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Abstract. This study introduces a novel approach to post-processing (i.e., downscaling and bias-correcting) reanalysis-driven

regional climate model daily precipitation that is capable of generalising to ungauged mountain locations by leveraging sparse

in situ observations and a probabilistic regression framework. We call this post-processing approach Generalised Probabilistic

Regression (GPR), and implement it using both generalised linear models and artificial neural networks (i.e., multilayer per-

ceptrons). By testing the GPR post-processing approach across three Hindu Kush-Karakoram-Himalaya basins with varying5

hydro-meteorological characteristics and four experiments, which are representative of real-world scenarios, we find it per-

forms consistently much better than both raw regional climate model output and deterministic bias correction methods for

generalising daily precipitation post-processing to ungauged locations. We also find that GPR models are flexible and can be

trained using data from a single region or multiple regions combined together, without major impacts on model performance.

Additionally, we show that the GPR approach results in superior skill for post-processing entirely ungauged regions, by lever-10

aging data from other regions, as well as ungauged high-elevation ranges. This suggests that GPR models have potential for

extending post-processing of daily precipitation to ungauged areas of HKH. Whilst multilayer perceptrons yield marginally im-

proved results overall, generalised linear models are a robust choice particularly for data-scarce scenarios, i.e., post-processing

extreme precipitation events and generalising to completely ungauged regions.

1 Introduction15

The mountain ranges of High Mountain Asia, often referred to as the Water Towers of Asia (Immerzeel et al., 2010), are the

source of many major rivers in South Asia, supplying water resources to a rich diversity of terrestrial and marine ecosystems

(Xu et al., 2019) and to approximately 2 billion people living in or directly downstream of them (Bolch et al., 2012; Mukherji
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et al., 2019; Wester et al., 2019; Widmann et al., 2019). These resources are heavily reliant on precipitation caused primarily by

large-scale atmospheric circulations, such as the Indian summer monsoon and winter westerly disturbances, interacting with the20

steep orography that characterises the southern rim of High Mountain Asia, comprising the Hindu Kush Karakoram Himalaya

(HKH) mountain ranges (Bookhagen and Burbank, 2010; Palazzi et al., 2013; Baudouin et al., 2020; Dimri et al., 2015).

Yet, despite the large human populations depending on these resources for power, industry, tourism, farming, and domestic

consumption, the contributions of rain and snow (and its ensuing melt) to these river systems are still poorly studied and little

understood. This precipitation knowledge gap in HKH severely affects our ability to quantify its present-day water resources25

and associated stream flows (Immerzeel et al., 2015; Arfan et al., 2019; Li et al., 2018; Salzmann et al., 2014). Consequently,

it constitutes the largest source of uncertainty when it comes to making effective and robust water management decisions (e.g.,

water infrastructure construction, water demand management) and their critical role in regulating regional water supply, as well

as planning for the hydrological impacts of climate change (Chinnasamy et al., 2015; Momblanch et al., 2019; Wester et al.,

2019; Nie et al., 2021; Orr et al., 2022).30

Improving our understanding of precipitation in the HKH region is highly challenging (e.g., Wester et al., 2019; Sabin

et al., 2020; Orr et al., 2022). In particular, the extreme orography that characterises this region results in large precipitation

variations over small spatio-temporal scales, which are poorly understood due to the sparse and uneven rain and snow gauge

network across the region (Archer and Fowler, 2004; Bannister et al., 2019; Immerzeel et al., 2015; Bookhagen and Burbank,

2010; Baudouin et al., 2020; Pritchard, 2021). For example, an area of around 566,000 km2 above 4000 m elevation in HKH is35

currently represented by a single long-running gauge station in the Global Historical Climatology Network database (Pritchard,

2021). This poor understanding of precipitation extends to localised extremes that result from the triggering of convective

events by small-scale topographic features (Orr et al., 2017; Bhardwaj et al., 2021; Ren et al., 2017; Dimri et al., 2017; Thayyen

et al., 2013; Potter et al., 2018), which are often associated with rapid hydrological responses as well as hydro-meteorological

hazards such as floods and landslides (Qazi et al., 2019; Lutz et al., 2016; Ji et al., 2020; Dimri et al., 2017; Thayyen et al.,40

2013; Das et al., 2006).

One of the approaches to overcome the issues related to the limited gauge networks in HKH has been to develop daily

gridded datasets with wide spatial and temporal coverage. These include gauge-based products such as the Asian Precipitation

Highly Resolved Observational Data Towards Evaluation of Water Resources (APHRODITE; Yatagai et al., 2012), satellite-

based products such as the Tropical Rainfall Measuring Mission (TRMM; Huffman et al., 2007), climate reanalysis products45

such as ECMWF Reanalysis v5 (ERA5; Hersbach et al., 2020), and multi-source products such as the Multi-Source Weighted-

Ensemble Precipitation (MSWEP; Beck et al., 2019), which merges gauge, satellite, and reanalysis data. However, in HKH

these datasets are characterised by large differences in both climatological and extreme precipitation values, with the lack of

consensus confirming that our understanding of precipitation characteristics in this region is extremely poor (Bannister et al.,

2019; Palazzi et al., 2013; Li et al., 2018). The large differences between these datasets are explained by the different types50

of observations used in them, as well as the methods used to compile them. For example, APHRODITE relies on distance-

weighted interpolation of gauge values to derive precipitation patterns, which are difficult to robustly calculate in HKH due

to the lack of in situ observations, as well as the large spatio-temporal precipitation gradients (Bannister et al., 2019; Ji et al.,
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2020; Luo et al., 2020; Andermann et al., 2011). Recent alternatives such as MWSEP (Beck et al., 2019), which is arguably one

of the best global precipitation datasets, also relies on gauge data and is therefore much less well constrained to observations55

in HKH compared to elsewhere. Consequently, alternative tools are needed to better understand the detailed spatio-temporal

characteristics of precipitation in HKH.

Dynamical downscaling of coarse spatial resolution reanalysis datatsets (e.g., approximately 30 km for ERA5) using a

regional climate model (RCM) is increasingly being used to produce high-resolution gridded precipitation products over HKH

(Norris et al., 2020; Bannister et al., 2019; Maussion et al., 2011; Wang et al., 2021). These RCMs are characterised by60

spatial resolutions from 1-10 km that are generally able to resolve the complex terrain and thus better represent precipitation

variability, and especially extremes. However, RCM outputs are still subject to errors and uncertainty (Giorgi, 2019), which can

be exacerbated in mountain areas due to the complexity of the terrain (Sanjay et al., 2017; ul Hasson et al., 2019). For example,

while reanalysis-driven RCM simulations are able to capture the large-scale circulation accurately (e.g., summer monsoon and

westerly disturbances) by using either nudging or frequent initialisation techniques (Norris et al., 2020; Bannister et al., 2019;65

Maussion et al., 2011; Wang et al., 2021), they can still be subject to deficiencies in the representation of key physical processes

such as the local valley wind regime, boundary layer, and cloud microphysics (Orr et al., 2017; Potter et al., 2018), as well as

discrepancies between real and simulated orography (Eden et al., 2012). Statistical post-processing techniques, such as bias

correction, are therefore often applied to improve the accuracy of RCM outputs, including precipitation (e.g., Shrestha et al.,

2017; Bannister et al., 2019; Dimri, 2021; Tazi et al., 2023).70

The model output statistics (MOS) approach to bias-correcting RCM simulations involves developing statistical relationships

between RCM outputs, used as predictors, and observations, used as predictands (e.g., Klein and Glahn, 1974; Maraun and

Widmann, 2018). MOS post-processing methods are usually deployed in either single-site or multi-site fashion to correct

RCM simulations for locations where observations are available. However, in settings where gauge measurements are spatially

sparse, MOS post-processing can also be used to adjust RCM precipitation output at ungauged locations (e.g., Samuel et al.,75

2012). In regions such as HKH where standard spatial interpolation techniques fail to capture the local-scale spatio-temporal

precipitation variability, such an approach is fundamental; yet, it has not received much attention in the past. Bannister et al.

(2019) applied bias correction to ungauged locations by using a deterministic, distribution-wise MOS method to adjust RCM

precipitation outputs across two Himalayan basins. Additionally, MOS post-processing for bias correction can sometimes also

involve downscaling RCM outputs to higher spatial resolutions (i.e. they correct for biases as well as downscale from a coarser80

to a finer scale). Hereafter, we use the term post-processing to refer to the combination of downscaling and bias-correcting.

