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Abstract: 14 

This study reconsiders the Sunspot Number (Sn) as a solar extreme ultraviolet (EUV) proxy for 15 

modeling the ionospheric F2 layer's critical frequency (foF2) over the period 1960-2023. We 16 

compare the performance of Sn with F10.7 and F30 solar radio fluxes, focusing on their ability to 17 

model the Global Ionospheric index (IG). Our results reveal that while F30 has shown a better 18 

correlation in recent solar cycles, the Sn is the most stable and reliable over the entire dataset, 19 

obtaining the highest correlation. In addition, if we remove the saturation effects from the 20 

considering a maximum value of Sn, the correlation increases, outperforming all other proxies, and 21 

predicting correctly the long-term trend estimated by general circulation models. 22 

Plain Language Summary 23 

The Earth's ionosphere, a critical layer for radio communication and GPS signals, is influenced by 24 

the Sun's radiation. To understand how the ionosphere changes over time, scientists use 25 

measurements of solar activity called proxies. In this study, different proxies are evaluated to find 26 

the best one for modeling ionospheric conditions over the last 60 years. Despite being an older 27 

measure, we found that the Sunspot Number is the most reliable for long-term studies, 28 

outperforming newer proxies in some cases. Our work suggests that relying on newer proxies 29 

might lead to inaccurate predictions, especially during periods of low solar activity. 30 

 31 

Key Points 32 

 The Sunspot Number (Sn) outperforms F30 and F10.7 solar proxies in long-term 33 

ionospheric datasets, especially before 1980 and during recent solar cycles. 34 

 Removing the saturation effect from the Sn dataset further enhances its correlation with 35 

the Global Ionospheric index (IG), improving long-term trend predictions. 36 
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 The study emphasizes the variable performance of solar proxies over time, with Sn 37 

showing the greatest stability for modeling ionospheric conditions across six decades. 38 

 39 

1. Introduction: 40 

The understanding of atmospheric trends became a critical area of study in the last century. 41 

Besides the troposphere, the upper atmosphere is also affected by human activities. Many 42 

modern technologies, such as long-distance telecommunications, global positioning systems (GPS), 43 

and satellite communications, rely on space and near-Earth physics (Zolesi and Cander, 2014). One 44 

important part of the upper atmosphere is the ionosphere, defined as the zone where the 45 

presence of free charges is high enough to affect the propagation of electromagnetic waves. Long-46 

term trends in this region arise primarily from the greenhouse effect but are also influenced by 47 

long-term solar periodicities and the secular variation of Earth's magnetic field (Lastovicka, 2023).  48 

This ionized area is mainly affected by solar extreme ultraviolet radiation (EUV), which is absorbed 49 
by the neutral components, heating and ionizing them. To model this atmospheric layer, direct 50 
measurements of EUV are needed. However, such data have only been available since the satellite 51 
era, therefore, several models were developed using EUV proxies, or, different measurements that 52 
are closely linked to the needed variable (Bilitza et al. 2022, Liu et al. 2010). More recent proxies 53 
measure solar irradiance at specific wavelengths in satellites, avoiding the interaction with the 54 
atmosphere. The most common are magnesium II wing-to-core ratio, helium II, and Lyman-alpha, 55 
among others. 56 

The ionospheric structure has been measured since the 1930s after the development of the 57 

ionosonde. This instrument operates by emitting a vertical electromagnetic wave from the ground 58 

and waiting for the reflection of the wave. The internal layers are reached using different 59 

frequencies. The ionosphere is mainly studied through ionosonde databases, mainly due to their 60 

long period and the reliability of the available data. The main data produced by ionosondes are the 61 

critical frequencies and the peak height of each layer. 62 

Over the past decades, various solar indices have been employed as proxies for estimating 63 

ionospheric parameters. Among these, the Sn has historically been one of the most reliable 64 

proxies due to its long record and strong correlation with solar EUV radiation, which directly 65 

affects the ionosphere. However, newer solar indices, such as the F10.7 cm solar radio flux 66 

(Lastovicka et al. 2006, Mielich and Bremer (2013), Jakowski et al. 2024), and the more recent F30 67 

(Lastovicka 2021, Dudok de Wit and Bruinsma 2017, Zossi et al. 2024), as well as MgII (de Haro 68 

