: The following revisions have been made in Section 3.2 

Once coherent (Pc) and incoherent (Pn) powers are determinedFrom the quality controlled 

RSR results, deriving surface roughness requires is derived by adopting a representative 

backscattering model. The simplest implementation of the RSR technique (Grima et al., 2012, 



2014b, a; Scanlan et al., 2023) assumes incoherent backscattering from the surface follows the 

Small Perturbation Model (SPM) (Ulaby et al., 1982). In this case, where the surface RMS 

height can be derived from the ratio of the coherent and incoherent powers following   

L214: What is effectively the highest sigma_h that can be estimated using CryoSat-2 using this 

method ? How does this compare to the RMS of the actual expected topography on the 

Greenland ice sheet ? If this method only works for sigma_h < ~6 mm (for CryoSat-2), that 

leaves out most of the ice sheet surface with ice hummocks, sastrugi, dunes, etc… 

Author Response: Thank you for the comment. The 6 mm number comes from the 

demonstrated validity of the Small Perturbation Model (SPM) describing radar backscattering 

from a slightly rough surface, not the maximum detectable roughness from RSR. RSR outputs 

coherent and incoherent powers only and it is through the backscattering model that these are 

inverted to roughness. A different backscattering model (e.g., Kirchoff, Integral Equation 

Method) would have a different range of validity and many extend to larger RMS height values. 

The drawback though of many of these other models through is that they have many more 

degrees of freedom, which complicates unique interpretations of the RSR results. The purpose 

of this study is to put the assumption of the SPM to the test against surface roughness derived 

from laser altimetry. And from Figure 7, we can see the SPM is clearly lacking and tends to 

actually overestimate roughness. We also find that the RSR-derived roughness is not directly 

relevant at the scales of hummocks and sastrugi. 

Actions Taken: We have chosen not to make any revisions in the manuscript in response to 

this specific point as we feel we have made progress clarifying how to interpret the RSR 

roughness results in the context of other revisions and, specifically, in a revised Section 6.1. 

L215: please define the “surface correlation length”. 

Author Response: Thank you for the comment. The correlation length is a roughness-related 

parameter in the SPM that describes a typical length-scale over which the roughness occurs. In 

an analysis of the RSR results using the SPM, it is often assumed that this length-scale is greater 

than the radar footprint, which simplifies the underlying equations (see Grima et al., 2014a 

https://doi.org/10.1016/j.pss.2014.07.018). We agree that this should be mentioned more 

clearly in the manuscript and will make a corresponding revision 

Actions Taken: The following revision has been made in Section 3.2. 

The analytical relationship for deriving RMS height from the RSR results in Equation 3 is based 

on the assumption that the surface roughness correlation length (i.e., the length scale over 

which the roughness occurs) is large relative to the radar footprint and canlarge enough for 

its influence to be neglected (Grima et al., 2012, 2014a). 

L230: How are the densities recovered using RSR ? Consider adding a bit more background 

information in Section 3.2. 

Author Response: Thank you for the comment. We really want to keep the focus of the 

manuscript on the roughness results. That is why we do not spend much time discussing the 

derivation of density and only present it as a method applicability check in Figure 2. However, 

https://doi.org/10.1016/j.pss.2014.07.018


the reviewer’s point is well-taken and we can see the value of including a bit more background 

in Section 3.2. We will include the equation that relates Pc to the Fresnel reflection coefficient 

and close the circle for deriving surface properties from RSR results. 

Actions Taken: The following has been added at the end of Section 3.2. 

Once calibrated, the coherent powers returned from the RSR analysis are related to the 

Fresnel reflection coefficient for an air-snow/firn interface (𝒓 =

(𝟏 − √𝜺𝒓) (𝟏 + √𝜺𝒓)⁄  where 𝜺𝒓 is the relative dielectric permittivity of the snow/firn) 

following 

𝑷𝒄,𝒄𝒂𝒍 = 𝒓𝟐𝒆−(𝟐𝒌𝝈𝒉)𝟐
 .          (4) 

Multiple empirical functions exist for then converting relative dielectric permittivity to snow 

density (Ambach and Denoth, 1980; Kovacs et al., 1995; Pomerleau et al., 2020; Tiuri et al., 

1984). 