Traditional MOS methods post-process the marginal distribution of the RCM output deterministically. In this setting, a

specific set of predictors always yields the same corrected value and the spatio-temporal structure of the simulated output is

not explicitly altered. This implicitly assumes that local-scale spatio-temporal variability is completely captured by the RCM-

simulated gridbox variability. Whilst this assumption might hold in the case of pure bias correction, if the post-processing85

also involves downscaling to point observations (or higher-resolution gridded data) then deterministic approaches are not

appropriate and a probabilistic method should be used instead (Maraun, 2013). Furthermore, using regression-based MOS

3

https://doi.org/10.5194/egusphere-2024-2805
Preprint. Discussion started: 7 October 2024
c© Author(s) 2024. CC BY 4.0 License.



methods, the synchrony (or pair-wise correspondence) between reanalysis-driven RCMs and observations can be leveraged to

correct for biases in the temporal representation of RCM precipitation outputs, which can often be large (Lafon et al., 2013).

Previous studies have developed regression-based MOS methods based on artificial neural networks to statistically post-90

process precipitation (e.g., Cannon, 2008; Sachindra et al., 2018; Baño-Medina et al., 2020; Vaughan et al., 2021). For ex-

ample, the multi-site precipitation downscaling framework proposed by Cannon (2008) employs artificial neural networks for

probabilistic regression. More advanced regression-based MOS model architectures have also been leveraged recently to un-

dertake this task, including convolutional neural networks (Baño-Medina et al., 2020), autoencoders (Vandal et al., 2019), and

neural processes (Vaughan et al., 2021). However, all these methods generally rely on the availability of abundant training data,95

and thus focus on data-rich regions. The potential of regression-based MOS post-processing for ungauged mountain locations

(such as in HKH) remains untapped.

In this pilot study, we introduce the Generalised Probabilistic Regression (GPR) MOS approach for post-processing (i.e.,

downscaling and bias-correcting) RCM daily precipitation outputs using sparse gauge data in HKH. This approach extends

the pairwise stochastic MOS framework proposed by Wong et al. (2014) and leverages probabilistic regression models (i.e.,100

generalised linear models and multi-layer perceptrons). The key advantage of the GPR approach is that is it capable of gen-

eralising to ungauged locations, whilst also capturing the uncertainty that arises both from this spatio-temporal generalisation

and from the asynchronous timing of precipitation between RCM output and observations. Thus, using the GPR approach we

can leverage a discrete and relatively sparse network of in situ observations to improve precipitation maps (i.e., gridded prod-

ucts) for HKH whilst quantifying the uncertainty of our estimates. The GPR approach can also be viewed as a probabilistic105

spatio-temporal interpolation technique for daily precipitation observations informed by (or conditioned on) RCM simulations

and other contextual factors. Furthermore, the framework we employ is, in essence, a conditional MOS precipitation generator

that is consistent with the RCM-simulated weather (Cannon, 2008; Wong et al., 2014).

We test the GPR framework by post-processing daily precipitation output from an RCM simulation of HKH produced using

the Weather Research and Forecasting (WRF) model for three target regions, namely, the eastern and western reaches of the110

Upper Indus Basin, and the central part of the Upper Ganges Basin, which hereafter are referred to as East UIB, West UIB,

and Central UGB respectively (Fig. 1). Together, these three regions span a wide portion of HKH and have very different

characteristics in terms of geography, orography, climatology and observational network / data availability, i.e., providing a

diverse range of conditions / challenges for the GPR framework in order to robustly test it. Finally, although the focus of this

study is HKH, the results of this exercise should be applicable to other data-sparse mountain ranges in the world.115

2 Data and Methods

2.1 Target regions and datasets

The West UIB region includes the Gilgit-Baltistan area, which is located in Karakoram and western Himalaya (Fig. 1). The

Gilgit-Baltistan area is 72,971 km2 in size, and includes the Hunza and Gilgit rivers, as well as the main branch of the Indus

(Iqbal et al., 2019). For this study, the daily precipitation records available for this area consist of 12 stations over the period120
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Figure 1. Map showing the three target regions across HKH: West Upper Indus Basin (West UIB), East Upper Indus Basin (East UIB),

and Central Upper Ganges Basin (Central UGB), including the location of the gauge measurements (black triangles). Inset maps show more

detail for each of the target regions, including the elevation of the topography (shading) and the location of gauge measurements (yellow

triangles). The topography dataset shown in the inset maps is from the Shuttle Radar Topography Mission (SRTM) digital elevation model.
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Table 1. Elevation range and summary of the stations used to provide daily precipitation observations for each of the three target regions.

Note that each station contains gaps in the instrumental record.

Region Elevation range (m.a.s.l.) No. stations Period covered No. datapoints

West UIB 1,460 - 4,707 12 1995-2014 76,860

East UIB 265 - 3,645 58 1980-2013 364,713

Central UGB 1,406 - 5,090 20 2012-2014 15,152

1995-2015 (comprising a total of 76,860 data points), which range from 1,460 to 4,707 meters above sea level (m.a.s.l.) (Table

1). The average distance between neighbouring stations is around 60 km.

The East UIB region includes the Sutlej River basin and the Beas River basin, which are situated in western Himalaya.

The Sutlej River basin has an area of 60,803 km2 (above the Bhakra dam) and its river is the largest and easternmost of the

tributaries of the Indus (Fig. 1). The Beas River basin has an area of 12,286 km2 (above the Pong dam) and its river is itself125

a tributary of the Sutlej River. The available daily precipitation records in these basins (and neighbouring areas) come from

58 stations over the period 1980-2013 (364,713 data points), which range from 256 to 3,645 m.a.s.l. (Table 1). The majority

of the stations are located in the lower reaches of both catchments (Fig. 1), i.e., a significant part of the catchment area sits at

elevations above the highest monitoring station. The average distance between neighbouring stations is around 15 km, which

constitutes a relatively-dense network of precipitation measurements compared to West UIB, as well as many other areas in130

HKH (Nepal et al., 2023).

The Central UGB region includes the Langtang River catchment, which is situated in central Himalaya (Fig. 1). It consists of

a relatively small area, and its river is a tributary to the Ganges (Fig. 1). The available daily precipitation records for this region

come from 21 stations from 2012-2014 (15,152 data points), which range from 1,406 to 5,090 m.a.s.l. (Table 1). The average

distance between neighbouring stations is less than 2 km, which makes this one of the most dense networks of precipitation135

measurements in HKH (Steiner et al., 2021; Shea et al., 2015).

The WRF simulation is by Norris et al. (2019). It dynamically downscales 36 years of Climate Forecast System Reanalyses

data (Saha et al., 2010) from 1979 to 2015 over HKH at a spatial resolution of 6.7 km. We use multiple outputs (including

daily precipitation) from this simulation from 1980 to 2014 that cover the three target regions (see Table 2). Norris et al. (2019)

found that daily precipitation output from this simulation was better correlated with HKH gauge data in winter (correlation140

coefficient of 0.70) than in summer (correlation coefficient of 0.56). Additionally, over the Karakoram (West UIB), the simu-

lated precipitation had a relatively substantial negative bias (Norris et al., 2017). Note that the station data described above and

the WRF precipitation output are independent, i.e., the data was not assimilated into the Climate Forecast System Reanalysis.

Finally, the terrain elevation of the three target regions (and stations) is taken from the Shuttle Radar Topography Mission

(SRTM) digital elevation model, which has a spatial resolution of 30 m.145
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2.2 Generalised Probabilistic Regression (GPR) approach to MOS

The GPR approach to MOS post-processing involves predicting the probability p over daily precipitation y, conditional on a

set of predictors x, using regression models with parameters ϕ and whose output variables characterise a stochastic process

(Eq. 1). Importantly, we assume that the probability over daily precipitation at one spatio-temporal location is conditionally

independent from all other spatio-temporal locations, and thus the joint conditional probability p(y|x) factorises into the prod-150

uct of p(ym|xm), where m ranges from 1 to M and denotes a spatio-temporal location (i.e., there is a unique m(s, t) for every

combination of spatial location s and time t).

pϕ(y|x) = pϕ(y1,y2, ...,ym|x1,x2, ...,xm) =
M∏

m=1

pϕ(ym|xm). (1)

More concretely, the GPR approach uses regression models fϕ that map from inputs xm to outputs θm (Eq. 2). The input

vector xm is D-dimensional, whereas the output vector θm is N -dimensional and it explicitly parametrises the conditional155

probability distribution over daily precipitation ym. We use three regression model architectures, namely, vector generalised

linear models (VGLMs; Song, 2007) and two fully-connected artificial neural networks, also referred to as multi-layer percep-

trons (MLPs; Rumelhart et al., 1986).

