- 1 Dynamics, predictability, impacts, and climate change considerations of the catastrophic 2 Mediterranean Storm Daniel (2023)
- 3 Emmanouil Flaounas^{1,2}, Stavros Dafis³, Silvio Davolio^{4,5}, Davide Faranda^{6, 7, 8}, Christian Ferrarin⁹,
- 4 Katharina Hartmuth¹, Assaf Hochman¹⁰, Aristeidis Koutroulis¹¹, Samira Khodayar¹², Mario Marcello 5 Miglietta¹³, Florian Pantillon¹⁴, Platon Patlakas^{2,15}, Michael Sprenger¹, Iris Thurnherr¹

- 8 1. Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
- 9 2. Institute of Oceanography, Hellenic Centre for Marine Research, Athens, Greece
- 10 3. National Observatory of Athens, Institute for Environmental Research and Sustainable
- 11 Development, I. Metaxa & Vas. Pavlou, P. Penteli (Lofos Koufou), 15236 Athens, Greece
- 12 4. Dipartimento di Scienze della Terra, Università di Milano, Milan, Italy
- 13 5. Institute of Atmospheric Sciences and Climate, National Research Council, Bologna, Italy
- 14 6. Laboratoire des Sciences du Climat et de l'Environnement, UMR 8212 CEA-CNRS-UVSQ,
- 15 Université Paris-Saclay & IPSL, CE Saclay l'Orme des Merisiers, 91191 Gif-sur-Yvette, France
- 16 7. London Mathematical Laboratory, 8 Margravine Gardens, London W6 8RH, UK
- 17 8. LMD/IPSL, ENS, Université PSL, École Polytechnique, Institut Polytechnique de Paris, Sorbonne
- 18 Université, CNRS, Paris France
- 19 9. CNR National Research Council of Italy, ISMAR Institute of Marine Sciences, Venice, Italy
- 20 10. Fredy and Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem,
- 21 Edmond Safra Campus, Jerusalem, Israel
- 22 11. School of Chemical and Environmental Engineering, Technical University of Crete, 73100
- 23 Chania, Greece
- 24 12. Mediterranean Centre for Environmental Studies (CEAM), Charles R. Darwin Street, 14 46980
- 25 Paterna, Valencia (Spain)
- 26 13. Institute of Atmospheric Sciences and Climate, National Research Council, Padua, Italy
- 27 14. Laboratoire d'Aérologie, Université de Toulouse, CNRS, UPS, IRD, Toulouse, France
- 28 15. Department of Physics, National and Kapodistrian University of Athens, Athens, Greece

31 Abstract

- 32 In September 2023, Storm Daniel formed in the central Mediterranean Sea, causing significant
- 33 socioeconomic impacts in Greece, including fatalities and severe damage to agricultural infrastructure.
- 34 Within a few days, it evolved into a tropical-like storm (medicane) that made landfall in Libya, likely
- 35 becoming, to our knowledge, the most catastrophic and lethal weather event ever documented in the 36 region.
- 37 This study places Storm Daniel as a centerpiece of the disasters in Greece and Libya. We conducted a
- 38 comprehensive analysis that links a cyclone system with hazardous weather conditions relevant to
- 39 extreme precipitation, floods, and significant sea wave activity. In addition, we examine Daniel's
- 40 predictability in different development stages and draw connections with previous case studies. Given
- 41 the climatologically extreme precipitation produced by Daniel, we examine the capacity of numerical
- 42 weather prediction models to capture such extremes and we finally investigate potential links to
- 43 climate change.
- 44 Daniel initially developed like any other intense Mediterranean cyclone, including medicanes, due to
- 45 upper tropospheric forcing followed by Rossby wave breaking. At this stage, it produced significant
- 46 socioeconomic impacts in Greece. As it intensified and attained tropical-like characteristics, it
- 47 developed markedly just prior to landfall, reaching peak intensity over land. Considering short lead
- 48 times (around four days), cyclone formation exhibited low predictability, whilst landfall in Libya was
- 49 more predictable.. Our analysis of impacts highlights that numerical weather prediction models can
- 50 capture the extreme character of precipitation and flooding in both Greece and Libya, providing
- 51 crucial information on the expected severity of imminent flood events.

52 We also examine moisture sources contributing to extreme precipitation. Our findings indicate that 53 large-scale atmospheric circulation was the primary driver, drawing substantial water vapor from the 54 eastern Mediterranean, Black Sea and continental Europe. The intensification of storm Daniel was 55 likely driven by anomalously warm SST in the Mediterranean and Black Sea, enhancing evaporation 56 and contributing to the extreme precipitation along the Lybian coast. Finally, our analysis supports 57 interpreting its impacts as characteristic of human-driven climate change but also highlights the 58 exceptionality of this cyclone, especially in its medicane phase, which complicates the comparison 59 with other cyclones.

60 1. Introduction

61 In early September 2023, a low-pressure system developed within the central Mediterranean Sea, 62 close to Greece. Due to the expected severity of the event, on 4 September 2023, the Hellenic 63 National Meteorological Service named the upcoming Storm 'Daniel'. Daniel evolved into a deep 64 cyclone within a few days and began moving erratically southward. On the 8th, it shifted eastward and 65 eventually made landfall along the coast of Libya as a powerful system (Fig. 1a). Daniel led to 66 substantial, unprecedented socio-economic impacts in the Central-Eastern Mediterranean from 4 to 11 67 September 2023.

68

69 In the cyclogenesis stage, on 5 September 2023, the weather station network of the National 70 Observatory of Athens in Greece (NOAAN; Lagouvardos et al., 2017) measured more than 750 mm 71 of accumulated daily rainfall in the eastern part of the Thessaly region (flooded areas are shown in 72 cyan colours in Fig. 1b) and up to 1235 mm within four days. Thessaly experienced flooding that led 73 to 17 fatalities, the loss of 25% of Greece's annual agricultural production, and the destruction of the 74 local road network. About five days later, on 10 September 2023, the cyclone made landfall near 75 Benghazi, Libya. As a result, northeastern Libya's population of 884,000 people has been affected 76 directly in five governorates by the collapse of two dams. About 30% of the city of Derna was flooded 77 (Fig. 1c), and almost 900 buildings, roads, and other infrastructures were destroyed in the area 78 (OCHA 2023, UNICEF 2023). According to the DTM update (IOM 2023), over 5,000 people were 79 presumed dead, 3,922 deaths were registered in hospitals, 10,000 people were declared missing by the 80 Libyan government and Red Crescent Society, while at least 30,000 people were recognized as 81 internally displaced (UNICEF 2023, IOM 2023) in the Derna area. Extensive damage affected critical 82 infrastructure such as hospitals and drinking water supply systems. Many roads were rendered 83 impassable, making humanitarian aid and supplies difficult. At least a \$10 million budget was 84 allocated from the UN Central Emergency Response Fund to scale up intervention in response to the 85 Libya disaster, and almost \$72 million were requested to cope with the most urgent needs of around 86 250,000 people (OCHA 2023) just for the first three months after the flooding.

87

88 Daniel was an intense cyclone, preceded by Rossby wave breaking over the Atlantic Ocean, which led 89 to the formation of an omega blocking pattern (Couto et al., 2024) and the subsequent intrusion of an 90 upper-level trough in the Mediterranean. This scenario is commonly observed before the formation of 91 intense Mediterranean cyclones, including medicanes (Raveh-Rubin and Flaounas, 2017). From the 92 perspective of atmospheric dynamics, upper tropospheric systems are often precursors of 93 Mediterranean cyclogenesis. Such systems force ascent by advancing upper level PV 94 structures.(Flaounas et al., 2022). While the formation of Mediterranean cyclones is almost entirely 95 dependent on baroclinic instability, the development and intensification of a cyclone into a deep 96 low-pressure system is also a function of diabatic processes. More precisely, latent heat release close 97 to the cyclone centre, mainly due to convection, is a source of positive PV anomalies at low levels, 98 eventually translating into enhanced cyclonic circulation. Therefore, baroclinic instability and latent 99 heat release are the main forcings. Both processes drive cyclones' intensification from the 100 cyclogenesis stage until maturity, i.e., when the cyclone reaches its minimum pressure at the centre. A 101 complete review of Mediterranean cyclone dynamics is available by Flaounas et al. (2022), while a 102 recent thorough analysis of the interplay and synergies between baroclinic and diabatic forcing of 103 another intense cyclone in the central-eastern Mediterranean (Ianos, 2020) is provided by Pantillon et 104 al. (2024).

106 As an environmental hazard, cyclones may produce heavy precipitation from the stage of genesis until 107 their lysis, close to their centres but also in remote areas due to localized convective cells 108 (Raveh-Rubin and Wernli, 2016), warm conveyor belts and frontal structures (Pfahl et al., 2012; 109 Flaounas et al., 2018). Regardless of whether precipitation is stratiform or convective, the large-scale 110 atmospheric circulation contributes by transporting water vapour toward the Mediterranean and thus 111 "feeding" the cyclone-induced precipitation (Flaounas et al., 2019; Hochman et al., 2024). Indeed, the 112 Mediterranean basin is composed of a relatively closed sea surrounded by continental areas. 113 Consequently, Mediterranean cyclones have fewer water sources than their counterparts over the open 114 oceans. In these regards, large-scale ventilation of water vapour from the Atlantic Ocean and other 115 remote regions towards the Mediterranean has been shown in numerous cases to enhance heavy 116 precipitation, together with local evaporation due to cyclone-induced high wind speeds (Duffourg and 117 Ducrocq, 2011; Flaounas et al., 2019; Khodayar et al., 2021; Sioni et al., 2023). Hence, identifying 118 and quantifying the contribution of water sources to heavy precipitation is a key step for improving 119 our ability to forecast socio-economic impacts in the Mediterranean (Hochman et al., 2022a; 120 Khodayar et al., 2025).

121

123 Expecially in the case of precipitation, recent results have shown that intense water vapour transport 129 and Rossby-wave breaking are the two main features that lead to extreme Mediterranean events (de 130 Vries, 2021; Hochman et al., 2023). Both of these large-scale atmospheric features favour the 131 latter through diabatic forcing by intensifying convection (e.g., Davolio et al., 2020). Thus, their 133 understanding is crucial for predicting socio-economic impacts on weather and climate scales.

134

135 Future trends in cyclone-induced hazards in the Mediterranean are mainly quantified through 136 downscaling experiments (e.g., Reale et al., 2022) or statistical-deterministic methods that generate 137 synthetic tracks (e.g., Romero and Emanuel, 2017; Sandler et al., 2024). Nevertheless, additional 138 investigation is needed to assess the role of climate change in the intensification of storms that occur 139 in the current climate. While attributing extreme events, such as medicanes and high-impact 140 extratropical storms, is a rather tricky task, recent studies based on analogues have suggested that 141 several recent storms are more intense than would have been expected in the absence of climate 142 change (Faranda et al., 2022, 2023). Further investigation of this critical topic requires a case-by-case 143 approach to take into account the particularities of each storm and to acquire a more holistic 144 understanding of the specific processes related to cyclone intensity that are also affected by climate 145 change.

146

147 When a high-impact weather event occurs, it encompasses multiple interconnected aspects often 148 studied separately. First, understanding the event's dynamics and physical processes is crucial for 149 assessing and interpreting weather forecasting performance and climate change attribution. Second, 150 the associated hazards—such as floods and windstorms—must be assessed according to the specific 151 weather conditions, as well as the vulnerability and exposure of the affected areas. Despite their 152 interdependence, all these aspects of a specific weather event are rarely examined through an 153 integrated approach. Our motivation is thus to apply a comprehensive framework to provide an 154 interdisciplinary assessment of the Storm Daniel event. In particular, we aim to address the following 155 four questions:

- 156 1. How did cyclone development stages relate to flooding in Greece and Libya?
- 157 2. How reliable and accurate were numerical models for predicting weather conditions and river 158 discharges at different lead times?
- 159 3. Can numerical weather prediction models adequately simulate climate extremes?
- 160 4. Can we link Storm Daniel's characteristics to climate change?

163 The following section describes the datasets and methods, while Section 3 briefly describes the storm 164 dynamics. Section 4 analyses Storm Daniel's predictability, and Section 5 discusses the potential 165 contribution of natural variability and human-induced climate change to the characteristics and 166 evolution of Storm Daniel.

167

168 2. Datasets and methods

169

170 2.1 Datasets

171 To analyze the evolution of the cyclone and assess its predictability, we use the operational analysis 172 and the ensemble prediction system (EPS) products of the European Centre for Medium-Range 173 Weather Forecasts (ECMWF). Since the last model upgrade at ECMWF (Cycle 48r1), operational 174 analysis and medium-range ensemble forecast data have been available at a grid spacing of about 9 175 km. The increase in horizontal resolution and improvements in the data-assimilation system led in 176 substantial improvements in forecast skill (ECMWF Newsletter, 176, 2023). The EPS comprises 50 177 members that are initialized with a perturbed analysis using slightly modified model physics, along 178 with a control forecast. This probabilistic forecasting system has been designed to provide a range of 179 possible weather conditions up to 15 days in advance, offering an estimation of predictability. Finally, 180 to assess Daniel's climatological aspects, we used ERA5 reanalysis (Hersbach et al., 2020) which 181 provides hourly atmospheric fields at a 0.25-degree grid spacing.

182

183 We used river discharge data from the Global Flood Awareness System (GloFAS; Grimaldi et al., 184 2022) to investigate the hydrological impacts of Daniel across Greece and Libya. GloFAS, an integral 185 component of the Copernicus Emergency Management Service (CEMS), provides global operational 186 flood forecasts. It integrates the open-source LISFLOOD hydrological model with ERA5 187 meteorological reanalysis data, interpolated to match the GloFAS resolution (0.05° for version 4.0), 188 and is produced at a daily frequency. This dataset includes historical discharge records essential for 189 establishing discharge climatology from 1993 to 2023. To assess flood forecast potential, we also 190 employed data from the European Flood Awareness System (EFAS). EFAS utilises the open-source 191 LISFLOOD hydrological model, calibrated at a higher spatial resolution of approximately 1.5 km 192 over European latitudes. Forecasts are issued twice daily, initialized at 00 and 12 UTC, and provide 193 lead times ranging from 5 to 15 days to capture a wide range of potential weather conditions affecting 194 river discharge. These forecasts incorporate data from the 51 members of the ECMWF EPS, the 195 Deutsches Wetter Dienst (DWD) high-resolution forecasts, and the 20-member COSMO Local 196 Ensemble Prediction System (COSMO-LEPS), ensuring a comprehensive analysis of forecast 197 capability. For this study, we usedEFASforecasts driven by the 51 ECMWF EPS ensemble members.