Figure 2: In panels c and d, the triangles can’t be discerned. In panel d, the resolution of the 

T21 ALS seems much higher than for the other locations. 

Author Response: Thank you for the comment. Regarding the individual data points, we’ve 

revised Figure 2 with a zoomed in window to try and show them better.  

As for the T21 resolution, it is higher than the other two locations. This is why there is one 

point at a baseline less than 1 m. The CryoVEx aircraft flew over T9 and T12 only once during 

data collection, so the ALS data exist only in the processed 1-by-1 m grid. In contrast, the 

aircraft overflew T21 multiple times in different azimuthal directions. The effect is then that 

when data from the multiple groundtrack segments are analysed together, where the 

groundtracks overlap, the spacing of the combined surface elevation dataset can be finer than 

the one metre spacing. This is why it is possible to look at smaller baselines at T21 compared 

to T9 and T12. To emphasize this point the following figures present the processed 2019 ALS 

data within 1 km of T9, T12, and T21. 

 

Actions Taken: The revised Figure 2 has been included in the manuscript 



 

The following revisions have been made to the Figure 2 caption. 

Figure 2: Results from the analysis of 2017 and 2019 airborne CryoVEx data. The locations of 

the in-situ measurements along the EGIG line are presented in Panel a). Panel b) presents the 

agreement (R of 0.45) between the RSR-derived densities from ASIRAS (triangles) and KAREN 

(square) surface echoes powers with those measured in-situ. The comparison of RMS heights 

from the radar altimetry (assumed to be equivalent to the RMS deviation at the radar 

wavelength baseline) and the ALS data (circles) RMS deviations as a function of baseline are 

presented in Panels c) (CryoVEx 2017) and d) (CryoVEx 2019). Inserts in panels c) and d) 

presented zoomed in views of the RSR results. The RSR-based roughness estimates align well 

with the projection of the piecewise linear portion of the ALS RMS deviations profiles between 

200-700 m (i.e., the grey region) to the radar wavelength baseline. 

L239 On what is the assumption based that the RSR radar roughness corresponds to the RMS 

at the wavelength scale? please also specify “radar wavelength” to avoid confusion about which 

wavelength was used.  How were the shaded areas 200-700 m chosen if not arbitrarily? 

Author Response: Thank you for the comment. Regarding the latter portion of the reviewer’s 

comment, please see our response to the reviewer’s major comment above. Essentially, the 

200-700 m interval is not arbitrary but aligns with a consistent piecewise linear portion of the 

RMS deviation profile detectable in both ICESat-2 and ALS data. Using other intervals would 

mean combining seemingly different roughness regimes (i.e., piecewise linear portions). In 

terms of the former, the relation between backscattered radar powers and roughness at the 



wavelength scale is a commonly invoked relationship. We agree that specificity was missing 

when discussing the wavelength, and we will make revisions to make this point clearer. 

Actions Taken: The following revision has been made to the Figure 2 caption. 

Figure 2: Results from the analysis of 2017 and 2019 airborne CryoVEx data. The locations of 

the in-situ measurements along the EGIG line are presented in Panel a). Panel b) presents the 

agreement (R of 0.45) between the RSR-derived densities from ASIRAS (triangles) and KAREN 

(square) surface echoes powers with those measured in-situ. The comparison of RMS heights 

from the radar altimetry (assumed to be equivalent to the RMS deviation at the radar 

wavelength baseline) and the ALS data (circles) RMS deviations as a function of baseline are 

presented in Panels c) (CryoVEx 2017) and d) (CryoVEx 2019). Inserts in panels c) and d) 

presented zoomed in views of the RSR results. The RSR-based roughness estimates align well 

with the projection of the piecewise linear portion of the ALS RMS deviations profiles between 

200-700 m (i.e., the grey region) to the radar wavelength baseline. 