θm = fϕ(xm). (2)

In VGLMs, the mapping from inputs xm to outputs θm in Eq. 2 involves two key transformations. Firstly, a linear transfor-160

mation, parametrised by a matrix of weights W1, is applied to xm. Secondly, a non-linear transformation g is subsequently

applied to obtain the output vector θm. Note that each element θn
m is generated by applying a specific link function gn, where

n ranges from 1 to N and indexes each element of θm and g. This element-wise non-linear transformation ensures that the

resulting output values are valid parameters of the predicted probability distribution (Eq. 3).

θm = g(W⊤
1 xm). (3)165

Thus, for VGLMs, parameters ϕ = W1.

In contrast, in MLPs the mapping from inputs xm to outputs θm in Eq. 2 involves passing xm through multiple hidden layers,

in sequence. The mapping from each layer to the next layer involves several linear transformations (determined by the number

of units in that layer and parametrised by matrices W1,W2, ...,WH+1, where H is the number of layers), each followed by a

non-linear activation function a (Eq. 4). This structure allows MLPs to model more complex (non-linear) relationships than a170

linear model. We use a very small MLP with one hidden layer of 10 units, where ϕ = {W1,W2} (Eq. 4; hereafter referred to

as MLPS) and a larger version with two hidden layers of 50 units each, where ϕ = {W1,W2,W3} (Eq. 5; hereafter referred

to as MLPL). Rectified linear unit (ReLU) non-linearities are used as hidden layer activations a in both MLP architectures,

except for the last layer, which also employs a vector of link functions g to map each output variable.

θm = g(W⊤
2 a(W⊤

1 xm)). (4)175
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Table 2. Summary of variables used as inputs to the GPR post-processing models, grouped by variable type.

Description Acronym Units

WRF liquid and total precipitation RAIN, PRECIP mm/day

WRF water vapour path WVP kg/m2 (daily average)

WRF convective available potential energy CAPE m2/s2 (daily average)

WRF temperature daily avg, max, min, and range at 2 m T2m, T2m,MAX, T2m,MIN, T2m,R K

WRF zonal and meridional wind at 10 m, 500 hPa, and 250 hPa U10m, V10m, U500, V500, U250, V250 m/s (daily average)

WRF vertical wind at 500 hPa and 250 hPa W500, W250 m/s (daily average)

WRF relative humidity at 2 m and 500 hPa RH2m, RH500 % (daily average)

WRF orography (based on surface geopotential height) GPH m

WRF land use index LU -

Latitude, longitude (of target station) Y, X m

Terrain elevation (of target station) Z m

Day of year encoded via sine and cosine functions DoYSIN, DoYCOS -

Year Year -

θm = g(W⊤
3 a(W⊤

2 a(W⊤
1 xm))). (5)

In order to post-process WRF daily precipitation outputs, the three GPR model architectures use an input vector xm that

consists of D = 26 variables listed in Table 2, i.e., resulting in a 26-dimensional vector. This includes outputs from the WRF

simulation at some spatio-temporal location m, as well as other context variables relating to the geographical location, orogra-180

phy, and date. The outputs from the WRF simulation include daily precipitation (i.e., the variable that is being post-processed),

as well as other variables that are closely related to precipitation, cloud properties, and convective processes, such as convective

available potential energy, cloud water vapour path, relative humidity, horizontal and vertical winds, and temperature.

To characterise the conditional probability over daily precipitation, we employ a Bernoulli-gamma mixture model, which

is capable of jointly accounting for precipitation occurrence and magnitude and has been used in previous studies (Williams,185

1998; Cannon, 2008). Precipitation occurrence is modelled by introducing a Bernoulli random variable rm, which takes the

value 1 with probability πm and the value 0 with probability 1-πm. When rm = 1, precipitation magnitude ym is modelled by a

gamma distribution with parameters α ∈ (0,∞) and β ∈ (0,∞). The Bernoulli-gamma mixture is implemented by specifying

regression models architectures that generate an N = 3 dimensional output vector θm = [πm,αm,βm], using link functions

g = [sigmoid(·),exp(·),exp(·)]. Further implementation details can be found in Appendix A.190
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2.3 Training, validation and testing

The GPR post-processing models are trained, validated, and tested using the daily precipitation observations yobs (Table 1)

as predictands, i.e., target values. We employ a k-fold cross-validation approach, which involves splitting the data by location

(i.e., station) into k folds, with k− 2 folds being used for training, 1 fold for validating, and 1 fold for testing. This process is

repeated k times, ensuring each fold is used once for testing. During training, we optimise the model parameters ϕ to maximise195

the average log-likelihood of the training dataset. For this, we use stochastic gradient descent with a batch size of 128 and

the Adam optimiser (Kingma and Ba, 2015) with an initial learning rate equal to 10−3. Here, we consider the validation step

as part of the training process as it involves selecting, from the different model training iterations, the configuration of model

parameters ϕ that maximises the average log-likelihood of the validation dataset, to avoid overfitting to the training data. We

thus refer to the combined training and validation steps as training. Lastly, testing involves evaluating the performance of the200

trained models on the held-out locations in the test dataset.

2.4 Scaling factor approach

We compare the post-processed WRF precipitation results from the three GPR models against results using a widely-used

deterministic MOS scaling factor approach (Maraun and Widmann, 2018), which we refer to as WRFSF. Here, the raw WRF

daily precipitation output for station s (hereinafter referred to as yWRF
s ) is scaled by the ratio between total observed daily pre-205

cipitation (
∑M

m=1 yobs
m ) and total WRF-simulated daily precipitation (

∑M
m=1 yWRF

m ), where data points indexed m ∈ {1, ...,M}
correspond to locations other than s, to obtain yWRFSF

s (Eq. 6).

yWRFSF
s = yWRF

s

( ∑M
m=1 yobs

m∑M
m=1 yWRF

m

)
. (6)

The scaling factor method is also applied using a 10-fold spatial cross-validation approach, where the scaling factor is

derived using k = 9 folds (i.e., data points indexed m ∈ {1, ...,M}) and then applied to the data points in the remaining fold.210

2.5 Experiments

We undertake four experiments that assess the performance of the three GPR post-processing models, as well as the scaling

factor approach WRFSF. The four experiments represent increasingly complex (but realistic) ways of partitioning the available

station data into subsets for training, validation, and testing, and are shown schematically in Fig. 2. In Experiment 1 (hereafter

referred to as E1), we train separate GPR models for each region (i.e., separate-region models) and test them by post-processing215

the WRF precipitation output at held-out locations within that region. This experiment represents a baseline scenario, where

models are trained and tested on the same region. In Experiment 2 (E2), we train GPR models using data from all three

regions combined (i.e., a combined-region model) and test them by post-processing WRF precipitation output at held-out

locations within each of the regions. This experiment therefore explores whether training a model over a diverse range of

regions/settings and then applying it to each of these regions outperforms the separate-region (E1) models. Both E1 and E2 use220
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10-fold cross-validation. Experiment 3 (E3) is similar to E2 but trains and validates the models on combined data from two

regions (consisting of 80% and 20% of the combined data, respectively), and tests on 100% of the data from a third, completely

held-out, region. This experiment therefore explores whether a model that is trained over a set of regions/settings can generalise

to an entirely different new region. In E3 we use 3-fold cross-validation to ensure that each region is held-out for testing once to

produce predictions for that region. Lastly, Experiment 4 (E4) is analogous to the separate-region (E1) experiment but splits the225

data up for training, validation, and testing based on the elevation of the stations. Here, for each region the top 10% elevation

stations are withheld for testing, the next 10% are used for validation, and the remaining 80% (i.e., lowest elevation) stations

are used for training. This experiment therefore explores whether models trained on data from the lower reaches of catchments,

where the majority of stations are located, are capable of generalising to much higher elevations that are typically ungauged.

Note that E4 therefore does not involve k-fold cross-validation.230

2.6 Evaluation metrics

To evaluate the post-processed precipitation distributions from each of the three GPR post-processing models in each of the

three target regions, we employ three strictly proper scoring rules (Gneiting and Raftery, 2007), which are the negative log-

likelihood (NLL), the continuous rank probability score (CRPS), and the Brier score (BS). For the CRPS and the BS, we

calculate their associated skill scores CRPSS and BSS, respectively (e.g., Angus et al., 2024). These measure the improvement235

relative to the CRPS and BS for the raw WRF precipitation output, which is considered as our baseline. The CRPSS and BSS

metrics are also used to evaluate the skill of WRFSF.