198

199 Finally, to evaluate Daniel's marine and coastal impacts, we analyzed wave data from the 200 Mediterranean Sea Waves Analysis and Forecast system (Korres et al., 2023), available through the 201 Copernicus Marine Service (CMEMS). Additionally, wave climatology was derived using the 202 Mediterranean Sea wave reanalysis dataset (1993-2021; Korres et al., 2021), also provided by 203 CMEMS.

204

205 2.2 Methods

006

207 2.2.1 Object diagnostics

208 We identify two-dimensional objects of extreme precipitation to assess the predictability of major 209 impacts in the EPS forecasts. These objects are defined separately for each member of the EPS as 210 neighbouring grid points where daily precipitation values exceed the 99th percentile in the ERAS 211 climatology (1990-2020). Using these objects, we define the probability of the EPS forecasts 212 predicting extreme weather associated with Daniel. Similarly, we define the likelihood of cyclone 213 occurrence in the EPS by identifying cyclone masks in each ensemble member, based on the 214 outermost mean sea level pressure (MSLP) contour enclosing an area smaller than that of a circular 215 disc with a 200 km radius.

217 2.2.2 Air parcel trajectories and moisture source diagnostic

218 Ten-day air parcel backward trajectories were calculated at 20 hPa intervals between 1000 and 300 219 hPa from starting locations on a regular latitude-longitude grid with a 30 km, within defined boxes 220 over Greece and Libya (as shown in Fig. 1a), using the LAGRANTO tool (Wernli and Davies, 1997; 221 Sprenger and Wernli, 2015). We computed two sets of backward trajectories: (i) the first concerns 222 Storm Daniel, with trajectories initialized every 6 hours on 5 September 2023 and 11 September 2023 from the Greece and Libya boxes, respectively, using six-hourly 3D wind fields from the ECMWF 224 operational analysis data; (ii) the second concerns air parcel trajectories based on ERA5 reanalysis 225 wind fields and corresponds to the 100 most extreme daily precipitation events in each region. These 226 trajectories were initialized from the same grid points in the Greece and Libya boxes as in the first set. 227 The 100 extreme events were identified as the days with the highest number of grid points within the 228 Libya or Greece regions recording daily surface precipitation exceeding the 90th percentile for 229 autumn (1990 - 2023). Storm Daniel is included among the 100 most extreme daily precipitation 230 events in both regions. Along all trajectories, we interpolated specific humidity, relative humidity, and 231 the boundary layer height pressure.

232

234 We identified moisture sources in Daniel and the 100 most extreme daily precipitation events using 234 the moisture source diagnostic developed by Sodemann et al. (2008). This method tracks changes in 235 specific humidity along all trajectories that precipitate upon arrival, which are defined as air parcels 236 showing a decrease in specific humidity during the last time step before arrival and a relative humidity 237 larger than 90% upon arrival (following Sodemann et al., 2008). Along each trajectory, an increase in 238 specific humidity is interpreted as a moisture uptake, while a decrease indicates moisture loss. Each 239 moisture loss reduces the contribution of preceding moisture uptakes, weighted by the magnitude of 240 each uptake.

241

242 For a detailed description of the moisture source diagnostic, see Sodemann et al. (2008). In our 243 analysis, moisture uptakes along each trajectory were weighted by the decrease in specific humidity 244 during the last step before arrival. Relative moisture uptakes were then computed across all 245 trajectories for each six-hourly time step, gridded onto a global 1° latitude-longitude grid, and 246 averaged daily. These values are expressed in 10^{-5} % km⁻², indicating each grid cell's relative 247 contribution per km² to precipitation in the target region. Finally, the daily relative moisture sources 248 averaged over the 100 most extreme events were used as a climatological reference for Daniel.

249

250 2.2.3 Disentangling the role of natural variability and human-driven climate change

251 We applied the methodology developed in the framework "ClimaMeter" (see Faranda et al. 2024, for 252 more details). ClimaMeter offers a dynamic approach to contextualizing and analyzing weather 253 extremes within a climate context. This framework provides both an accessible, immediate 254 contextualization of extreme weather events and a more in-depth technical analysis after their 255 occurrence.

256

257 In this study, we investigate how Mediterranean depressions affecting Greece and Libya have changed 258 in the present climate (2001–2022; factual period) compared to how they would have appeared in the 259 past climate (1979–2000; counterfactual period). To this end, we compute analogues of MSLP 260 anomalies associated with Storm Daniel using data from the MSWX database (Beck et al., 2022). We 261 then identify significant differences between the present and past analogues in terms of MSLP, 262 near-surface temperature, precipitation, and wind speed.

263

264 To account for the seasonal cycle in MSLP and temperature, we remove the average pressure and 265 temperature, we remove the climatological daily mean values for each calendar day at every grid 266 point. Total precipitation and wind-speed data are not preprocessed. If the duration of the event is 267 longer than one day, we apply a moving average across the duration of the event for all variables. We 268 examined all daily MSLP within each period and select the best 15 analogues, i.e., those that 269 minimize the Euclidean distance to the event, representing roughly the smallest 1% Euclidean 270 distances in each subset. We tested extracting between 10 to 20 analogues and found no qualitatively

271 significant variations in the results. As is standard in attribution studies, the event itself is excluded 272 from the present period analysis.

273

274 Following Faranda et al. (2022), we define several diagnostic quantities to support the interpretation 275 of analogue-based attributions. These quantities are then compared between the counterfactual and 276 factual periods. The quantities are:

277

278 - Analogue Quality (Q): Q is the average Euclidean distance of a given day from its 29 closest 279 analogues. If the value of Q for the extreme event belongs to the same distribution as its analogues, 280 then the event is not unprecedented, and attribution can be performed. If the Q value exceeds its 281 analogues, the event is unprecedented and not attributable.

282

283 - Predictability Index (D): Using dynamical systems theory, we can compute the local dimension D of 284 each SLP map (Faranda et al., 2017). The local dimension is a proxy for the number of active degrees 285 of freedom of the field, meaning that the higher the D, the less predictable the temporal evolution of 286 the MSLP maps will be (Faranda et al., 2017). If the dimension D of the event analyzed is higher or 287 lower than its analogues, then the extreme will be less or more predictable than the closest dynamical 288 situations identified in the data.

289

290 - Persistence Index (Θ) : Another quantity derived from dynamical systems theory is the persistence Θ 291 of a given configuration (Faranda et al., 2017). Persistence estimates the number of days we will 292 likely observe a situation analogous to the one under consideration.

293

294 Finally, to account for the possible influence of low-frequency modes of natural variability in 295 explaining the differences between the two periods, we also considered the potential roles of the El 296 Niño-Southern Oscillation (ENSO), the Atlantic Multidecadal Oscillation (AMO), and the Pacific 297 Decadal Oscillation (PDO). We performed this analysis using monthly indices produced by 298 NOAA/ERSSTv5. Data for ENSO and AMO were retrieved from the Royal Netherlands 299 Meteorological Institute (KNMI) Climate Explorer. At the same time, the PDO time series was 300 downloaded from the NOAA National Centers for Environmental Information (NCEI). The 301 significance of the changes between the distributions of variables during the past and present periods 302 was evaluated using a two-tailed Cramér-von Mises test at the 0.05 significance level. If the p-value is 303 smaller than 0.05, the null hypothesis that both samples are from the same distribution is rejected, 304 namely, we interpret the distributions as being significantly different. We use this test to determine the 305 role of natural variability.

306

307 3. Atmospheric processes leading to impacts

08

309 3.1 Cyclogenesis stage and impacts in Greece

311 occurred over Europe (Couto et al., 2024). Wave breaking resulted in the intrusion of an upper-level 312 PV streamer into the central Mediterranean basin, triggering cyclogenesis in the Ionian Sea on 4 313 September 2023, which eventually led to the formation of Daniel within 24 hours (marked by the 314 northernmost, first track point in Fig. 1a). Figure 2a shows that the cyclone on 6 September 2023 was 315 located between Italy and Greece, developing as a moderate low-pressure system with a minimum 316 MSLP value of about 1004 hPa. The PV streamer in the upper troposphere wrapped cyclonically 317 around the cyclone centre (green contour in Fig. 2a), indicating an ongoing baroclinicity which 318 contributed to the cyclone's development. Accordingly, a high wind speed pattern follows the PV 319 streamer's orientation with larger values over the Balkans and at the northwest side of the cyclone 320 (wind barbs in Fig. 2a). This configuration summarises a typical dynamical structure of Mediterranean 321 cyclones at a stage preceding maturity, i.e., the time of maximum intensity (Flaounas et al., 2015).

322

323 Accumulated precipitation also follows the typical structure of Mediterranean cyclones, with higher 324 amounts on the northeast side of the cyclone centre (Flaounas et al., 2018). Figure 2a shows that at the 325 cyclone's initial stages, the highest precipitation accumulation was observed in central Greece

326 (Dimitriou et al., 2024). NOAAN surface stations recorded more than 750 mm of daily rainfall and up 327 to 1,235 mm within four days in the eastern parts of the Thessaly region (flooded areas are shown in 328 cyan colours in Fig. 1b). Notably these peak values are underestimated by about 40% in the ECMWF 329 analysis (with a max IFS 24-h accumulated rainfall of 434 mm on 6 September 2023 00 UTC).

331 To quantify the contribution of local and remote areas to such an intense precipitation event in Greece, 332 Fig. 3a identifies the areas where moisture uptake has been significant for the air parcels that reached 333 the flooded region of Thessaly (blue square in Fig. 3a). Considering the largest moisture uptakes that 334 contribute at least 50% to the catastrophic precipitation in Greece (dashed black contour in Fig. 3a, 335 which primarily separates the green from the red colours), major sources were found in the Aegean 336 and the Black Seas. This tilted southwest-to-northeast orientation of essential water sources follows 337 the pathway of strong winds blowing over the Balkans and the eastern Mediterranean (wind barbs in 338 Fig. 2a), having a similar orientation as the upper-level PV streamer. The intense sea surface fluxes 339 induced by easterly winds are a precursor feature common to other cyclones developing in the same 340 area (e.g., Miglietta et al., 2021). Further moisture mainly originated from central to eastern Europe 341 and the North Atlantic Ocean. These source regions generally agree with a recent study (Argüeso et 342 al., 2024), which investigated moisture sources of rainfall over Greece from 3 to 9 September 2023 343 using a Eulerian moisture source diagnostic. Our moisture source analysis shows larger contributions 344 from land (54.7%) than in Argüeso et al. (2024) (27%). The Lagrangian method used in our study 345 indicates relatively large moisture contributions from the north of the Black Sea because most of the 346 air parcels arriving on 5 Sep 2023 descended and took up moisture in this region before moving 347 southwestward along the western flank of the PV streamer. The differences in the land fraction 348 between the two methods might originate from different periods used for the moisture source 349 calculations, different handling of moisture uptakes above the boundary layer, a lower explained 350 fraction of the total moisture sources (84%) with the Eulerian compared to the Lagrangian diagnostic 351 (explained fraction of 90%), and general differences in Eulerian versus Lagrangian approaches. An 352 ongoing comparison study of moisture source diagnostics investigates differences in these methods in 353 detail and will shed more light on disagreements between various moisture source diagnostics. 354 Overall, the moisture sources agree well with the climatology of moisture sources of the 355 Mediterranean cyclones that produce the heaviest precipitation events (Flaounas et al., 2019). The 356 moisture sources shown in Fig. 3a largely overlap with the climatological moisture sources of extreme 357 precipitation in the same area. However, for Daniel, they are mainly concentrated over the Aegean Sea 358 and regions to the northeast. In contrast, the typical moisture sources for extreme precipitation in 359 Thessaly extend further over the central Mediterranean (Fig. 3b).

361 The hydrological impacts of Storm Daniel were profound and unprecedented. Figure 4 compares the 362 peak mean daily river discharge during Daniel with historical records over three decades, integrating 363 the cumulative hydrological impacts over the entire event. Figure 4a shows the spatial distribution of 364 the maximum simulated peak discharge from January 1993 to August 2023 (i.e., before Daniel), 365 demonstrating typical peak discharge patterns in the Eastern Mediterranean. In contrast, Fig. 4b 366 compares the event-wide mean daily peak discharge during September 2023, when Daniel occurred, 367 against the historical peak river discharges of the last 30 years (Fig. 4a). Results reveal an 368 unprecedented magnitude of Daniel's impacts, with several areas experiencing river discharges that 369 exceeded the historical maximums by 300 to 500%. The darkest shades in Fig. 4b indicate the most 370 heavily affected regions, where the river discharge during Daniel exceeded previous records by at 371 least a factor of five, highlighting that Daniel was an unprecedented event of increased river discharge 372 levels (further discussed in section 5). At this cyclone stage, 17 human casualties were registered in 373 Thessaly, along with a profound hydrological aftermath. The extreme rainfall from 3 to 8 September 374 2023 led to widespread flooding across 1,150 km² in the Thessalian plain, 70% of which was 375 agricultural land. The inundation severely affected the cotton crops, with floodwaters covering more 376 than 282 km², roughly 30% of the region's total cotton fields. Over 35,000 farm animals were also **377** affected (He et al., 2023).