L244: It took me quite some time to understand Figure 2c/d, so perhaps “immediately clear” is 

not the most accurate phrasing 

Author Response: Thank you for the comment. The reviewer’s point is well-taken we will 

adjust the manuscript to make it clearer what is being referred to. 

Actions Taken: The following revisions have been made in Section 4.1 

The ALS-derived RMS deviation profiles presented in Figures 2c and 2d exhibit surface 

roughness behaviour that does not immediately align with the RSR results. At short (<100 

m) baselines, the ALS RMS deviation profiles are relatively flat and therefore not strongly 

dependent on the horizontal scale over which roughness is measured. The situation changes 

though at long baselines (>100 m) where there is a stronger scale-dependency as 

progressively larger RMS deviations are measured for longer baselines. The fundamental 

pattern is then one of two piecewise linear components; a flatter, less scale-dependent 

behaviour at small baselines, and more scale-dependency at longer baselines.It is 

immediately clear from Figure 2 that the ASIRAS and KAREN surface roughness estimates do 

not agree with a direct continuation of the shortest baseline scale laser surface roughness 

behaviours down to the wavelength scale. While RMS deviation typically exhibits a strong scale 

dependency for baselines greater than 100 m (i.e., RMS deviation increases with baseline), for 

shorter baselines, the RMS deviation profiles level off, revealing more scale-independent 

behaviour.  It is then clear that theThe continuation of the piecewise linear trends in RMS 

deviation from baselines less than 50 m to the radar wavelengths would overestimate the RSR 

results by roughly two orders of magnitude. 

L252-253: mentioned in major comments 

Author Response: Thank you for the comment. Please see our response and actions above. 

Figure 3: Please adjust the color scale of Fig3d. 



Author Response: Thank you for the comment. The immediate area surrounding T41 stands 

roughly 5 m higher than the background plane and is very flat. The original colorbar limits 

were chosen to emphasize this point (all the same shade of red and no blue). But we agree small 

height deviations are difficult to see. We will remake Figure 3 but will use a different colorbar 

since the there are no negative height deviations to plot. We believe that using the same 

diverging colorbar as Figure 3c would be misleading. 

Actions Taken: The following updated version of Figure 3 has been included in the revised 

manuscript. 

 

We have also revised the Figure 3 caption to point out the difference between the Figure 3c and 

3d colorbars. 

Figure 3: Surface elevations [a) and b)] and height deviations [c) and d)] surrounding the T30 

[a) and c)] and T41 [b) and d)] CryoVEx locations. The ALS data considered in deriving the 

corresponding RMS deviation profiles in Figure 2c come from within the black polygons. It is 

clear that T30 and T41 are sited in locally smooth regions of the GrIS. Note the change in 

colorbar and associated limits between c) and d). 

Figure 4: The ALS and ICESat-2 ATL06 data are very different and show different behavior in 

the 100m-1km range, which is unexpected. Is this due to the different detrending of the data ? 



Author Response: Thank you for the comment. We don’t think this behaviour is too 

unexpected; or at least it is explainable. Both datasets centre on the in situ locations but the 

ALS data are drawn from only the local area within 1 km of the T30 and T41 sites, while the 

ICESat-2 data are more regional due to a poorer spatial coverage. From Figure 3, we can see 

that the areas covered by the ALS data (i.e., within the black outlines) are much smoother than 

the regional conditions. This is why there is such a marked difference between the ALS and 

ICESat-2 RMS deviation profiles in the overlapping baseline range. ALS samples a much 

smoother local area within the rougher regional background ICESat-2 sees. We will revise the 

manuscript to make this point clearer. 

Actions Taken: The following revisions have been made to the end of Section 4.1. 