The NLL assesses the compatibility of probabilistic hindcasts with observed data, especially focusing on the probability of

observed events under the predicted probability distributions. It is defined as the sum of the natural logarithms of the probability

density function values at the observed data points (Eq. 7).240

NLL =− 1
M

M∑

m=1

log(p(yobs
m |xm)), (7)

where M represents the number of observations, yobs
m denotes the m-th observed data point, and p(yobs

m |xm) is the value of

the predicted probability density function evaluated at that observed data point. NLL is the optimisation criterion used during

training and therefore lower values indicate better performance.

The CRPS also measures how well probabilistic prediction matches the observed data yobs
m by measuring the distance between245

the predicted and observed cumulative distribution functions (CDFs). The CRPS is defined as the integral of the squared

difference between the predicted CDF F (ym) and the observed empirical CDF, which is the Heaviside step function H(ym−
yobs

m ), over the entire range of possible values y (Eq. 8).

CRPS =
1
M

M∑

m=1

∞∫

−∞

(F (ym)−H(ym− yobs
m ))2dym. (8)

Using this, the CRPSS is then calculated as:250

CRPSS = 1− CRPS
CRPSWRF

, (9)

10

https://doi.org/10.5194/egusphere-2024-2805
Preprint. Discussion started: 7 October 2024
c© Author(s) 2024. CC BY 4.0 License.



Figure 2. Schematic representation of the four experiments included in this study applied to three target regions. In Experiment 1, separate-

region models for each of the three regions are trained and tested in held-out locations within each region. In Experiment 2, combined-region

models are trained on data from all three regions and tested in held-out locations within those same regions. In Experiment 3, models are

trained on two regions combined and tested in a third, completely held-out, region. Experiment 4 is analogous to Experiment 1 but held-out

test locations are at higher elevations than those used for training and validation.
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where CRPSWRF is the CRPS of the raw WRF precipitation output. Positive values of CRPSS indicate improved skill relative

to the raw WRF output, with higher values indicating better performance. Note that for deterministic predictions (i.e., WRF

and WRFSF) the CRPS reduces to the mean absolute error between the predicted and observed values.

The BS (Wilks, 2006) measures the mean squared error between M pairs of precipitation occurrence probabilities πm and255

binary observations robs
m (Eq. 10). We compute the BS for various precipitation magnitude thresholds (0, 1, 10, 30 and 50 mm)

that span the spectrum of precipitation events, ranging from no precipitation to very extreme events. This approach allows for

a detailed assessment of the predictive capacity across different levels of precipitation intensity.

BS =
1
M

M∑

m=1

(πm− robs
m )2. (10)

Using this, the BSS is calculated as:260

BSS = 1− BS
BSWRF

, (11)

where BSWRF is the BS of the raw WRF precipitation output. Positive BSS values indicate an improved skill relative to the raw

WRF output, with higher values indicating better performance.

We extend the performance assessment for the combined-region models (E2) as these showcase the benefits and challenges

associated with leveraging data from different regions. For this, we pool together the E2 held-out predictions for all (three)265

regions and use reliability diagrams and receiver operating characteristics (ROC) curves (e.g., Angus et al., 2024). Reliability

diagrams serve as a visual representation of the calibration accuracy of predicted probabilities for different precipitation levels

(0, 1, 10 and 30 mm/day), extending the evaluation beyond pairwise-correspondence metrics such as NLL, CRPSS and BSS.

Reliability diagrams display the relationship between predicted probabilities of precipitation exceeding a certain threshold and

the actual observed frequencies, with a perfect agreement indicated by such relationship falling along the diagonal line on the270

graph. ROC curves offer an alternative perspective of probabilistic model performance across for different precipitation levels

(0.1, 1, 10 and 30 mm/day). In particular, ROC curves assess the ability of probabilistic predictions to discriminate an event

from a non-event by plotting the hit rate (i.e., ratio between the number of correctly predicted events and the total number of

events) against the false alarm rate (i.e., ratio between the number of wrongly predicted events and the total number of events)

using different predicted probability thresholds to transform the probabilistic prediction into a binary prediction of occurrence275

(Wilks, 2006; Angus et al., 2024). To allow for a better graphical differentiation of the ROC curves for different precipitation

events, data points with no observed precipitation are excluded from this analysis.

2.7 Feature ablation

To determine the most influential input variables for the three GPR post-processing models, we perform a feature ablation

analysis for E2 (Zeiler and Fergus, 2014; Kokhlikyan et al., 2020). Feature ablation is a technique that replaces each input280

variable (or feature) in xm with a baseline value (in this case, zero) and measures the impact this has on the output vector θm.

This is done for each of the D = 26 input variables from Table 2 by running the trained GPR models 26 times, each time with a
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Figure 3. Difference between observed and WRF-simulated mean daily precipitation (mm/day) for each gauging station as a function of

station elevation for a) West UIB, b) East UIB, and c) Central UGB.

different input variable in xm replaced by zero, thereby obtaining predictions θm for each ablated-feature input configuration.

For each feature, the average of the absolute value of the differences between the ablated-feature model predictions and the

original model predictions is computed for each output variable, i.e., π, α and β.285

3 Results

Figure 3 shows how differences between observed and WRF-simulated mean daily precipitation vary by region and with terrain

elevation. In West UIB and Central UGB, WRF systematically overestimates precipitation for all stations, i.e., for the full

elevation range of the stations. This overestimate is especially apparent in Central UGB, with station measurements showing

values of around 2 mm/day, whereas WRF generally simulates 8-10 mm/day. In East UIB, WRF underestimates precipitation290

at low-elevation stations (below around 1000 m.a.s.l.) and broadly overestimates it at higher elevations (especially above 2000

m.a.s.l.). These results generally show that the WRF output is characterised by highly variable precipitation biases across

the three target regions that are consistent with complex elevation and hydro-climatological dependencies, and therefore that

generalising MOS post-processing at ungauged locations is likely challenging.

Table 3 evaluates the performance of the three GPR post-processing models (VGLM, MLPS and MLPL) for each experiment295

and region using NLL. For E1, which assesses separate-region models for each of the three target regions, both MLP models

marginally outperform the VGLM model in all three regions, with MLPL performing best. Similar results are also apparent

for E2, which tests how combined-region models generalise to held-out locations within those regions. Comparison of E2 and

E1 shows that the combined-region GPR models (E2) perform marginally better than the separate-region GPR models (E1)

for East UIB, but are marginally poorer for West UIB and Central UGB. However, the NLL values for E1 and E2 for each300

region and each GPR model are very similar and only differ in the second decimal place, i.e., there is little difference between

the performance of either the separate-region or combined-region models, as well as between the three GPR models. For E3,

which is analogous to E2 but the GPR models are trained using data from two regions combined together and tested on the third
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region, NLL values are much higher compared to E2, highlighting a considerable drop in performance in all three regions. For

example, the NLL value for MLPL for West UIB is 1.24 for E2 and 2.46 for E3. Additionally, in E3, the range of NLL values305

within each region is relatively wide compared to E2, indicating that GPR performance in E3 is more sensitive to the choice of

model architecture. For example, for West UIB the NLL value is 1.50 for VGLM, 2.84 for MLPS, and 2.46 for MLPL. For E4,

which is analogous to E1 but testing happens at locations with higher elevations than those seen by the models during training,

the performance of all GPR models slightly drops compared to E1. However, the NLL values for E1 and E4 for West UIB and

East UIB still only differ in the second decimal place. Here, MLPS shows the best performance for West UIB and East UIB,310

while for Central UGB it is MLPL.

In terms of differences across all experiments and models for each region, NLL values in East UIB are lower than those in

West UIB by around 0.1, while NLL values in West UIB are in turn lower than those in Central UGB by (typically) 0.2 to

0.3 (Table 3). This pattern highlights the dominance of regional variability, driven by the quality/bias of the raw WRF output

and the amount of station data available. For example, East UIB has the best-performing models and also the highest number315

of daily precipitation measurements (364,713), with West UIB having the second best-performing models and also the second

highest number of measurements (76,860), and finally Central UGB has the poorest performing models and also the least

number of measurements (15,152) (Table 1).

Table 3. NLL values of post-processed daily WRF precipitation for the three GPR model architectures (VGLM, MLPS and MLPL), calculated

for all four experiments and all three target regions. Lower NLL values indicate better performance, with the best-performing GPR model

for each experiment and region shown in bold. NLL values are directly comparable across experiments and regions. Note that MLPL for E3

West UIB was trained using a learning rate of 10−4 to ensure training convergence, while the other experiments used 10−3.