379 3.2 Mature stage and impacts in Libya

380 Severe weather gradually faded in Greece during the night of 6 September 2023 while the surface 381 cyclone moved southwards in phase with the upper-tropospheric low. In the following three days, 382 Daniel lingered over the central Mediterranean Sea (circular part of the track in Fig. 1a), with 383 minimum pressure remaining almost constant, close to 1004 hPa (Fig 1a). Figure 5a, b shows the sea 384 surface temperature (SST) anomaly in the area affected by Storm Daniel on 3 and 9 September, 385 respectively. Before the passage of Storm Daniel, positive SST anomalies dominated the study area, 386 with values exceeding 1°C between the Libyan coast and Greece, and lower anomalies (0 to 0.5°C) 387 observed east of Sicily. Following the storm's passage, a significant drop in SST resulted in an 388 extensive area of negative anomalies greater than 1°C between Libya and Greece. A colder SST core 389 with a decrease of less than 1.5°C was observed east of Sicily, while the northern Aegean Sea 390 experienced an even more pronounced decline. Such SST cooling after the passage of medicanes has 391 been previously diagnosed using explicitly resolved air-sea interactions in coupled atmosphere-ocean 392 models (Ricchi et al., 2017; Bouin and Lebeaupin Brossier, 2020; Varlas et al., 2020) and SST 393 observations (Avolio et al., 2024). Nevertheless, the feedback mechanism between cyclone intensity 394 and SST cooling is expected to be less important than the one typically observed in tropical cyclones.

396 The role of anomalously high SSTs in intensifying cyclones has been previously shown in several 397 studies based on numerical sensitivity experiments (Miglietta et al., 2011; Romaniello et al., 2015; 398 Messmer et al., 2017; Pytharoulis, 2018; Argüeso et al. 2024; Sanchez et al. 2024). In the case of 399 Daniel, deep moist convection was favoured, as suggested by the great extent of the areas covered by 400 cold cloud-tops and intense lightning activity close to the cyclone centre (not shown). Subsequently, 401 on 8 September, the cyclone started showing tropical-like features, like a deep warm core, spiral cloud 402 bands, and a maximum wind speed in the low levels a few tens of km from the centre. Thus, the 403 cyclone satisfies the phenomenological definition of a medicane recently proposed (Miglietta et al., 404 submitted). Deep convection contributed to the rapid deepening of the cyclone, which reached a 405 minimum MSLP of 997 hPa on 10 September 2023, 18 UTC, after making landfall at the northeastern 406 coasts of Libya around 10 September 2023, 06 UTC (Fig. 1).

408 A comparison of Figs. 2a and 2b shows that, at the time of maturity, the area covered by at least 2 409 PVUs at 300 hPa is significantly smaller than during cyclogenesis. Nevertheless, Fig. 2b shows that 410 the 2-PVU patch is collocated with the cyclone center, advected from the west. Hewson et al. (2024) 411 proposed that this collocation is responsible for the cyclone's intensification just before landfall. The 412 intensification of a Mediterranean cyclone due to the synergy of upper-level baroclinic forcing and 413 deep convection is a common characteristic of intense Mediterranean cyclones, including medicanes 414 (Flaounas et al., 2021). A previous case of a medicane intensifying due to the collocation of a PV 415 streamer with the cyclone center was documented by Chaboureau et al. (2012). This phenomenon 416 reflects, on the one hand, the anomalous nature of this medicane (since medicanes generally intensify 417 over the sea and weaken inland), on the other hand, the critical role of upper-level features in the 418 evolution of Mediterranean cyclones.

420 At the same time, Daniel developed a significantly stronger MSLP gradient, leading to wind speeds 421 reaching up to 40 knots (about 20 m s⁻¹). The intense winds associated with the storm generated a 422 severely disturbed sea in the Central Mediterranean basin, with south-westward propagating waves 423 extending from the Aegean Sea to Libya following the strong winds pathway (Fig. 2b). Indeed, the 424 analysis of the wave data from the Mediterranean Sea Waves Analysis and Forecast shows waves with 425 significant height of about 5 m in the Gulf of Sirte and the northern Aegean Sea (Fig. 6a). Such values 426 exceed the 99th percentile in the Mediterranean Sea wave reanalysis. A peculiar aspect of Daniel is 427 that strong winds blew in the Central Mediterranean Sea for many days. As a result, Daniel preserved 428 a severe sea state over northern Greece, in the Central Mediterranean basin, and along the Libyan 429 coast. To evaluate the cumulative impact of the event, we computed the total storm wave energy 430 (TSWE; Arena et al., 2015) by integrating the wave power contribution of each sea state over the 431 storm duration (Fig. 6b). TSWE reached peak values of about 3000 kWh m⁻¹ in the Gulf of Sirte, 432 which is above the 99th percentile of the total storm wave energy obtained from the Mediterranean 433 Sea wave reanalysis. Such an energetic sea condition and the storm surge affected much of Libya's

434 eastern coastal zones, causing coastal flooding, erosion, and infrastructure damage (World Bank, 435 2023).

436

437 In terms of precipitation, Storm Daniel also presented exceptional features. During the cyclone's 438 mature stage, Bayda experienced about 414.1 mm of rainfall within less than 24 hours, equaling 80% 439 of the city's mean annual accumulated precipitation and a new daily precipitation record (World 440 Meteorological Organisation, 2023a). It is worth mentioning that simulated 24-hr total accumulated 441 precipitation on 11 September 2023 in Libya, up to 382 mm, was not located within the Derna 442 catchment, as discussed in Hewson et al. (2024), the most impacted area. Significant moisture sources 443 (red colours in Fig. 3c) encompass the cyclone centre, with more than 50% of the moisture originating 444 from the Mediterranean Sea. This suggests that the cyclone-induced circulation played an essential 445 role in moistening the atmosphere within the proximity of the cyclone. Nevertheless, the largest 446 moisture sources that contribute collectively at least 50% of the total precipitation in Libva (black 447 dashed contour encompassing green to red colours in Fig. 3c) still retain a southwest-to-northeast 448 orientation as in Fig. 3a (i.e., during the precipitation event in Greece). Comparing the moisture 449 sources between the two precipitation events in Greece and Libya, the cyclone tends to attract more 450 moisture from its surrounding area in the latter case. In contrast, in both cases, northern moisture 451 sources tend to align with the large-scale circulation responsible for downstream cyclogenesis in the 452 Mediterranean. This southwest-northeast orientation of moisture sources contrasts with the 453 climatological sources in Figs. 3b and 3d which mainly highlight the importance of local sources, 454 especially from the Mediterranean Sea westwards of the two study regions.

455

456 Figure 4 highlights the region's exceptional river discharges, as in Greece's case. However, the 457 absence of similarly strong discharge signals in several severely impacted regions, such as the wider 458 Pelion area in Greece and Derna (Libya), is notable and can be attributed to several factors. First, the 459 GloFAS model has limitations in spatial resolution and calibration. The model operates at a resolution 460 of approximately 5 km (0.05°), which, while adequate for global-scale flood awareness, is insufficient 461 for resolving localized hydrological dynamics. For instance, the catchments east of Volos, including 462 the wider Pelion area, are approximately 30 km², while the Derna basin spans around 575 km². In both 463 cases, localized rainfall-runoff dynamics are critical in shaping discharge patterns, particularly during 464 extreme events. Due to insufficient in-situ discharge data, the absence of Greece and Libya in the 465 GloFAS calibration dataset further exacerbates these limitations since the model relies on generalized 466 parameter regionalization rather than site-specific calibration, introducing significant uncertainties 467 into discharge predictions. Furthermore, inaccuracies in the rainfall inputs depicted in Figure 2 468 propagate into the discharge simulations shown in Figure 4. For instance, within the Peneus 469 catchment, the maximum recorded 24-hour accumulated precipitation was 274 mm at Zappeio and 470 226 mm at Neraida stations, as Dimitriou et al. (2024) reported, while accumulations of up to 750 mm 471 were recorded outside the catchment, specifically over the Pelion area, east of Volos. In the Wadi 472 Derna catchment, extreme rainfall exceeded 400 mm day-1, with torrential rainfall ranging between 473 150 and 240 mm across several locations and Al-Bayda recording a maximum of 414.1 mm (World 474 Meteorological Organisation, 2023b). These rainfall extremes were underrepresented in the GloFAS 475 rainfall inputs, propagating into the discharge simulations and contributing to the muted signals 476 observed in Figure 4(b).

477

478 4. Weather forecasting of Daniel and implications for impacts

479 Daniel's impacts took place in two distinct periods: during cyclogenesis and at maturity. In the former 480 stage, most precipitation was produced in areas far from the cyclone centre, drawing moisture from 481 the surrounding areas. At the later stage, the cyclone impacts were relevant to landfall, and 482 precipitation and sea level rise were significant close to the cyclone centre. Therefore, the two distinct 483 stages of Daniel that provoked substantial impacts in Greece and Libya were linked to cyclone stages 484 of different dynamics, which also have further implications for Daniel's numerical prediction. In the 485 case of Greece, i.e., at the initial stage of Daniel, it is the timely prediction of cyclogenesis that would 486 have primarily provided useful information to civil protection, whereas, in the case of Libya, it would 487 have been the accurate prediction of the cyclone track, intensification, and its landfall location. This

488 section focuses on the predictability of the environmental hazards linked to Daniel's socio-economic 489 impacts, i.e., precipitation amounts, sea state, and cyclone track.

490

491 4.1 Forecasting the cyclogenesis stage

492 Concerning the cyclogenesis stage, a forecast model has to predict the formation of the cyclone to 493 provide valuable information regarding its impact. This suggests that numerical weather prediction 494 models should accurately reproduce the large-scale atmospheric circulation, the Rossby wave 495 breaking, and the consequent intrusion of the PV streamer within the Mediterranean, as shown in Fig. 496 2a by the green contour. Such a large-scale circulation pattern is absent from forecasts initialised one 497 week ahead (Fig. 7a). At a lead time of 120 hours, the PV streamer is present, though its location 498 shows high uncertainty among EPS members(Fig. 7c). Indeed, the PV distribution of all EPS 499 members at 300 hPa (outlined by coloured crosses in Fig. 7) depicts a much larger area of possible 500 high PV values than the one in Fig. 2a. This is due to the limited agreement on the occurrence -or 501 colocation- of the intrusion of the PV streamer among the EPS members, ranging between 25 to 50%, 502 as suggested by the blue crosses in Fig. 7c.

503

504 Following the uncertainty in the PV streamer occurrence, the cyclone is also absent from the MSLP 505 ensemble average one week ahead (black contour in Fig. 7a). The MSLP spread seems consistent 506 within the shown domain (about 1 to 3 hPa). At subsequent lead times, higher spread of MSLP tends 507 to concentrate close to the cyclone centre (Figs. 7c and 7e) until it becomes negligible 24 hours before 508 cyclogenesis (Fig. 7g). At such a short lead time, the cyclone formation was forecast with confidence 509 to occur in the Ionian Sea, to the southwest of Greece (black contours in Fig. 7g). Confident forecasts 510 of cyclogenesis should go hand in hand with higher agreement among the EPS members on the 511 location of the PV streamer. Indeed, 24 hours before cyclogenesis, more than 95% of EPS members 512 agreed on the area of PV streamer intrusion. Accordingly, average values (blue contour in Fig. 7g) 513 better match the ones in the ECMWF analysis (green contour in Fig. 2a).

514

516 the level of agreement on the cyclone objects (as presented in section 2.2.1). At a lead time of 168 517 hours, cyclogenesis forecast was relatively poor (Fig. 8a). Still, at a lead time of 120 hours (Fig. 8c), 518 cyclone centres are present (red dots in Fig. 8), scattered in the central Mediterranean but still close to 519 the actual location where the cyclone initially formed. Higher overlapping of cyclone objects among 520 the EPS members (green shading in Fig. 8) is indeed within the limits of the observed cyclone object, 521 as in the ECMWF analysis (black contour in Fig. 8c). In fact, about 30% of the different EPS 522 members produce overlapping cyclone objects. At a forecast lead time of three days, the overlapping 523 of cyclone objects increases clearly (comparing green shaded areas between Figs 8c and 8e), 524 suggesting higher agreement among the EPS members on the cyclone occurrence within the correct 525 location. The high agreement is retained even for shorter lead times (Fig. 8g).

526

527 The similar behaviour in the cyclone and PV streamer predictability relies on the direct relationship 528 between the Rossby wave breaking over the Atlantic Ocean and the accurate prediction of 529 Mediterranean cyclogenesis. This has been highlighted by Chaboureau et al. (2012) and Pantillon et 530 al. (2013) for the case of the extratropical transition of a hurricane upstream of a medicane, more 531 recently by Portmann et al. (2020) for another case, and has been demonstrated by Sherrmann et al. 532 (2023) in a semi-idealized framework. In the case of Daniel, Hewson et al. (2024) similarly suggested 533 the role of the extratropical transition of Hurricane Franklin as responsible for the high uncertainty 534 one week ahead. Only in forecasts initialized after the extratropical transition has occurred is the PV 535 streamer predicted to intrude on the Mediterranean, thus explaining the contrast between 5 and 7 days 536 lead times. A similar "jump" in the predictability of cyclone occurrence has been shown for several 537 medicane cases by Di Muzio et al. (2019). Most probably, this "jump" is due to the dependence of 538 Mediterranean cyclogenesis on the preceding Rossby wave breaking and, consequently, on the 539 credible inclusion of this event within the forecast initial conditions.

540

541 4.2 Forecasting cyclone location and intensity at the mature stage

Figure 1a shows that on 10 September, Daniel made landfall on the coasts of Libya. For all different forecast lead times of this event, the spread of MSLP consistently retains high values close to the landfalling area (right column of panels in Fig. 7). This is directly relevant to the high MSLP gradients close to the cyclone centre (Fig. 2b) where even "small" displacement of cyclone centres may result in a relatively large standard deviation of MSLP in the EPS. Indeed, Figs. 8b and 8d point to the high certainty of the cyclone occurrence in the EPS, where most members produce consistent and overlapping cyclone objects (depicted by dark green shading). Such performance comes in contrast to forecasting the stage of cyclogenesis, where MSLP spread does not have a clear pattern (the left panels of Fig. 7, green and yellow areas), and cyclone objects present limited overlapping for the same lead times (e.g., comparing Figs. 8c and 8d). The limited agreement among the EPS members on the PV streamer intrusion leads to considerable differences among the EPS members on the location or even the occurrence of cyclogenesis. In contrast, the predictability of landfall in Libya seems more consistent among the EPS members of ECMWF.