Barbas et al. 2021), have been introduced as alternatives that may offer better correlations under 69 

specific conditions or periods. 70 

Recent studies have debated the effectiveness of these proxies, particularly in representing 71 

ionospheric trends during periods of low solar activity, such as the deep minima of solar cycles 24 72 

and 25. These discussions have highlighted the need for continuous evaluation of solar proxies to 73 

ensure accurate long-term trend predictions, which are crucial for both scientific understanding 74 

and practical applications in space weather forecasting. 75 

In recent years, some articles studied the changes in the relationship between the sunspot 76 

number and the solar radio fluxes, identifying a trend associated with the Sun that affects this 77 

relationship (Clette 2021, Mursula et al. 2022, 2024). The solar radio fluxes tend to increase 78 
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compared to the sunspot number, this trend may introduce an error in models, that rely on these 79 

indices. 80 

 81 

In this study, we assess the performance of the Sn, F10.7, and F30 as proxies for modeling 82 

ionospheric foF2 for the period 1960-2023, particularly focusing on their ability to model the 83 

ionospheric index IG, a key indicator of global ionospheric conditions. We examine the stability 84 

and correlation of these proxies over different solar cycles and discuss the implications of choosing 85 

one proxy over another for long-term ionospheric studies. This procedure results in a better 86 

performance of Sn over F10.7 and F30 to reproduce the complete IG dataset, mainly during the 87 

complicated solar cycles 20, 23, and 24. 88 

 89 

2. Data 90 

The foF2 monthly median time series used in this work are from the following 10 stations: Wak-91 
kanai (45.2°N, 141.4°E), Kokubunji (35.7°N, 139.5°E), Okinawa (26.3°N, 127.6°E), Hobart (42.5°S, 92 
147.2°E), Canberra (35.2°S, 149.1°E), Townsville (19.2°S, 146.5°E), Sodankyla (67.3°N, 26.3°E), 93 
Boulder (40.1°N, 105.2°W), Juliusruh (54.6°N, 13.4°E), and Rome (41.5°N, 12.3°E). The selected 94 
stations have long records, covering, in some cases, more than 60 years. Due to the uncertainties 95 
and bad reading, some data were discarded. The criteria used to calculate the monthly medians 96 
for each hour required at least 15 days available with measurements in every month, and checking 97 
outliers in every case. Most of the datasets were extracted from Damboldt and Suessmann data-98 

base (Damboldt and Suessman 2012). The data was updated until 2022 using records from Lowell 99 
GIRO Data Center (LGDC) (Reinisch and Galkin 2011). foF2 from the Digital Ionogram Data Base 100 
(DIDBase) at LGDC has a frequency of 5 to 15 minutes. To obtain the monthly medians, data with 101 
Autoscaling Confidence Score (CS) greater than 60% was first selected, and then the hourly median 102 
for each month was estimated. We checked that the last two years available from Damboldt and 103 
Suessman database had a reasonable coincidence (within 5%) with the data obtained from GIRO. 104 

In this work, the Global Ionospheric index (IG) is used to analyze the solar proxies. IG was originally 105 

computed using 13 globally distributed ionosonde stations. The distribution of these stations was 106 

a compromise between good global coverage and reliable long-operating-period ionosonde 107 

stations. However, due to station closures and data unavailability, the number of stations used in 108 

IG has decreased to four (Brown et al., 2018). Therefore, since IG is derived from ionospheric 109 

measurements, it captures foF2 variations not driven solely by solar activity, such as those caused 110 

by increased greenhouse gases. 111 

 112 

3. Methodology 113 

In this work, we use linear regressions between the annual averaged IG index, which represents 114 

ionospheric foF2, and solar proxies. The linear regression is a simple statistical method that 115 

models the relation between two variables using a linear equation, 116 

𝑦 = 𝛼0 + 𝛼1𝑥       (1) 117 

where 𝛼 parameters are the regression coefficients, usually estimated using least squares, and x 118 

and y are the independent and dependent variables, respectively. 119 
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This regression is widely used for systems highly sensitive to a given variable or parameter. For 120 

example, many upper atmosphere parameters, when dealing with annual means, respond to the 121 

solar flux almost linearly. We also extend to a second-order regression, which is the same 122 

procedure, but adding a squared term of variable x. 123 

To compare the performance of each proxy we use the squared correlation coefficient, R2, which 124 

provides a measure of the variance of y predicted by the model using the independent variables. 125 

 126 

4. Results and Discussion 127 

Using IG index as a global mean ionospheric condition. IG values are scaled to sunspot number, it 128 

represents foF2 from different stations around the world. Figure 1 shows the yearly averaged 129 

values of foF2 for the stations used in this work and the IG index, the correlation between both is 130 

also plotted. With an R2 of 99.6%, we can say that the IG index is a reliable representation of 131 

ionospheric conditions. Therefore, we will use it to compare with the solar EUV proxies. 132 