Experiment West UIB East UIB Central UGB

VGLM MLPS MLPL VGLM MLPS MLPL VGLM MLPS MLPL

E1 1.263 1.235 1.226 1.179 1.159 1.150 1.480 1.437 1.420

E2 1.267 1.245 1.240 1.181 1.156 1.144 1.501 1.477 1.448

E3 1.502 2.835 2.457 2.414 1.531 1.483 1.683 1.985 1.950

E4 1.283 1.250 1.251 1.187 1.160 1.173 1.875 1.553 1.511

Table 4 extends the performance assessment by showing the CRPSS for the three GPR models. The CRPSS values are largely

consistent with the NLL results. For example, both MLP models outperform VGLM in all three regions for E1 and E2, and320

MLPL is the best overall performing model. The CRPSS values for E1 and E2 for each region are very similar and only differ

in the second decimal place, which was also found for the NLL results. For E3, all three GPR models exhibit lower CRPSS

values and larger differences between models compared to E2, i.e, consistent with the considerable performance drop in all

three regions and a higher sensitivity to the choice of model architecture found by NLL results. However, as CRPSS values for

the GPR models are relative to the reference CRPSWRF, the positive CRPSS values achieved still represent an improvement325

in skill relative to WRF. For E3, MLPS performs best for West UIB and East UIB (in contrast to VGLM for West UIB and

14

https://doi.org/10.5194/egusphere-2024-2805
Preprint. Discussion started: 7 October 2024
c© Author(s) 2024. CC BY 4.0 License.



MLPL for East UIB for the NLL results), while VGLM performs best for Central UGB (in agreement with the NLL results).

For E4, the performance of all models slightly drops compared to E1, with the MLPL model still performing best across all

three regions (in contrast to MLPS for West UIB and East UIB for the NLL results, but in agreement with MLPL for Central

UGB, for the NLL results). CRPSS values also display differences across all experiments and models for each region, with330

the highest values of around ∼0.8 in Central UGB, followed by values of ∼0.6 for West UIB, and finally ∼0.4 for East UIB.

However, as CRPSS values are relative to (and thus influenced by) CRPSWRF, which varies for each region, they are therefore

not directly comparable across regions.

Table 4 also shows CRPSS values for WRFSF. For all experiments and regions, the CRPSS values for WRFSF are lower

than those for the GPR models, indicating that the performance of the GPR models is superior to WRFSF. For example, for335

E1 and E4 the WRFSF values for East UIB are close to zero (-0.07), but positive in West UIB (∼0.4) and Central UGB (0.69),

i.e., indicating negligible improvement relative to the raw WRF output for East UIB, but some improvement for West UIB and

Central UGB. This is likely related to the direction of WRF-simulated biases changing with elevation for East UIB, while for

West UIB and Central UGB the biases are larger unidirectional (Fig. 3), i.e., large and unidirectional biases are more easily

post-processed and thus the scaling factor approach is also effective. For E2, WRFSF exhibits CRPSS values close to zero,340

indicating negligible improvement relative to the raw WRF output. For E3, WRFSF shows values close to zero for West UIB

(-0.03) and Central UGB (-0.04), but positive values for East UIB (0.35).

Table 4. CRPSS values of post-processed daily WRF precipitation for the three GPR model architectures (VGLM, MLPS and MLPL) and

WRFSF, calculated for all three regions and all four experiments. Higher CRPSS values indicate better performance, with the best-performing

MOS method for each experiment and region shown in bold. Positive CRPSS values indicate improved skill relative to raw WRF hindcasts.

CRPSS values are directly comparable across experiments but not across regions.

Experiment West UIB East UIB Central UGB

VGLM MLPS MLPL WRFSF VGLM MLPS MLPL WRFSF VGLM MLPS MLPL WRFSF

E1 0.646 0.654 0.657 0.397 0.416 0.433 0.434 -0.075 0.820 0.823 0.824 0.691

E2 0.645 0.647 0.652 0.021 0.416 0.428 0.439 0.022 0.814 0.811 0.825 0.043

E3 0.491 0.585 0.556 -0.027 0.346 0.384 0.354 0.234 0.812 0.779 0.782 -0.039

E4 0.625 0.628 0.644 0.398 0.414 0.427 0.430 -0.073 0.808 0.818 0.818 0.690

To better understand the performance of the GPR models for various precipitation intensities, Table 5 shows the BSS for the

three GPR models for different daily precipitation thresholds. As expected, BSS values are consistent with CRPSS results but

provide further granularity. For E1, E2 and E4, MLPL is best at capturing the probability over low-to-moderate precipitation345

thresholds (i.e., 0, 1 and 10 mm/day), whereas results for higher precipitation events (i.e., 30 and 50 mm/day) are variable.

However, for each region and threshold the BSS values for different models generally only differ in the second decimal place,

indicating that the performance of all GPR models is broadly similar for each region and threshold. For a threshold of 50

mm/day, smaller models generally perform marginally better for E1 (i.e., MLPS in West UIB and East UIB, and VGLM in
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Central UGB), E3 (MLPS), and E4 (VGLM), whereas MLPL performs best in E2 for East UIB and Central UGB. For E3, the350

VGLM model considerably outperforms the MLP models for low precipitation thresholds (i.e., 0 and 1 mm/day) in West UIB

and Central UGB, whereas MLPS performs best for higher thresholds (i.e., 30 and 50 mm/day) in these regions. Moreover,

E3 also shows a much wider difference between models for West UIB and Central UGB. For example, for West UIB and a

threshold of 30 mm/day, the BSS value is 0.47 for VGLM, 0.74 for MLPS, and 0.68 for MLPS.

For all experiments and regions, the BSS values for WRFSF are generally much lower than for the GPR models, indicating355

that the performance of the GPR models is superior to WRFSF (i.e., consistent with the CRPSS results). However, for E1 and

E4, WRFSF can have BSS values that are comparable to the GPR models for higher thresholds, especially for East UIB and

Central UGB. For example, for Central UGB the BSS value for a threshold of 50 mm/day is 0.91 for MLPL and 0.90 for

WRFSF.

Figure 4 shows reliability diagrams and corresponding observed precipitation event histograms for daily precipitation thresh-360

olds exceeding 0, 1, 10 and 30 mm/day for E2, i.e., the combined-region model. For low precipitation thresholds (i.e., 0 and

1 mm/day) the reliability diagrams show that the majority of predicted probabilities are well-calibrated (Fig. 4(a,b)), which is

indicated by the data points corresponding analogous levels to predicted probability and observed frequency of precipitation

(dashed line) coinciding with the diagonal line (solid line). However, the calibration accuracy declines for predicted probability

values of between 0.9 and 1.0 due to the model overpredicting the observed frequency. This occurs when the count of predicted365

instances for a given cumulative probability value decreases below a threshold of around 103 (Fig. 4(e,f)). This effect is even

more evident for higher precipitation thresholds (i.e., 10 and 30 mm/day), where predicted probabilities and observed frequen-

cies start to deviate at around 0.5 and 0.2, respectively (Fig. 4(c,d)), due to the model overpredicting the observed frequency.

This also coincides with the number of predicted instances for these higher precipitation events dropping below a threshold of

around 103 (Fig. 4(g,h)), which highlights the challenge of predicting extreme precipitation events.370

Figure 5 displays ROC curves for daily precipitation thresholds exceeding 0.1, 1, 10 and 30 mm/day for E2. This shows that

GPR models exhibit superior binary classification accuracy compared to raw WRF and WRFSF for all precipitation thresholds.

This is graphically depicted in Fig. 5 by the (probabilistic) curves sitting considerably above the (deterministic) point values

in the diagrams, indicating that the GPR models have higher true hit rate at equivalent or lower false alarm rates compared

to WRF and WRFSF. Such a consistent pattern reinforces the evidence that GPR models not only provide a more nuanced375

forecast by quantifying uncertainty but also deliver a more reliable prediction in terms of discriminating between events and

non-events for a given daily precipitation threshold. Additionally, Fig. 5 also shows for all precipitation thresholds that MLPL

consistently yields the best performance of the GPR models. Note that ROC diagrams in Fig. 5 exclude data points with no

observed precipitation (i.e., dry days) from the analysis.