To further emphasise the smoothness of the GrIS near T30 and T41, Figure 4 compares the 

ALS RMS deviation profiles with those derived from all ICESat-2 surface elevations within 25 

km and 35 km of T30 and T41, respectively. We must use ICESat-2 data that are further away 

from the T30 and T41 sites because these locations are between ICESat-2 orbital ground tracks. 

When considering the surface topography over a broader regional area (i.e., ICESat-2), the 

stronger scale dependency the increase in surface roughness at longer baselines is once again 

observed. Less scale dependency exists in the ALS RMS deviation profiles between 100 m 

and 1 km because T30 and T41 are situated in a locally very smooth portion of the GrIS 

(Figure 3).  

L380: This is very interesting, but perhaps adding the elevation lines in Figure 9 would help to 

better place this specific area with anomalous RSR retrievals in a broader context. What are 

the ICESat-2 RMS values in this region ? Can this also be related to noise in the ICESat-2 data 

? 

Author Response: Thank you for the comment. We also agree that this result is very interesting 

and surprising. We were not expecting to see such a strongly localized anomaly in the RSR 

results so high on the ice sheet. To avoid cluttering the figure, instead of adding contour lines, 

we suggest including a note as to the elevation of the anomalous region in the Figure 9 caption. 

The extrapolated RMS deviation values for the region are predominantly those in Figure 8a 

that lie outside the upper 2-sigma outlier cut-off (i.e., those in the top-left of the figure).  We 

do not initially believe this is an issue originating with the ICESat-2 measurements because it 

does not appear aligned with orbital groundtracks and we reject low quality ICESat-2 surface 

elevations during the data ingestion phase. 

Actions Taken: The following revision has been made to the Figure 9 caption. 

Figure 9: Locations of >2𝜎 outliers between the wavelength-scale RMS deviations projected 

from ICESat-2 and a) CryoSat-2 and b) SARAL surface roughness estimates. The locations are 

plotted on top of maps showing the number of months with valid (i.e., quality-controlled) RSR 

observations for the period 2013-2018 (72 months). While some outlying roughness 

mismatches occur closer to the boundaries of the various datasets, there is a cluster in SE 

Greenland at ~3000 m elevation in the vicinity of the ice divide that corresponds with a zone 

of RSR results that do not meet the quality control criteria. The impact of CryoSat-2 and SARAL 



orbital designs can be seen in the spatial patterns (CryoSat-2 SARIn latitudinal stripping and 

SARAL hatching) in the southern portions of the ice sheet. 

We have also expanded on how the quality of the input ICESat-2 data is controlled in response 

to one of the reviewer’s earlier comments. 

Figure 10: why is the average roughness only shown for 2 transects ? If the data is available, 

consider plotting the data for the entire ice sheet. Also, why is only SARAL roughness shown 

and not also CryoSat-2 and ICESat-2 ? 

Author Response: Thank you for the comment. The reviewer makes a fair point. The 

ArcticDEM was originally chosen to accentuate major drainage basins for those who might be 

unfamiliar with the GrIS. We will follow their suggestion and revise the basemap to be the 

long-term (2013-2018) mean surface roughness from SARAL.  

As to why SARAL data are plotted and not CryoSat-2, it is because the two datasets are scaled 

versions of each other. When the RSR derived surface roughness is normalized by the radar 

wavelength (e.g., Figures 6, 7, and 8), the CryoSat-2 and SARAL data lie directly on top of 

another. The roughness maps and timeseries have different absolute values but similar overall 

distributions. So we believe it is redundant to present both of them. 

Actions Taken: The following revised version of Figure 10 has been included in the 

manuscript. 

 

The Figure 10 caption has been modified as follows. 

Figure 10: 2013-2018 SARAL surface roughness mean [a)] and timeseries [b) and c)] along 

east-west and north-south transects cross-cutting the GrIS. While there is strong spatial 

variability in RSR-derived surface roughness across the six-year period (i.e., margins are 

rougher than the interior), the temporal variability in surface roughness is minor. The basemap 

in a) is the ArcticDEM mosaic (Porter et al., 2018). 