555

556 Considering a forecast lead time of 120 hours (i.e., initialization on 6 September), the cyclone has 557 already formed and was located over the central Mediterranean (just before the spiral part of the 558 track). Therefore, the cyclone has already been inscribed in the model's initial conditions. Still, from 559 the perspective of impacts, the location of landfall and the cyclone's intensity are crucial. Figure 9a 560 shows that even for an early lead time of five days (initial conditions of 5 September 2023, 0000 561 UTC), the cyclone tracks from all EPS members make landfall on the Libyan coasts. The spread of the 562 tracks is wide enough to include the actual cyclone track (in blue colour in Fig. 9a); therefore, the 563 forecast may lead to a reliable and timely warning of potential impacts.

564

Nevertheless, Fig. 9b shows that almost all the EPS members underestimated the cyclone's intensity for by forecasting too high MSLP values on 10 September at the time of landfall. The intensity of the cyclone is dependent on the baroclinic and diabatic forcing of its development (Flaounas et al., 2021). Therefore, the performance of all EPS members depends on the accurate representation of the parametrized processes, mainly convection close to the cyclone centre and surface fluxes, and the morphology of the PV streamer intrusion. For the present case, Hewson et al. (2024) noted that, while in the development stage the latent heat released from convection, favoured by the high SST and intense sea surface fluxes, balanced out the tendency for frictional decay, in the last stage a marked upper-level low moving from the west (marked by high PV values in Fig. 7h) was responsible for a further deepening. Upper tropospheric forcing is crucial in accurately predicting cyclone intensity in this context. While Fig. 7b —unlike Fig. 7a— shows that some EPS members align with the location of this upper tropospheric feature (blue crosses), an average of 2 PVU and an agreement above 50% among the EPS members near the cyclone center is only evident at a lead time of approximately three three transfer of the processes of the supper tropospheric feature (blue crosses).

579

580 5. Daniel's impacts in a climatological context

582 5.1 Forecasting climate extremes

The previous sections focused on the capacity of the EPS to forecast Daniel's cyclogenesis as the primary driver of impacts. In this section, we extend this analysis by focusing on the predictability of hazards in a climatological context, namely extreme precipitation and consequent floods. We used the ERA5 reanalysis to diagnose extremes since this product offers a reliable and consistent representation of present-day climate (Hersbach et al., 2020). In this respect, the left column of Fig. 10 section 2.2.1). In addition, Fig. 10 shows the percentage of the EPS members that forecast daily precipitation exceeding the climatological threshold for extremes, defined by the 99th percentile of daily precipitation in ERA5 (in blue shading). At a lead time of 120 hours (Fig. 10c), less than half of delimited by the climatological values of ERA5 (red contours). Nevertheless, the area formed by the shading in Fig. 10c is consistent with the climatological extremes. The members of the EPS that produce extreme precipitation could provide information on the potential occurrence of high-impact weather at least five days in advance. Therefore, accurately forecasting the time and location of

597 cyclone formation (as shown in Fig. 8) may play a secondary role in predicting its impacts in Greece. 598 In this context, the reliable simulation of moisture inflow, which is more closely linked to large-scale 599 circulation, as previously discussed by the EPS members, could be more crucial for impact prediction. 600

601 Interestingly, the overlap of extreme precipitation objects among the EPS members might exceed 70% 602 in the area of Thessaly in Greece for a lead time of even 120 hours (Fig. 10c). This percentage is 603 significantly higher than the maximum percentage of overlap between the cyclone objects (Fig. 8c). 604 This suggests that the EPS members have been more consistent in the production of extreme 605 precipitation even if cyclone centres presented a comparably greater spread. For subsequent lead 606 times, the predictability of extreme precipitation strongly increases, showing a high probability for a 607 lead time of 72 hours. Indeed, almost all members predict extreme precipitation off the coast and in 608 the northeastern part of Greece within the eventually flooded area of Thessaly.

609

610 When Daniel made landfall and produced impacts on the Libyan coasts, the EPS showed higher 611 predictability, with cyclone objects and associated extreme precipitation being predicted at least five 612 days in advance by several EPS members (Fig. 10d), albeit the location of both cyclone and 613 precipitation objects are still displaced to the southwest compared to the analysis (Figs. 8d and 10d). 614 This comes per the southern displacement of several ensemble member tracks in Fig. 9a. The 615 probability strongly increases at shorter lead times (Figs. 10f and 10h), and all EPS members tend to 616 converge to similar cyclone locations when reaching a lead time of one day (Fig. 8h).

617

618 The potential of extreme precipitation leading to substantial socio-economic impacts has also been 619 transferred to hydrologic discharge forecasts. The hydrographs presented in Fig. 11 examine river 620 discharge predictability as forecast by the operational European Flood Awareness System (EFAS) 621 during Daniel. For the Peneus River outlet in Thessaly, the forecast initiated on 1 September 622 underpredicted the peak discharge on 5 September. Nevertheless, extreme river discharges were 623 evident for several members five days in advance. The forecast accuracy improved, getting closer to 624 the event, with ensemble members (grey stripes) converging towards the peak discharge ("perfect 625 forecast" - red line). This trend indicates an increasing reliability of the forecast as the lead time 626 decreases, particularly within 48 hours of the event. The skill in discharge predictability for the 627 Peneus River can be attributed, in part, to the large size of the basin (11.063 km²), which aligns 628 relatively well with the spatial resolution of the EFAS model, enabling an accurate representation of 629 distributed hydrological processes and moderating runoff variability.

630

The forecasts for the Wadi Derna River outlet (Fig. 11, right panels) exhibit significant variability and fail to converge during the earlier forecast initialization dates and at shorter lead times. This persistent forecast initialization dates are dated to distinct challenges of both temporal scales. For earlier forecast initialization dates, the primary source of variability lies in the westward displacement of extreme precipitation predicted by the EPS (Figs. 10b and 10d). For example, forecasts initialized on September, during a critical period for implementing preventative measures, display a wide spread and a shortfall in the median forecast compared to the benchmark (red line). This variability persists even for forecasts initialized on 10 September. The failure to converge at shorter lead times is compounded by challenges inherent to the Wadi Derna catchment. The resolution of the precipitation forcings used in the forecasts, combined with the relatively small size (575 km²) and flash-flood-prone to this basin, amplify the uncertainties in predicting discharge, particularly in response to localized extreme rainfall.

643

644 Figure 4 provides critical context by comparing the peak mean daily river discharge during Storm 645 Daniel with the historical baseline. The unprecedented magnitude of the event is evident in Fig. 4b, 646 where river discharges exceeded the historical reanalysis by at least fivefold in certain regions. 647 However, the relatively weak signal for the Wadi Derna catchment underscores the limitations of the 648 GloFAS and EFAS systems in accurately resolving runoff dynamics in smaller basins. This 649 discrepancy is primarily attributed to insufficient model resolution, inaccuracies in rainfall inputs, and 650 the lack of detailed hydrological calibration for these catchments. In contrast, the much stronger signal

651 observed in the Peneus catchment aligns with larger basin sizes and better-resolved hydrological 652 processes, where models more effectively captured the extreme nature of the event.

653

The ability of EFAS to predict extreme events, as shown in Fig. 11, highlights its value in forecasting severe hydrological impacts. However, discrepancies in simulated peak discharge remain apparent, such as the overestimation of runoff for the Peneus River outlet. EFAS simulated peak discharge at approximately 5000 m³ s⁻¹, whereas observed values, based on station-level data and H-Q curve setimates, were less than 2000 m³ s⁻¹ (Dimitriou et al, 2024). This overestimation reflects inherent limitations in the model's spatial resolution and hydrological representation. Furthermore, the absence of flood protection infrastructure, such as levees or dams that attenuate runoff and peak flows, is not accounted for in the EFAS and GloFAS systems, contributing to these discrepancies. Additionally, the simplified representation of retention processes, including floodplain storage and wetland buffering, further amplifies discharge estimates in some regions. For smaller basins such as Wadi Derna, the rapid hydrological response to localized extreme rainfall presents additional challenges. The variability in rainfall distribution, coupled with the model's limited ability to capture localized hydrological dynamics, results in a weaker signal for the catchment, even during an event as extreme as Storm Daniel. These limitations emphasize the need for improved model resolution, enhanced precipitation forcings, and better calibration tailored to local catchment characteristics.

669

670 Nonetheless, EFAS's ability to predict extreme river discharges, particularly within short lead times, 671 demonstrates the potential of operational forecast systems in capturing the extreme values of such 672 events. Supported by EFAS and GloFAS, the Copernicus Emergency Management Service (CEMS) 673 provides critical insights into the timing and magnitude of extreme hydrological events. These 674 forecasts are vital for enhancing preparedness and response strategies in the face of escalating climate 675 extremes, offering essential tools for civil protection efforts and mitigating the socio-economic 676 impacts of such disasters.

677

678 5.2 The Role of Natural Variability and human-driven climate change in changing Daniel's 679 dynamics

We use ClimaMeter's analogue-based approach (Faranda et al., 2024) to study the influence of human-driven climate change and natural variability on Storm Daniel. By comparing surface pressure patterns in the periods 1979–2000 ("past") and 2001–present ("current"), we identify how similar Mediterranean depressions have evolved. We use MSWX data to analyze temperature, precipitation, and wind speed changes associated with these analogues. We repeat the analysis twice, once for 5-6 September, when Daniel impacted Greece, and once for 10-11 September, when Daniel impacted Libya.

687

688 Regarding the impacts in Greece, we searched for analogues for 5 September 2023 within the region 689 defined within the domain shown in Fig. 12a and within the extended autumn season from September 690 to December (SOND). Figure 12a-d shows that cyclone systems similar to Daniel impacting Greece 691 have the same order of pressure minima in their centre as in the past. Figure 12e-h shows that during 692 depressions, temperatures in the Ionian Sea have increased by approximately 2°C and decreased over 693 Anatolia. Precipitation analysis (Fig. 12j-l) indicates that such events produce heavier rainfall over the 694 Ionian Sea and Albania but generally reduced precipitation amounts over continental Greece and the 695 Peloponnese (ranging between 4 and 12 mm day⁻¹). To examine potential changes in the dynamical 696 characteristics of these events, the metrics Q, D, and Θ are computed and shown in Figs. 12q-s. 697 These figures reveal no significant differences between the past and present climate periods.. 698 However, metric Q provides insight into the similarity of current events with past analogues, showing 699 that the events have comparable counterparts in both time frames.. Notably, similar events have 700 become more frequent in December, whereas they were previously concentrated in October (Fig. 12t). 701 To assess the potential influence of low-frequency modes of natural variability on the differences 702 observed in the analogue composite maps, we compare the distributions of ENSO, AMO and PDO 703 values on the analogue dates in both the past and present periods and test the statistical significance of 704 the observed differences. For this date, our analysis suggests that natural climate variability, 705 particularly the AMO and PDO, may have influenced the development of the MSLP pattern 706 associated with the storm (Figs. 12u-w). To clarify the trend in event frequency, Fig. 12x expands the 707 analysis to include 30 analogues per period instead of 15, showing an increase in their number.

708

We repeat the analysis for 10-11 September 2023 within the region depicted in Fig. 13a, focusing on analogue detection for the SOND period.. Results are reported in Fig. 13. The MSLP changes (Fig. 13d) show no substantial differences in the areas significantly affected. The temperature changes (Fig. 13h) indicate warming of up to $+2^{\circ}$ C over the eastern part of the domain.. Precipitation changes (Fig. 13l) show that similar events produced higher precipitation amounts along the eastern Libyan coast (ranging from 5 and 9 mm day⁻¹), which experienced intense rainfall from Daniel on 10 September 2023. The metrics Q, D, and Θ (Figs. 13q-s) show no significant differences between the past and present periods. Whereas the 5 September analysis of Q identified suitable analogues, in this case, Q raths have that no good analogues are available, , underscoring the exceptional nature of Daniel's pressure pattern when the storm impacted Libya. The frequency of such events has decreased in September and November, with a slight increase observed in December (Fig. 13t). As with the 5 September, the AMO and PDO may have influenced the development of the MSLP pattern linked to the storm (Figs. 13u-w). Figure 13x showed changes in event frequency when 30 analogues were considered for the entire period analyzed, instead of 15 in both periods. As in the case of impacts in Greece, a significant increasing trend in frequency is found.

724

The analogues method helps us understand extreme weather events like Daniel by comparing them to similar past events and seeing how they have changed over time. Our results suggest a role of the AMO and PDO in modulating the large-scale atmospheric patterns conducive to the development of Storm Daniel. Previous studies (see Hodgkins et al. 2017 and references therein) have suggested that positive phases of the AMO can enhance the likelihood of persistent ridges over Europe and modify Mediterranean circulation patterns, while the PDO has been linked to alterations in the waveguide structure of the jet stream across the Northern Hemisphere. These teleconnections may precondition the synoptic environment in which Mediterranean cyclones form and evolve, as Maslova et al. (2017) suggested. This assessment is exploratory, highlighting potential associations without making definitive attributions given the limitations of a 40-year dataset.

735

736 For 5 September, when Daniel impacted Greece, we found similar past Mediterranean storms, 737 suggesting that this part of the storm's track was unusual but not unprecedented. Since we see no 738 major changes in the MSLP pattern, the increase in precipitation over the region is most likely linked 739 to higher SSTs, which provide more moisture to the atmosphere. This matches other studies that show 740 Greece experienced extreme moisture anomalies.