Figure 6 shows the effect that progressively adding input variables (listed in Table 2) has on GPR model performance for E2,380

in particular on the held-out NLL value for MLPL. Starting with a set of core input variables (i.e., PRECIP, RAIN, DOYSIN,

DOYCOS and Z), the MLPL model yields a held-out NLL value of 1.33 (configuration labelled ’Core variables’ in Fig. 6). By

comparison, adding the spatial variables LAT and LON to the core set yields a held-out NLL value of 1.24 (labelled ’+ Spatial

variables’), while further adding the vertically-integrated thermodynamic/cloud related input variables WVP and CAPE to this
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Table 5. BSS values of post-processed daily WRF precipitation for the three GPR model architectures (VGLM, MLPS and MLPL) and

WRFSF, calculated for all three regions and all four experiments using a range of daily precipitation thresholds (0, 1, 10, 30 and 50 mm/day).

Higher BSS indicate better performance, with the best-performing MOS method for each experiment and region shown in bold. Positive BSS

values indicate improved skill relative to raw WRF hindcasts. BSS values are directly comparable across experiments but not across regions.

West UIB East UIB Central UGB

E T (mm) VGLM MLPS MLPL WRFSF VGLM MLPS MLPL WRFSF VGLM MLPS MLPL WRFSF

E1 0 0.528 0.544 0.550 0.000 0.520 0.548 0.559 0.000 0.515 0.522 0.537 0.000

E1 1 0.484 0.502 0.511 0.110 0.390 0.426 0.441 -0.010 0.582 0.595 0.615 0.142

E1 10 0.748 0.753 0.753 0.554 0.403 0.425 0.428 -0.035 0.823 0.829 0.830 0.699

E1 30 0.746 0.752 0.744 0.667 0.448 0.456 0.451 -0.111 0.934 0.932 0.926 0.929

E1 50 0.686 0.692 0.680 0.667 0.461 0.465 0.457 -0.143 0.914 0.911 0.907 0.903

E2 0 0.528 0.529 0.538 0.000 0.524 0.550 0.561 0.000 0.474 0.497 0.522 0.000

E2 1 0.493 0.492 0.496 0.004 0.397 0.426 0.441 0.005 0.545 0.560 0.597 0.006

E2 10 0.747 0.748 0.752 0.024 0.404 0.419 0.433 0.012 0.820 0.810 0.825 0.020

E2 30 0.741 0.750 0.748 0.054 0.443 0.450 0.458 0.027 0.938 0.937 0.938 0.086

E2 50 0.679 0.692 0.672 0.060 0.457 0.461 0.465 0.0048 0.917 0.917 0.919 0.101

E3 0 0.519 0.299 0.308 0.000 0.427 0.458 0.442 0.000 0.418 0.051 0.117 0.000

E3 1 0.485 0.331 0.338 -0.005 0.263 0.340 0.314 0.054 0.534 0.318 0.360 -0.003

E3 10 0.471 0.741 0.728 -0.028 0.326 0.375 0.329 0,172 0.817 0.811 0.808 -0.024

E3 30 0.473 0.745 0.680 -0.060 0.400 0.416 0.399 0.341 0.934 0.939 0.936 -0.074

E3 50 0.516 0.686 0.483 -0.090 0.432 0.438 0.431 0.410 0.916 0.916 0.912 -0.099

E4 0 0.521 0.534 0.546 0.000 0.519 0.544 0.555 0.000 0.441 0.461 0.501 0.000

E4 1 0.458 0.486 0.504 0.110 0.390 0.422 0.432 -0.010 0.566 0.556 0.577 0.142

E4 10 0.732 0.720 0.736 0.554 0.400 0.418 0.422 -.0.035 0.806 0.824 0.826 0.688

E4 30 0.741 0.728 0.743 0.667 0.444 0.448 0.449 -0.111 0.938 0.939 0.932 0.926

E4 50 0.683 0.669 0.683 0.667 0.460 0.458 0.459 -0.143 0.916 0.916 0.908 0.903

17

https://doi.org/10.5194/egusphere-2024-2805
Preprint. Discussion started: 7 October 2024
c© Author(s) 2024. CC BY 4.0 License.



Figure 4. Reliability diagrams (top panels) and predicted probability histograms (bottom panels) for different observed daily precipitation

thresholds of 0.1 mm/day (a,e), 1 mm/day (b,f), 10 mm/day (c,g), and 30 mm/day (d,h). Reliability diagrams (a,b,c,d) display the relationship

between predicted probabilities and the actual observed frequencies of precipitation exceeding a certain threshold (dotted line), with a

perfect agreement indicated by the diagonal line (solid line). Predicted probability histograms (e,f,g,h) display the counts of observed events

exceeding a certain threshold associated with various predicted probability levels.

Figure 5. Receiver Operating Characteristic (ROC) curves yielded by the three GPR models, as well as hit rate and false alarm rate for WRF

and WRFSF, for different daily precipitation thresholds of 0.1 mm/day (a), 1 mm/day (b), 10 mm/day (c), and 30 mm/day (d). ROC curves

exclude data points with no observed precipitation.
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Configuration Additional input variables Test NLL

Core variables PRECIP, RAIN, DOYSIN, DOYCOS, Z 1.325

+ Spatial variables LAT, LON 1.237

+ Integrated variables CAPE, WVP 1.202

+ Temperature variables T2m, T2m,MAX, T2m,MIN, T2m,R 1.197

+ Wind variables U10m, V10m, U500, V500, U250, V250, W500, W250 1.195

+ Relative humidity vars. RH2m, RH500 1.181

+ All other variables GPH, LU, YEAR 1.179

1 1.1 1.2 1.3 1.4

Test NLL

Figure 6. Test NLL yielded by MLPL in E2 for different configurations of input variables. Each configuration includes all the input variables

from the preceding rows in addition to the specific set of input variables listed for that configuration. For example, the configuration labelled

’Core variables’ contains the input variables PRECIP, RAIN, DOYSIN, DOYCOS and Z, whilst the configuration labelled ’+ Spatial variables’

contains ’Core variables’ plus LAT and LON.

configuration yields a value of 1.20 (labelled ’+ Integrated variables’), i.e, indicating a systematic improvement in skill as385

the number of input variables increases. However, adding the temperature-related input variables T2m, T2m,MAX, T2m,MIN and

T2m,R (labelled ’+ Temperature variables’), and then further adding the horizontal and vertical wind-related input variables

U10m, V10m, U500, V500, U250, V250, W500, and W250 (labelled ’+ Wind variables’), results in held-out NLL values of 1.20,

i.e., indicating negligible gain in skill compared to the ’+ Integrated variables’ configuration. By contrast, adding the relative

humidity variables RH2m and RH500 further reduces the held-out NLL value to 1.18, which is likely due to these input variables390

being thermodynamic/cloud related. Lastly, adding the remaining input variables GPH (i.e., WRF orography), LU and YEAR

yields a held-out NLL value of 1.18, i.e., no significant improvement.

Figure 7 assesses the relative influence that the input variables listed in Table 2 have on predicted outputs (i.e., the distri-

butional parameters θ, α and β) for the three GPR model architectures in E2. The feature importance analysis shows that the

VGLM model is heavily influenced by a relatively limited set of input variables, whereas the MLP models (in particular MLPL)395

leverage a more extensive array of predictors. The set of influential input variables is moderately consistent for all three output

parameters. However, one notable exception is the dominant effect that T2m has on π (Fig. 7a), but not on α and β (Fig. 7(b,c)),

for the VGLM model. The results further show that, for all three GPR models, the vertically-integrated thermodynamic/cloud

variables (CVW and CAPE), the relative humidity variables (RH2m and RH500), and the near-surface temperature variables

(T2m, T2m,MAX, T2m,MIN and T2m,R), stand out as important features, as well as inputs such as LAT, Z, and GPH. Moreover, and400

perhaps surprisingly, the precipitation input variables PRECIP and RAIN exhibit minimal influence on the GPR model outputs,

which likely also explains the importance of the vertically-integrated thermodynamic/cloud variables and the relative humidity

variables, as these play a dominant role in controlling precipitation. Furthermore, the contribution of the horizontal and vertical

wind velocity fields to the GPR outputs is also relatively minor. It is important to note that this feature ablation analysis does

not assess multivariate effects, but only the effect that removing a single input variable (i.e., replacing it with zeros) has on the405
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Figure 7. Feature ablation analysis for the three GPR models for E2, showing the effect that removing each input variable has on the output

distributional parameters π (a), α (b), and β (c). Each vertical bar shows the average absolute-value output shift caused by ablating (i.e.,

replacing by zeros) a specific input variable, i.e., the larger the bar the more important the input variable is to the model.

GPR model outputs. As a result, the lack of influence shown by certain variables could be due to these being redundant given

all other input variables (as evident in Fig. 6).