The following has also been added in Section 5.2. 

The spatial patterns in surface roughness are similar to those presented in Scanlan et al. (2023) 

and highlight the expected pattern of a smooth ice sheet interior that becomes progressively 

rougher towards the margin and in the South. Elevated surface roughness in the vicinity of 

the fast-flowing Northeast Greenland Ice Stream (NEGIS) is also clearly discernible. The 

region of elevated surface roughness further inland from the margin at latitudes slightly less 

than 70º overlaps with the catchment of Sermeq Kujalleq (Jakobshavn Isbræ). 

L420: Consider renaming section 6.1 

Author Response: Thank you for the comment. We agree that this probably wasn’t the best 

choice of names for this section. We will revise the name to be more descriptive of the 

discussion that follows 

Actions Taken: Section 6.1 has been renamed as follows 

6.1 Implications for SMB and Heat Flux ModellingSurface Roughness by Itself 

L429: This seems to be the first moment where the actual topography of the ice sheet is 

discussed. Perhaps the typical surface features could be introduced in an earlier stage for better 

overall understanding of what the satellite radars are supposed to detect (e.g. Between sections 

2 and 3, or in the introduction). Some inspiration for this purpose :  

Filhol, S., & Sturm, M. (2015). Snow bedforms: A review, new data, and a formation 

mode. Journal of Geophysical Research: Earth Surface, 1645–1669. 

https://doi.org/10.1002/2015JF003529 

Picard, G., Arnaud, L., Caneill, R., Lefebvre, E., & Lamare, M. (2019). Observation of 

the process of snow accumulation on the Antarctic Plateau by time lapse laser 

scanning. Cryosphere, 13(7), 1983–1999. https://doi.org/10.5194/tc-13-1983-2019 

Zuhr, A. M., Münch, T., Steen-Larsen, H. C., Hörhold, M., & Laepple, T. (2021). Local-

scale deposition of surface snow on the Greenland ice sheet. The Cryosphere, 15(10), 

4873–4900. https://doi.org/10.5194/tc-15-4873-2021 

Author Response: Thank you for the comment. By no means were we intending to neglect or 

minimize previous studies of snow bedforms and their evolution. One of our aims in the 

Introduction is to establish the intersection between surface roughness and SMB/heat flux 

modelling regardless of the type of landform associated with that roughness and highlight the 

different ways roughness has been measured in practice. It is then in Section 6.1 where we take 

a closer look at the scales of roughness the modelling community considers the most important 

to SMB and heat flux studies and how that aligns with the more holistic treatment of roughness 

we’ve tried to maintain so far. These additional references are very useful though for further 

establishing the state-of-the-art in measuring ice sheet surface roughness and we will include 

them in the Introduction.   

Actions Taken: The following revisions have been made in the Introduction. 

https://doi.org/10.5194/tc-15-4873-2021


To extend the meter-scale local comb gauge/snow blade measurements, Herzfeld et al. (2000) 

developed a towed sensor capable of measuring surface elevations at fine spatial scales along 

profiles hundreds of meters in length. Fixed, ground-based laser scanning measurements 

have also been used to characterize the two-dimensional distribution and growth of meter-

scale snow bedforms (e.g., meter-scale dunes, sastrugi, etc.) (Filhol and Sturm, 2015; Picard 

et al., 2019; Zuhr et al., 2021). While ground-based surface roughness measurements yield the 

finest spatial sampling, their large-scale applicability is limited as they are very time-

consuming and subject to site accessibility (e.g., remoteness, weather, etc.) issues. 

L465: Please include in 3.2 how the density is computed, which helps the reader to understand 

this adjustment term. 

Author Response: Thank you for the comment. We agree that this point is worthy of further 

emphasis in Section 3.2. 

Actions Taken: We have included our suggested revision addressing this point in response to 

one of the reviewer’s earlier comments. 

 

 