741

742 For 10-11 September, when Daniel reached Libya, our method found no suitable past matches, 743 highlighting the exceptional nature of the storm's pressure pattern at this stage. However, like in 744 Greece, we do not see substantial changes in MSLP. The increased frequency of circulation analogues 745 to Storm Daniel in recent decades suggests that the synoptic conditions conducive to such extreme 746 Mediterranean cyclones are becoming more common. This shift implies a heightened background risk 747 for similar high-impact events under present-day climate conditions. Combining multiple lines of 748 evidence, as customary in attribution studies, we can deduce that the increase in rainfall over Libya 749 was likely driven by warmer SSTs and a warmer atmosphere, which can hold more water 750 (Clausius-Clapeyron relationship) rather than a shift in atmospheric dynamics patterns. The MSWX 751 dataset provides a reliable representation of large-scale atmospheric patterns but does not fully capture 752 localized extreme precipitation intensities, which explains why our figures underestimate the observed 753 rainfall totals, particularly in Libya; therefore, our analysis should be interpreted as reflecting broader 754 climatological trends rather than exact station-level extremes. We also acknowledge that the 755 small-scale, Medicane structure of storm Daniel presents significant challenges for attribution studies 756 based on relatively coarse-resolution reanalyses. In this study, we do not attempt to reproduce the 757 mesoscale features or rapid intensification processes that characterized Daniel. Instead, our analysis 758 focuses on the large-scale circulation patterns that may create a favorable environment for developing 759 such compact systems. While this approach provides insights into the changing likelihood of 760 conducive synoptic configurations under current climate conditions, it is important to note that critical

761 aspects of Daniel's intensity and structure may be underrepresented in our framework. As such, our 762 results should be interpreted as exploratory and limited by the resolution and scope of the datasets 763 employed. Importantly, while Daniel brought heavy rainfall, the disaster in Derna was mainly caused 764 by the failure of poorly maintained dams (Shirzaei et al., 2025). Dente et al. (2024) confirm this, 765 showing that while rainfall was intense, it was not so extreme to explain the scale of 766 destruction—factors like unsafe building locations and poor emergency response played a major role. 767 These considerations underscore a key point: while climate change can amplify precipitation by 768 increasing SSTs, the most severe impacts often depend on societal factors such as infrastructure 769 resilience and disaster preparedness.

770

771 6. Summary and conclusions

772 In the last decade, more than 410,000 deaths have been attributed to weather-related disasters, mostly 773 in low-income countries where heatwaves and intense precipitation events are the leading causes of 774 death. Besides fatalities, 1.7 billion people have been affected in the 2010-2020 decade by these kinds 775 of phenomena. The IFRC World Disasters Report (2020) concluded that climate change is a risk 776 multiplier, i.e., intensifying existing vulnerabilities, particularly in low-income countries. A glaring 777 example of the impact of such disasters is the recent floods in the Mediterranean, especially in Greece 778 and Libya, following the Mediterranean cyclone Daniel.

779

780 This study aimed to comprehensively analyze Medicane Daniel by linking atmospheric dynamics, 781 predictability, and impacts. Impacts—including flooding and coastal sea-state conditions in 782 Libya—were also evaluated with numerical weather prediction models. We placed these findings in a 783 broader climatological context of cyclone-driven precipitation, underscoring how the observed 784 impacts connect to climate-change attribution for both catastrophic events.

785

From the perspective of atmospheric dynamics, the processes governing Daniel's development were similar to those identified for other intense Mediterranean cyclones: cyclogenesis was triggered by the intrusion of an upper-level PV streamer in the Ionian Sea, and thereafter, the cyclone propagated erratically southwards, then turned towards the east on 8 September, and then developed into a well defined mesoscale tropical-like cyclonic system. Regarding impacts, we identified two distinct stages: the first is relevant to cyclogenesis, where Daniel had newly formed and affected Greece with severe floods (on 5 September 2023). In the second stage, Daniel reached maturity after making landfall in Libya, where it inflicted severe socio-economic impacts on 11 September 2023 due to floods (about 5 days after the floods in Greece). Storm Daniel produced extreme precipitation during both stages by transporting moist air toward the flood-affected regions. The moisture transport followed the large-scale atmospheric circulation and drew on two primary sources: an anomalously warm Mediterranean Sea and the continental areas of central and eastern Europe. Together, these reservoirs supplied the water vapor that fueled the catastrophic rainfall.

799

800 In Greece, the floods occurred during the cyclogenesis stage in regions quite remote from the cyclone 801 centre. On the other hand, floods in Libya occurred close to the cyclone centre and at the stage of its 802 maximum intensity. During its first stage in Greece, the predictions of the cyclone formation were 803 relatively poor for lead times of more than four days. It was a rather challenging issue for the 804 ECMWF EPS to forecast precisely the intrusion of the PV streamer in the Mediterranean. This result 805 aligns with previous studies that showed relatively poor performance in predicting medicane 806 occurrences for lead times of four to five days (Di Muzio et al., 2019). With higher confidence, the 807 ECMWF EPS could forecast cyclogenesis, and thus the flooding event, for shorter lead times.

808

809 During its second stage (impacts in Libya), the cyclone transitioned into a medicane, making landfall 810 in Libya within a few days after its formation. The predictions of the medicane track -and therefore its 811 landfall- showed higher certainty for lead times of four days. These results indicate that numerical 812 weather-prediction models are less skillful at predicting cyclogenesis; however, once the cyclone has 813 formed, the models could become more reliable at forecasting its subsequent track.

815 Precipitation amounts were found to correspond to climate extremes in both countries, Greece and 816 Libya, where river discharges were responsible for floods that largely exceeded the climatological 817 maxima of the last 20 years. The numerical weather prediction model could forecast these climate 818 extremes (even if thresholds were defined by reanalysis and not by the same forecast model). This 819 underscores the exceptional potential to give the public timely, accurate warnings about the severity of 820 impending high-impact weather events. In this context, we have analyzed Daniel concerning climate 821 change and provided the grounds to interpret Daniel as an event whose characteristics can largely be 822 ascribed to human-driven climate change. In these regards, we have performed an analysis based on 823 analogues; indeed, several cyclones with similar characteristics were found during winter. The 824 anomalous occurrence of such a storm in September, a warmer month for SST, could be a reason for 825 enhancing its destructiveness through enhanced precipitation.

827 In the scientific literature, weather events are typically analysed as case studies with specific 828 objectives that rarely escape the narrow scope of a single scientific discipline. Here, we used Daniel, a 829 high-impact weather event, as a centrepiece of different approaches to better understand socioeconomic impacts through the prism of both weather and climate scales. We find such an 831 approach valuable for linking different scientific communities and essential for communicating 832 hazards to the local population. We envisage using this interdisciplinary approach for other weather 833 extremes and regions.

834

835 Acknowledgements

We gratefully acknowledge Ambrogio Volontè and an anonymous reviewer for accurately reviewing 837 our paper. This article is based upon collaborative work of two COST Actions: CA19109 "MedCyclones" and CA22162 "FutureMed", supported by COST – European Cooperation in Science 839 and Technology (http://www.cost.eu, last access: 14 February 2025) and from project "Earth 840 Observations as a cornerstone to the understanding and prediction of tropical like cyclone risk in the 841 Mediterranean (MEDICANES)", ESA Contract No. 4000144111/23/I-KE. Georgios Kyros from the 842 National Observatory of Athens/meteo.gr is acknowledged for helping collect the Copernicus 843 Sentinel-2 data in Figure 1. The Israel Science Foundation (grant \#978/23) funds AH's contribution. 844 PP was funded by the EU's Horizon Europe program, OCEANIDS (G.A. No. 101112919). SD 845 acknowledges the support from Next Generation EU, Mission 4, Component 1, CUP 846 B53D23007490006, project "Exploring Atmospheric Rivers in the Mediterranean and their 847 connection with extreme hydrometeorological events over Italy: observation, modelling and impacts 848 (ARMEX)".; MMM acknowledges financial support from Next Generation EU, Mission 4, Component 1, CUP 849 B53D23007360006, project "Thunderstorm outflows measurements and modeling for strong WIND nowcast and RISK 850 mitigation (WIND RISK)". We thank Franziska Aemisegger for providing the msd-cpp code for the 851 calculation of the moisture sources.

852

853 7. References

854 Argüeso, D., Marcos, M. and Amores, A.: Storm Daniel fueled by anomalously high sea surface 855 temperatures in the Mediterranean, npj Clim Atmos Sci 7, 307, 856 https://doi.org/10.1038/s41612-024-00872-2, 2024.

857

858 Avolio, E., Fanelli, C., Pisano, A. and Miglietta, M. M.: Unveiling the relationship between 859 Mediterranean tropical-like cyclones and rising Sea Surface Temperature. Geophysical Research 860 Letters 51, e2024GL109921, https://doi.org/10.1029/2024GL109921, 2024.

861

862 Beck, H. E., Van Dijk, A. I. J. M., Larraondo, P. R., McVicar, T. R., Pan, M., Dutra, E., and Miralles, 863 D. G.: MSWX: Global 3-Hourly 0.1° Bias-Corrected Meteorological Data Including Near-Real-Time 864 Updates and Forecast Ensembles, Bulletin of the American Meteorological Society, 103, E710–E732, 865 https://doi.org/10.1175/BAMS-D-21-0145.1, 2022.

867 Bouin, M.-N. and Lebeaupin Brossier, C.: Impact of a medicane on the oceanic surface layer from a 868 coupled, kilometre-scale simulation, Ocean Sci., 16, 1125-1142, 869 https://doi.org/10.5194/os-16-1125-2020, 2020.

```
870
```

- 871 Catto, J. L. and Dowdy, A.: Understanding compound hazards from a weather system perspective,
- 872 Weather and Climate Extremes, 32, 100313, https://doi.org/10.1016/j.wace.2021.100313, 2021.

- 874 Chaboureau, J., Pantillon, F., Lambert, D., Richard, E., and Claud, C.: Tropical transition of a
- 875 Mediterranean storm by jet crossing, Quart J Royal Meteoro Soc, 138, 596-611,
- 876 https://doi.org/10.1002/qj.960, 2012.

877

- 878 Couto, F. T., Kartsios, S., Lacroix, M., and Andrade, H. N.: A Quick Look at the Atmospheric
- 879 Circulation Leading to Extreme Weather Phenomena on a Continental Scale, Atmosphere, 15, 1205,
- 880 https://doi.org/10.3390/atmos15101205, 2024.

381

- 882 Davolio, S., Della Fera, S., Laviola, S., Miglietta, M. M., and Levizzani, V.: Heavy Precipitation over
- 883 Italy from the Mediterranean Storm "Vaia" in October 2018: Assessing the Role of an Atmospheric
- 884 River, Monthly Weather Review, 148, 3571–3588, https://doi.org/10.1175/MWR-D-20-0021.1, 2020.

885

- 886 De Vries, A. J.: A global climatological perspective on the importance of Rossby wave breaking and
- 887 intense moisture transport for extreme precipitation events, Weather Clim. Dynam., 2, 129–161,
- 888 https://doi.org/10.5194/wcd-2-129-2021, 2021.

889

- 890 Dente, E., Armon, M., and Shmilovitz, Y.: The September 2023 flood in Derna, Libya: an extreme
- 891 weather event or man-made disaster?, EGU General Assembly 2024, Vienna, Austria, 14-19 Apr
- 892 2024, EGU24-15755, https://doi.org/10.5194/egusphere-egu24-15755, 2024.

893

- 894 Di Muzio, E., Riemer, M., Fink, A. H., and Maier-Gerber, M.: Assessing the predictability of
- 895 Medicanes in ECMWF ensemble forecasts using an object-based approach, Quart J Royal Meteoro
- 896 Soc, 145, 1202–1217, https://doi.org/10.1002/qj.3489, 2019.

897

- 898 Dimitriou, E., Efstratiadis, A., Zotou, I., Papadopoulos, A., Iliopoulou, T., Sakki, G.-K., Mazi, K.,
- 899 Rozos, E., Koukouvinos, A., Koussis, A. D., Mamassis, N., and Koutsoyiannis, D.: Post-Analysis of
- 900 Daniel Extreme Flood Event in Thessaly, Central Greece: Practical Lessons and the Value of
- 901 State-of-the-Art Water-Monitoring Networks, Water, 16, 980, https://doi.org/10.3390/w16070980,
- 902 2024.

903

- 904 Faranda, D., Messori, G., and Yiou, P.: Dynamical proxies of North Atlantic predictability and
- 905 extremes, Sci Rep, 7, 41278, https://doi.org/10.1038/srep41278, 2017.

90

- 907 Faranda, D., Bourdin, S., Ginesta, M., Krouma, M., Noyelle, R., Pons, F., Yiou, P., and Messori, G.: A
- 908 climate-change attribution retrospective of some impactful weather extremes of 2021, Weather Clim.
- 909 Dynam., 3, 1311–1340, https://doi.org/10.5194/wcd-3-1311-2022, 2022.

910

- 911 Faranda, D., Ginesta, M., Alberti, T., Coppola, E., and Anzidei, M.: Attributing Venice Acqua Alta
- 912 events to a changing climate and evaluating the efficacy of MoSE adaptation strategy, npj Clim Atmos
- 913 Sci, 6, 181, https://doi.org/10.1038/s41612-023-00513-0, 2023a.

914

- 915 Faranda, D., Messori, G., Coppola, E., Alberti, T., Vrac, M., Pons, F., Yiou, P., Saint Lu, M., Hisi, A.
- 916 N. S., Brockmann, P., Dafis, S., Mengaldo, G., and Vautard, R.: ClimaMeter: contextualizing extreme
- 917 weather in a changing climate, Weather Clim. Dynam., 5, 959–983,
- 918 https://doi.org/10.5194/wcd-5-959-2024, 2024.

- 920 Ferrarin, C., Pantillon, F., Davolio, S., Bajo, M., Miglietta, M. M., Avolio, E., Carrió, D. S.,
- 921 Pytharoulis, I., Sanchez, C., Patlakas, P., González-Alemán, J. J., and Flaounas, E.: Assessing the
- 922 coastal hazard of Medicane Ianos through ensemble modelling, Nat. Hazards Earth Syst. Sci., 23,
- 923 2273–2287, https://doi.org/10.5194/nhess-23-2273-2023, 2023a.

```
924
```

- 925 Ferrarin, C., Orlić, M., Bajo, M., Davolio, S., Umgiesser, G., and Lionello, P.: The contribution of a
- 926 mesoscale cyclone and associated meteotsunami to the exceptional flood in Venice on November 12,
- 927 2019, Quart J Royal Meteoro Soc, 149, 2929–2942, https://doi.org/10.1002/qj.4539, 2023b.