4 Discussion

In this study, we have shown that using a GPR approach to MOS post-process (i.e., downscaling and bias-correcting) daily

precipitation output from a reanalysis-driven RCM, for which simulated and observed daily precipitation are expected to exhibit410

pairwise correspondence, improves predictions at ungauged locations across all tested regions, precipitation thresholds, and

experiments. We use three scoring metrics (NLL, CRPSS and BSS) to evaluate the quality of hindcasts and find that, overall, the

three GPR models we employ (VGLM, MLPS, and MLPL) exhibit similar performance (Tables 3, 4, 5) and consistently yield

superior skill relative to the raw RCM output (WRF) and deterministic MOS bias correction (WRFSF) (Tables 4, 5). We find

that NLL (Table 3) and CRPSS (Table 4) yield similar relative rankings of GPR model performance. This is not surprising given415

that both the NLL and CRPS are strictly proper scoring rules that assess the goodness of fit of a predictive distribution against,

in our case, a single observation, and have their minimums at the same value. However, the NLL is much more sensitive to

extreme cases (as it involves a harsh penalty for events with low predicted probabilities) than the CRPS (Gneiting and Raftery,

2007). Therefore, it is insightful to corroborate the consistency of performance by using both scoring rules, whilst also noting

that using the CRPS as the optimisation criterion for the GPR model parameters would have resulted in different GPR models420

and associated predictions. The BS assesses the accuracy of probabilistic predictions specifically for binary events. Whilst the
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CRPS is the integral of the BS over all real-valued probability thresholds and can therefore be viewed as a generalisation of

the latter (Gneiting and Raftery, 2007), calculating the BS for specific precipitation thresholds provides additional granularity

and shows insightful patterns for extreme precipitation events (Table 5).

MOS post-processing of RCM daily precipitation outputs at ungauged locations involves using separate groups of stations425

for model training, validation and testing. However, given the high spatial variability that daily precipitation exhibits both

within and across regions, such an approach involves testing on out-of-distribution data, that is, models are assessed on their

ability to generalise to held-out data that significantly deviates from the training data. This presents a particular challenge to

representing extreme precipitation events. Daily precipitation in the three target regions is heavily skewed towards dry and

very-low precipitation amounts, with high-intensity precipitation events accounting for a very low fraction of the data (not430

shown). This imbalance hinders the models’ ability to learn a robust representation of the probabilities associated with extreme

precipitation events, and how these vary spatially and temporally. For instance, the smaller / simpler GPR models such as

VGLM and MLPS stand out as more robust options for extreme precipitation events (Table 5), which is likely because they

have fewer trainable parameters, and are thus able to learn less intricate patterns from the training data.

The four experiments we perform in this study assess GPR model performance across different post-processing tasks, which435

involve different ways of splitting data into training, validation and test sets. The dependencies between the training, validation

and test datasets vary widely depending on whether the task involves a single region (E1) or multiple combined regions (E2),

or extrapolating to either new regions (E3) or high elevations (E4). This explains the need for training models specific to

each experiment and also highlights the spread of post-processing tasks considered in this work, attempting various degrees of

generalisation. Consequently, the properties of the models trained to perform each task will also be different, which explains440

why GPR models ranked differently depending on the experiment.

In comparing GPR model performance across experiments, we showed that combined-region GPR models (E2) result in

marginally better predictions than separate-region models (E1) for East UIB (Tables 3 and 4). Here, we hypothesise that

East UIB benefits from combining data from all three regions because of the inherent challenges of this region, which is

characterised by a complex bias-elevation distribution (Fig. 3), as well as an under-representation of station data at high ele-445

vations bands (>2,500 m.a.s.l., Fig. 1). We also find that GPR models are capable of improving daily precipitation hindcasts

in completely ungauged regions (E3) by leveraging data from other regions (Tables 4 and 5). This result contradicts with the

assumption that because RCM daily precipitation biases are region-specific (Maussion et al., 2011; Norris et al., 2017; Ban-

nister et al., 2019; ul Hasson et al., 2019), they are therefore not easily-transferable to other regions. It is likely that GPR

models are partially able to overcome this issue because, conditional on enough information (i.e., relevant input features), daily450

precipitation biases for different regions share some similarities. E4 explores GPR model generalisation to locations situated at

higher elevations than the gauging stations used to train the models. We find that GPR models successfully post-process WRF

precipitation for all regions and thresholds, exhibiting only a marginal performance drop relative to E1 (Tables 3, 4, 5). This

findinzg is particularly important given that much of the high elevation regions of HKH suffer from a profound lack of gauges

(Pritchard, 2021; Thornton et al., 2022; Krishnan et al., 2019).455

21

https://doi.org/10.5194/egusphere-2024-2805
Preprint. Discussion started: 7 October 2024
c© Author(s) 2024. CC BY 4.0 License.



We find that training GPR models with progressively richer predictor configurations (i.e., with additional input variables, see

Table 2) has a consistently positive effect on model performance, with some input variables (e.g., spatial, vertically-integrated,

and relative humidity variables) driving most of the performance improvement (Fig. 6). Notwithstanding this, the performance

gain yielded by incorporating additional input variables is strongly dependent on the previously added input variables. Thus,

the relatively minor beneficial effect of variables such as temperatures and winds is likely only highlighting some degree of460

redundancy in the signal provided by different input variables. Furthermore, the three GPR models respond differently to the

ablation of single input variables (Fig. 7), which highlights the complex interplay between input variables and model architec-

ture. The reliance of the VGLM model architecture on a few input features contrasts the broader utilisation of inputs necessary

for the MLPL model. The influence exhibited by input variables such as elevation and latitude (i.e., representing topography),

and convective available potential energy (CAPE), wave vapour, and relative humidity (i.e., representing thermodynamics) for465

post-processing daily precipitation is in line with findings from previous studies showing that precipitation in this region is

strongly associated with thermodynamical and dynamical interactions with topography (Orr et al., 2017; Potter et al., 2018;

Bannister et al., 2019; Medina et al., 2010; Ramezani Ziarani et al., 2019; Dimri et al., 2017). In contrast, somewhat surpris-

ingly, input variables such as total and liquid precipitation have little influence on output values (Fig. 7), which we hypothesise

is partly due to the redundancy that exists between input variables, which in turn enables GPR models to compensate for the470

ablation of a single input variable by leveraging other variables.

4.1 Necessity for probabilistic predictions

Probabilistic and deterministic predictions are inherently different and it is important to consider this when evaluating the

quality of the products produced by both types of models. In this work, we are interested in assessing the performance of

(probabilistic) GPR models, which leverage the pairwise correspondence between WRF daily precipitation output and obser-475

vations, whilst capturing the predictive uncertainty that arises from multiple sources. A probabilistic MOS approach is justified

if the goal is to fully leverage the richer predictions yielded by these models. For example, GPR model predictions can be used

to map probabilities of exceedance for different precipitation events (Fig. 8(a,b,c)), which form the basis of risk assessments, or

in downstream impact modelling settings that are capable of leveraging probability distributions over precipitation. The latter is

an emerging and largely untapped area of research for many impact modelling fields reliant on precipitation as one of the main480

inputs (e.g., hydrological and crop modelling; Li et al., 2013; Peleg et al., 2017). Conversely, if the intended use of the models

is to essentially reduce the probabilistic predictions into a deterministic product, then deterministic metrics should be used to

evaluate them. To this end, we use ROC curves to show that, for different precipitation thresholds, deterministic projections of

GPR predictions still consistently outperform WRF and WRFSF (Fig. 5).

Accurate representation of past and present-day daily precipitation holds significant importance for various downstream485

tasks, such as hydrological modelling, crop modelling, or hazard analysis, all of which heavily rely on the hindcast precipitation

for calibration. In hydrological modelling, knowing the distribution and timing of daily precipitation is crucial for simulating

streamflow and predicting river flooding events (e.g., Andermann et al., 2011; Huang et al., 2019; Li et al., 2017; Wulf et al.,

2016). Similarly, in crop modelling, precise knowledge of daily precipitation patterns enables accurate estimation of water
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Figure 8. Panels a), b), and c) show maps showing the probability of precipitation exceeding 0.1 mm/day (a), 10 mm/day (b) and 50 mm/day

(c) over the entire WRF spatial domain on an arbitrary date (10/10/2010) using the MLPL post-processing model trained using one of the

k-fold splits in E2. Panel d) shows a map of modelled precipitation occurrence based on independently drawn samples from each grid-cell’s

predicted probability distribution for the entire WRF spatial domain on an arbitrary date (01/01/2010) using the MLPL post-processing model

trained using one of the k-fold splits in E2. The 3000 m.a.s.l. contour is shown in orange in all four maps.

availability and crop growth, leading to improved yield predictions and agricultural management decisions (De Wit et al.,490

2005). In hazard analysis, past climate data is paired with historic events (e.g., glacial lake outburst floods; Shrestha et al.,

2023) to be able to determine what precipitation intensity triggered them.