 133 

 134 

Figure 1. Yearly noon mean (12 LT) foF2 for the ten stations used in this work (blue), and IG index 135 

(orange). The right panel shows the linear correlation between IG and foF2, the explained variance 136 

R2 = 0.996. 137 

 138 

The variability of ionospheric foF2, at the interannual scale, is mainly driven by solar activity. For 139 

this reason, many (practically any) EUV proxies result in an excellent correlation with annual 140 

averaged foF2. 141 

As we mentioned, in the last years, many articles have been published trying to find the correct 142 

proxy for long-term trend estimation. Among them, the more reliable were always the oldest, the 143 

sunspot number, and the solar fluxes at radio wavelengths, having measured datasets of 70 years 144 

and more. However, such long datasets for ionospheric conditions are uncommon, just a bunch of 145 

measuring stations have reliable data in this period. 146 

Lastovicka (2021) criteria for selecting the best solar proxy include the high correlation, temporal 147 

stability, and, the trend estimation having a consistent sign throughout the entire period. Based on 148 

these factors, the study concluded that F30 is the most suitable EUV proxy for ionospheric long-149 
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term trend estimation. Nevertheless, the trend estimation is compared to general circulation 150 

models (Solomon et al. 2018), where the solar activity remains constant while greenhouse gases 151 

increase, resulting in a trend of ~-0.6 %/decade for foF2. 152 

As the main issue is to find long ionospheric datasets, in many articles, the trends are often 153 

assessed using data up to 2008, avoiding the deep solar minimum, or from 1985 to the present. 154 

The important historical issues were the correlation decreasing in some periods and the change in 155 

the estimated trend after filtering the solar activity. These problems turn into the necessity of 156 

looking for other solar EUV proxies, particularly given the unique characteristics of the last solar 157 

cycles 24 and 25, which featured two deep minima with prolonged periods of zero sunspot 158 

numbers. During these deep minima, the ionospheric foF2 drops below historical minimum values, 159 

this fact can be easily noted since the IG index takes the most quantity of negative values in the 160 

last two cycles. 161 

The stability of the correlation between proxies and data results in a slight average correlation of 162 

F30 over Sn and F10.7. This can be seen in Figure 2, where an 11-year centered moving correlation 163 

was calculated between IG and the three proxies. F10.7 shows two periods of lower correlation, 164 

this is a key reason for the need to use another proxy. On average, F30 has a higher correlation 165 

using this comparative analysis, especially in the last cycle, where correlations for the other 166 

proxies decrease. Sn has a step down in this last cycle but is the best from 1990 to 2008 167 

approximately, where solar fluxes have a noticeable correlation decrease. 168 

 169 

Figure 2. 11-year moving squared linear correlation between IG and solar EUV proxies: Sn (blue), 170 

F30 (orange), and F10.7 (green). 171 

 172 

The linear correlation analysis indicates that Sn and F30 are better reproducing the variability of 173 

foF2, through the IG index. Figure 3 shows the IG values modeled linearly using both proxies along 174 

with the original dataset. This figure helps to contextualize the moving correlation seen in Figure 2. 175 

In all maximums after 1980, F30 is closer to IG values, however, in the complete previous solar 176 

cycle; Sn models better the ionospheric index. On the other hand, during minimum solar periods, 177 

Sn outperforms F30, even during the last two deep minimum cycles. Taking into account that Sn 178 
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has a minimum possible value of zero, is expected to fail to reproduce these last two cycles, 179 

however, F30 does not reproduce the IG index decrease.  180 

 181 

 182 

Figure 3. Linear modeling of the ionospheric IG index using F30 (green) and Sn (blue), with the 183 

observed IG index (black dashed line). 184 

 185 

There is a clear trend between Sn and F30, note in Figure 3 how F30 (green line) is under the Sn 186 

(blue line) up to ~1990, where two lines cross, and after this time, F30 models higher values of IG 187 

at almost every point. This behavior is closely linked to the analysis made by Mursula et al. (2024); 188 

they compare the solar flux indices with the sunspot number, recognizing this increasing trend. 189 