- 929 Flaounas, E., Raveh-Rubin, S., Wernli, H., Drobinski, P., and Bastin, S.: The dynamical structure of
- 930 intense Mediterranean cyclones, Clim Dyn, 44, 2411–2427,
- 931 https://doi.org/10.1007/s00382-014-2330-2, 2015.

932

- 933 Flaounas, E., Di Luca, A., Drobinski, P., Mailler, S., Arsouze, T., Bastin, S., Beranger, K., and
- 934 Lebeaupin Brossier, C.: Cyclone contribution to the Mediterranean Sea water budget, Clim Dyn, 46,
- 935 913–927, https://doi.org/10.1007/s00382-015-2622-1, 2016.

936

- 937 Flaounas, E., Kotroni, V., Lagouvardos, K., Gray, S. L., Rysman, J.-F., and Claud, C.: Heavy rainfall
- 938 in Mediterranean cyclones. Part I: contribution of deep convection and warm conveyor belt, Clim
- 939 Dyn, 50, 2935–2949, https://doi.org/10.1007/s00382-017-3783-x, 2018.

940

- 941 Flaounas, E., Fita, L., Lagouvardos, K., and Kotroni, V.: Heavy rainfall in Mediterranean cyclones,
- 942 Part II: Water budget, precipitation efficiency and remote water sources, Clim Dyn, 53, 2539–2555,
- 943 https://doi.org/10.1007/s00382-019-04639-x, 2019.

944

- 945 Flaounas, E., Gray, S. L., and Teubler, F.: A process-based anatomy of Mediterranean cyclones: from
- 946 baroclinic lows to tropical-like systems, Weather Clim. Dynam., 2, 255–279,
- 947 https://doi.org/10.5194/wcd-2-255-2021, 2021.

948

- 949 Flaounas, E., Davolio, S., Raveh-Rubin, S., Pantillon, F., Miglietta, M. M., Gaertner, M. A., Hatzaki,
- 950 M., Homar, V., Khodayar, S., Korres, G., Kotroni, V., Kushta, J., Reale, M., and Ricard, D.:
- 951 Mediterranean cyclones: current knowledge and open questions on dynamics, prediction, climatology
- 952 and impacts, Weather Clim. Dynam., 3, 173–208, https://doi.org/10.5194/wcd-3-173-2022, 2022.

953

- 954 Flaounas, E., Aragão, L., Bernini, L., Dafis, S., Doiteau, B., Flocas, H., Gray, S. L., Karwat, A.,
- 955 Kouroutzoglou, J., Lionello, P., Miglietta, M. M., Pantillon, F., Pasquero, C., Patlakas, P., Picornell,
- 956 M. Á., Porcù, F., Priestley, M. D. K., Reale, M., Roberts, M. J., Saaroni, H., Sandler, D., Scoccimarro,
- 957 E., Sprenger, M., and Ziv, B.: A composite approach to produce reference datasets for extratropical
- 958 cyclone tracks: application to Mediterranean cyclones, Weather Clim. Dynam., 4, 639–661,
- 959 https://doi.org/10.5194/wcd-4-639-2023, 2023.

960

- 961 Grimaldi, S., Salamon, P., Disperati, J., Zsoter, E., Russo, C., Ramos, A., Carton De Wiart, C.,
- 962 Barnard, C., Hansford, E., Gomes, G., Prudhomme, C. (2022): River discharge and related historical
- 963 data from the Global Flood Awareness System. v4.0. European Commission, Joint Research Centre
- 964 (JRC). URL: https://cds.climate.copernicus.eu/cdsapp#!/dataset/cems-glofas-historical (Accessed on
- 965 09-Oct-2023)

966

- 967 Global Data Institute of the UN International Organization for Migration (IOM). 2023. Libya —
- 968 Storm Daniel Flash update 8 (13 October 2023)

969

- 970 He, K., Yang, Q., Shen, X., Dimitriou, E., Mentzafou, A., Papadaki, C., Stoumboudi, M., and
- 971 Anagnostou, E. N.: Brief communication: Storm Daniel Flood Impact in Greece 2023: Mapping Crop
- 972 and Livestock Exposure from SAR, https://doi.org/10.5194/nhess-2023-173, 12 October 2023.

- 974 Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J.,
- 975 Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G.,
- 976 Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis,
- 977 M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan,
- 978 R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., De Rosnay,

- 979 P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.: The ERA5 global reanalysis, Quart J Royal
- 980 Meteoro Soc, 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
- 982 Hewson, T., Ashoor, A., Boussetta, S., Emanuel, K., Lagouvardos, K., Lavers, D., Magnusson, L.,
- 983 Pillosu, F., Zsoter, E., Medicane Daniel: an extraordinary cyclone with devastating impacts, ECMWF
- 984 newsletters 179, 2024, 33-47.
- 985
- 986 Hochman, A., Scher, S., Quinting, J., Pinto, J. G., and Messori, G.: Dynamics and predictability of
- 987 cold spells over the Eastern Mediterranean, Clim Dyn, 58, 2047–2064,
- 988 https://doi.org/10.1007/s00382-020-05465-2, 2022a.
- 989
- 990 Hochman, A., Marra, F., Messori, G., Pinto, J. G., Raveh-Rubin, S., Yosef, Y., and Zittis, G.: Extreme
- 991 weather and societal impacts in the eastern Mediterranean, Earth Syst. Dynam., 13, 749–777,
- 992 https://doi.org/10.5194/esd-13-749-2022, 2022b.
- 993
- 994 Hochman, A., Plotnik, T., Marra, F., Shehter, E.-R., Raveh-Rubin, S., and Magaritz-Ronen, L.: The
- 995 sources of extreme precipitation predictability; the case of the 'Wet' Red Sea Trough, Weather and
- 996 Climate Extremes, 40, 100564, https://doi.org/10.1016/j.wace.2023.100564, 2023.
- 997
- 998 Hochman, A., Shachar, N., and Gildor, H.: Unraveling sub-seasonal precipitation variability in the
- 999 Middle East via Indian Ocean sea surface temperature, Sci Rep, 14, 2919,
- 1000 https://doi.org/10.1038/s41598-024-53677-x, 2024.
- 1001
- 1002 Hodgkins, G. A., Whitfield, P. H., Burn, D. H., Hannaford, J., Renard, B., Stahl, K., ... & Wilson, D.
- 1003 (2017). Climate-driven variability in the occurrence of major floods across North America and
- 1004 Europe. Journal of Hydrology, 552, 704-717.
- 1005
- 1006 IFRC (International Federation of Red Cross and Red Crescent Societies). World Disasters Report
- 1007 2020 Executive Summary. https://www.ifrc.org/document/world-disasters-report-2020
- 1008
- 1009 Khodayar, S., Davolio, S., Di Girolamo, P., Lebeaupin Brossier, C., Flaounas, E., Fourrie, N., Lee,
- 1010 K.-O., Ricard, D., Vie, B., Bouttier, F., Caldas-Alvarez, A., and Ducrocq, V.: Overview towards
- 1011 improved understanding of the mechanisms leading to heavy precipitation in the western
- 1012 Mediterranean: lessons learned from HyMeX, Atmos. Chem. Phys., 21, 17051–17078,
- 1013 https://doi.org/10.5194/acp-21-17051-2021, 2021.
- 1014
- 1015 Khodayar, S., Kushta, J., Catto, J. L., Dafis, S., Davolio, S., Ferrarin, C., Flaounas, E., Groenemeijer,
- 1016 P., Hatzaki, M., Hochman, A., Kotroni, V., Landa, J., Láng-Ritter, I., Lazoglou, G., Liberato, M. L. R.,
- 1017 Miglietta, M. M., Papagiannaki, K., Patlakas, P., Stojanov, R., and Zittis, G.: Mediterranean Cyclones
- 1018 in a Changing Climate: A Review on Their Socio-Economic Impacts, Reviews of Geophysics, 63,
- 1019 e2024RG000853, https://doi.org/10.1029/2024RG000853, 2025.
- 1020
- 1021 Korres, G., Ravdas, M., Denaxa, D., & Sotiropoulou, M. (2021). Mediterranean Sea Waves
- 1022 Reanalysis INTERIM (CMEMS Med-Waves, MedWAM3I system) (Version 1) [Data set]. Copernicus
- 1023 Monitoring Environment Marine Service (CMEMS).
- 1024 https://doi.org/10.25423/CMCC/MEDSEA_MULTIYEAR_WAV_006_012_MEDWAM3I
- 1025
- 1026 Korres, G., Oikonomou, C., Denaxa, D., & Sotiropoulou, M. (2023). Mediterranean Sea Waves
- 1027 Analysis and Forecast (Copernicus Marine Service MED-Waves, MEDWAM4 system) (Version 1)
- 1028 [Data set]. Copernicus Marine Service (CMS).
- 1029 https://doi.org/10.25423/CMCC/MEDSEA_ANALYSISFORECAST_WAV_006_017_MEDWAM4
- 1030
- 1031 Lagouvardos, K., Kotroni, V., Bezes, A., Koletsis, I., Kopania, T., Lykoudis, S., Mazarakis, N.,
- 1032 Papagiannaki, K., and Vougioukas, S.: The automatic weather stations NOANN network of the

```
1033 National Observatory of Athens: operation and database, Geoscience Data Journal, 4, 4–16,
```

- 1034 https://doi.org/10.1002/gdj3.44, 2017.
- 1035 Maslova, V., Voskresenskaya, E. N., & Lubkov, A. (2017). Multidecadal change of winter cyclonic
- 1036 activity in the Mediterranean associated with AMO and PDO. Terrestrial, Atmospheric and Oceanic
- 1037 Sciences, 28(6), 965–977. https://doi.org/10.3319/TAO.2017.04.23.01

- 1039 Messmer, M., Gómez-Navarro, J. J., and Raible, C. C.: Sensitivity experiments on the response of Vb
- 1040 cyclones to sea surface temperature and soil moisture changes, Earth Syst. Dynam., 8, 477–493,
- 1041 https://doi.org/10.5194/esd-8-477-2017, 2017.

1042

- 1043 Miglietta, M. M., Moscatello, A., Conte, D., Mannarini, G., Lacorata, G., and Rotunno, R.: Numerical
- 1044 analysis of a Mediterranean 'hurricane' over south-eastern Italy: Sensitivity experiments to sea
- 1045 surface temperature, Atmospheric Research, 101, 412–426,
- **1046** https://doi.org/10.1016/j.atmosres.2011.04.006, 2011.

1047

- 1048 Miglietta, M. M., Carnevale, D., Levizzani, V., and Rotunno, R.: Role of moist and dry air advection
- 1049 in the development of Mediterranean tropical-like cyclones (medicanes), Quart J Royal Meteoro Soc,
- 1050 147, 876–899, https://doi.org/10.1002/qj.3951, 2021.

1051

- 1052 Miglietta M. M., González-Alemán J. J., Panegrossi G., Gaertner M. A., Pantillon F., Pasquero C.,
- 1053 Schultz D. M., D'Adderio L. P., Dafis S., Husson R., Ricchi A., Carrió D. S., Davolio S., Fita L.,
- 1054 Picornell M. A., Pytharoulis I., Raveh-Rubin S., Scoccimarro E., Bernini L., Cavicchia L., Conte D.,
- 1055 Ferretti R., Flocas H., Gutiérrez-Fernández J., Hatzaki M., Homar Santaner V., Jansà A., Patlakas P.,
- 1056 Flaounas E., Defining Medicanes: Bridging the Knowledge Gap Between Tropical and Extratropical
- 1057 Cyclones in the Mediterranean, Bull. Am. Meteor. Soc., submitted

1058

- 1059 Nissen, K. M., Leckebusch, G. C., Pinto, J. G., Renggli, D., Ulbrich, S., and Ulbrich, U.: Cyclones
- 1060 causing wind storms in the Mediterranean: characteristics, trends and links to large-scale patterns,
- 1061 Nat. Hazards Earth Syst. Sci., 10, 1379–1391, https://doi.org/10.5194/nhess-10-1379-2010, 2010.

1062

- 1063 Pantillon, F. P., Chaboureau, J.-P., Mascart, P. J., and Lac, C.: Predictability of a Mediterranean
- 1064 Tropical-Like Storm Downstream of the Extratropical Transition of Hurricane Helene (2006),
- 1065 Monthly Weather Review, 141, 1943–1962, https://doi.org/10.1175/MWR-D-12-00164.1, 2013.

1066

- 1067 Pantillon, F., Davolio, S., Avolio, E., Calvo-Sancho, C., Carrió, D. S., Dafis, S., Gentile, E. S.,
- 1068 Gonzalez-Aleman, J. J., Gray, S., Miglietta, M. M., Patlakas, P., Pytharoulis, I., Ricard, D., Ricchi, A.,
- 1069 Sanchez, C., and Flaounas, E.: The crucial representation of deep convection for the cyclogenesis of
- 1070 Medicane Ianos, Weather Clim. Dynam., 5, 1187–1205, https://doi.org/10.5194/wcd-5-1187-2024,
- **1071** 2024.

1072

- 1073 Patlakas, P., Stathopoulos, C., Tsalis, C., and Kallos, G.: Wind and wave extremes associated with
- 1074 tropical-like cyclones in the Mediterranean basin, Intl Journal of Climatology, 41,
- 1075 https://doi.org/10.1002/joc.6795, 2021.

1076

- 1077 Pfahl, S. and Wernli, H.: Quantifying the Relevance of Cyclones for Precipitation Extremes, Journal
- 1078 of Climate, 25, 6770–6780, https://doi.org/10.1175/JCLI-D-11-00705.1, 2012.

1079

- 1080 Portal, A., Raveh-Rubin, S., Catto, J. L., Givon, Y., and Martius, O.: Linking compound weather
- 1081 extremes to Mediterranean cyclones, fronts, and airstreams, Weather Clim. Dynam., 5, 1043-1060,
- 1082 https://doi.org/10.5194/wcd-5-1043-2024, 2024.