4.2 Limitations and future work

Local-scale variability of precipitation in HKH remains a challenge for MOS post-processing models aimed at ungauged

locations. The diverse climatic conditions and complex terrain in the region result in contrasting precipitation patterns among495

nearby stations, which limits the degree to which patterns observed in one location are representative of nearby locations

(Immerzeel et al., 2014; Orr et al., 2017; Bhardwaj et al., 2021; Ren et al., 2017; Dimri et al., 2017; Thayyen et al., 2013;

Potter et al., 2018). Using different locations to train, validate and test models is a common strategy in spatial prediction

settings but it can introduce model biases (Burt et al., 2024), especially when the distribution of thegauging stations is uneven.

Furthermore, the reliability of daily precipitation measurements in mountainous areas is compromised by issues such as gauge500

undercatch (Pritchard, 2021). Such challenges hinder our ability to thoroughly test MOS models across an entire region and

thus to gain confidence in their use for operational post-processing of RCM daily precipitation.

Another important limitation of the study relates to the lack of spatial coherence when sampling from the predicted prob-

ability distributions. The GPR post-processing approach, as implemented in this work, assumes that the daily precipitation

probability for each grid cell, conditional on a set of input features, is independent of its neighbours. This assumption, coupled505

with the large variability of precipitation in the region, leads to scattered precipitation occurrence maps when drawing indepen-

dent samples from the predicted probability distribution at each location across the grid (Fig. 8d). This is therefore an area for

potential improvement in future work by, for example, adding a latent variable that is defined across space (and/or any other

dimensions, e.g., elevation) and builds correlations between neighbouring locations.

Disaggregating results spatially and temporally is important to assess the extent to which different MOS post-processing510

models improve results at finer scales. In this work, we have presented results (dis)aggregated at the regional level, enabling an
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analysis of regional differences. However, further spatial granularity (e.g., at the station level) would potentially lead to a better

understanding of model performance across different elevations and latitudes. Seasonality of precipitation also varies greatly

across the three study regions. For example, the winter westerlies are responsible for much of the annual precipitation in West

UIB, whilst East UIB and Central UGB are summer monsoon dominated (Bookhagen and Burbank, 2010; Palazzi et al., 2013;515

Dimri et al., 2015). Given their relevance when it comes to impacts on water resources, flooding, and other rainfall-induced

natural disasters, correctly post-processing dominating seasons for each region is another important aspect to assess. To some

extent, optimising GPR models to perform best across all seasons inherently weights seasons by their relative significance.

However, this work does not explicitly optimise models by season. This is therefore a direction that could be explored in future

work.520

Although we considered various parametric distributions for modelling the conditional probability over daily precipitation

and found that the Bernoulli gamma mixture model is a previously-used, robust, and effective choice (Williams, 1998; Cannon,

2008), we suggest further work be focused on the study of distributions for modelling the probability over daily precipitation

(conditional on a set of variables). Finally, as we have shown that RCM post-processing patterns learned from one region

may be relevant for post-processing other (poorly gauged or completely ungauged) regions, future effort should be devoted to525

investigating the benefits of applying transfer learning (Pan and Yang, 2010) and meta-learning (Vanschoren, 2018) techniques

for mountainous / data sparse regions like HKH, i.e., involving a model being pre-trained using data from a set of regions

(especially those that are relatively data-rich, such as the Alps) and then fine-tuned for a different region or set of regions.

5 Conclusions

The compound effect of the local-scale variability and sparse observations that characterise daily precipitation in HKH poses a530

significant challenge when it comes to post-processing RCM outputs for ungauged locations. In this work, we address this issue

by introducing a Generalised Probabilistic Regression (GPR) approach to MOS post-processing (i.e., downscaling and bias-

correcting) of RCM-simulated daily precipitation hindcasts for ungauged mountain locations using sparse in situ observations.

We test the GPR approach across three HKH regions and four experiments that mimic real-world scenarios. These experiments

explore the ability of GPR models to generalise to: 1) ungauged locations within each region using separate-region models, 2)535

ungauged locations within each region using combined-region models, 3) an entirely ungauged region using combined-region

models, and 4) high-elevation ungauged locations within each region using separate-region models.

Overall, the three GPR model architectures we employ exhibit similar and consistently large performance improvements

relative to both the WRF baseline and the WRFSF deterministic bias correction approach. Generalised linear models (VGLMs)

are found to be a robust choice for GPR-based post-processing of WRF daily precipitation but non-linear models (MLPS and540

MLPL) do, in most cases, lead to improved performance. We find that GPR models are able to learn from sparsely distributed

(both spatially and temporally) in situ observations and to generalise to new locations, using both separate-region or combined-

region training settings. Performance of separate-region and combined-region GPR models is largely similar, resulting in much

improved skill relative to WRF and WRFSF. Combined-region GPR models are also capable of generalising to new (completely
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ungauged) regions by leveraging data from other two regions. Although there is an expected drop in performance compared to545

other experiments, this experiment still results in large skill improvements relative to WRF and WRFSF, with simpler model

architectures being more robust choices in this setting. Furthermore, we explore the degree to which GPR models are effective

at post-processing ungauged high-elevation locations and find that their performance is consistent with previous experiments,

suggesting that this approach could be used to better understand much of the ungauged high-elevation regions of HKH.

GPR model performance exhibits large regional variability, driven by a combination of factors including the availability550

of in situ observations, performance/bias of WRF baseline and hydro-meteorological characteristics of each region. Simple

GPR models are best for large precipitation events. The differential influence that input variables have for different GPR

models underscores the complex interplay between input features and GPR model architecture, with thermodynamic/cloud

related input variables being especially important. Lastly, our results show that GPR models can use patterns learned from

one region to improve RCM post-processing in other region, and we therefore suggest/hypothesise that transfer learning and555

meta-learning may be promising approaches to leverage observations/knowledge from data-rich mountain regions (e.g., Alps)

to improve RCM post-processing in other (data-poor) regions.

Code and data availability. The code used to reproduce the experiments, generate figures, and analyse the results presented in this study is

available at: https://github.com/mgironamata/pddp-mountains. The WRF simulation output is available via Norris et al. (2019). The SRTM

elevation data is available at: https://earthexplorer.usgs.gov/. In situ gauge datasets were collected and provided by the Bhakra Beas Man-560

agement Board and the Indian Meteorological Department (East UIB), the Pakistan Meteorological Department and the Water and Power

Development Authority (West UIB), and the International Centre for Integrated Mountain Development (Central UGB). The authors of this

paper do not have the required permission to make the gauge datasets publicly available but suggest that any readers interested in obtaining

them contact the above organisations.

Appendix A: Probability distributions565

A1 Spike-and-slab mixture models

To explicitly model the probability over both precipitation occurrence (zero and non-zero values) and magnitude we resort to a

special type of mixture models called spike-and-slab models. A spike-and-slab model for a random variable Y is a generative

model in which Y attains some fixed value v (spike) or is drawn from a probability distribution p (slab).

To implement a spike-and-slab model, let us consider a set of inputs x1:M and outputs y1:M . Now, let r1:M be a collection of570

M additional binary values, the m-th of which is 1 if ym > 0 and 0 if ym = 0. Assume that observations y1:M are drawn from a

collection of random variables Y1:M , respectively. Assume that r1:M are sampled independently from a Bernoulli distribution.

Following that, ym is zero if rm is zero, and sampled from a continuous distribution with support (0,∞) (e.g., gamma or log-

normal) if rm is one. Below we detail the probabilistic models and associated conditional log-probability for various mixture

models of this type.575
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If we choose a gamma distribution with parameters αm and βm to model the continuous part of the distribution, ym is

produced via the following probabilistic model:

rm ∼ B(πm),

(ym|rm = 1)∼ Γ(αm,βm)

We call this model a Bernoulli gamma mixture model, for which the conditional log-probability of the collection of (y,r)1:M

value pairs is given by:580

M∑

m=1

logp(ym, rm|xm)

=
M∑

m=1

logB(rm;πm)Γ(ym;αm,βm)rm

=
M∑

m=1

rm[logπm + logΓ(ym;αm,βm)] + (1− rm) log(1−πm)
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