At this point, an important problem arises, if solar fluxes increase compared to IG, which 190 

represents ionospheric foF2 level, we can anticipate a decreasing trend in the residuals if we 191 

subtract IG modeled with F30 from the original data. Perhaps, looking for a proxy with a 192 

decreasing trend led us to a mistake with F30, mainly, taking into account that F30 do not obtain 193 

the highest correlation before ~1980. 194 

This can be noted in Figure 4, where we perform an ending point moving correlation, fixing the 195 

first year in 1960, changing the last year, and calculating the linear correlation of IG and the three 196 

proxies. Additionally, the same analysis is performed in reverse, fixing the final year at 2023, 197 

changing the first year, and estimating the linear correlation. In Figure 4, the superior performance 198 

of Sn to predict IG is clear, the left panel shows that starting the analysis in 1960, Sn is the best in 199 

almost the complete period, except for F10.7 at the beginning. On the other hand, the right panel 200 

explains why F30 is sometimes considered the best, fixing the last year and adding years backward 201 

in time, can be noted that, if the correlation analysis begins in the period 1980-1990, F30 is is the 202 

best, but looking the complete panel, is clear that is just for that period. This is clearer comparing 203 

with Figure 3, where we noted that F30 fails to model the beginning and the end of the IG dataset. 204 

Moreover, Sn has a clear higher stability in this kind of analysis, therefore, the question is: why are 205 

we discarding Sn as a solar EUV proxy? 206 
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Note that the analysis of Figure 4 is completely different from the result of Figure 2, due to the 207 

variation in the initial and ending years, the result of the best correlation using F30 can be 208 

obtained reducing the period used in the correlation. This discrepancy is associated with the 209 

inclusion, or not, of solar cycle 20 (1964-1976), where F30 does not represent properly the IG 210 

index variability. 211 

 212 

Figure 4. Squared linear correlation between IG and Sn, F30 and F10.7 with moving end year (left), 213 

and inverse, moving start year (right). 214 

 215 

An important ionospheric feature is the saturation (Balan et al., 1994; Liu et al., 2003). During the 216 

daytime, there is a maximum possible value of foF2, even if solar flux continues increasing. This 217 

problem is more evident at shorter time scales. Many authors deal with this by performing a 218 

quadratic and even cubic regression between proxies and foF2 (Liu et al., 2006; Ma et al., 2009; 219 

Danilov and Berbeneva, 2023). However, this effect is not that clear when analyzing annual means. 220 

Figure 5 shows the linear and quadratic regression between proxies and IG separately for periods 221 

1960-1997, and 1985-2023, to have the same number of years in each regression. Again, we can 222 

mention the higher performance of Sn in the first cycles, and F10.7 is the second-best proxy. In 223 

contrast, F30 obtains a higher correlation in the second period. There is a weak improvement 224 

using quadratic regression at the annual scale, this can be noticed in each panel. The F10.7 exhibits 225 

a more significant increase in the correlation. 226 

 227 
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 228 

Figure 5. Linear and quadratic regression between proxies and IG separately for periods 1960-1997 229 

(top panels), and 1985-2023 (bottom panels). 230 

Is then the sunspot number the best EUV proxy to model foF2? The evidence up to this point 231 

suggests that is more stable considering longer datasets. The saturation effect could be affecting 232 

the correlation, therefore, subtracting from the daily dataset the Sn higher than 230 (~5% of data) 233 

and calculating the annual mean we obtain an excellent improvement in the linear correlation 234 

between Sn and IG. This method can be also used with F30 and F10.7, but the improvement is not 235 

as good as with the sunspot number (see Table 1). In addition, we model the annual IG using a 236 

quadratic regression; both results can be seen in Figure 6. Since Sn is the only proxy that shows 237 

the down step between cycle 23 and 24 minimums, like IG and most ionospheric stations, it 238 

obtains the highest correlation using the complete period. 239 

 240 

 241 

Figure 6. IG index (black dashed) and IG index modeled using quadratic regression (orange) and Sn 242 

de-saturated (<230, blue). The right panel shows IG vs IG modeled. 243 
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 244 

The correlation using a de-saturated Sn and quadratic regression shows a significant improvement 245 

over the original dataset, compared to Sn in Figure 3. The maximums of all cycles after 1970 are 246 

close to IG values. Moreover, the last two minimums are much better represented using the 247 

quadratic regression and de-saturating the Sn dataset. The squared correlations between indices 248 

and stations using quadratic regression can be seen in Table 1, compared to linear and de-249 

saturated Sn. The Table shows that quadratic regression using Sn is, on average, the most effective 250 

to predict the ionospheric foF2, followed by Sn de-saturated and quadratic F10.7. 251 