1083

1084 Pytharoulis, I.: Analysis of a Mediterranean tropical-like cyclone and its sensitivity to the sea surface

```
1085 temperatures, Atmospheric Research, 208, 167–179, https://doi.org/10.1016/j.atmosres.2017.08.009, 1086 2018.
```

- 1088 Qiu J., Zhao W., Brocca L., Paolo Tarolli (2023). Storm Daniel revealed the fragility of the 1089 Mediterranean region. The Innovation Geoscience 1(3), 100036.
- 1090 https://doi.org/10.59717/j.xinn-geo.2023.100036

1091

- 1092 Raveh-Rubin, S. and Flaounas, E.: A dynamical link between deep Atlantic extratropical cyclones and
- 1093 intense Mediterranean cyclones, Atmospheric Science Letters, 18, 215–221,
- 1094 https://doi.org/10.1002/asl.745, 2017.

1095

- 1096 Raveh-Rubin, S. and Wernli, H.: Large-scale wind and precipitation extremes in the Mediterranean:
- 1097 dynamical aspects of five selected cyclone events, Quart J Royal Meteoro Soc, 142, 3097–3114,
- 1098 https://doi.org/10.1002/qj.2891, 2016.

1099

- 1100 Reale, M., Cabos Narvaez, W. D., Cavicchia, L., Conte, D., Coppola, E., Flaounas, E., Giorgi, F.,
- 1101 Gualdi, S., Hochman, A., Li, L., Lionello, P., Podrascanin, Z., Salon, S., Sanchez-Gomez, E.,
- 1102 Scoccimarro, E., Sein, D. V., and Somot, S.: Future projections of Mediterranean cyclone
- 1103 characteristics using the Med-CORDEX ensemble of coupled regional climate system models, Clim
- 1104 Dyn, 58, 2501–2524, https://doi.org/10.1007/s00382-021-06018-x, 2022.

1105

- 1106 Ricchi, A., Miglietta, M. M., Barbariol, F., Benetazzo, A., Bergamasco, A., Bonaldo, D., Cassardo, C.,
- 1107 Falcieri, F. M., Modugno, G., Russo, A., Sclavo, M., and Carniel, S.: Sensitivity of a Mediterranean
- 1108 tropical-like cyclone to different model configurations and coupling strategies, Atmosphere, 8, 1–32,
- 1109 https://doi.org/10.3390/atmos8050092, 2017.

1110

- 1111 Romaniello, V., Oddo, P., Tonani, M., Torrisi, L., Grandi, A., and Pinardi, N.: Impact of Sea Surface
- 1112 Temperature on COSMO Forecasts of a Medicane over the Western Mediterranean Sea, JEASE, 5,
- 1113 https://doi.org/10.17265/2159-581X/2015.06.002, 2015.

1114

- 1115 Romero, R. and Emanuel, K.: Climate Change and Hurricane-Like Extratropical Cyclones:
- 1116 Projections for North Atlantic Polar Lows and Medicanes Based on CMIP5 Models, J. Climate, 30,
- 1117 279–299, https://doi.org/10.1175/JCLI-D-16-0255.1, 2017.

1118

- 1119 Rousseau-Rizzi, R., Raveh-Rubin, S., Catto, J. L., Portal, A., Givon, Y., and Martius, O.: A
- 1120 storm-relative climatology of compound hazards in Mediterranean cyclones, Weather Clim. Dynam.,
- 1121 5, 1079–1101, https://doi.org/10.5194/wcd-5-1079-2024, 2024.

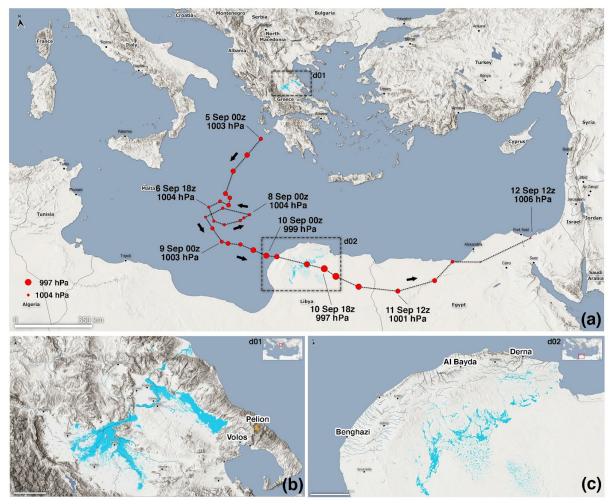
1122

- 1123 Sanchez, C., Gray, S., Volonte', A., Pantillon, F., Berthou, S., and Davolio, S.: The impact of
- 1124 preceding convection on the development of Medicane Ianos and the sensitivity to sea surface
- 1125 temperature. Weather Clim. Dynam., 5, 1429 1455, https://doi.org/10.5194/wcd-5-1429-2024, 2024.

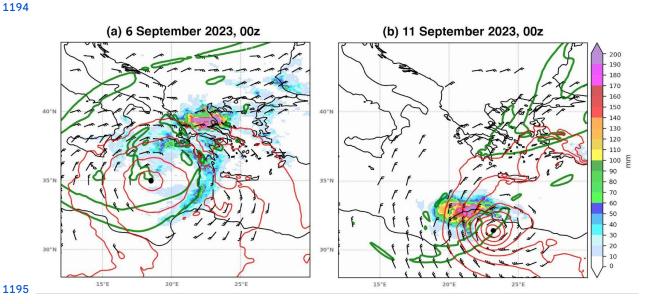
1126

- 1127 Sandler, D., Saaroni, H., Ziv, B., Hochman, A., Harnik, N., and Rostkier-Edelstein, D.: A multiscale
- 1128 approach to statistical downscaling of daily precipitation: Israel as a test case, Intl Journal of
- 1129 Climatology, 44, 59–71, https://doi.org/10.1002/joc.8315, 2024.

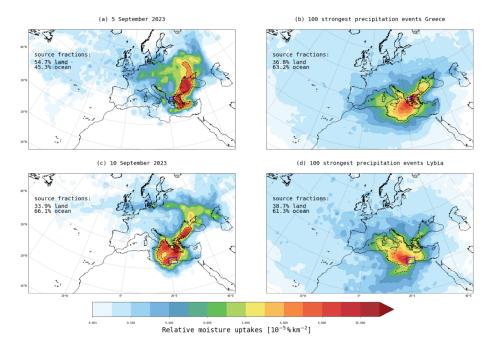
1130

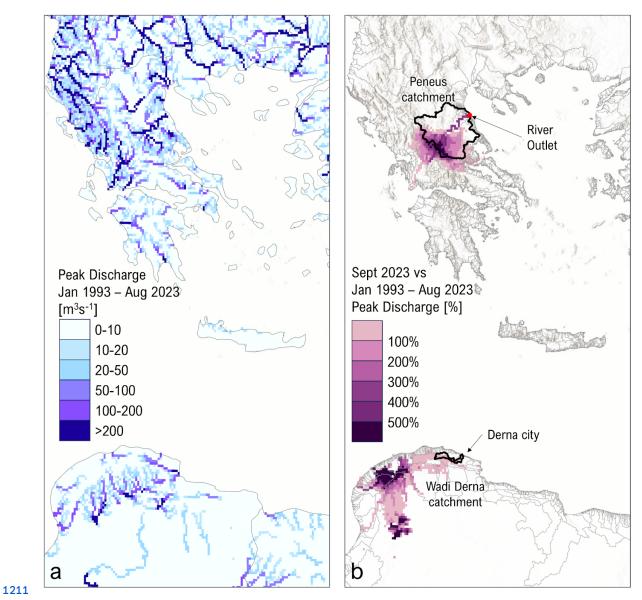

- 1131 Scherrmann, A., Wernli, H., and Flaounas, E.: The upstream-downstream connection of North
- 1132 Atlantic and Mediterranean cyclones in semi-idealized simulations, Weather Clim. Dynam., 5,
- 1133 419–438, https://doi.org/10.5194/wcd-5-419-2024, 2024.

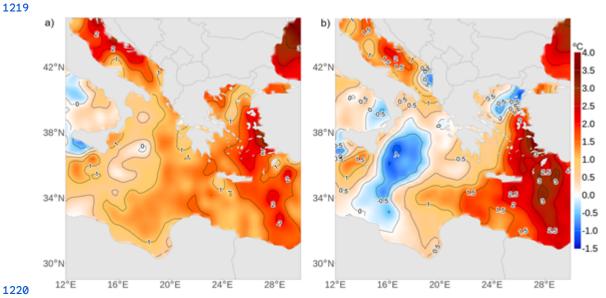
1134

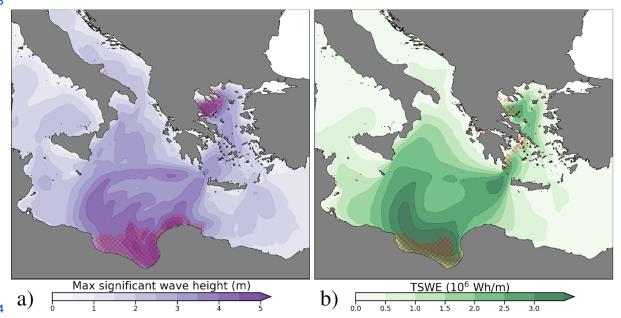

- 1135 Shirzaei, M., Vahedifard, F., Sadhasivam, N., Ohenhen, L., Dasho, O., Tiwari, A., Werth, S., Azhar,
- 1136 M., Zhao, Y., Nicholls, R. J., and AghaKouchak, A.: Aging dams, political instability, poor human
- 1137 decisions and climate change: recipe for human disaster, npj Nat. Hazards, 2, 1–8,
- **1138** https://doi.org/10.1038/s44304-024-00056-1, 2025.

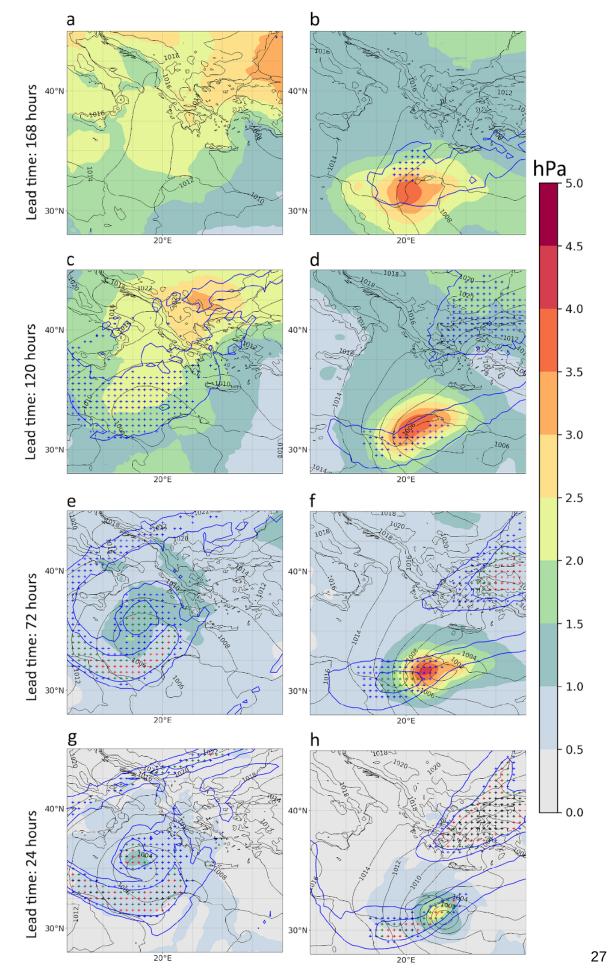
```
1140 Sioni, F., Davolio, S., Grazzini, F., and Giovannini, L.: Revisiting the atmospheric dynamics of the
            century
                      floods
                                over
                                        north-eastern
                                                        Italy.
                                                                Atmos.
                                                                          Research,
                                                                                       286,
                                                                                               106662,
1141 two
1142 https://doi.org/10.1016/j.atmosres.2023.106662, 2023.
1143
1144 Sodemann, H., Schwierz, C., and Wernli, H.: Interannual variability of Greenland winter precipitation
1145 sources: Lagrangian moisture diagnostic and North Atlantic Oscillation influence, J. Geophys. Res.,
1146 113, 2007JD008503, https://doi.org/10.1029/2007JD008503, 2008.
1147
1148 Sprenger, M. and Wernli, H.: The LAGRANTO Lagrangian analysis tool – version 2.0, Geosci. Model
1149 Dev., 8, 2569–2586, https://doi.org/10.5194/gmd-8-2569-2015, 2015.
1150
1151 UNICEF. 2023. Libya Storm Daniel & Flooding, Situation Report #1. (14-09-2023)
1152
1153 United Nations Office for the Coordination of Humanitarian Affairs (OCHA), 2023. Flash Appeal
1154 Libya.
1155
1156 Varlas, G., Vervatis, V., Spyrou, C., Papadopoulou, E., Papadopoulos, A., and Katsafados, P.:
1157 Investigating the impact of atmosphere—wave—ocean interactions on a Mediterranean tropical-like
1158 cyclone, Ocean Model., 153, 101675, https://doi.org/10.1016/j.ocemod.2020.101675, 2020.
1159
1160
1161 World
                                           Meteorological
                                                                                         Organisation:
1162 https://wmo.int/media/news/libya-floods-show-need-multi-hazard-early-warnings-unified-response,
1163 2023a, last access: 10 March 2024.
1164
1165 World
                                           Meteorological
                                                                                         Organisation:
1166 https://wmo.int/media/news/storm-daniel-leads-extreme-rain-and-floods-mediterranean-heavy-loss-of-
1167 life-libya, 2023b, last access: 3 February, 2025
1168
1169 Wernli, H. and Davies, H. C.: A Lagrangian-based analysis of extratropical cyclones. I: The method
                      applications,
                                                      Royal
                                                                Meteoro
                                                                                     123,
                                                                                             467-489,
                                       Quart
                                                 J
                                                                             Soc,
1171 https://doi.org/10.1002/qj.49712353811, 1997.
1172
1173 World Bank, 2023. Libya Storm and Flooding 2023. Rapid Damage and Needs Assessment.
1174 Washington, DC: World Bank, http://recovery.preventionweb.net/quick/82808.
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
```

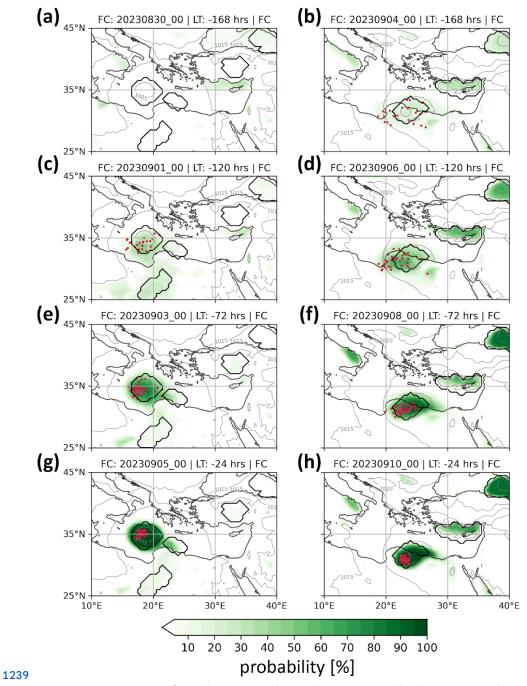

1186 Figures

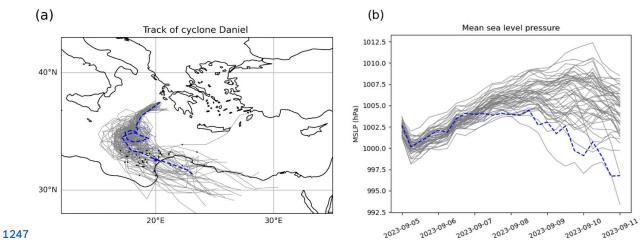

1188 Figure 1 (a) Track of Storm Daniel at six-hour intervals based on ECMWF analysis, where the size of **1189** red dots is proportional to cyclone depth in terms of minimum MSLP. Flooded areas are shown in **1190** cyan and blue tones (acquired by one of the Copernicus Sentinel-2 satellites on 10 and 12 September **1191** 2023). Panels **(b)** and **(c)** zoom over central Greece and Libya (square boxes d01 and d02 in panel **a**). **1192**

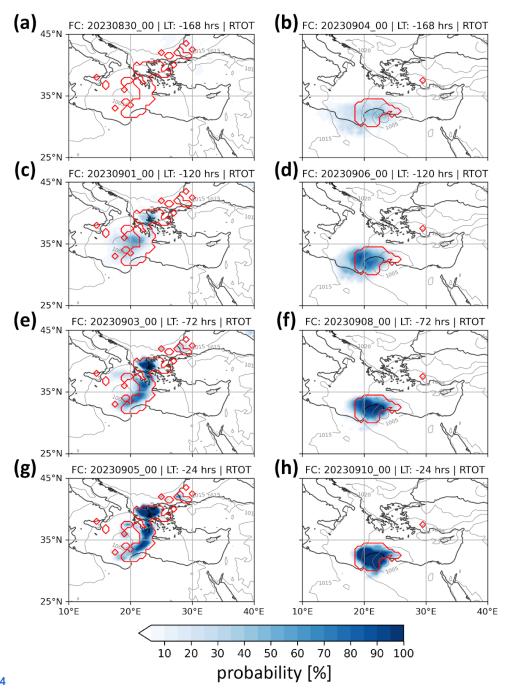

Figure 2 (a) Potential Vorticity of 2 PVU at 300 hPa (in green contour) and wind speed higher than 15 1197 knots at 850 hPa (in barbs, with full and half bars depicting 10 and 5 knots, respectively) and MSLP 1198 (in red contours for values lower than 1012 hPa with 2 hPa interval) on 6 September 2023, at 00 UTC. 1199 24-hour total accumulated precipitation from 5 to 6 of September 00 UTC is shown in shading (max 1200 value 434 mm). **(b)** Same as **(a)** but for 11 September 2023, at 00 UTC (max precipitation value 382 1201 mm). The black dot indicates the minimum MSLP position in both panels. 1202

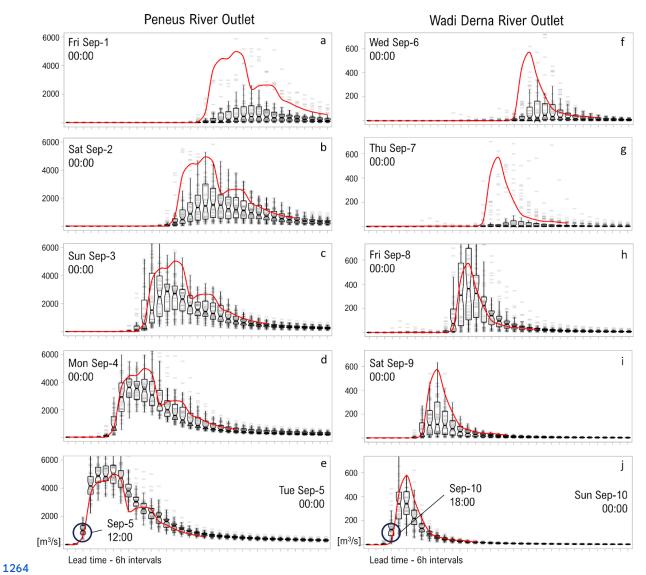

Figure 3 (a) Relative moisture uptakes that contribute to the precipitation event in Thessaly (depicted with the blue rectangle) on 5 September 2023. The black dashed contour outlines the largest moisture source regions, which account for 50% of the total moisture uptake. The numbers on the top left show the relative land and ocean fraction of the moisture sources. **(b)** as in **(a)** but for the 100 most extreme daily precipitation events in Thessaly from 1990 to 2023. **(c)** as in **(a)** but for the precipitation in the study region in Libya (blue rectangle) on 10 September 2023. **(d)** as in **(b)** but for Libya.

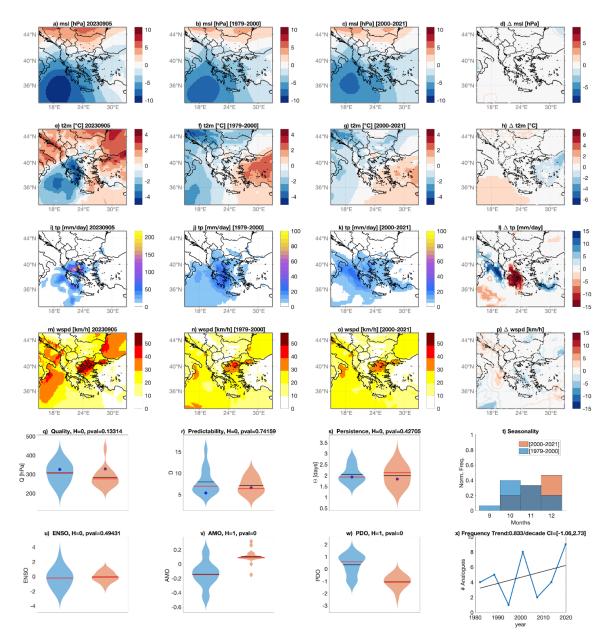

1212 Figure 4 Peak discharge over three recent decades (Jan 1993 – Aug 2023) versus Daniel storm as **1213** represented by the Global Flood Awareness System (**a**) spatial distribution of the maximum peak river **1214** discharge from January 1993 to August 2023, (**b**) comparison map for September 2023 illustrating the **1215** event-wide peak river discharges as a percentage increase over the maximum peak river discharges **1216** during the 30 years January in (**a**).


1221 Figure 5 (a) Daily SST anomaly from ERA5, for 3 September 2023, and (b) 9 September 2023. The **1222** reference climatology for anomaly determination is 1982-2011.


1225 Figure 6 (a) Maximum significant wave height. **(b)** Total wave energy of the storm. Purple (a) and 1226 red (b) patches mark areas of extreme conditions (above the 99th percentile) determined based on the 1227 Mediterranean Sea wave reanalysis.


1232 Figure 7 Standard deviation (in colour shading) and average (in black contour) MSLP from the 51 1233 ensemble members of the ECMWF EPS. Blue contours enclose areas with a median equal to 1 and 2 1234 PVU at 300 hPa among all members of the EPS. Blue crosses indicate areas where at least 25% of the 1235 members have PV values greater than 2 PVU. Green, red, and black crosses denote agreement by at 1236 least 50%, 75%, and 95% of the members, respectively. Panels depict different lead forecast times 1237 valid on 6 September at 00 UTC (panels **a**, **c**, **e**, **g**) and 11 September at 00 UTC (**b**, **d**, **f**, **h**). 1238


Figure 8 Percentage of overlapping cyclone objects (green shading) among the ensemble prediction 1241 system members for different lead times valid on 6 September 2023, 00 UTC (left column panels) 1242 and 11 September 2023, 00 UTC (right column panels). Black contours show cyclone objects in 1243 ECMWF analysis (grey contours for MSLP isobars in ECMWF analysis). Red dots depict the location 1244 of the minimum MSLP of Daniel in the ensemble members.


Figure 9 (a) Cyclone tracks based on MSLP at the centre of cyclone Daniel as represented by the 1249 ECMWF analysis (blue dashed line) and by the 50 members of the EPS of ECMWF (grey lines), 1250 initialized on 5 September at 00 UTC. Black dots in (a) depict the cyclone location on 10 September, 1251 00 UTC (b) As in (a) but as time series of minimum MSLP.

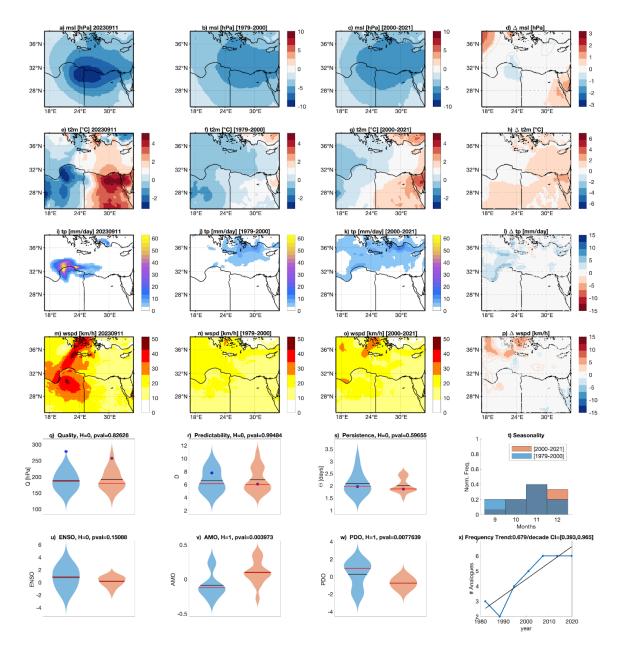

Figure 10 Percentage of overlapping objects (in blue shading) among the ensemble prediction 1256 members for 24-hour accumulation (ending at the validity time) of extreme precipitation for different 1257 lead times valid on 6 September 2023, 00 UTC (left column panels) and 11 September 2023, 00 UTC 1258 (right column panels). Red contours show objects of extreme precipitation determined based on ERA5 1259 climatology (grey contours for MSLP isobars in ECMWF analysis).

Figure 11 Six-hourly ensemble river discharge forecasts for the Peneus and Wadi Derna catchments 1266 compared to the "perfect forecast" benchmark (red line). The "perfect forecast" represents the 1267 initialization of each forecast for all time steps across the event, taken as a reference for evaluating 1268 forecast accuracy. With the observed timing of rising hydrograph limbs marked on 5 September, noon 1269 local time (09 UTC) for the Peneus River in Thessaly, and 10 September, 18:00 local time (16 UTC) 1270 for the Wadi Derna River. Grey stripes (tick marks) represent individual ensemble members from the 1271 EFAS model, driven by the 51 ensemble members of the ECMWF EPS. Overlapping tick marks 1272 darken, visually highlighting areas of member agreement (convergence). Forecast summary data are 1273 displayed as boxplots, where the box represents the interquartile range (IQR), the whiskers show the 1274 range of values within 1.5 times the IQR, and the horizontal black line inside the box indicates the 1275 median. The notches around the median show the 95% confidence interval.

Figure 12: Analogues for 5 September 2023 and the region [15°E-33°E, 33°N-45°N] and the 2280 extended autumn season SOND: average surface pressure anomaly (msl) (a), average 2-m temperature 2281 anomalies (t2m) (e), accumulated total precipitation (tp) (i), and average wind-speed (wspd) in the 2282 period of the event. Average of the surface pressure analogs found in the counterfactual [1979-2000] 2283 (b) and factual periods [2001-2022] (c), along with corresponding 2-m temperatures (f, g), 2284 accumulated precipitation (j, k), and wind speed (n, o). Changes between present and past analogs are 2285 presented for surface pressure Δmsl (d), 2-m temperatures Δ t2m (h), total precipitation Δ tp (i), and 2286 wind speed Δ wspd (p): color-filled shaded areas indicate significant anomalies obtained from the 2287 bootstrap procedure. Contours indicate non-significant changes; Violin plots for past (blue) and 2288 present (orange) periods for Quality Q analogs (q), Predictability Index D (r), Persistence Index Θ (s), 2289 and distribution of analogs in each month (t). Violin plots for past (blue) and present (orange) periods 2290 for ENSO (u), AMO (v) and PDO (w). Number of the Analogues occurring in each subperiod (blue) 2291 and linear trend (black). A blue dot marks values for the peak day of the extreme event. Horizontal 2292 bars in panels (q,r,s,u,v,w) correspond to the mean (black) and median (red) of the distributions.

1296 Figure 13: As in Fig. 12, but for 10-11 September 2023, the region [17°E-35°E, 25°N-38°N] and the **1297** extended autumn season (SOND). **1298**