 252 

Table 1. Squared correlation (R2) between stations and indices using a quadratic regression over 253 

the complete period (1960-2023), compared with linear and de-saturated Sn. 254 

 
Sn linear F30 quad F10.7 quad Sn quad Sn (<230) 

Okinawa 0.917 0.859 0.940 0.944 0.939 

Wakkanai 0.967 0.968 0.966 0.970 0.968 

Kokubunji 0.981 0.979 0.984 0.989 0.988 

Townsville 0.947 0.921 0.968 0.972 0.967 

Canberra 0.980 0.972 0.983 0.988 0.989 

Hobart 0.974 0.975 0.976 0.980 0.980 

Juliusruh 0.983 0.981 0.978 0.984 0.981 

Rome 0.970 0.971 0.976 0.979 0.978 

Boulder 0.953 0.950 0.957 0.962 0.965 

Sodankyla 0.911 0.900 0.901 0.911 0.907 

Average 0.958 0.947 0.963 0.968 0.966 

 255 

The only remaining task is the estimation of the long-term trend using a highly reliable proxy. 256 

From Figure 6, we can expect a nearly zero trend for the complete period. This is confirmed by 257 

filtering the solar activity from the IG dataset using de-saturated Sn and calculating the residuals, 258 

which yield a trend of -0.008 %/decade. However, if we take a close look at the minimum’s solar 259 

times in Figure 6, a clear trend can be noted: IG is higher than Sn in 1965 but lower in 2020. 260 

Considering that the CO2 cooling effect over the thermosphere is more pronounced during 261 

minimum solar conditions (Emmert et al. 2008, Brown et al. 2024), we could assume a more 262 

noticeable effect over the ionospheric parameters as well during lower solar conditions. The 263 

theoretical trend estimated using a general circulation model (WACCM-X) is -0.6 %/decade for 264 

foF2 (Solomon et al. 2018). Therefore, by focusing on the minimum solar years (1963-1965, 1975-265 

1977, 1985-1987, 1995-1997, 2007-2009, 2018-2020), the trend results in -0.79 %/decade, really 266 

close to the theoretical value. The residuals from this procedure are shown in Figure 7, where a 267 

clear and constant trend is noticed. 268 
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 269 

Figure 7. Residuals for solar cycle minimums years using Sn de-saturated. 270 

 271 

5. Conclusions 272 

In this work, we found that the sunspot number is the most reliable solar EUV proxy for predicting 273 

ionospheric index IG over the period 1960-2023. This index is a good indicator of the global 274 

ionospheric foF2, as is shown in Figure 1, and supporting by the R2 value. 275 

While many recent articles claim F30 as the superior solar EUV proxy, it fails at representing the 276 

step down during the last two solar minimums—a decline that is evident in the Sn dataset. Some 277 

of these studies analyze shorter periods in order to use more stations. In Figure 2, we show that 278 

F30 is the proxy with better stability to represent each cycle separately. However, analyzing the 279 

period 1960-2023, Sn outperforms the F30 correlation, as shown in Figure 3. 280 

The main issue with F10.7 and F30 is the last two solar cycle minimums, where the ionospheric 281 

foF2 decreases more than expected, and a linear model cannot reproduce this decrease using the 282 

solar radio fluxes. The sunspot number, on the other hand, effectively handles this issue. When 283 

applying a quadratic regression, or neglecting saturation effects from the daily database, Sn 284 

obtains the highest correlation, reproducing reliably the last two cycles. 285 

The only problem with this methodology is that if we calculate the long-term trend filtering the 286 

solar activity, we do not obtain the trend predicted by the global circulation models. Nevertheless, 287 

as we point out in Figure 6, minimum solar activity periods have a noticeable trend that results to 288 

be in good agreement with the theoretical trend. 289 
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(https://wdc.nict.go.jp/IONO/HP2009/ISDJ/manual_txt-E.html). (2) The Australian Bureau of 300 

Meteorology (https://downloads.sws.bom.gov.au/wdc/iondata/au/). (3) The Lowell GIRO Data 301 

Center (https://giro.uml.edu/didbase/scaled.php). F10.7 at https://spaceweather.gc.ca/forecast-302 

prevision/solar-solaire/solarflux/sx-en.php. Sn from the revised Sn database obtained from SILSO 303 

(Sunspot Index and Long-term Solar Observations), Royal Observatory of Belgium, at 304 

https://www.sidc.be/SILSO/datafiles, F30 from the National Astronomical Observatory of Japan at 305 

http://solar.nro.nao.ac.jp/norp/html/daily_flux.html. 306 
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